
Script�Based QOS Speci�cations for Multimedia

Presentations�

Richard Staehli� Jonathan Walpole
fstaehli� walpoleg�cse�ogi�edu

Department of Computer Science � Engineering
Oregon Graduate Institute of Science � Technology

����� N�W� Walker Rd�� PO Box �����
Portland� OR �	���
����

ABSTRACT

Multimedia presentations can convey information not only by the sequence of events
but by their timing� The correctness of such presentations thus depends on the timing of
events as well as their sequence and content� This paper introduces a formal speci�cation
language for playback of real�time presentations� The main contribution of this language
is a quality of service �QOS� speci�cation that relaxes resolution and synchronization
requirements for playback� Our de�nitions give a precise meaning to the correctness of
a presentation� This speci�cation language will form the basis for a QOS interface for
reservation of operating system resources�

Keywords� Resource Reservations� Real Time Multimedia Authoring� Operating Sys�
tems� Synchronization

� Introduction

Multimedia systems typically support both static and dynamic media types� The static types
include text and graphics that the viewers peruse at their leisure� Dynamic types such as video and
animations present information that changes with time� and in fact the rate of change is a part of the
information that is being communicated� In order to communicate e	ectively� a system that supports
dynamic media types must be able to preserve the meaningful temporal relationships in a multimedia
presentation� Digital audio and video are known as continuous media because they approximate an
analog signal� Such media have natural synchronization constraints for playback that arise from
the sample recording rate� A multimedia presentation may also include synthetic synchronization

constraints� speci�ed by the presentation
s author� to create a meaningful relationship between
media objects� Synthetic constraints can be speci�ed in most multimedia authoring tools ��� ��
�� �� both through explicit synchronization between objects and through rate control of continuous
media� Playback quality depends on how close the presentation events are to the speci�cation� In
these systems� the playback quality of service �QOS� depends on scheduling mechanisms and the
availability of operating system resources that are not easily understood by a user�

In our architectural model� shown in Figure �� an author uses a presentation speci�cation
tool� which we refer to as a scripting tool� to de�ne a presentation� A user views a presentation
via a playback tool that may be separate from the scripting tools� The playback tool may execute
concurrently with other unrelated applications in a general purpose computing system� While the

�This research is supportedby NSF Grant IRI��������and by funds fromTektronix� Inc	 and the Oregon Advanced

Computing Institute	

�

Resource Manager

Scripting Tool Playback Toolscript display
display

prefetch

Object Services

QOS request

Real-Time Tasks

Figure �� Speci�cation of content and playback quality in multimedia presentations�

playback tool is responsible for the correct timing of the presentation it must rely on the underlying
operating system for timely access to resources� To limit the scope of the speci�cation problem this
paper assumes that presentations are not interactive�

Presentation timing depends on the playback algorithm� the clock that provides time values�
the availability of required resources and the latency of presentation operations� Assuming that
the playback algorithm is correct� timing errors can arise from each of the latter three sources
independently� For example� if the rate of audio playback is controlled exclusively by a clock on
the output device then the audio may drift out of synch with a video stream that is controlled
by a di	erent clock� A display process can miss deadlines while waiting in a ready queue while
another process executes on the CPU� A display process may have all needed resources before a
deadline� but still miss the deadline because of the inherent processing time required� A playback
algorithm can be designed to anticipate timing errors and reduce their impact on the remainder of
the presentation� An operating system can make this task easier by providing more information
about resource availability� system latencies and clock rates�

When resource loads make it impossible to satisfy all constraints in a presentation� a multimedia
system can either preserve the data content at the expense of timing or it can shed some of the
data processing load in order to meet more timing constraints� Some playback tools��� �� allow
presentation events to occur late� as scheduled by a non�real�time operating system� The alternative
is a real�time scheduling policy that chooses which deadlines to meet and and which tasks to defer or
drop� If a system does not provide resource reservations� then overload conditions will cause service to
degrade during multimedia presentations� Some playback tools incorporate algorithms that attempt
to preserve QOS for audio streams while video streams that can tolerate a greater loss in bandwidth
are allowed to miss frames���� As load increases� however� sharing a degradation of service eventually
leads to e	ective service to none� Resource reservations can be used as an alternative to provide
service guarantees for at least some users� A system that provides service guarantees must also have
an acceptance test that checks for availability of resources before providing guarantees to any user�

�

In other words� this approach avoids overloads by occasionally denying service to new users� rather
than degrading service for existing ones� To provide service guarantees� a service provider must
know which resources are needed and how much to reserve of each�

Recent research into protocols for network bandwidth reservation has yielded a number of pro�
posals for QOS speci�cations consisting of parameters such as max�message�size� max�msg�frequency�
average�message�rate� average�error�rate and averaging�interval����� �� For multimedia presentations�
a reservation protocol must be able to ensure synchronized delivery of data from a number of sources�
Bandwidth reservations alone are insu�cient because they do not provide an upper bound on start�
up latency� That is� the �rst unit of data on a guaranteed bandwidth connection might arrive too
late relative to data already presented from other connections� For simple presentations it might be
sensible to delay the start until connections have been set up for all media components� but in gen�
eral it is necessary to create and release connections during a presentation in order to use resources
e�ciently����� In this paper� we de�ne a QOS speci�cation technique for multimedia presentations
that is based on timing constraints for individual presentation events� We argue that bandwidth
requirements for data channels are an implementation concern and may be derived from the out�
put timing constraints and a playback algorithm� The combination of output timing and content
constraints and a speci�cation of acceptable timing and content errors de�ne the QOS needed for a
presentation�

In multimedia systems� acceptable QOS depends both on the presentation author
s content
speci�cation and the user
s preferences for playback� Although no multimedia system can achieve
the synchronization goals of a presentation perfectly� most playback tools do not allow one to specify
tolerances for errors� In other words� they lack a formal semantics for imperfect execution� If a
multimedia system is to service a maximumnumber of playback requests without allocating excessive
and costly resources� then a QOS interface is needed to enable the playback tools to specify their
requirements more precisely�

This paper describes Timesync� a language that speci�es synchronization for all multimedia
presentation actions relative to a single clock� Real�time speci�cation languages��� �� ��� provide a
formal basis for proving correctness in real�time systems� but these languages do not dictate how one
is to specify tolerances for errors� The Timesync language shows one way to accomplish this� starting
with a real�time script and adding constraints on the number and type of exceptions to be allowed�
Timesync has a formal interpretation for its speci�cation of timing constraints and error tolerances�
Such a speci�cation can be used by an operating system to understand service requirements and�
with adequate support for resource reservations� provide presentation service guarantees�

The next section outlines the requirements that motivate the design of the Timesync language
followed by a discussion of related work in Section �� Section � reviews the CSP notation that is
used in section � to de�ne our language� In section � we assess the strengths and weaknesses of the
Timesync approach for specifying multimedia presentations� Our conclusions and a discussion of
future work is given in section ��

� Requirements for a Presentation Speci�cation Language

A speci�cation language for non�interactive multimedia presentations must be able to identify
the presentation contents as well as describe the synchronization and spatial layout of the contents
on the output devices� In addition to these basic requirements� we feel that a presentation language
should also attempt to meet the following goals�

� Physical data independence� A speci�cation should have the same meaning across implemen�
tations of data sources�

� Recursive composition of presentations� Arbitrarily complex presentations can be speci�ed by
composing simpler speci�cations�

� Formal semantics for error tolerances� It must be possible to detect when a presentation fails
to deliver its meaningful timing and contents�

�

� Completeness in expressibility� It should be possible to specify all meaningful synchronization
and layout of media objects�

� Soundness in constraint speci�cations� It should not be possible to specify con�icting con�
straints in a presentation�

� Simplicity� Common presentation types should be easy and compact to express� Unusual
presentation requirements should not be unnecessarily di�cult�

� Related Work

There are a large number of scripting tools for multimedia presentations� both in commercial
and experimental systems� QuickTime����� the well known commercial product from Apple� assigns
a playback time for each display action relative to a single clock� By translating each playback time
t to the clock interval �t�� t��� where t� is the closest integral clock value closest to t� we can interpret
QuickTime movies directly as scripts with Timesync
s formal semantics� There is� however� no
existing standard for specifying playback quality for QuickTimemovies� Instead� the typical playback
algorithms perform a best e	ort scheduling of playback actions� In particular� an unbounded number
of video frames may be dropped when the video data path has insu�cient bandwidth so that playback
is frequently unacceptable on an overloaded system�

The MAEstro system��� provides a graphical timeline editor that allows easy speci�cation of
synchronization between media objects that are represented as segments of various tracks within
the timeline� Again� the timeline editor speci�es synchronization goals� not playback requirements�
In fact� the playback of a MAEstro composition is accomplished by best�e	ort dispatching of play
commands to separate �possibly remote� applications that support the playback of individual media
types� Naturally� on a Unix platform� a number of resource limitations may cause unpredictable
delays in the playback�

Little and Ghafoor have described an interval�based approach to specifying synchronization of
multimedia elements���� Their approach provided some of the inspiration for the recursive compo�
sition of complex presentations described in this paper� However� their work still does not address
the speci�cation of playback quality� An algorithm is given for playback that assumes ample system
resources are available to meet presentation deadlines�

� A Brief Review of CSP

Our process speci�cations will use the de�nitions and notation developed by C�A�R� Hoare for
his Communicating Sequential Processes �CSP� ���� We assume that the reader is familiar with this
work and that this section need only provide a brief review of terminology�

A process describes the behavior pattern of an object in terms of a �nite set of events from
some alphabet� For example� we could describe the order of push and pop events in a stack using
the alphabet fpush� popg�

STACK � P�

P� � �push� P��

Pn�� � �push� Pn��kpop� Pn�

A trace of a process execution is a �nite sequence of events observed by the process in the order
that they occurred� Simultaneous events may be recorded in any order since there is no implication
of time elapsing between events� A process description constrains the order in which events occur
and traces�P � denotes the set of all possible traces of a process P �

Speci�cations are predicates on a trace that constrain the allowable sequences of events within
it� We use the following notation to talk about properties of a trace�

�t the number of events in a trace

�

t�i� is the ith event in trace t

A speci�cation requiring that the number of pop events never exceed the number of push events in
a trace tr is written�

�pop in tr � �push in tr

We say that a process P satis�es a speci�cation S if� for every possible trace tr of P � the predicate
S holds� We abbreviate this relation to

P sat S

� Script�Based QOS Speci�cation

To give our language a formal basis� we �rst de�ne the low�level timing constraints based
on observable presentation and clock events� Later� we will introduce high level constructs and
composition operators that will make it easier to express common presentation components such as
synchronized audio and video segments�

�	� Time	

A clock produces a monotonically increasing sequence of integer time values� A real�time
clock advances independently of an observer process but may communicate its value through read
operations� In general� a read operation may incur some delay so that the value of the clock read
may be somewhat smaller than the clock
s current value� We model such a real�time clock with the
following CSP process�

RTCLOCK � P�kREAD

Pn � �tick � Pn��kt�n� Pn�

READ � �bef�t�n� t�n� aft�t�n� READ�

where tick increments the clock value and bef�t�n� t�n and aft�t�n correspond to the initiation of a
read� assignment of the clock value n and completion of a read respectively�

A clock interval is a pair of time values �i� j� where i � j� An interval �i� j� contains another
interval �k� l� i	 i � k � l � j� For containment� we use the notation for a subset so that for two
intervals� I and I�� I� � I means that I contains I�� Addition of an integer to an interval is de�ned
so that k � �i� j� � �i � k� j � k��

�	� Actions	

While a CSP event is the instantaneous recording of an observation in the trace of a process�
multimedia presentation actions such as the transfer of a frame of video data to an output device�
may have non�zero duration and signi�cantly overlap other presentation actions� An action produces
an observable state change that can be delimited in time by a pair of events� For example� a function
that displays a video frame is delimited by call and return events� Since a real�time speci�cation
requires a total ordering of a constrained event with observations of the constraining time values� we
require that before and after events in the observing process causally precede and follow respectively
the initiation and completion of an action� For an action a we will let bef�a and aft�a denote these
events�

We would like to specify when signi�cant actions occur in a process with respect to a �possibly
remote� real�time clock� As before� let t�i denote the action of reading a clock with i being the
value returned� An action a is said to occur during a clock interval �i� j � �� i	 a sequential process
reads the clock value i before the action and the value j after completion of the action� That is� the
trace of the process observes the event sequence � aft�t�i � � � bef�a � � �aft�a � � � bef�t�j �� Figure �
illustrates this synchronization with a minimum number of communications� Note that even if the
observer reads the same clock value i before and after the action� the clock interval during which
the event occurred� �i� i � ��� is non�zero�

�

time

action

clock

aft.t.0 bef.a aft.a bef.t.2 aft.t.2observer

0 1 2 3

Figure �� From the event sequence � aft�t�� bef�a� aft�a� bef�t��� the observer concludes that that
action a in the interval �� ���

�	� Scripts	

A script is a mapping of actions to clock intervals� We write a script as a set of pairs �a� I�
where a is the description of an action and I is a clock interval� The lowest time value in a script is
de�ned to be the start time� We de�ne the addition of an integer to a script as�

i � S � f�a� i� I�j�a� I� � Sg

Logically a script is a real�time process speci�cation with a timing constraint for each action�
In order to formalize this meaning for a script� we need to develop some machinery to help us relate
the pattern of events in the trace of a process to the constraints in a script� The following three
conditions allow us to de�ne a unique interval for the occurrence of every action�

To interpret clock readings as times we must require that they are monotonically increasing as
mentioned previously�

CLOCK � �i� j� k� l � �i � j � tr�i� � aft�t�k � tr�j� � bef�t�l� 	 k � l

Requiring the �rst and last events in a trace to give us a bounding clock interval for the rest of the
events ensures that there exists at least one clock interval for every action�

BOUNDED �
i� j � tr��� � aft�t�i � tr��tr� � bef�t�j

Finally� if the same action a occurs more than once� that is� we observe the sequence of events
� bef�a � � � aft�a � � � bef�a � � � aft�a �� then we must require that there be a reading of the clock
between the occurrences so that we can distinguish them�

DISTINGUISH � �i � j � �s�i� � aft�a � s�j� � bef�a� 	

�
k� l�m � i � k � l � j � s�k� � bef�t�m � s�l� � aft�t�m�

We say that a process is � if all of its possible traces satisfy these requirements�

P sat CLOCK �BOUNDED �DISTINGUISH

In the rest of this paper� we will assume that all processes are � so that our timing speci�cations
have their intuitive meaning�

Let obs�tr� be the set of all traces that observe some subset of the events in tr in the same
order as they occur in tr�

obs�tr� � fsj�i � f� � � ��sg
k � s�i� � tr�k�� �j � fi� � � � ��sg
l � k � l � s�j� � tr�l�g

�

a1 a7a2 a4 b1 c1

M L V X

trace

Script a1 a2 a3 a5 a7a6a4

time

Figure �� Example mapping of actions in a trace to the constraints in a script�

For any trace of a real�time process� the following de�nition gives us the set of most tightly con�
strained time intervals for each occurrence of an action in the trace�

tim�tr� � f�a� �i� j��jhaft�t�i� bef�a� aft�a� bef�t�ji � obs�tr�

��
k� l � haft�t�k� bef�a� aft�a� bef�t�li � obs�tr� � �k � i � l � j�g

Let R��� be the set of all one�to�one relations� Formally� we interpret the meaning of a script S�
abbreviated M�S�� as a logical formula with free variable for a trace of a process tr�

M�S� �
M � R��� � dom�M � � S � ran�M � � tim�tr� � ���a� I�� �a�� I ��� �M � a � a� � I� � I

In other words� the constraints of the script should each be satis�ed when mapped one�to�one onto
the timings of a trace� We say that a � process P satis�es a script S if� for every possible trace tr
of P � the constraints in M�S� hold� We abbreviate this relation to

P sat M�S�

�	� Quality of Service Speci�cation	

If the goal of a process is to satisfy a script� then an execution whose trace fails to satisfy the
script is of lower quality than one that does� A quality of service �QOS� speci�cation may relax the
constraints on satisfying a script by telling what type of exceptions and how many of each can be
tolerated� Our de�nition for sat allows us to group exceptions in three sets�

V A one�to�one relation mapping elements of the script with elements in the trace that violate
either the action description or the timing constraints�

L Lost actions in the script that are not mapped to actions in the trace�

X Extra actions in the trace that are not mapped to actions in the script�

Figure � illustrates the de�nition of these sets� Set M shows those actions that satisfy the
script� Note that if a script constraint is not met by a given trace� it is ambiguous whether the
constrained action should be considered lost or whether it is somehow related to an action in the
trace that is in violation of the constraint� This ambiguity can only be resolved through constraints
on V that use knowledge of the application semantics�

We refer to the de�nition of the sets M � V � L and X as MAP �

MAP �
M � R��� � dom�M � � S � ran�M � � tim�tr�

�

�L � S dom�M �

�X � tim�tr� ran�M �

�
V � M � ���a� I�� �a�� I��� �M V � a � a� � I� � I

A QOS speci�cation may allow for speci�c actions to be lost� or it may place some constraint
on the number or pattern of missing actions� Similarly� extraneous actions and constraint violations
may be allowed for individually or with constraints on groups of actions� In general� the QOS
speci�cation is a conjunction of logical formulae that express constraints on these three groups of
exceptions�

The �perfect� QOS speci�cation� QP�S�� allows no exceptions� that is�

QP�S� �MAP � �V � X � L � fg� �M�S�

We would like to be able to require that no more than one percent of the actions in a script are
missing in a trace� Using the de�nition of the set L� our QOS speci�cation can restrict the size of
this set�

MAP � �V � X � fg� � �jLj � �� jSj�

As another example� a QOS speci�cation may allow for a range of o	sets for the script
s start time�

t � t� � t � t� �QP�S � t�

In general� a script�based QOS speci�cation can be written as a logical formula of the form

t � t� � t � t� �MAPS�t��S �EXCEPTIONS

where EXCEPTIONS contains free variables for the sets M � V � L and X de�ned in MAP �

�	� Example Speci�cation of Audio Playback	

To see how a QOS speci�cation can be used in a practical example� consider the requirements
for real�time playback of digital audio� On a Sun Sparcstation� the audio device consumes a byte
stream at the rate of �K bytes�sec� The audio hardware takes care of the digital to analog conversion
and the precise control of the sample output rate� The actions that we are concerned with are the
writing of data from a user process to �dev�audio� Let
s assume that the user process writes �K of
data at a time �enough for ��� second� and the device can bu	er up�to �K� The user process must
ensure both that the bu	er does not over�ow� causing a loss of data and that the bu	er does not
become empty� causing the device to go silent�

The clock events can be derived from the audio device� by subtracting the number of bytes
in the bu	er from the total number written� If starvation occurs �the bu	er runs empty�� we will
set the clock to its maximum value rather than having it pause� Clearly� this clock will mark any
actions that occur after starvation as having occurred late� Ideally� the write process will satisfy a
script that maps the writing of the nth �K block of data to the clock interval �� � n� � � n��

S � f�write�� �� ��� �write�� ��� ���� � � ��writen� ��n� �n��g

Recall that this constraint implies that the action writen begins after clock event t���n� and
completes before t���n� ��� If our user process obeys this script perfectly then there can be no
bu	er over�ows or starvation� This script is unnecessarily strict though� because it does not allow
the user process to work ahead� �lling the �K bu	er� Also� many audio applications can tolerate
occasional noise and lost data and the user process may be more easily implemented if a perfect
stream of data is not required�

The following functions allow us to quantify constraint violations for a pair of constraints
�a� �i� j�� and �a�� �i�� j����

early� �a� �i� j��� �a�� �i�� j��� � � i i�

�

late� �a� �i� j��� �a�� �i�� j��� � � j� j

while these boolean functions compare the actions and the intervals respectively�

same� �a� �i� j��� �a�� �i�� j��� � � a � a�

before� �a� �i� j��� �a�� �i�� j��� � � j � i�

The timing constraints in S can be relaxed to allow workahead �up�to � �K blocks� with the
following constraint�

WORKAHEAD � ��c� c�� � V � same��c� c��� � early��c� c��� � � � late��c� c��� �

To insure that blocks are still written in order to the output device we add another constraint�

INORDER � ��c� c��� �d� d�� � V � �same�c� c�� � same�d� d�� � before�c� d�� 	 before�c�� d��

Note that all intervals in the trace will be non�overlapping since they are performed serially�

Since failure to write a block of data would cause a loss of synchronization in the playback�
we must require that a replacement block of data be written for each block that is unavailable even
though this will cause noise� We can map each such replacement action to the appropriate action
in the script� but these mappings will be in the set of violations since the value of the data copied
does not meet the speci�cation� Constraints on the frequency of data substitutions can be expressed
easily with a new de�nition� Let span�S� be the distance between the lowest and highest clock values
from all intervals in the set S� For example�

span�f�a� �� ���� �b� ��� ���� �c� ������g� � �

Then the following constraint prohibits more than � blocks of substituted data in any interval of
less than � seconds �at � samples�second��

NOISE � �
N � V � ��c� c�� � N�same�c� c�� � span�N � � �� jN j � �

The full QOS speci�cation for the user process that writes the audio data is then�

MAP �WORKAHEAD � INORDER �NOISE � �L � X � fg�

�	
 Multimedia Scripts

Multimedia scripts are created by specifying synchronization of a set of media presentation
actions� A single media presentation action speci�es the transfer of data from a typed data source
to a logical output device� For example� an action can specify the copying of the nth frame from
an MPEG compressed color video �le to a window on a one�bit display� In this case� the source is
the output of a pipeline of processes which respectively read from the �le� decompress the data and
transform the single frame �compressing in a di	erent way� to a one�bit representation� The output
device is a window that is accessed via a window system display function� The only action that the
script will directly constrain in time is the transfer of data to the logical window�

The speci�cation of sources and sinks for a presentation action do not specify implementation�
In particular� while the video pipeline could write directly to the window� the constraints on the
presentation action can also be met by introducing a bu	er between the pipeline and a display
process so that writes to the window are decoupled from delays in the pipeline�

Similarly� the speci�cation of the output device is a logical description of the device charac�
teristics so that user interface manager retains control of physical resources� The logical device
speci�cation includes spatial layout and color mapping for graphics displays�

�

�	� Script Composition Operators

In order to synchronize two actions in real�time they must be constrained according to the
same real�time clock� Since the clock events in a script refer to values of a common clock� all actions
in that script are synchronized with respect to each other� We would like to compose simple scripts�
synchronizing their elements� to form complex scripts� To make this easier� we de�ne the following
composition operators� beginning with the time�shifting and scaling operators�

S � t � f�a� I � t�j�a� I� � Sg

S � f � f�a� I � f�j�a� I� � Sg

synch�S�� S��� � S�
�

S�

S� � S� � synch�S�� S� �maxtime�S���

where maxtime�S� and mintime�S� are respectively the largest and smallest time values ref�
erenced in S�

iterate�n� S�i�� � S��� � S��� � ���S�n�

where S�i� is a script generation function that takes an integer argument�

clip��i� j�� S� � f�a� �k i� l i��j�a� �k�� l��� � S � k � l � k � max�i� k�� � l � min�j� l��g

The ability to clip suggests another operation to reverse the clipping operation�

source�clip�I� S�� � S

and another to modify it�

trim�i� j� clip��k� l�� S�� � clip�t� � t�� t� � t�� S�

If a script S has not been clipped from any other� then�

source�S� � S

One would like to extend these composition operators to apply to the QOS speci�cations
that may apply to sup�components of a presentation� In order to preserve the meaning of QOS
speci�cations when scripts are synchronized� the quanti�cation of the MAP variables must continue
to apply to the same set of actions as before� For example�

synch�Q��S��� Q��S��� � Q��S�� �Q��S��

These composition operators� along with standard parameterized de�nitions for error toler�
ances� can be used to specify common presentation types such as continuous media playback� More
work needs to be done to provide de�nitions for high�level speci�cations and to show how QOS
speci�cations are a	ected by the remaining composition operators�

 Discussion

In Section � we listed � desirable features that a speci�cation language for non�interactive
multimedia presentations should have� In this section� we consider how well the Timesync language
meets these goals�

� Physical data independence� Timesync speci�cations refer only to logical data objects� allowing
physical data pathways to be optimized as late as possible�

�

� Physical device independence� Both inputs and outputs are speci�ed by logical attributes� A
Timesync speci�cation may be executed on any con�guration of devices so long as the output
resolution and other logical attributes are satis�ed�

� Recursive composition of presentations� All the composition operations in Timesync can be
applied recursively with Timesync speci�cations as operands�

� Formal semantics for error tolerances� Timesync speci�es its tolerance for errors via logical
formulae that are unambiguously true or false when bound to the trace of a presentation� The
value of this formalism is in exploiting knowledge of system resource availability and delays to
prove that a speci�cation can be satis�ed�

� Completeness in expressibility� allows speci�cation of a presentation trace with arbitrary
�within the resolution of the clock� synchronization between presentation actions� By widening
the timing constraints on individual actions it is also possible to specify a set of traces� all of
which satisfy the timing constraints� While it is desirable that a speci�cation technique be
able to express the largest set set of traces that capture the meaning of a presentation� we
argue that� since Timesync can specify any single trace� it is complete�

� Soundness in constraint speci�cations� Since all primitive scripts are sound and all composition
steps preserve soundness� we conclude that all Timesync speci�cations are sound by induction�

� Simplicity� The primitive notion of a script is a simple way to specify synchronization of an
arbitrary number of actions� Iteration and recursive composition allow us to compactly specify
large sets of actions with complex timing relationships�

Although we argue that Timesync is complete in its ability to express synchronization� it is
worth discussing weather it shouldn
t also be complete in its ability to specify allowable variations
in synchronization� For example� it seems natural to specify constraints on the rate of continuous
media presentations while making no restrictions on the amount of long�term drift from a static
schedule� Such rate constraints are expressed as synchronization relations between presentation
actions as opposed to the Timesync approach where actions are synchronized with the clock and
only indirectly with each other� In Timesync it is di�cult to specify that event b should occur t
seconds after event a if a is constrained only to occur between t� and t� with t� t� �� t� Because
a Timesync script speci�es all synchronization relative to a clock rather than between events� all
constraints between events must involve the exception speci�cation�

Since we have already noted how a rate�based speci�cation can be interpreted as constraints
relative to a real�time clock the question that remains is why would one want to allow drift If the
concern is that we be able to use a physical clock that is imperfect� then the drift is transparent to
the playback tool since it does not see any other time source� On the other hand� if the concern is
for error handling� then we have a real debate� When a presentation action is delayed� a rate�based
approach might propagate the delay to subsequent actions to avoid skipping� The static scheduling
approach considers each late action as a constraint violation but expects subsequent actions to
maintain the original schedule� While the rate�based approach minimizes the loss of information in
a single stream� it makes it more di�cult to maintain synchronization between multiple streams�
The static approach requires each stream to synchronize only with a single global clock�

� Conclusions

This paper shows how to produce a formal process speci�cation from a real�time script� Our
de�nition of a script is simple and intuitive as all synchronization is expressed relative to a single
real�time clock� Allowances for QOS degradation can be added to the formal speci�cation through
constraints on the actions in a trace that do not strictly satisfy the script� The result is that
Timesync speci�cations can be used in a request for guaranteed service from an operating system�
The operating system
s acceptance test must then analyze the Timesync speci�cation in order to
identify resource requirements and to make reservations�

��

We intend to use Timesync speci�cations to request real�time services from a prototype of a
digital television editing workstation� In this application� each press of the play button initiates a
request for real�time service that the operating system may accept or reject depending on resource
availability� Such a prototype will require a method for generating Timesync speci�cations from the
playback tool� algorithms for planning real�time tasks to meet the timing constraints� analysis and
reservation of the resource requirements�

The idea that each play request is independently subjected to an acceptance test is admittedly
naive in that the user may demand predictable response during an entire editing session� The
speci�cation of resource requirements for interactive editing sessions requires further research�

References

��� M� Abadi� L� Lamport� An Old�Fashioned Recipe for Real Time� Tech� Rept� ��� DEC Systems
Research Center� October �����

��� David P� Anderson� Metascheduling for Continuous Media� ACM Transactions on Computer
Systems� Vol� ��� No� �� August ����� pp� ��������

��� G� Berry� G� Gonthier� The Esterel Synchronous Programming Language� Design� Semantics�
Implementation� Tech� Rept� Res� Rept� No� ���� INRIA� �����

��� Director ���� Studio Manual� Macromedia Inc�� March �����

��� G�D� Drapeau� H� Green�eld� MAEstro � A Distributed Multimedia Authoring Environment�
Proceedings of the Summer ���� USENIX Conference� USENIX Association� pp� ��������

��� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall International� London� UK�
�����

��� M�E� Hodges� R�M� Sasnett� M�S� Ackerman� A construction set for multimedia applications�
IEEE Software� January ����� pp� ������

��� K� Je	ay� D�L� Stone� T� Talley� F�D� Smith� Adaptive� Best�E	ort Delivery of Digital Audio
and Video Across Packet�Switched Networks� Proceedings of the Third International Workshop
on Network and Operating System Support for Digital Audio and Video� November ����� pp�
�����

��� A� Lazar� G� Paci�ci� Control of Resources in Broadband Networks with QOS Guarantees� IEEE
Communications Magazine� October �����

��� T�D�C� Little� A� Ghafoor� Interval�Based Conceptual Models for Time�Dependent Multimedia
Data� IEEE Transactions on Knowledge and Data Engineering� Vol� �� No� �� August ����� pp�
��������

���� Apple Computer� Inc� Inside Macintosh� QuickTime� Addison�Wesley Publishing Co�� �����

���� Jean Ramaekers� Giorgio Ventre� Quality�of�Service Negotiation in a Real�Time Communica�
tion Network� Tech� Rept� TR������� International Computer Science Institute� Berkeley� April
�����

���� G�M� Reed� A�W� Roscoe� A Timed Model for Communicating Sequential Processes� Proceed�
ings of the ��th International Colloquium on Automata� Languages and Programming� July
����� Lecture Notes in Computer Science� No� ���� Springer�Verlag� pp� ��������

���� R� Staehli� J� Walpole� Constrained�Latency Storage Access� Computer� Vol� ��� No� �� March
����� pp� ������

��

