Demand-Driven Constant Propagation”

Eric Stoltz, Michael Wolfe, and Michael P. Gerlek
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
P.O. Box 91000
Portland, OR 97291-1000
(503) 690-1121 ext. 7404
FAX: (503) 690-1553
stoltz@cse.ogi.edu

Technical Report 93-023

Abstract

Constant propagation is a well-known static compiler technique in which values of vari-
ables that are determined to be constants can be passed to expressions that use these
constants. Code size reduction, bounds propagation, and dead-code elimination are some
of the optimizations which benefit from this analysis.

In this paper, we present a new method for detecting constants, based upon an opti-
mistic demand-driven recursive solver, as opposed to more traditional iterative solvers. The
problem with iterative solvers is that they may evaluate an expression many times, while our
technique evaluates each expression only once. To consider conditional code, we augment
the standard Static Single Assignment (SSA) form with merge operators called y-functions,
adapted from the interpretable Gated Single Assignment (GSA) model. We present pre-
liminary experimental results which show the number of intra-procedural constants found
in common high-performance Fortran programs.

*This research supported by NSF grant CCR9113885, ARPA grant F3062-92-C-135, and grants from Intel
Corporation and Matsushita Electric Industrial.

1 Introduction

Constant propagation is a static technique employed by the compiler to determine values which
do not change regardless of the program path taken. In fact, it is a generalization of constant
folding [1], the deduction at compile time that the value of an expression is constant, and is
frequently used as a preliminary to other optimizations. The results can often be propagated
to other expressions, enabling further applications of the technique. It is this recursive nature
of the data-flow problem which suggests using a demand-driven method instead of the more
usual iterative techniques.

In the following example, the compiler substitutes the value of 5 in S1 for x, which is a
canonical instance of constant folding. Since the value of x is now constant, the compiler can
propagate this value into 52, which, after applying constant folding once again, results in the
determination that y is the constant 20. It should be noted that constant propagation for this
work was applied only to scalar integer values. Propagation of real-valued expressions can be
performed, but special care is required since operations on real-valued expressions are often
architecturally dependent. The method outlined in this work also allows for arbitrary symbolic

expression propagation [2].

S1: x =2 4+ 3
S2: y =4 % x
Although in general constant propagation is an undecidable problem [3], it is nonetheless ex-
tremely useful and profitable for a number of optimizations. These include dead code elimi-
nation [4], array- and loop-bound propagation, and procedure integration and inlining, which
we believe to be a major source of detectable constants [5]. Due to these benefits, constant
propagation is an integral component of modern optimizing commercial compilers [6, 7, 8].
The paper is organized as follows. In Section 2 we examine the standard framework em-

ployed to perform constant propagation and relate it to previous methods and algorithms. In

Section 3 we define the structure used for this work, with particular attention given to the
necessary intermediate form (based upon Static Single Assignment) required to implement the
algorithms we present. The basic propagation method used in our restructuring, parallelizing
compiler is also given in this section. Section 4 describes the extension of the method to con-
ditional code, and a discussion of variables within loops, which we have found is closely tied to
induction variable recognition. In Section 5 we present the experimental results obtained thus

far, and we close with future directions and conclusions in Section 6.

2 Background and Other Work

2.1 Framework

Constant propagation operates on a standard 3-level lattice, as shown in Figure 1. Top (T)
is the initial state for all symbols. When comparing two lattice element values, the meet
operator (M) is applied, as given in Table 1. These foundations are standard for many constant
propagation methods [4, 9, 5], originally introduced by Kildall [10]. Each symbol has its lattice
value initialized to T, which indicates that it has an as yet undetermined value. After analysis
is complete, all symbols will have lattice value equal to L (it cannot be determined to be
constant), a constant value, or T (unexecutable code). We note that values can only move
down in the lattice, due to the meet operator. By initializing lattice values to T, an optimistic
approach is taken, which assumes all symbols can be determined to be constant until proven
otherwise.

Previous methods perform the analysis as an iterative data-flow problem [11], in which
iterations continue until a fixed point is reached [4, 5]. We will see in the next section that an

alternative demand-driven recursive algorithm offers advantages over the traditional approach.

T M any = any
L M any =1
constant; if i =j

constant; [1 constant; :{ 1 th .
otherwise

Table 1: Rules for meet (M) operator.

C...Cis..

Figure 1: Standard Constant Propagation Lattice

S1: z =3 S7: z = 3

S2: if (P) then S8: if (z < 5) then
S3: y =5 S9: y =5

S4: else S10: else

Sh: y=2+2 S11: y =2

S6: endif S12: endif

(a) (b)

Figure 2: Constant propagation with (a) simple, and (b) conditional, constants

2.2 Previous Methods
2.2.1 Classification

As explained by Wegman and Zadeck [4], constant propagation algorithms can be classified
in two ways: (7) using the entire graph or a sparse graph representation, and (i) detecting
simple or conditional constants. This naturally creates four classes of algorithms. It is clear
that propagating information about each symbol to every node in a graph is inefficient, since
not all nodes contain references or definitions of the symbol under consideration. Sparse repre-
sentations, on the other hand, such as def-use or use-def chains [11], Static Single Assignment
(SSA) [12], Dependence Flow Graphs (DFG) [13], or Program Dependence Graphs (PDG) [14],
have all shown the virtue of operating on a sparse graph for analysis.

The distinction between simple (all paths) constants and conditional constants can be seen
in Figure 2. The simple value of y is determined to be constant only if both branches which
merge at S6 are constant with identical value, as is the case in (a). However, if the predicate
which controls branching can be determined to be constant, then only one of the branches will
be executed, allowing not only y to be recognized as constant in (b), but also identifying the
other path to be dead code.

The distinction between the four types of algorithms is explained well by Wegman and

Zadeck [4], and the reader is referred to their paper for more detail. We will look at the algo-
rithm that they present, since it incorporates both sparse graph representation and conditional

code. The sparse graph employed is the SSA form, described in the next subsection.

2.2.2 Graph Preliminaries

The algorithms to convert a program into SSA form are based upon the Control Flow Graph
(CFG), which is a graph G = <V, E, Entry, Exit>, where V is a set of nodes representing basic
blocks in the program, F is a set of edges representing sequential control flow in the program,
and Entry and Fzit are nodes representing the unique entry point into the program and the
unique exit point from the program. Switch nodes have their outgoing edges determined by a

predicate. After a program has been converted into SSA form, it has two key properties:

1. Every use of a variable in the program has exactly one reaching definition, and

2. At confluence points in the CFG, merge functions called ¢-functions are introduced. A
¢-function for a variable merges the values of the variable from distinct incoming control
flow paths (in which a definition occurs along at least one of these paths), and has one
argument for each control flow predecessor. The ¢-function is itself considered a new

definition of the variable.

For details on SSA graph construction the reader is referred to the paper by Cytron et al.

[12]. A sample program converted into SSA form is shown in Figure 3.

2.2.3 A Closer Look at One Algorithm

The algorithm used by Wegman and Zadeck operates on CFG edges. SSA def-use edges are
added to the graph once the program has been transformed into SSA form.
Their algorithm works by keeping two worklists, a FlowWorkList and an SSAWorkList. Flow

edges are initially marked unexecutable. Fidges are examined from either worklist until empty,

X 0 xg = O x9g = O
y=0 yo =0 yo =0
z =0 zo = O zg = O
if (P) then if (P) then if (P) then

y:y+1 ylzy0+1 Y1:Y0+1
endif endif endif

y2=¢ (yo, y1) yo=7v (P, true— yi, false—yo)

X =73 X1 =732 X1 =72
zZ =2*xy—1 Z1 =2*y9 —1 Z1=2%+y2—1

(a) (b) ()

Figure 3: Program in (a) normal form, (b) SSA form, and (¢) GSA form

with those examined from the FlowWorkList being marked executable. The destination node
for these edges also have their ¢-functions evaluated by taking the meet of all the arguments
whose corresponding CFG predecessors are marked executable. Expressions are evaluated the
first time a node is the destination of a flow edge, and also when the expression is the target
of an SSA edge and at least one incoming flow edge is executable. More detail can be found in
the original paper [4].

This algorithm finds all simple constants, plus additional constants that can be discovered
when the predicate controlling a switch node is determined to be constant. The time complexity
is proportional to the size of the SSA graph, and each SSA edge can be processed at most twice.

Since ¢-functions are re-evaluated each time an edge with that node as a destination is
examined, Wegman and Zadeck note that expressions which depend on the value of a ¢-function

may be re-evaluated twice for each of its operands. For example, in this program fragment:

if (P)

then
10 y1 = 1
z1 = 2
else
20 yo = 1
Z9 =
endif
30 y3 = ¢(y1, y2)

z3 = ¢(z1, z2)
X1 = y3+23

if P is not constant, the expression for x4 may be evaluated many times. If the flow edge from
10 is processed first, then x1 equals 3, and it may stay at 3 if the SSA edges for y are examined
next. Eventually, x; will evaluate to 1, as the merge for z becomes non-constant. It is this

multiple expression evaluation which we seek to avoid.

3 SSA using FUD Chains for Simple Constants

3.1 FUD Chains

In our restructuring compiler, Nascent [15], we also convert the intermediate representation
into SSA form. In order to achieve the single-assignment property each new definition of a
variable receives a new name. Practically, however, this is undesirable (managing the symbol
table explosion alone precludes this option), so the SSA properties are maintained by providing
links between each use and its one reaching definition. Instead of providing def-use links, as
is the common implementation [4, 13], we provide use-def links, giving rise to an SSA graph
comprising factored use-def chains (FUD chains). This approach yields several advantages,
such as constant space per node and an ideal form with which to perform demand-driven

analysis[16].

Our analysis of programs begins within a framework consisting of the CFG and an SSA data-
flow graph. Each basic block contains a list of intermediate code tuples, which themselves are
linked together as part of the data-flow graph. Tuples are of the form <op,left, right, ssalink,lattice>,
where op is the operation code and left and right are the two operands (both are not always
required, e.g. a unary minus). The ssalink is used for fetches and arguments of ¢-functions,
as well as indexed stores (which are not discussed further in this paper). The ssalink, if appli-
cable, represents the one reaching definition for the variable in question at that point in the
program. The left, right, and ssalink fields are pointers: they are all essentially use-def links.
Thus, to perform an operation associated with any tuple, a request (or demand) is made for
the information at the target of these links. Each tuple also has a lattice element assigned to
it, lattice, initialized to T.

We first show how to implement simple constant propagation within our framework. Our
algorithm efficiently propagates simple constants in the SSA data-flow graph by demanding the
lattice value from the unique definition point of each use. We visit all CF'G nodes, examining
each of its tuples, calling propagate() recursively on any unvisited left or right tuples. Assign-
ment statements are evaluated, calling propagate() on all references with an ssalink. When
a ¢-function is encountered, recursive calls to the arguments are made, followed by taking
the meet of those arguments. In the case of data-flow cycles, characterized by ¢-functions at
loop-header nodes, L is returned. The algorithm is given in Figure 4.

Several points are noted regarding this algorithm:

e This is not an iterative solver. It is a recursive demand-driven technique which will
completely solve the graph in the absence of cycles. The order in which basic blocks are

visited is not important.

¢ This is an optimistic solver, since all symbols are initialized to T. We find the same class

of simple constants as other non-conditional solvers, such as Kildall [10] and Reif and

Y t € tuples,
lattice(t) =T
unvisited(t) = true

Visit all basic blocks B in the program
Visit all tuples t within B
if unvisited (t) then propagate(t)

propagate (tuple t)
unvisited (t) = false
if ssa_link(t) # 0 then
if unvisited(ssa_link(t)) then propagate(ssa_link(t))
lattice(t) = lattice(¢) N lattice(ssalink(t))
endif
if unvisited(left (¢t)) then propagate(left(t))
if unvisited (right (t)) then propagate(right(t))
case on type (1)
constant C: lattice(t) = C
arithmetic operation:
if all operands have constant lattice value
then lattice(¢) = arithmetic result of
lattice values of operands
else lattice(t) = L
endif
store: lattice(t) = lattice(RHS')
o-function:
if loop-header ¢ then lattice(t) = L
else lattice(t) = N of ¢-arguments of ¢

endif
default: lattice(t) = L
end case

end propagate

Figure 4: Demand-driven propagation of simple constants.

10

4.1

Lewis [17].

When at a merge node, we take the meet of the demanded classification of the ¢-
arguments. By Table 1, this will result in a constant iff all ¢-arguments are constant

and identical.

Each expression is evaluated once, since the node containing the expression will only be

evaluated after all referenced definitions are classified.

The asymptotic complexity is proportional to the size of the SSA data-flow graph, since

it requires each SSA edge to be examined once.

In the presence of data-flow cycles (due to loops in the CFG), the solver will fail to classify
constant valued tuples, either as a function of the loop’s trip count or even if it remains
constant throughout the loop. A more complex solver, such as the one described in the

next section, is needed to account for cycles.

Constants within Conditionals and Loops

Extending SSA to GSA

When demanding the classification of a variable at a merge node, we take the meet of the

demanded classification of its ¢-arguments, as noted in the last section. However, if only one

of the branches will, in fact, be taken, we would like to only propagate the value along that

path. In previous methods, as illustrated in Section 2, the predicate at a branch (or split)

node is first evaluated, and if found constant, the executable edge is added to a worklist. Thus,

when the corresponding merge node is processed, expressions at that node will be evaluated in

terms of the incoming executable edges. As we have seen, this may result in expressions being

evaluated more than once.

11

In our method, if a symbol demands the value from a merge node, we want to process
the predicate that determines the path to follow. Examine Figure 3(b). When attempting
to classify xq, the value is demanded from the use-def SSA link of yo, which points to the ¢-
function. However, a ¢-function is not interpretable [18]. Thus, we have no information about
which path may or may not be taken. Since the predicate P in our example determines the
path taken, if P is constant, we can determine which argument of the ¢-function to evaluate.
If P is not constant, the best we can do is to take the meet of the ¢-arguments.

Augmentation of the ¢-function is needed to include this additional information. We extend
the SSA form to a gated single assignment form (GSA), introduced by Ballance et al. [18], which
allows us to evaluate conditionals based upon their predicates. Figure 3 shows a simple program
converted to GSA form. Briefly, ¢-functions are reclassified into p- and y-functions. Most
¢-functions contained within loop-header nodes are renamed p-functions, while most other ¢-
functions are converted to y-functions®. The y-function, v=7(P, true — vy, false — v3), means
if P then v=vq else v=vq. In this form, the v-function represents an if-then-else construct,
but it is also extended to include more complex branch conditions, such as case statements.

Several important notes are necessary:

o We provide the complete algorithm to convert ¢-functions to - and p-functions in Ap-
pendix A. A similar method employed by Havlak [19], aimed at value-numbering, thins
the y-function to eliminate paths that cannot reach a merge point. Essentially, if all ar-
guments save one are T, then the entire argument structure is reduced to the one non-T
argument. Thinning misses identifying constants in some situations, such as shown in

Figure 5.

e [t is convenient to insert nodes into the CFG such that the header node of a loop has

*A ¢-function cannot be converted to a p- or y-function in the presence of irreducible loops.

12

exactly two predecessors, one from within the loop and one from without. A preheader
node is inserted to accomplish this task, and we also insert a postbody node that is the

target for all loop back edges.

Multiple levels of conditionals result in nested y-functions. Examine Figure 5, which is an
unstructured code fragment (although structured code with nested if-then constructs
also result in nested y-functions). Figure 5(b) shows the program translated into GSA
form. It is quite an interesting example for constant propagation, since if we know the
value of predicate P we always know what possible value of x can reach the merge at 40.

However, if we don’t know P, then the value of predicate Q becomes crucial:

— If Q is true, only x4 can reach 40.

— If Q is false, we have no clear information on what value of x to propagate.

If thinning were used, the y-function at 40 would reduce to: xo = v(P, t—x1, f— x0).
If P is not constant, the meet of its arguments is L. However, if § is known to be true,
the constant value x4 will be missed using thinning, since the false side of predicate P is

prematurely reduced to xq, instead of T.

As described by Ballance et al., p-functions also contain a predicate — it determines
whether another execution of the loop will take place. We don’t require an executable

intermediate form, and, as we shall see, other techniques efficiently handle loops.

Only reducible flow graphs can be converted into GSA form. An irreducible graph con-
tains loops with multiple entries — this leads to problems both in loop detection (we
classify loops according to the natural loop [11] definition), and working with control de-
pendence (in an irreducible graph, the transitive control dependence of a node can skip

over the immediate dominator). The Appendix provides more detail.

13

x = 2 x0=2

if (P) goto 30 if (P) goto 30
if (Q) goto 50 if (Q) goto 50
else goto 40 else goto 40
30 x = 3 30 x1=3
40y = x 40 x9 = v(P, t—xy, f~y(Q, t— T, f—x0))
y1=X%x2
50 continue 50 continue

(a) (b)

Figure 5: Conditional code which results in nested y-functions

4.2 Conditional Constant Propagation

Once converted into GSA form, we can improve upon the propagate() routine to take advantage
of predicates that can be determined to be constant. When encountering a y-function, we first
attempt to evaluate the predicate. If constant, we follow the indicated branch, propagating
constant values as found. If not constant, we take the meet of its arguments. The revised
algorithm is given in Figure 6.

We may encounter ¢-functions in a program with irreducible loops [11]. In this case, ¢-
functions cannot be converted to GSA form, but we can still detect simple constants.

Several comments need to be made regarding this algorithm:

o Due to lack of space, we have only dealt with integer constants, not logical or enumerated

types.

o We have not covered arithmetic simplifications, including special cases such as zero times

anything (including L) equals zero.

o Reaching a p-function returns L. This is due to the separate solver used for loops,

discussed next.

14

Y t € tuples,
lattice(t) =T
unvisited(t) = true

Visit all basic blocks B in the program
Visit all tuples t within B
if unvisited (t) then propagate(t)

propagate (tuple t)
unvisited (t) = false
if ssa_link(t) # () then

if unvisited(ssa_link(t)) then propagate(ssa_link(t))

lattice(t) = lattice(t) N lattice(ssalink(t))
endif
if unvisited (left (t
if unvisited (right (
case on type (t)
constant C: lattice(t) = C
arithmetic operation:

)) then propagate(left(t))
t)) then propagate(right(¢

))

if all operands have constant lattice value
then lattice(¢) = arithmetic result of
lattice values of operands
else lattice(t) = L
endif
store: lattice(t) = lattice(RHS)
¢-function: lattice(t) = N of ¢-arguments of t
~-function:
if lattice(predicate) = C then
lattice(t) = lattice value of
~v-argument corresponding to C
else lattice(t) = N of all y-arguments of
endif
p-function: lattice(t) = L
n-function: lattice(t) = lattice (n-argument)
default: lattice(t) = L
end case

o

end propagate

Figure 6: Demand-driven propagation with conditional constants.

15

4.3 Loops

Cycles in the GSA data-flow graph are the result of loops within the original program. The
variables defined within these cycles are detected with induction variable analysis. Induction
variables are traditionally detected as a precursor to strength reduction, and more recently
for dependence analysis with regard to subscript expressions. We have developed methods for
detecting and classifying induction variables (including non-linear induction variables [20, 21,
22]) based on strongly-connected regions in the SSA data-flow graph [2]. These techniques
make use of an exit function, the n-function, which holds the exit value of a variable assigned
within the loop. The exit value may be a function of the loop tripcount (which may itself be an
expression determined to be constant), or may be invariant with respect to the loop. An exit
expression is held by the np-argument, which if constant can be used to propagate values outside
of the loop. Ballance et al. introduced n-functions in their GSA form. We place n-functions in
postexit nodes as part of our SSA translation phase. For each edge exiting the loop, a postexit
node is inserted outside the loop, between the source of the exit edge (within the loop body)
and the target (outside the loop).

We are able to propagate constants through loops (single and nested) by taking advantage
of specialized solvers which detect and classify a large assortment of linear and non-linear
induction variables. Interested readers may obtain a description of this work via enonymous

ftp to cse.ogi.edu [23].

5 Experimental Results

To gauge the effectiveness of our routines, we measured the number of constants (both simple
and conditional) on Fortran scientific codes found in the PERFECT, RICEPS, and MENDEZ

benchmark suites, and several miscellaneous but important routines. A constant is considered

16

propagated if there was a fetch of a constant. Folded constants are counted separately.

Results are shown in Table 2. The vast majority of constants (95%) are simple constants.
Most conditional constants were as a result of loop analysis. Although a few predicates control-
ling switch nodes are determined constant, we believe these are mainly due to guards; not until
interprocedural analysis and inlining are implemented do we expect to see many conditional
constants propagated. Results are also shown for the number of folded constants.

With a total of 88013 lines of code analyzed, we found 1.5 simple constants per procedure,
on average, with one constant every 55 lines. For conditional constants, we found 1.6 per
procedure, and one constant every 52 lines.

To obtain valid comparisons with other algorithms, notably Wegman and Zadeck’s, we are
currently implementing a version of our compiler that transforms intermediate forms into a
version of SSA which supports their data structures. We plan timing tests for several constant

propagation algorithms on the same test suite of Fortran programs as was used in this section.

6 Future Work and Conclusions

We plan many extensions to this work. One important topic is interprocedural analysis and
procedure integration, an area where we believe many constants will be found. Although some
work has already been done in this area [5, 24, 25], we would like to apply our demand-driven
style to the problem.

Dead-code can currently be identified with our technique, but we have not yet developed
the algorithm fully. It may well be that dead code is best identified using edges instead of
nodes, as pointed out by Wegman and Zadeck.

Traditional SSA form has been criticized for lacking a method to propagate constants de-

termined by predicate analysis [13]. In the following fragment

17

‘ routine ‘ lines ‘pmcs‘ FC‘ SC ‘ CP‘ NCP‘ cc

PERFECT club
adm 4165 97 3 102 0 271 | 102
arc2d 2747 39 9 98 0 51 98
bdna 3793 43 1 42 0 171 56
dyfesm 4401 78 1 4 0 130 5
flos?2 1850 28 | 15 77 0 108 78
mdy 1028 16 1 0 0 39 0
mg3d 2537 28 9 249 0 118 | 255
ocean 2577 36 | 20 1 0 153 1
qed 1780 35 5 15 2 87 17
specT7 3399 65 | 33 28 2 119 38
track 2192 32 19 1 0 150 1
trfd 418 7 4 2 20
RICEPS
boast 7212 58 | 38 21 2 696 24
ccm 18709 1451 91| 507 3 537 | 529
linpackd 468 11 0 14 0 32 21
simple 1239 8| H2 | 172 1 25| 172
sphot 876 7 1 2 0 32 2
wanall 1718 11| 52 43 3 28 43
MENDEZ
euler 1183 14 6 17 4 116 17
mhd2d 827 141 19 56 0 21 56
shear 848 16 | 56 34 3 39 34
vortex 564 20 2 13 0 17 13
MISC
comp3 1477 1 0 0 0 188 0
comps 7707 24 4 26 | 11 765 32
eispack 7587 68 | 27 3 0 711 3
livermore | 5003 38 | 28 54 2 142 62
vector 1708 101 2 10 0 39 10
| Total | 88013 | 1040 [498 | 1597 | 35 | 4864 | 1677 |

Table 2: Experimental runs to detect propagated constants. FC = folded constant, SC = simple
constant, CP = constant predicate, NCP = non-constant predicate, CC = conditional constant.

18

if (x4 = 1) then

ig = x1
else

jo=x1
endif

it is desirable to be able to assign ip constant value. A sophisticated compiler may analyze the
guard and determine that under the range of the true side of the conditional, xq will always
be 1. This notion of a derived assertion is not new [8], but to our knowledge has not yet been
integrated into the SSA form. Using demand-driven SSA form, derived assertions can easily be
captured by inserting dummy assignments. We propose a new SSA operator, the p-function,
which serves as the new definition of its variable. By examining the right-hand side of the

predicate, the above fragment becomes:

if (x4 = 1) then

x2 = p(1)

ig = x9
else

jo=x1
endif

Now constant propagation may easily be performed via the argument of the p-function, which
may be constructed of actual operations in the intermediate form.
In addition to constant propagation, the explicit representation of derived assertions may

be advantageous if bounds information can be expressed. In this fragment,

if (ng > 0) then
for i=1, ny

endfor
endif

if the compiler cannot determine any value for ng, then it cannot be determined if the body

of the loop will ever be executed within the range of the if. However, analysis of the guard

19

condition assures the loop will be executed at least once. If limit information can be encoded

in the argument of the p-function, the loop may be transformed:

if (np>0) then
ng = ,0(>O)
for i=1, nq

enéilf‘or
endif
Now it is clear from the expression describing the tripcount that the loop will be executed at
least once, since the lower limit of n is known.

Other planned projects include run-time analysis and value numbering. We are interested in
obtaining timing results that demonstrate how much execution time is saved for the increased
analysis done at compile time. These are interesting tradeoffs, and remain an open question.
Although not constant propagation per se, the structure of GSA lends itself particularly well to
implementing value numbering, as has been shown by Havlak [19]. Finally, we want to extend
our work into the area of non-integer and symbolic expression propagation.

We have presented a new demand-driven method for performing conditional constant prop-
agation, which works on sparse data-flow graphs, finds the same class of constants as previous
algorithms, but avoids evaluating expressions more than once. We have detailed specific algo-
rithms to accomplish this task, and have presented preliminary data on the number of constants
found in scientific Fortran codes (and, as noted in the last section, we are building a comparative

experiment). We believe this is a promising approach with many opportunities for extensions.

References

[1] Jean-Paul Tremblay and Paul G. Sorenson. The Theory and Practice of Compiler Writing.
McGraw-Hill, New York, NY, 1985.

20

[2]

[10]

[11]

[12]

[13]

[14]

Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction variables: Detecting
and classifying sequences using a demand-driven SSA form. submitted for publication,
September 1993.

J. Kam and J. Ullman. Monotone data flow analysis frameworks. Acta Informatica 7,
pages 305-317, 1977.

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional
branches. ACM Trans. on Programming Languages and Systems, 13(2):181-210, July
1991.

Dan Grove and Linda Torczon. Interprocedural constant propagation: A study of jump
function implementations. In Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 90-99, June 1993.

Steve 5. Muchnick. Optimizing compilers for SPARC. Sun Technology, pages 161-173,
1988. Summer.

D. Blickstein, P. Craig, C. Davidson, R. Faiman, K. Glossop, R. Grove, S. Hobbs, and
W. Noyce. The GEM optimizing compiler system. Digital Technical Journal, 4:121-136,
1992. Special Issue.

P. Lowney, SA. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O’Donnell, and
J. Ruttenberg. The Multiflow trace scheduling compiler. The Journal of Supercomputing,
7:51-142, 1993.

David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interprocedural
constant propagation. In Proceedings of Sigplan Symposium on Compiler Construction,
volume 21, June 1986.

G. A. Kildall. A unified approach to global program optimization. In Conference Record
of the First ACM Symposium on Principles of Programming Languages, pages 194-206,
October 1973.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing Static Single Assignment form and the control dependence graph.
ACM Trans. on Programming Languages and Systems, 13(4):451-490, October 1991.

Richard Johnson and Keshav Pingali. Dependence-based program analysis. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 78-89, June 1993.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. on Programming Languages and Systems,
9(3):319-349, July 1987.

21

[15]

[16]

[17]

[18]

Michael Wolfe, Michael P. Gerlek, and Eric Stoltz. Nascent: A Next-Generation, High
Performance Compiler. Oregon Graduate Institute of Science & Technology unpublished,
1993.

Eric Stoltz, Michael P. Gerlek, and Michael Wolfe. Extended SSA with factored use-def
chains to support optimization and parallelism. In 1994 ACM Conf. Proceedings Hawaii
International Conference on System Sciences, January 1994. to appear.

John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value graph. In Con-
ference Record of the Fourth ACM Symposium on Principles of Programming Languages,
pages 104-118, January 1977.

Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The program dependence
web: A representation supporting control-, data-, and demand-driven interpretation of
imperative languages. In Proc. ACM SIGPLAN °90 Conf. on Programming Language
Design and Implementation, pages 257-271, White Plains, NY, June 1990.

Paul Havlak. Construction of thinned gated single-assignment form. In Sizth Annual
Workshop on Languages and Compilers for Parallel Computing, August 1993.

Michael Wolfe. Beyond induction variables. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 162-174, June 1992.

Mohammed R. Haghighat and Constantine D. Polychronopoulos. Symbolic program analy-
sis and optimization for parallelizing compilers. In Workshop on Languages and Compilers
for Parallel Computing, pages 355-369, 1992.

R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the automatic paral-
lelization of four Perfect-Benchmark programs. In U. Banerjee, D. Gelernter, A. Nicolau,
and D. Padua, editors, Languages and Compilers for Parallel Computing, pages 65-83.
Spinger-Verlag, 1992. LNCS no. 589.

Michael P. Gerlek. Detecting induction variables using SSA form. Technical Report 93-014,
Oregon Graduate Institute of Science & Technology, 1993.

Mary Hall. Managing Interprocedural Optimization. PhD thesis, Department of Computer
Science, Rice University, 1991.

R. Metzger and S. Stroud. Interprocedural constant propagation: an empirical study.
ACM Letters on Programming Languages and Systems, June 1992.

22

Appendix — The y-Conversion Algorithm

The complete algorithm to translate a program from SSA form (already augmented with 7-
functions, the loop-exit place-holders) into GSA form is provided. This algorithm essentially
renames loop-header ¢-functions as p-functions, while creating an interpretable v-function to
replace other ¢-functions. We note that this translation is only possible with reducible flow
graphs. In reducible graphs the initial switch node to determine program flow affecting a merge
is always the immediate dominator.

This algorithm relies heavily on the concept of control dependence. Informally, X is control
dependent on Y if one path from Y must reach X, while another path may avoid X. Cytron
et al. [12] showed that control dependence is equivalent to dominance frontiers in the reverse
CFG. We compute control dependence only on the forward CFG, eliminating back edges.

Roughly half the y-functions can be reduced. This reduction can occur in two ways:

1. The same predicate occurs more than once in a y-function. In this case, the value of the
first occurrence of the predicate can prune the nested predicate. The reduce() function

accomplishes this task.

2. If all y-arguments have the same value, then the ~v-function can be replaced by the value

of the arguments.

As an example of reduce(), examine this code fragment:

x90 =0

if(P) goto 30
10 X2 = Ya

Vi = X2

goto 40
30 x; =1

if(Q) goto 10
40 X3 = Ye

23

Before reduce, the y-function at 10 will be:

x2 = Ya(P,t — 7(Qt — x1, f — T), f — x0)
And the y-function at 40 will be:

x3 = 7e(Pyt = 74(Qt — Yo, f — %1), f — 7a)
After applying the first reduction rule, the v-function at 40 (~.) becomes:

x3 = 7(P, 1 = 74(Qt — x1, [— x1), f — %o0)
Next, the second reduction rule is applied, yielding:

x3 = Ye(P,t — x1, f — x0)

24

Replacing ¢-Functions with - and p-Functions

last_¢(*) = previous ¢-function processed at this basic block
current_y(*) = y-function under consideration for this basic block
labels = branch values which correspond to outedges from a basic block
If there is only one successor, the branch label is true
ssa_link = reaching definitions corresponding to a fetch
or an argument from a ¢, v, or u function

last_¢(x) = 0
current_y(*) = 0

while list of basic blocks not empty do
B = next block in topological order from the CFG
tdom = immediate dominator of B
for each ¢-function f in B do
if f € loop-header, then replace ¢ with p
else
for each predecessor pred of B do
lab = branch label of edge from pred to B
ssa_link = ¢-argument of f which corresponds to pred
process(f, pred, lab, ssa_link)
enddo
replace f with reduce(current_y(idom))
endif
enddo
enddo

process(function f, basic block b, label lab, def link)
if last_¢(b) # f
last_¢(b) = f
if b has more than 1 successor
send = current_y(b) = build_gamma(b)
else
current_y(b) = 0
send = link
endif
for each control predecessor ¢p of b do
if b # idom then
cp_lab = branch label from cp which executes b
process(f, cp, cp_lab, send)
endif
enddo
endif
if current_y(b) # 0
for argument a of current_y(b) > label a = lab
set ssalink(a) = link
endfor
endif

end process

25

build_gamma(basic block bg)
v-predicate = switch function in bg
for each successor succ of bg do
e = label from bg to succ
add y-argument with label = e and ssa_link = Top
enddo
return vy
end build gamma

reduce(object r)
if 7 is not a y-function return r
predicate = switch operator of y-function r
if predicate already on the stack
arg = y-argument of r whose label matches the branch value of predicate
return reduce(ssa_link(arg))
endif
for all v-arguments a of r do
push onto stack(predicate, label of a)
ssa_link(«) = reduce(ssa_link(a))
pop off stack(predicate)
enddo
if all y-arguments a of r have identical ssa_link return ssa_link(«)
else return r
end reduce

26

