
Demand�Driven Constant Propagation�

Eric Stoltz� Michael Wolfe� and Michael P� Gerlek

Department of Computer Science and Engineering

Oregon Graduate Institute of Science � Technology

P�O� Box �����

Portland� OR ��	��
����

���� ���
��	� ext� ����

FAX� ���� ���
���

stoltz�cse�ogi�edu

Technical Report �
�	

Abstract

Constant propagation is a well�known static compiler technique in which values of vari�
ables that are determined to be constants can be passed to expressions that use these
constants� Code size reduction� bounds propagation� and dead�code elimination are some
of the optimizations which bene�t from this analysis�

In this paper� we present a new method for detecting constants� based upon an opti�
mistic demand�driven recursive solver� as opposed to more traditional iterative solvers� The
problemwith iterative solvers is that they may evaluate an expression many times� while our
technique evaluates each expression only once� To consider conditional code� we augment
the standard Static Single Assignment �SSA� form with merge operators called ��functions�
adapted from the interpretable Gated Single Assignment �GSA� model� We present pre�
liminary experimental results which show the number of intra�procedural constants found
in common high�performance Fortran programs�

�This research supported by NSF grant CCR�������� ARPA grant F��	
��
�C����� and grants from Intel

Corporation and Matsushita Electric Industrial�

�

� Introduction

Constant propagation is a static technique employed by the compiler to determine values which

do not change regardless of the program path taken� In fact� it is a generalization of constant

folding ���� the deduction at compile time that the value of an expression is constant� and is

frequently used as a preliminary to other optimizations� The results can often be propagated

to other expressions� enabling further applications of the technique� It is this recursive nature

of the data��ow problem which suggests using a demand�driven method instead of the more

usual iterative techniques�

In the following example� the compiler substitutes the value of � in S� for x� which is a

canonical instance of constant folding� Since the value of x is now constant� the compiler can

propagate this value into S	� which� after applying constant folding once again� results in the

determination that y is the constant 	
� It should be noted that constant propagation for this

work was applied only to scalar integer values� Propagation of real�valued expressions can be

performed� but special care is required since operations on real�valued expressions are often

architecturally dependent� The method outlined in this work also allows for arbitrary symbolic

expression propagation �	��

S�� x � � �

S	� y � � � x

Although in general constant propagation is an undecidable problem ���� it is nonetheless ex�

tremely useful and pro�table for a number of optimizations� These include dead code elimi�

nation ���� array� and loop�bound propagation� and procedure integration and inlining� which

we believe to be a major source of detectable constants ���� Due to these bene�ts� constant

propagation is an integral component of modern optimizing commercial compilers ��� �� ���

The paper is organized as follows� In Section 	 we examine the standard framework em�

ployed to perform constant propagation and relate it to previous methods and algorithms� In

	

Section � we de�ne the structure used for this work� with particular attention given to the

necessary intermediate form �based upon Static Single Assignment� required to implement the

algorithms we present� The basic propagation method used in our restructuring� parallelizing

compiler is also given in this section� Section � describes the extension of the method to con�

ditional code� and a discussion of variables within loops� which we have found is closely tied to

induction variable recognition� In Section � we present the experimental results obtained thus

far� and we close with future directions and conclusions in Section ��

� Background and Other Work

��� Framework

Constant propagation operates on a standard ��level lattice� as shown in Figure �� Top ���

is the initial state for all symbols� When comparing two lattice element values� the meet

operator �u� is applied� as given in Table �� These foundations are standard for many constant

propagation methods ��� �� ��� originally introduced by Kildall ��
�� Each symbol has its lattice

value initialized to �� which indicates that it has an as yet undetermined value� After analysis

is complete� all symbols will have lattice value equal to � �it cannot be determined to be

constant�� a constant value� or � �unexecutable code�� We note that values can only move

down in the lattice� due to the meet operator� By initializing lattice values to �� an optimistic

approach is taken� which assumes all symbols can be determined to be constant until proven

otherwise�

Previous methods perform the analysis as an iterative data��ow problem ����� in which

iterations continue until a �xed point is reached ��� ��� We will see in the next section that an

alternative demand�driven recursive algorithm o�ers advantages over the traditional approach�

�

� u any � any
� u any � �

constanti u constantj �

�
constanti if i � j

� otherwise

Table �� Rules for meet �u� operator�

CC . . . Ci i + 1 i + 2 . . .

Figure �� Standard Constant Propagation Lattice

�

S�� z � �

S	� if � P � then

S�� y � �

S�� else

S�� y � z � �

S�� endif

�a�

S�� z � �

S�� if � z � � � then

S�� y � �

S�
� else

S��� y � �

S�	� endif

�b�

Figure 	� Constant propagation with �a� simple� and �b� conditional� constants

��� Previous Methods

����� Classi�cation

As explained by Wegman and Zadeck ���� constant propagation algorithms can be classi�ed

in two ways� �i� using the entire graph or a sparse graph representation� and �ii� detecting

simple or conditional constants� This naturally creates four classes of algorithms� It is clear

that propagating information about each symbol to every node in a graph is ine�cient� since

not all nodes contain references or de�nitions of the symbol under consideration� Sparse repre�

sentations� on the other hand� such as def�use or use�def chains ����� Static Single Assignment

�SSA� ��	�� Dependence Flow Graphs �DFG� ����� or Program Dependence Graphs �PDG� �����

have all shown the virtue of operating on a sparse graph for analysis�

The distinction between simple �all paths� constants and conditional constants can be seen

in Figure 	� The simple value of y is determined to be constant only if both branches which

merge at S� are constant with identical value� as is the case in �a�� However� if the predicate

which controls branching can be determined to be constant� then only one of the branches will

be executed� allowing not only y to be recognized as constant in �b�� but also identifying the

other path to be dead code�

The distinction between the four types of algorithms is explained well by Wegman and

�

Zadeck ���� and the reader is referred to their paper for more detail� We will look at the algo�

rithm that they present� since it incorporates both sparse graph representation and conditional

code� The sparse graph employed is the SSA form� described in the next subsection�

����� Graph Preliminaries

The algorithms to convert a program into SSA form are based upon the Control Flow Graph

�CFG�� which is a graph G � �V�E�Entry�Exit�� where V is a set of nodes representing basic

blocks in the program� E is a set of edges representing sequential control �ow in the program�

and Entry and Exit are nodes representing the unique entry point into the program and the

unique exit point from the program� Switch nodes have their outgoing edges determined by a

predicate� After a program has been converted into SSA form� it has two key properties�

�� Every use of a variable in the program has exactly one reaching de�nition� and

	� At con�uence points in the CFG� merge functions called ��functions are introduced� A

��function for a variable merges the values of the variable from distinct incoming control

�ow paths �in which a de�nition occurs along at least one of these paths�� and has one

argument for each control �ow predecessor� The ��function is itself considered a new

de�nition of the variable�

For details on SSA graph construction the reader is referred to the paper by Cytron et al�

��	�� A sample program converted into SSA form is shown in Figure ��

����� A Closer Look at One Algorithm

The algorithm used by Wegman and Zadeck operates on CFG edges� SSA def�use edges are

added to the graph once the program has been transformed into SSA form�

Their algorithm works by keeping two worklists� a FlowWorkList and an SSAWorkList� Flow

edges are initially marked unexecutable� Edges are examined from either worklist until empty�

�

x � 	

y � 	

z � 	

if � P � then

y � y �

endif

x � y

z � � � y�

�a�

x� � 	

y� � 	

z� � 	

if � P � then

y� � y� �

endif

y� � � � y�� y� �

x� � y�
z� � � � y� �

�b�

x� � 	

y� � 	

z� � 	

if � P � then

y� � y� �

endif

y� � � � P� true� y�� false� y� �

x� � y�
z� � � � y� �

�c�

Figure �� Program in �a� normal form� �b� SSA form� and �c� GSA form

with those examined from the FlowWorkList being marked executable� The destination node

for these edges also have their ��functions evaluated by taking the meet of all the arguments

whose corresponding CFG predecessors are marked executable� Expressions are evaluated the

�rst time a node is the destination of a �ow edge� and also when the expression is the target

of an SSA edge and at least one incoming �ow edge is executable� More detail can be found in

the original paper ����

This algorithm �nds all simple constants� plus additional constants that can be discovered

when the predicate controlling a switch node is determined to be constant� The time complexity

is proportional to the size of the SSA graph� and each SSA edge can be processed at most twice�

Since ��functions are re�evaluated each time an edge with that node as a destination is

examined� Wegman and Zadeck note that expressions which depend on the value of a ��function

may be re�evaluated twice for each of its operands� For example� in this program fragment�

�

if � P �

then

	 y� �

z� � �

else

�	 y� �

z� � �

endif

�	 y� � ��y�� y��

z� � ��z�� z��

x� � y� z�

if P is not constant� the expression for x� may be evaluated many times� If the �ow edge from

	 is processed �rst� then x� equals �� and it may stay at � if the SSA edges for y are examined

next� Eventually� x� will evaluate to �� as the merge for z becomes non�constant� It is this

multiple expression evaluation which we seek to avoid�

� SSA using FUD Chains for Simple Constants

��� FUD Chains

In our restructuring compiler� Nascent ����� we also convert the intermediate representation

into SSA form� In order to achieve the single�assignment property each new de�nition of a

variable receives a new name� Practically� however� this is undesirable �managing the symbol

table explosion alone precludes this option�� so the SSA properties are maintained by providing

links between each use and its one reaching de�nition� Instead of providing def�use links� as

is the common implementation ��� ���� we provide use�def links� giving rise to an SSA graph

comprising factored use�def chains �FUD chains�� This approach yields several advantages�

such as constant space per node and an ideal form with which to perform demand�driven

analysis�����

�

Our analysis of programs begins within a framework consisting of the CFG and an SSA data�

�ow graph� Each basic block contains a list of intermediate code tuples� which themselves are

linked together as part of the data��ow graph� Tuples are of the form�op�left�right�ssalink�lattice��

where op is the operation code and left and right are the two operands �both are not always

required� e�g� a unary minus�� The ssalink is used for fetches and arguments of ��functions�

as well as indexed stores �which are not discussed further in this paper�� The ssalink� if appli�

cable� represents the one reaching de�nition for the variable in question at that point in the

program� The left� right� and ssalink �elds are pointers� they are all essentially use�def links�

Thus� to perform an operation associated with any tuple� a request �or demand� is made for

the information at the target of these links� Each tuple also has a lattice element assigned to

it� lattice� initialized to ��

We �rst show how to implement simple constant propagation within our framework� Our

algorithm e�ciently propagates simple constants in the SSA data��ow graph by demanding the

lattice value from the unique de�nition point of each use� We visit all CFG nodes� examining

each of its tuples� calling propagate�� recursively on any unvisited left or right tuples� Assign�

ment statements are evaluated� calling propagate�� on all references with an ssalink� When

a ��function is encountered� recursive calls to the arguments are made� followed by taking

the meet of those arguments� In the case of data��ow cycles� characterized by ��functions at

loop�header nodes� � is returned� The algorithm is given in Figure ��

Several points are noted regarding this algorithm�

� This is not an iterative solver� It is a recursive demand�driven technique which will

completely solve the graph in the absence of cycles� The order in which basic blocks are

visited is not important�

� This is an optimistic solver� since all symbols are initialized to �� We �nd the same class

of simple constants as other non�conditional solvers� such as Kildall ��
� and Reif and

�

� t � tuples�

lattice� t � � �
unvisited� t � � true

Visit all basic blocks B in the program

Visit all tuples t within B

if unvisited � t � then propagate� t �

propagate � tuple t �
unvisited � t � � false

if ssa link� t � 	�
 then
if unvisited� ssa link� t � � then propagate� ssa link� t � �
lattice� t � � lattice� t � u lattice� ssa link� t � �

endif

if unvisited� left � t � � then propagate� left� t � �
if unvisited � right � t � � then propagate� right� t � �
case on type �t �

constant C� lattice� t � � C

arithmetic operation�

if all operands have constant lattice value

then lattice� t � � arithmetic result of

lattice values of operands

else lattice� t � � �
endif

store� lattice� t � � lattice� RHS �
��function�

if loop�header � then lattice� t � � �
else lattice� t � � u of ��arguments of t

endif

default� lattice� t � � �
end case

end propagate

Figure �� Demand�driven propagation of simple constants�

�

Lewis �����

� When at a merge node� we take the meet of the demanded classi�cation of the ��

arguments� By Table �� this will result in a constant i� all ��arguments are constant

and identical�

� Each expression is evaluated once� since the node containing the expression will only be

evaluated after all referenced de�nitions are classi�ed�

� The asymptotic complexity is proportional to the size of the SSA data��ow graph� since

it requires each SSA edge to be examined once�

� In the presence of data��ow cycles �due to loops in the CFG�� the solver will fail to classify

constant valued tuples� either as a function of the loop�s trip count or even if it remains

constant throughout the loop� A more complex solver� such as the one described in the

next section� is needed to account for cycles�

� Constants within Conditionals and Loops

��� Extending SSA to GSA

When demanding the classi�cation of a variable at a merge node� we take the meet of the

demanded classi�cation of its ��arguments� as noted in the last section� However� if only one

of the branches will� in fact� be taken� we would like to only propagate the value along that

path� In previous methods� as illustrated in Section 	� the predicate at a branch �or split�

node is �rst evaluated� and if found constant� the executable edge is added to a worklist� Thus�

when the corresponding merge node is processed� expressions at that node will be evaluated in

terms of the incoming executable edges� As we have seen� this may result in expressions being

evaluated more than once�

��

In our method� if a symbol demands the value from a merge node� we want to process

the predicate that determines the path to follow� Examine Figure ��b�� When attempting

to classify x�� the value is demanded from the use�def SSA link of y�� which points to the ��

function� However� a ��function is not interpretable ����� Thus� we have no information about

which path may or may not be taken� Since the predicate P in our example determines the

path taken� if P is constant� we can determine which argument of the ��function to evaluate�

If P is not constant� the best we can do is to take the meet of the ��arguments�

Augmentation of the ��function is needed to include this additional information� We extend

the SSA form to a gated single assignment form �GSA�� introduced by Ballance et al� ����� which

allows us to evaluate conditionals based upon their predicates� Figure � shows a simple program

converted to GSA form� Brie�y� ��functions are reclassi�ed into �� and ��functions� Most

��functions contained within loop�header nodes are renamed ��functions� while most other ��

functions are converted to ��functions�� The ��function� v���P� true � v�� false � v��� means

if P then v�v� else v�v�� In this form� the ��function represents an if�then�else construct�

but it is also extended to include more complex branch conditions� such as case statements�

Several important notes are necessary�

� We provide the complete algorithm to convert ��functions to �� and ��functions in Ap�

pendix A� A similar method employed by Havlak ����� aimed at value�numbering� thins

the ��function to eliminate paths that cannot reach a merge point� Essentially� if all ar�

guments save one are �� then the entire argument structure is reduced to the one non��

argument� Thinning misses identifying constants in some situations� such as shown in

Figure ��

� It is convenient to insert nodes into the CFG such that the header node of a loop has

�A ��function cannot be converted to a �� or ��function in the presence of irreducible loops�

�	

exactly two predecessors� one from within the loop and one from without� A preheader

node is inserted to accomplish this task� and we also insert a postbody node that is the

target for all loop back edges�

� Multiple levels of conditionals result in nested ��functions� Examine Figure �� which is an

unstructured code fragment �although structured code with nested if�then constructs

also result in nested ��functions�� Figure ��b� shows the program translated into GSA

form� It is quite an interesting example for constant propagation� since if we know the

value of predicate P we always know what possible value of x can reach the merge at �	�

However� if we don�t know P� then the value of predicate Q becomes crucial�

� If Q is true� only x� can reach �	�

� If Q is false� we have no clear information on what value of x to propagate�

If thinning were used� the ��function at �	 would reduce to� x� � �� P� t�x�� f� x���

If P is not constant� the meet of its arguments is �� However� if Q is known to be true�

the constant value x� will be missed using thinning� since the false side of predicate P is

prematurely reduced to x�� instead of ��

� As described by Ballance et al�� ��functions also contain a predicate � it determines

whether another execution of the loop will take place� We don�t require an executable

intermediate form� and� as we shall see� other techniques e�ciently handle loops�

� Only reducible �ow graphs can be converted into GSA form� An irreducible graph con�

tains loops with multiple entries � this leads to problems both in loop detection �we

classify loops according to the natural loop ���� de�nition�� and working with control de�

pendence �in an irreducible graph� the transitive control dependence of a node can skip

over the immediate dominator�� The Appendix provides more detail�

��

x � �

if � P � goto �	

if � Q � goto �	

else goto �	

�	 x � �

�	 y � x

�	 continue

�a�

x���
if � P � goto �	

if � Q � goto �	

else goto �	

�	 x���
�	 x� �� P� t�x�� f��� Q� t� �� f� x���

y��x�
�	 continue

�b�

Figure �� Conditional code which results in nested ��functions

��� Conditional Constant Propagation

Once converted into GSA form� we can improve upon the propagate�� routine to take advantage

of predicates that can be determined to be constant� When encountering a ��function� we �rst

attempt to evaluate the predicate� If constant� we follow the indicated branch� propagating

constant values as found� If not constant� we take the meet of its arguments� The revised

algorithm is given in Figure ��

We may encounter ��functions in a program with irreducible loops ����� In this case� ��

functions cannot be converted to GSA form� but we can still detect simple constants�

Several comments need to be made regarding this algorithm�

� Due to lack of space� we have only dealt with integer constants� not logical or enumerated

types�

� We have not covered arithmetic simpli�cations� including special cases such as zero times

anything �including �� equals zero�

� Reaching a ��function returns �� This is due to the separate solver used for loops�

discussed next�

��

� t � tuples�

lattice� t � � �
unvisited� t � � true

Visit all basic blocks B in the program

Visit all tuples t within B

if unvisited � t � then propagate� t �

propagate � tuple t �
unvisited � t � � false

if ssa link� t � 	�
 then
if unvisited� ssa link� t � � then propagate� ssa link� t � �
lattice� t � � lattice� t � u lattice� ssa link� t � �

endif

if unvisited � left � t � � then propagate� left� t � �
if unvisited � right � t � � then propagate� right� t � �
case on type �t �

constant C� lattice� t � � C

arithmetic operation�

if all operands have constant lattice value

then lattice� t � � arithmetic result of

lattice values of operands

else lattice� t � � �
endif

store� lattice� t � � lattice� RHS �
��function� lattice� t � � u of ��arguments of t

��function�

if lattice� predicate � � C then

lattice� t � � lattice value of

��argument corresponding to C

else lattice� t � � u of all ��arguments of t

endif

��function� lattice� t � � �
��function� lattice� t � � lattice � ��argument �
default� lattice� t � � �

end case

end propagate

Figure �� Demand�driven propagation with conditional constants�

��

��� Loops

Cycles in the GSA data��ow graph are the result of loops within the original program� The

variables de�ned within these cycles are detected with induction variable analysis� Induction

variables are traditionally detected as a precursor to strength reduction� and more recently

for dependence analysis with regard to subscript expressions� We have developed methods for

detecting and classifying induction variables �including non�linear induction variables �	
� 	��

		�� based on strongly�connected regions in the SSA data��ow graph �	�� These techniques

make use of an exit function� the ��function� which holds the exit value of a variable assigned

within the loop� The exit value may be a function of the loop tripcount �which may itself be an

expression determined to be constant�� or may be invariant with respect to the loop� An exit

expression is held by the ��argument� which if constant can be used to propagate values outside

of the loop� Ballance et al� introduced ��functions in their GSA form� We place ��functions in

postexit nodes as part of our SSA translation phase� For each edge exiting the loop� a postexit

node is inserted outside the loop� between the source of the exit edge �within the loop body�

and the target �outside the loop��

We are able to propagate constants through loops �single and nested� by taking advantage

of specialized solvers which detect and classify a large assortment of linear and non�linear

induction variables� Interested readers may obtain a description of this work via anonymous

ftp to cse�ogi�edu �	���

� Experimental Results

To gauge the e�ectiveness of our routines� we measured the number of constants �both simple

and conditional� on Fortran scienti�c codes found in the PERFECT� RICEPS� and MENDEZ

benchmark suites� and several miscellaneous but important routines� A constant is considered

��

propagated if there was a fetch of a constant� Folded constants are counted separately�

Results are shown in Table 	� The vast majority of constants ����� are simple constants�

Most conditional constants were as a result of loop analysis� Although a few predicates control�

ling switch nodes are determined constant� we believe these are mainly due to guards� not until

interprocedural analysis and inlining are implemented do we expect to see many conditional

constants propagated� Results are also shown for the number of folded constants�

With a total of ��
�� lines of code analyzed� we found ��� simple constants per procedure�

on average� with one constant every �� lines� For conditional constants� we found ��� per

procedure� and one constant every �	 lines�

To obtain valid comparisons with other algorithms� notably Wegman and Zadeck�s� we are

currently implementing a version of our compiler that transforms intermediate forms into a

version of SSA which supports their data structures� We plan timing tests for several constant

propagation algorithms on the same test suite of Fortran programs as was used in this section�

� Future Work and Conclusions

We plan many extensions to this work� One important topic is interprocedural analysis and

procedure integration� an area where we believe many constants will be found� Although some

work has already been done in this area ��� 	�� 	��� we would like to apply our demand�driven

style to the problem�

Dead�code can currently be identi�ed with our technique� but we have not yet developed

the algorithm fully� It may well be that dead code is best identi�ed using edges instead of

nodes� as pointed out by Wegman and Zadeck�

Traditional SSA form has been criticized for lacking a method to propagate constants de�

termined by predicate analysis ����� In the following fragment

��

routine lines procs FC SC CP NCP CC

PERFECT club

adm ���� �� � �
	
 	�� �
	

arc�d 	��� �� � ��
 �� ��

bdna ���� �� � �	
 ��� ��

dyfesm ��
� �� � �
 ��
 �

�o�� ���
 	� �� ��
 �
� ��

mdg �
	� �� �

 ��

mg�d 	��� 	� � 	��
 ��� 	��

ocean 	��� �� 	
 �
 ��� �

qcd ���
 �� � �� 	 �� ��

spec		 ���� �� �� 	� 	 ��� ��

track 	��	 �	 �� �
 ��
 �

trfd ��� � � � 	 	
 �

RICEPS

boast �	�	 �� �� 	� 	 ��� 	�

ccm ���
� ��� �� �
� � ��� �	�

linpackd ��� ��
 ��
 �	 	�

simple �	�� � �	 ��	 � 	� ��	

sphot ��� � � 	
 �	 	

wanal
 ���� �� �	 �� � 	� ��

MENDEZ

euler ���� �� � �� � ��� ��

mhd�d �	� �� �� ��
 	� ��

shear ��� �� �� �� � �� ��

vortex ��� 	
 	 ��
 �� ��

MISC

comp� ���� �

 ���

comps ��
� 	� � 	� �� ��� �	

eispack ���� �� 	� �
 ��� �

livermore �

� �� 	� �� 	 ��	 �	

vector ��
� �
� 	 �

 �� �

Total ��
�� �
�
 ��� ���� �� ���� ����

Table 	� Experimental runs to detect propagated constants� FC � folded constant� SC � simple
constant� CP � constant predicate� NCP � non�constant predicate� CC � conditional constant�

��

if �x� �
� then

i� � x�
else

j� � x�
endif

it is desirable to be able to assign i� constant value� A sophisticated compiler may analyze the

guard and determine that under the range of the true side of the conditional� x� will always

be �� This notion of a derived assertion is not new ���� but to our knowledge has not yet been

integrated into the SSA form� Using demand�driven SSA form� derived assertions can easily be

captured by inserting dummy assignments� We propose a new SSA operator� the ��function�

which serves as the new de�nition of its variable� By examining the right�hand side of the

predicate� the above fragment becomes�

if �x� �
� then

x� � ��
�
i� � x�

else

j� � x�
endif

Now constant propagation may easily be performed via the argument of the ��function� which

may be constructed of actual operations in the intermediate form�

In addition to constant propagation� the explicit representation of derived assertions may

be advantageous if bounds information can be expressed� In this fragment�

if �n� � 	� then

for i
� n�
	 	 	

endfor

endif

if the compiler cannot determine any value for n�� then it cannot be determined if the body

of the loop will ever be executed within the range of the if� However� analysis of the guard

��

condition assures the loop will be executed at least once� If limit information can be encoded

in the argument of the ��function� the loop may be transformed�

if �n��	� then

n� � ���	�

for i
� n�
	 	 	

endfor

endif

Now it is clear from the expression describing the tripcount that the loop will be executed at

least once� since the lower limit of n is known�

Other planned projects include run�time analysis and value numbering� We are interested in

obtaining timing results that demonstrate how much execution time is saved for the increased

analysis done at compile time� These are interesting tradeo�s� and remain an open question�

Although not constant propagation per se� the structure of GSA lends itself particularly well to

implementing value numbering� as has been shown by Havlak ����� Finally� we want to extend

our work into the area of non�integer and symbolic expression propagation�

We have presented a new demand�driven method for performing conditional constant prop�

agation� which works on sparse data��ow graphs� �nds the same class of constants as previous

algorithms� but avoids evaluating expressions more than once� We have detailed speci�c algo�

rithms to accomplish this task� and have presented preliminary data on the number of constants

found in scienti�c Fortran codes �and� as noted in the last section� we are building a comparative

experiment�� We believe this is a promising approach with many opportunities for extensions�

References

��� Jean�Paul Tremblay and Paul G� Sorenson� The Theory and Practice of Compiler Writing�
McGraw�Hill� New York� NY� �����

	

�	� Michael P� Gerlek� Eric Stoltz� and Michael Wolfe� Beyond induction variables� Detecting
and classifying sequences using a demand�driven SSA form� submitted for publication�
September �����

��� J� Kam and J� Ullman� Monotone data �ow analysis frameworks� Acta Informatica 	�
pages �
������ �����

��� Mark N� Wegman and F� Kenneth Zadeck� Constant propagation with conditional
branches� ACM Trans� on Programming Languages and Systems� ���	������	�
� July
�����

��� Dan Grove and Linda Torczon� Interprocedural constant propagation� A study of jump
function implementations� In Proceedings of the ACM SIGPLAN Conference on Program�

ming Language Design and Implementation� pages �
���� June �����

��� Steve S� Muchnick� Optimizing compilers for SPARC� Sun Technology� pages ��������
����� Summer�

��� D� Blickstein� P� Craig� C� Davidson� R� Faiman� K� Glossop� R� Grove� S� Hobbs� and
W� Noyce� The GEM optimizing compiler system� Digital Technical Journal� ���	������
���	� Special Issue�

��� P� Lowney� SA� Freudenberger� T� Karzes� W� Lichtenstein� R� Nix� J� O�Donnell� and
J� Ruttenberg� The Multi�ow trace scheduling compiler� The Journal of Supercomputing�
�������	� �����

��� David Callahan� Keith D� Cooper� Ken Kennedy� and Linda Torczon� Interprocedural
constant propagation� In Proceedings of Sigplan Symposium on Compiler Construction�
volume 	�� June �����

��
� G� A� Kildall� A uni�ed approach to global program optimization� In Conference Record

of the First ACM Symposium on Principles of Programming Languages� pages ����	
��
October �����

���� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers� Principles� Techniques� and Tools�
Addison�Wesley� Reading� MA� �����

��	� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and F� Kenneth Zadeck�
E�ciently computing Static Single Assignment form and the control dependence graph�
ACM Trans� on Programming Languages and Systems� ������������
� October �����

���� Richard Johnson and Keshav Pingali� Dependence�based program analysis� In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation�
pages ������ June �����

���� Jeanne Ferrante� Karl J� Ottenstein� and Joe D� Warren� The program dependence
graph and its use in optimization� ACM Trans� on Programming Languages and Systems�
������������� July �����

	�

���� Michael Wolfe� Michael P� Gerlek� and Eric Stoltz� Nascent� A Next�Generation� High
Performance Compiler� Oregon Graduate Institute of Science � Technology unpublished�
�����

���� Eric Stoltz� Michael P� Gerlek� and Michael Wolfe� Extended SSA with factored use�def
chains to support optimization and parallelism� In
�� ACM Conf� Proceedings Hawaii

International Conference on System Sciences� January ����� to appear�

���� John H� Reif and Harry R� Lewis� Symbolic evaluation and the global value graph� In Con�
ference Record of the Fourth ACM Symposium on Principles of Programming Languages�
pages �
������ January �����

���� Robert A� Ballance� Arthur B� Maccabe� and Karl J� Ottenstein� The program dependence
web� A representation supporting control�� data�� and demand�driven interpretation of
imperative languages� In Proc� ACM SIGPLAN ��� Conf� on Programming Language

Design and Implementation� pages 	���	��� White Plains� NY� June ���
�

���� Paul Havlak� Construction of thinned gated single�assignment form� In Sixth Annual

Workshop on Languages and Compilers for Parallel Computing� August �����

�	
� Michael Wolfe� Beyond induction variables� In Proceedings of the ACM SIGPLAN Confer�

ence on Programming Language Design and Implementation� pages ��	����� June ���	�

�	�� Mohammed R� Haghighat and Constantine D� Polychronopoulos� Symbolic program analy�
sis and optimization for parallelizing compilers� In Workshop on Languages and Compilers

for Parallel Computing� pages �������� ���	�

�		� R� Eigenmann� J� Hoe�inger� Z� Li� and D� Padua� Experience in the automatic paral�
lelization of four Perfect�Benchmark programs� In U� Banerjee� D� Gelernter� A� Nicolau�
and D� Padua� editors� Languages and Compilers for Parallel Computing� pages ������
Spinger�Verlag� ���	� LNCS no� ����

�	�� Michael P� Gerlek� Detecting induction variables using SSA form� Technical Report ���
���
Oregon Graduate Institute of Science � Technology� �����

�	�� Mary Hall� Managing Interprocedural Optimization� PhD thesis� Department of Computer
Science� Rice University� �����

�	�� R� Metzger and S� Stroud� Interprocedural constant propagation� an empirical study�
ACM Letters on Programming Languages and Systems� June ���	�

		

Appendix � The �
Conversion Algorithm

The complete algorithm to translate a program from SSA form �already augmented with ��

functions� the loop�exit place�holders� into GSA form is provided� This algorithm essentially

renames loop�header ��functions as ��functions� while creating an interpretable ��function to

replace other ��functions� We note that this translation is only possible with reducible �ow

graphs� In reducible graphs the initial switch node to determine program �ow a�ecting a merge

is always the immediate dominator�

This algorithm relies heavily on the concept of control dependence� Informally� X is control

dependent on Y if one path from Y must reach X� while another path may avoid X� Cytron

et al� ��	� showed that control dependence is equivalent to dominance frontiers in the reverse

CFG� We compute control dependence only on the forward CFG� eliminating back edges�

Roughly half the ��functions can be reduced� This reduction can occur in two ways�

�� The same predicate occurs more than once in a ��function� In this case� the value of the

�rst occurrence of the predicate can prune the nested predicate� The reduce�� function

accomplishes this task�

	� If all ��arguments have the same value� then the ��function can be replaced by the value

of the arguments�

As an example of reduce��� examine this code fragment�

x� 	

if� P � goto �	

	 x� � �a
y� � x�
goto �	

�	 x�

if� Q � goto
	

�	 x� � �c

	�

Before reduce� the ��function at
	 will be�

x� � �a�P� t� �b�Q� t� x�� f � ��� f � x��

And the ��function at �	 will be�

x� � �c�P� t� �d�Q� t� �a� f � x��� f � �a�

After applying the �rst reduction rule� the ��function at �	 ��c� becomes�

x� � �c�P� t� �d�Q� t� x�� f � x��� f � x��

Next� the second reduction rule is applied� yielding�

x� � �c�P� t� x�� f � x��

	�

Replacing ��Functions with �� and ��Functions

last ���� � previous ��function processed at this basic block
current ���� � ��function under consideration for this basic block
labels � branch values which correspond to outedges from a basic block

If there is only one successor� the branch label is true
ssa link � reaching de�nitions corresponding to a fetch

or an argument from a �� �� or � function

last ���� � �
current ���� � �

while list of basic blocks not empty do
B � next block in topological order from the CFG
idom � immediate dominator of B
for each ��function f in B do

if f � loop�header� then replace � with �

else
for each predecessor pred of B do

lab � branch label of edge from pred to B
ssa link � ��argument of f which corresponds to pred
process� f� pred� lab� ssa link �

enddo
replace f with reduce� current �� idom � �

endif
enddo

enddo

process� function f� basic block b� label lab� def link �
if last ��b� �� f

last ��b� � f

if b has more than 	 successor
send � current ��b� � build gamma�b�

else
current ��b� � �
send � link

endif
for each control predecessor cp of b do

if b �� idom then
cp lab � branch label from cp which executes b
process� f� cp� cp lab� send �

endif
enddo

endif
if current ��b� �� �

for argument a of current ��b� � label a � lab
set ssa link�a� � link

endfor
endif

end process
	�

build gamma� basic block bg �
��predicate � switch function in bg
for each successor succ of bg do

e � label from bg to succ
add ��argument with label � e and ssa link � Top

enddo
return �

end build gamma

reduce� object r �
if r is not a ��function return r

predicate � switch operator of ��function r

if predicate already on the stack
arg � ��argument of r whose label matches the branch value of predicate
return reduce� ssa link� arg � �

endif
for all ��arguments a of r do

push onto stack� predicate� label of a �
ssa link� a � � reduce�ssa link� a � �
pop o
 stack� predicate �

enddo
if all ��arguments a of r have identical ssa link return ssa link� a �
else return r

end reduce

	�

