
Software Design for Reliability and Reuse

Preliminary Method De�nition

R� B� Kieburtz

October ��� ����

This document describes the SDRR method for designing a software component generator�

This is the view seen by a team of computer scientists responsible for producing a design for a

new class of applications� The view of a domain expert who will use the generator to create a

speci�c software component is far simpler� A generated software component will typically be

incorporated in an instance of a domain speci�c�architecture�

� The SDRR design team

An SDRR design team includes a number of specialists� The specialists need to coordinate their

e�orts but are able to work independently and concurrently on their assigned tasks� Although

the roles are described as those of individuals� a single person might play several roles on a

small project� or a single role might be shared by several persons on a large one� The members

of the team are�

� The design manager� who is a domain expert and has overall responsibility for the software

design� its validation and documentation�

� A domain�speci�c language designer� who should have some knowledge of the applications

domain but who primarily knows the principles of language design�

� The semantics expert� who understands formal semantics of programming languages and

is expert at programming in the algebraic design language� ADL�

�



� The veri�cation expert� trained in mathematical logic� who uses formal proof techniques

to verify critical properties of a design�

� The implementation designer� who is expert in use of the implementation language and

in choosing e	cient data representations�

� The transformations expert� who understands strategies for algorithm improvement�

� The SDRR design concept

SDRR is a method for the design of 
exible and powerful software component generators� With

a component generator� software components themselves are not the basis for design reuse�the

design encapsulated in the generator is the reusable artifact� When a subsequent application

or version of a design is needed� design modi�cations are made to the speci�cation that is input

to the generator� and a new software component is generated automatically� This allows each

design change to be made at a level of abstraction at which details of the software irrelevant to

the change are not seen� It also allows the applications designer and the software maintainer

to use a design language that is expressive of the domain of application� rather than to encode

the design in a wide�spectrum programming language�

Component generators achieve their greatest advantage for the design of families of software

modules that are needed in many particular instances� If a software component is anticipated to

be a one�o� instance� dissimilar to any existing design� to be used once and never modi�ed� then

developing a component generator to produce it has little advantage� However� this is almost

never the case� Most software modules have family resemblances to other� related modules

and will undergo use and modi�cation over an extended life cycle that requires their design to

be maintained and updated� SDRR is intended to produce software components that can be

reliably and inexpensively maintained over an extended life cycle�

��� Steps in the design of a software component generator

The design of a component generator by SDRR proceeds in a series of steps that are carried

out by the specialists of the design team� in cooperation with one another�

�



�� Perform domain analysis to determine the requirements of the intended application� This

step is common to all software development� It is not unique to SDRR� It needs the

attention of a domain expert�

�� Formulate a domain�speci�c design language DSDL� in which to express the parameters�

operations and constraints necessary to meet the requirements of the domain application�

This is a task for the domain�speci�c language designer� with the collaboration of a

domain expert�

�� Formalize a computational semantics of the DSDL in terms of ADL� the algebraic design

language used in SDRR� This task requires the semantics expert� a computer scientist

with advanced training in formal aspects of programming languages and software design�

�� Prove critical properties of the formal semantics� This is the task of the veri�cation expert�

This task does not imply the need for a comprehensive �proof of correctness� of every

aspect of the DSDL semantics� but it does o�er an opportunity for formal veri�cation of

those properties of a design that are deemed to be of critical importance� Some properties

can be veri�ed independently of one another� or �incrementally�� Veri�cation may be

considered to be an o��line task� in that progress towards building an implementation

does not have to await its completion�

�� Design an implementation� SDRR implementations are stereotyped� An implementation

expert designs a set of implementation primitives that specify how the computational

semantics of the DSDL are to be realized in terms of a target programming language�

For DoD applications� the target programming language will ordinarily be Ada� An im�

plementation design is usually retrieved from a library� rather than designed for a speci�c

application� An implementation design is tailored to an application by an environment

speci�cation that is also provided by the implementation designer� The environment

speci�cation details the interfaces to target language libraries and to other software or

hardware modules present in a system architecture�

�



�� Formulate tactics for performance improvement by program transformation� This is the

task of the transformation expert� Performance improvement is obtained through the

use of automated program transformations that are applied during the course of program

generation� These transformations are mathematically based and are guaranteed to pre�

serve the computational meaning of the ADL�speci�ed semantics� The transformation

expert designs a control scheme� or tactic� for application of these transformations to

ensure their e�ectiveness� When an SDRR�designed program generator is applied to a

DSDL speci�cation� it automatically applies the necessary transformations by following

the prescribed tactic�

� Domain Speci�c Design Languages � DSDL�s

A domain speci�c design language is intended to formally specify software designs� It is a

formal language that is expressive over the abstractions of an application domain� A DSDL

may be wholly or partially declarative or it may be a functional language with libraries of

functions specialized to the application domain� Common examples of DSDLs are�

� Tex and Latex� text formatting languages�

� Mathematica� an extensible language for mathematical modeling�

� Schema description and query languages for databases�

� Layout languages for prettyprinting the text of computer programs�

� A message format description language for the message domain of military C� systems�

An advantage of using a DSDL is that a domain expert can express domain�speci�c concepts

directly� rather than encoding them� This allows the domain expert to formalize the speci�ca�

tion of a software solution immediately instead of communicating a speci�cation informally to

a software specialist who may be less familiar with the intended application�

�



��� Designing a DSDL

A DSDL is de�ned by a computer scientist in consultation with a domain expert� In the design

of a DSDL� a dialogue is necessary between the two in order to settle three important issues�

� To clearly identify the principal conceptual abstractions of the domain� For example� in

a language for formatting mathematics� the essential abstractions might include expres�

sions� fractions� vectors� matrices� etc�

� To formally de�ne a language of terms to represent these abstract concepts� A term

language can be de�ned in terms of a syntactic phylum syntactic category� for each

conceptual entity� The formal de�nition of a syntactic phylum is done through the use

of a context�free grammar� Each abstract grammar generates a context�free language�

These languages give a means to express instances of the concepts and of relations among

them�

� To interpret the relations among the principal conceptual entities� This interpretation is

initially given by the domain expert in an informal manner� by describing the relations

in natural language English�� The computational content of this description will later

be elaborated by giving a formal semantics to the DSDL� For example� if the DSDL were

a language for formatting mathematics� the relations among entities might consist of

rules or constraints that govern the two�dimensional layout of their presentation within

a rectangular window�

When designing a DSDL two important criteria should be kept in mind� �� the DSDL

must be intelligible to a domain expert� and �� the formal semantics must allow a speci�cation

expressed in the DSDL to be translated into e�ective procedures that realize the speci�cation�

Typically� such a speci�cation will provide static or dynamic constraints on an artifact of the

application domain� or will specify its dynamic behavior�

Often� a graphical user interface GUI� can be used to advantage to help an application

designer to formulate an application design in the DSDL� With a well�designed GUI� the appli�

cation designer does not need to �learn another language� in order to use the DSDL� The GUI

�



takes the place of the �surface syntax� of the DSDL� providing instead the visual guidance of

highlighting� windows and menus to guide the application designer to the desired structure of a

formal speci�cation� In the SDRR method� a GUI has very limited responsibility for checking

data validity� It might� for instance� enforce a restriction on the number of characters in a

�xed�length �eld of text but it would not be responsible for checking that words entered into

such a �eld were valid or were spelled correctly�

��� Tool support for a DSDL

A DSDL has the syntactic structure of a context�free language� If it is given a surface syntax�

then a parser generator tool such as yacc can be used to construct a translator from the surface

syntax to its abstract syntax� If it is given a graphical interface� then a standard GUI design tool

such as Motif can be used� In either case� the structure of a design speci�cation is determined

by the abstract syntax of the DSDL�

� Formalizing the semantics of a DSDL

The formal semantics of a DSDL is de�ned in terms of an algebraic design language ADL��

This semantics gives the DSDL a computational interpretation in which the relations between

the principal concepts of a design abstraction are formalized�

The �rst step in the formal speci�cation of a semantics is to specify a datatype that corre�

sponds to the abstract syntax of the DSDL� To each operator of the abstract syntax there will

correspond a data constructor of the datatype� The semantics of a term constructed with a

given data constructor will be composed from the semantics of the subterms given as arguments

to the data constructor�

The control structure of an ADL program is speci�ed through families of high level combi�

nators� To each combinator there corresponds both a computation rule and a proof rule� The

computation rules give an operational semantics to the ADL language and the proof rules give

it a logical interpretation consistent with the computational one� Instances of the combinators

are composed to form more complex function de�nitions in ADL� The laws obeyed by such

�



functions are inferred by applying the proof rules of each constituent combinator�

Each operator of the abstract syntax of a DSDL is given a computational interpretation by

a semantic function� The semantic function is well�typed in the type system of ADL� and is

de�ned by cases on the data constructors of the ADL datatype derived from the abstract syntax

of the DSDL� For each such case� the prescribed meaning of a DSDL fragment is speci�ed by

a computation programmed in ADL�

This programming technique uses the syntax of the DSDL to structure the speci�cation

of a computational solution� The resulting solution is compositional� Less attention is given

initially to the e	ciency of a solution than to the uniformity of its construction from its com�

ponent parts� The goal is to specify a computation in such a way that it is amenable to formal

reasoning� so that one can verify that it corresponds to the informally speci�ed problem require�

ments� Algorithmic e	ciency will be improved at a later stage by meaning�preserving program

transformation of an ADL speci�cation and by compilation into an e	cient representation in

an implementation language�

� Veri�cation of semantic properties

As noted previously� to every ADL combinator there corresponds an inductive or coinductive�

proof rule� The structure of the rule is dictated by the inductive de�nition of the particular

datatype for which the combinator de�nes homomorphisms� Since proofs are constructed from

induction schemes that correspond directly to the combinators� it is possible to derive from a

combinator and a proposition for which a proof is sought� the veri�cation conditions that must

be discharged to complete the proof� By automating the derivation of proof obligations� we

obtain a goal�driven proof assistant for ADL�

Certain combinators require termination conditions to be proved� Termination proofs re�

quire the speci�cation of a domain predicate� which becomes a veri�cation condition for the

application of a combinator� and a well�founded ordering on the domain of the combinator� as

restricted by the domain predicate� Termination proofs are independent of the proof of other

properties of a combinator�

�



The construction of proofs a�ords opportunity for human error� just as does the speci�cation

and design of programs� Veri�cation by proof adds reliability not only because it involves formal

reasoning� but because this reasoning can be checked by a mechanical proof assistant� A proof

assistant for ADL is an important but as yet unimplemented� adjunct to the set of design

support tools�

	 Transformational Improvement

When the semantics of a DSDL is fully elaborated in ADL it is algorithmically e�ective� A

component design speci�ed in the DSDL can be executed as a rapidly constructed prototype�

However� without further work� it is likely to have poor performance in terms of execution time

and space usage� The SDRR method encourages highly modular design of semantic functions

in ADL� This produces a design that is easy to understand� to validate and to maintain�

but engenders many more uses of function composition than might otherwise be necessary�

Accordingly� control structures that might be shared are often duplicated� and intermediate

data structures may be built and analyzed when they could have been avoided by careful

programming�

To avoid paying performance penalties for modular design� SDRR employs extensive pro�

gram transformation on the ADL speci�cation� The transformations that are used are meaning

preserving� which implies that they will never introduce errors that were not present in the

original design� These transformations are� in fact� derived as instances of theorems in the

algebra of ADL� There are transformations that support

� deforestation�elimination of intermediate data structures�

� fusion�consolidation of similar control structures�

� accumulator introduction�caching of values to avoid recomputation�

� recursion elimination� in favor of iterative control�

� introduction of state�

�



Transformations of an SDRR design are applied automatically� Interactive direction of trans�

formation steps has proven di	cult to do e�ectively� In applying the SDRR method� a human

transformation expert supplies a tactic to control the automatic application of transforma�

tion steps� Transformations are directed by pattern�matching which triggers the invocation of

embedded tactics�


 Implementation Templates

An implementation is speci�ed by a set of implementation templates and an interface speci�

�cation� An interface speci�cation documents the typed� system interface that will be seen

by the software component that is the object of the design� The functionality required of the

interface can be speci�ed informally or in terms of a �rst�order logic or software speci�cation

language�

The interface provided by the designed component includes the typed� signature of its

visible functions or procedures� together with the formal speci�cation of the component as

elaborated in the design�

Implementation templates are macro�like translation forms for the primitive access and

construction functions of ADL datatypes� Implementation templates can be provided in a

number of di�erent implementation languages� although for DoD projects� Ada will be the

preferred language for implementation� A set of implementation templates must contain generic

templates for algebraic datatypes but it may also contain specialized templates for speci�c types

that are commonly used� Through implementation templates� a designer can specify a hashed

symbol table� for instance� as the implementation of an association list�

Implementation templates are typically quite small� of the order of a few hundred source

lines� although a set of templates can grow if additional� specialized implementations are spec�

i�ed for particular datatypes� These templates are highly reusable� both because templates

are copied many times during the translation of a single design from ADL to the target im�

plementation language� and because a set of templates can be used in any number of speci�c

applications�

�



� Design reviews

SDRR design reviews are conducted by all the members of the group involved in a design

activity� A review consists in critiquing di�erent parts of the design to check for inconsisten�

cies� The critical aspects to be reviewed are the DSDL design� the semantics of the DSDL as

given in ADL� the speci�ed implementation templates� and con�rmation that the environment

speci�cations have been met�

Reviewing a DSDL is critical since its speci�cation is initially given with an informal English

description� Therefore� there is the possibility that it may contain ambiguities and misunder�

standings� Allowing several people to study it often leads to a better de�nition of the language�

Prior to reviewing the semantics of the DSDL given in ADL� preliminary validation is

obtained by type�checking the semantics� This provides early noti�cation of all typing errors�

For an informal validation of the semantics� the reviewers read and discuss the semantics�

Formal veri�cation is carried out by constructing proofs� using the proof rules that accompany

each combinator� For reliability� proofs should be machine checked�

The design review committee also checks that the implementation templates meet all design

constraints� Formal validation of the templates is done mechanically through exhaustive testing

of each implementation function� After a set of implementation templates has been validated�

it can be archived in a library of valid implementations�

Finally� it is also necessary to check that the environment speci�cations have been met�

This is a necessary step� even though integration testing will be performed� since exhaustive

integration testing is very hard�

Design review of transformational improvements is only needed to determine the e�ective�

ness of the transformation tactics� It is not necessary to review the correctness of the semantics

transformations� since it is proved that none of the transformations change the meaning of the

ADL forms� but a�ect only the performance of an implementation�

��



� Tool support for SDRR

This section summarizes the design support tools that underlie SDRR� The tools can be envi�

sioned in terms of �T� diagrams� such as

Input Name Output

Implem�

in which

Name is the name of the tool�

Input is the language of its input�

Output is the language of its output�

Implem� is the language in which the tool is implemented�

When the output language of tool A matches the input language of tool B� these tools can

communicate directly with one another� Otherwise� a translation of representation is necessary

to compose two tools�

The �T� diagrams shown below for the tools Schism and Astre have been extended to

show the interface modules that translate data representations� These interfaces allow these

existing transformation tools to be seamlessly plugged into a composite sequence of SDRR

transformation tools�

The tools are grouped into three sections� �� those used to implement a DSDL� �� those

used to transform the ADL semantics of a DSDL into a simpler and more e	cient program�

and �� those that translate the simpli�ed ADL semantic representation into a program in the

target implementation language� Tool group �� will be standardized for the SDRR method

and automatically invoked on each particular domain design� For each tool� three levels of

capability are listed� These are to be achieved in the three stages of prototyping in the �evolving

prototype� life cycle�

��



��� Design capture in a DSDL

����� The graphical user interface

Graphics GUI DSDL

ML

Purpose� To provide an interface for the design of applications in the prescribed domain�

Capabilities of scheduled prototypes �

�� Data entry�GUI embeds data into the phrase structure of the DSDL

�� Data editing�GUI supports editing of a speci�cation�

�� GUI performs some data checking and error recovery�

����� The DSDL Compiler

DSDL DSDL ADL

CRML

Purpose� To translate a domain�speci�c design speci�cation into ADL�

Capabilities of scheduled prototypes �

�� DSDL is translated into core ADL� without monads�

�� Monad interpretations are added to the ADL formulation�

�� An ADL module capability is added�

��



��� Formal transformations for algorithm improvement

����� Higher Order Transformations

ADL HOT ADL

CRML

Purpose� To improve algorithmic e	ciency by applying the algebra of ADL to rewrite combi�

nator expressions�

Capabilities of scheduled prototypes �

�� Perform fusion for those ADL combinators based on initial algebras�

�� Extend techniques to non�initial algebras�

�� Extend techniques to bifunctors and combinators of coalgebras�

����� ADL Translator

ADL Translator ML

CRML

Purpose� Transform ADL programs into ML programs�

Capabilities of scheduled prototypes �

�� Restricted to �core� ADL without termination proofs�

�� Generate proof obligations necessary for termination�

�� Extend transformations to the ADL module system�

��



����� Partial evaluation preprocessor

ML PEP ML

CRML

Purpose� Prepare ML programs for partial evaluation by�

� Replacing every function of multiple� individual arguments by an equivalent function of

a single� tupled argument�

� Lifting all function de�nitions to top level�

Capabilities of scheduled prototypes �

�� Restricted to uncurrying functions in �core� ML�

�� Add lifting of function de�nitions to top level�

�� Extend to the ML module system�

����� Partial Evaluation

ML ML�SCM

CRML

Scheme Schism Scheme

Scheme

SCM�ML ML

Scheme

Purpose� Symbolically evaluate programs at compile time�

Capabilities of scheduled prototypes �

�� Provide translation tools between Scheme and ML�

�� Automatically generate the fold�unfold heuristics via ADL��

�� Provide more extensive feedback to the user�

��



����� Firstify

ML Firstify ML�

CRML

Purpose� Transform functional values into data structure representations so that the program

can be transformed directly into an imperative language format�

Capabilities of scheduled prototypes �

�� Accepts only a list of ML declarations�

�� Extended to �core� ML�

�� Extended to the ML module system�

����	 Astre

ML� ML�AST

CRML

ASTRE Astre ASTRE

CAML

AST�ML ML�

CAML

Purpose� Perform optimizations on �rst order programs�

Capabilities of scheduled prototypes �

�� Provide interactively�controlled program transformation�

�� Provide attributes inherited from the ADL representation and supplied interactively at

prototype level ���

�� Fully automatic control of transformation tactics�

��



��� Translation to imperative language for implementation

����� Program Instantiation

Implementation

Templates

�

ML� PI Ada

CRML

Purpose� Translate �rst order ML programs into Ada�

Capabilities of scheduled prototypes �

�� Generate single�assignment Ada functions for ML expressions�

�� Generate imperative Ada using state variables and exceptions�

�� Generate Ada packages�

��



� SDRR illustrated with a top�to�bottom example

Here will illustrate how the SDRR method is applied with a simple� yet instructive example�

The application is a recognizer for strings of symbols that belong to a regular set� It is known

that such a recognizer can be constructed on the model of a �nite state automaton� The

automaton makes a state transition on each successive symbol of an input string until either it

determines that the string cannot be a member of the speci�ed set or it has scanned the entire

string and �nds that it is a member of the set� A very simple example of such an automaton is

one that would keep track of the parity of a string of binary digits and accept just those strings

of even parity�

It is important to keep in mind is that such an automaton is not an intelligent being� Its

capacity for memory is bounded�it has only a �nite number of states� Thus no �nite state

automaton can recognize all those strings over an alphabet of more than one symbol� that

are palindromes� because any �nite automaton could be presented with a palindrome that was

long enough that the states of the automaton could not encode enough information from the

�rst half of the string to determine whether the second half matched it in reverse�

Regular sets have been extensively studied and there exists a formal� mathematical language

in which to describe any regular set� This language� called regular expressions� is an example

of a domain�speci�c design language for the problem domain of recognizing regular sets� This

problem is not entirely academic� Applications that rely on recognition of regular expressions

include the lexical analysis phase of compilers� many communications protocols� and substring

matching algorithms such as grep in UNIX systems� the ��� command of DOS� etc�

���� Domain analysis

A regular expression RE� describes a set of strings� The syntax of RE�s is expressed by an

context�free grammar�

��



Syntax�
RE ��� symbol explicit symbol

j RE �RE catenation of strings

j RE �RE union of regular sets

j RE� zero or more repetitions

j RE �

j � the null string

j � the empty set

���� Semantics of regular expressions

Every regular expression has an equivalent nondeterministic �nite automaton NFA� that will

accept the set of strings speci�ed by the RE� A computational realization that constructs an

NFA from a given RE provides a semantics for the RE language�

Such a realization has been programmed as an ADL function speci�cation� This function�

called translate RE� is speci�ed by straightforward analysis�by�cases on the syntactic structure

of an RE� The domain of this function is a datatype in which an NFA is represented by ��

the number of states that constitute it� �� a list of triples that represents its state�transition

relation� �� a list of its initial states� �� a list of its �nal states�

The �nal component of a string recognizer is a �xed function� interpret NFA� speci�ed in

ADL� This function interprets the data structure produced by translating an RE� acting like

the prescribed NFA to accept or reject a string that is presented to it as an argument�

���� Verifying the correctness of the realization

The fundamental result that veri�es the semantics given to the RE language is a well�known

theorem that asserts the equivalence of an NFA to the RE from which it is obtained� Informal

��



reasoning has been used to verify that the two ADL functions� translate RE and interpret NFA�

are consistent with the mathematical model�

���� Using a pattern recognizer generator

� The user inputs a regular expression representing a set of strings for which a recognizer

is wanted�

� translate RE the DSDL compiler� translates the RE a data structure representing the

equivalent NFA�

� The NFA and its interpreter pass through the design automation system�

� The �nal product is a program that reads a string and accepts it if and only if it belongs

to the set of strings described by the RE�

��



���� Tool support applied to the example

We continue the example by showing how each tool is applied to it�

�
���� Using the DSDL Compiler

RE DSDL ADL�NFA

CRML

Purpose� To compile the NFA speci�ed by a regular expression into ADL�

� Translate regular expressions into ADL data structures representing NFAs�

� An NFA interpreter takes an NFA speci�cation and a string and simulates the actions of

the NFA on the string�

�
���� Applying higher order transformations

ADL�NFA HOT ADL�NFA

CRML

Purpose� To improve the string recognition algorithm by applying the algebra of combinators

to rewrite the compiled ADL representation of an NFA interpreter�

�
���� Applying the ADL Translator

ADL�NFA Translator ML�NFA

CRML

Purpose� To transform an ADL program into an ML program�

��



�� An NFA is translated into an ML data structure�

�� The ADL representation of an NFA interpreter is translated into an ML program that

is equivalent in that it gives the ML data structure representation of an NFA the same

interpretation as the ADL representation�

�
���� Applying the Partial Evaluation Preprocessor

ML�NFA PEP ML�NFA

CRML

Purpose� Prepares ML programs for partial evaluation by�

� uncurrying functions in the interpreter�

� lifting all locally de�ned functions in the interpreter to top level�

�
���� Partial Evaluation

ML�NFA ML�SCM

CRML

Scheme Schism Scheme

Scheme

SCM�ML ML

Scheme

Purpose�

�� The interpreter is partially evaluated with respect to the particular NFA�

�� The result is a residual program that takes only a string as an argument�

��



�
���	 Firstify

ML Firstify ML�

CRML

Purpose� Transform functional values into data structure representations so that the program

can be transformed directly into an imperative language format�

�
���� Program rewriting with Astre

ML� ML�AST

CRML

ASTRE Astre ASTRE

CAML

AST�ML ML�

CAML

Purpose� Perform rewriting on �rst order program text to achieve algorithm improvement�

�
���� Generating a target program with the Program Instantiator

Implementation

Templates

�

ML� PI Ada

CRML

Purpose� To translate �rst order ML programs into Ada�

� An Ada implementation is speci�ed by a set of Implementation Templates�

� PI translates a �rst order ML program into equivalent Ada program� using representation

schemes speci�ed in the Implementation Templates�

��



� When compiled� the Ada program will read a string and simulate the action of an NFA

to either accept or reject it�

�� Summary

The SDRR method provides an alternative to conventional methods for the design and valida�

tion of software components� In conventional methods� CASE tools can support the activities

of human analysts� designers� implementors and testers� but do not usually automate their ac�

tivities� Not all of these activities have high intellectual content� In particular� implementation

and testing are relatively routine activities that rely heavily on prior experience� These are

prime candidates for automation� In particular� the implementation�testing cycle that is repet�

itively executed by the software engineer while developing a component seems a particularly

good target for productivity improvement through automation�

In SDRR� humans concentrate on analysis� high�level design and speci�cation� and upon

validation by formal veri�cation� Implementations are automatically generated� The formal

structure of designs and implementation speci�cations allow critical functional properties of

software to be veri�ed by formal proof� The degree to which design automation tools are

applied to the software generation process in SDRR is unparalleled�

The enabling technologies that underly the SDRR method are the algebraic design lan�

guage and the meta�programming techniques that support its translation� and the program

transformation and partial evaluation techniques that have been developed over the past ���

years�

��



A Algebraic Design Language

ADL is an abstract� high�level language with well de�ned mathematical properties� Its mathe�

matical properties will support formal veri�cation of properties in the design of the DSDL� Its

high level of abstraction makes ADL suitable to explain the semantics of an arbitrary DSDL�

ADL is su	ciently general to support speci�cation of the semantics of a DSDL independent of

an implementation� This allows for retargeting or reuse of software component designs with a

variety of interfaces� and for optimizing the performance of implementations�

ADL is a very high level� typed functional language for designing software� In ADL� con�

trol is expressed through a family of type�parametric combinators� Certain combinators are

parameterized with respect to datatypes� so that they can express the control associated with

structural induction for any datatype� Additionally� ADL has coinductive types and there are

coinductive combinators that express the control paradigms of iteration and search�

Control in ADL is completely speci�ed through the use of its higher�order combinators�

not through explicitly recursive function de�nitions or loops� ADL does not support unstruc�

tured recursion� A program whose termination properties cannot be veri�ed does not have

algebraic properties� Without algebraic properties� there are many program transformations

and optimizations that cannot safely be performed�

Although control combinators can be expanded by being rewritten into recursion equations�

these recursions are highly structured� and have special properties� One such property is that

the recursion associated with an inductive combinator always terminates� The combinators

admit inductive proof rules that provide structure for formal reasoning about properties of

programs� The proof rules can be viewed as theorems about the algebra of the combinators�

They also provide a basis for generic program transformation tactics�

ADL also has combinators that are not simply based upon primitive induction� but can

realize more complex� trans�nite induction schemes� When using these combinators� it is

required to prove that the domain of each application satis�es a logical constraint ensuring

termination of the computation� Only terminating computations are well�de�ned in ADL�

��



A�� Programming with algebras

There are two main approaches to expressing software designs algebraically�

� Abstract data types ADT�s�

ADT�s specify the theory of a signature algebra as a system of equations� Typically� these

equations refer to terms in particular datatypes and the algebraic theory is executable

by a rewrite semantics� An executable algebraic theory combines speci�cation with the

design of an implementation� The external view of an ADT hides both its implementation

and its theory� revealing only its signature�

The module system of ADL allows the importation of a concrete algebra without import�

ing its abstract signature� Such an algebra is� in e�ect� an ADT� This mechanism is used�

for instance to import an arithmetic algebra� The axioms of such an algebra extend the

logic expressed by the proof rules of ADL�

� Structure algebras

These are more abstract than ADT�s� but they enjoy general properties useful for rea�

soning about programs� Structure algebras arise in the theory of universal algebras� The

homomorphisms of these parameterized signature algebras are of particular interest�

A structure algebra corresponds to a type constructor� parameterized with respect to a

datatype� A great many program control structures can be characterized as homomor�

phisms of structure algebras� Among these are all the reduce functions for freely�generated

algebraic datatypes� as well as more complex functions for non�initial algebras�

A dual notion is that of a structure co�algebra� Many co�algebra homomorphisms corre�

spond to the iterative control structures of conventional programming languages� How�

ever� their use in ADL is constrained by proof obligations that must be discharged to

assure that iterations always terminate�

The control combinators of ADL are all based upon the homomorphisms of structure al�

gebras and co�algebras� It is in this way that unbounded recursion is avoided� Instead of

��



de�ning functions with recursion equations� operators are speci�ed as structure�algebra homo�

morphisms� Hence� the algebraic properties of the programs are known immediately� These

properties justify a variety of program transformations as consequences of the equational theory

of an algebra�

A�� Programming with monads

Two common techniques are used to compose software designs in ADL� The �rst is algebraic

composition� which follows from the fact that algebraic programming is based upon the concept

of multi�sorted signature algebras� parametric in a carrier set� When a signature algebra is

instantiated with a particular carrier set that may also have algebraic structure� that structure

is inherited and a composite algebra is formed� The other technique is semantic composition�

using monads as the underlying structuring concept�

Monads provide a framework for structuring programming language semantics� Monads are

algebraic structures that provide an abstract formalization of many programming concepts� It is

through the introduction of monads that we are able to add more detail to the semantic domain�

For example� state variables� I�O� exceptions� continuations� backtracking and concurrency

can be added by interpreting a structure algebra in the appropriate monad� Furthermore� the

desired semantic constructions can be incorporated incrementally into a design� The ability to

incorporate state variables� exceptions and continuations into the semantics explicitly guides

the �nal step of design� the translation from a purely functional� high�level design language to

a lower�level implementation language with conventional� imperative features�

Monads have been advocated as a program structuring concept promoting reusability� By

introducing monad de�nitions into ADL� we obtain a mechanism for generating composite

combinators� We have successfully used monad composition as the basis for a new technique

of design re�nement�

A�� Design by semantic re	nement

Design re�nement begins by specifying the names and types of semantic functions that realize

the informally speci�ed relations among conceptual entities described in a DSDL� As initially

��



speci�ed� these functions may not be e�ective� They may lack detailed� algorithmic de�nition�

However� the control structure required for these functions can be speci�ed in general terms�

leading to the �rst re�nement of high�level combinator de�nition� Re�nement of the initial

de�nition is provided by detailing state components and additional control re�nements� such

as exceptions�

Each control combinator is a higher�order function requiring a set of basic action functions

as arguments� The type signature of the control combinator determines the types of the action

functions� Each action function speci�es the action of the combinator for a particular case

or constraint of the data to which the combinator is applied� In this re�nement approach�

the action functions needed by a combinator can be de�ned independently of one another� as

separable design tasks� Their designs may involve further steps of combinator speci�cation and

action�function re�nement�

Selected action functions can be identi�ed as policy parameters of the design� A policy pa�

rameter is a design parameter that specializes behavior to a particular application� A di�erent

policy parameter can be substituted to achieve a di�erent specialization for a related applica�

tion� Policy parameters are explicitly abstracted� creating derived combinators that incorporate

committed design decisions but expose� through the policy parameters� design choices subject

to change� In this way� the scope of variability of a design at the level of semantics is made

manifest� This has important consequences for the maintenance of a software design�

��


