On the Application of Partial Evaluation to
Database Optimization

Scott Daniels and Bennet Vance
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

December 8, 1993

1 Introduction

The theory and practice of partial evaluation have attracted increasing inter-
est in recent years, and the techniques it offers have been applied to a variety
of problems in compilation and the design of algorithms. To our knowledge,
however, little work has been done to investigate its possible applications to
database systems. In this paper we describe some very preliminary work we
have done with a view to remedying this gap in partial-evaluation research.
Our specific focus of attention is optimization of database implementations.

We will discuss both actual partial-evaluation experiments we have al-
ready carried out and more speculative ideas that we have thought about
but not implemented. The techniques we will consider have potential appli-
cation both to relational and object-oriented database systems. However,
most of our initial work is based completely on relational databases. We
begin by reviewing basics of the relational algebra, then touch on the ter-
minology of partial evaluation before proceeding to describe our research
results and research ideas.

1.1 Quick sketch of relational algebra

The relational database model treats a database as a collection of named re-
lations. A relation can be thought of as a labelled table, where the columns
are called “attributes.” The rows are called “tuples” in the relation, and
are, conceptually at least, unordered and distinct. That is, a relation is
an attribute list and a set of tuples that are described by that attribute

list. You can consider the attribute list to be a “type” for the relation tu-
ples. Relations are the values in relational algebra, and there are a standard
set of operators on those values, all of which produce relations as results:
select(o), project(s), join(r), cross_product(x), intersection(N),
union(U), and difference(—).

A typical textbook relation [EN89]:

| Product PNAME PNUMBER PLOCATION DNUM
ProductX 1 Bellaire 5

ProductY 2 | Sugarland 5

ProductZ 3 Houston 5
Computerization 10 Stafford 4
Reorganization 20 Houston 1

Newbenefits 30 Stafford 4

The select operator takes two inputs, a parameter and an argument.
The parameter is a predicate which is evaluated with respect to a tuple and
returns either true or false. The argument is a relation, which supplies a
set of tuples over which the predicate will be applied. The result of a select
is a relation, with the same attribute list as the argument relation, contain-
ing only those tuples for which the predicate was true. As an example,
select(DNUM = 4)(Product) is shown.

| PNAME PNUMBER PLOCATION DNUM
Computerization 10 Stafford 4
Newbenefits 30 Stafford 4

The project operator also takes two inputs, a parameter and an ar-
gument. The parameter is a list of attributes (drawn from the attributes
in its argument) The argument is a relation, which supplies data for the
projection (and a set of attributes to draw on). The result of a project
is a new relation, with an attribute list that matches the parameter, and
containing tuples with the chosen attributes. For this example, we show
project([DNUM, PLOCATION])(Product).

| DNUM PLOCATION
Bellaire

Sugarland
Houston
Stafford

Houston

— = OOt O

The join operator takes three inputs, a parameter and two arguments.

" a predicate on a pair of tuples (one from

The parameter is a “join condition,’
each of the two arguments) which identifies which pairs of tuples should be
in the resulting relation. The attribute list of the result is the concatenation
of the attribute lists of the two argument relations. The tuples in the result
are formed by concatenating every pair of input tuples that satisfy the join
condition. We will have to, of course, provide another relation for our second

argument.

|Dept_Locations DNUMBER | DLOCATION
Houston
Stafford
Bellaire
Sugarland
Houston

T O O i =

Here we show join(DNUM = DNUMBER)(Product,Dept_Locations).

PNAME PNUMBER PLOCATION | DNUM DNUMBER | DLOCATION
ProductX 1 Bellaire 5 5 Bellaire
ProductX 1 Bellaire 5 5 Sugarland
ProductX 1 Bellaire 5 5 Houston
ProductY 2 Sugarland 5 5 Bellaire
ProductY 2 Sugarland 5 5 Sugarland
ProductY 2 Sugarland 5 5 Houston
ProductZ 3 Houston 5 5 Bellaire
ProductZ 3 Houston 5 5 Sugarland
ProductZ 3 Houston 5 5 Houston

Computerization 10 Stafford 4 4 Stafford
Reorganization 20 Houston 1 1 Houston
Newbenefits 30 Stafford 4 4 Stafford

The cross_product operator behaves like an unconstrained join. In
fact, cross_product can be implemented simply as join(true).

As we have said, the attributes lists can be considered a “type” for
relational tuples. The union, intersection, and difference operators all
behave quite similarly, in that they implement the obvious set operations,
take no “parameters,” and take two arguments, which must be relations
with matching attribute lists.

The names of all the named relations in the database, along with their
corresponding attribute lists, is called the database schema.

1.2 Partial Evaluation

It is beyond the scope of this paper to explain partial evaluation [Con90,
CD93], nor is it necessary to understanding the paper to know a great deal
about the subject. However, it will be helpful to introduce a few basic terms.

A partial-evaluator accepts as input a program P and a portion of the
input data that P needs to execute, and produces another program as out-
put. More precisely, let us say that the program P acts as a function of two
arguments, the first of which is known, and the second of which is not; thus
we invoke P as P(s,d), where the value of s is known. Then the partial-
evaluator, given P and s as input, generates a new program Fs;. The new
program Py acts as a function of one argument, and the intent is that Ps(d)
should be equivalent to, but more efficient to evaluate than, P(s,d). The
argument s is known as static data, the argument d as dynamic data, and
the program Ps as the residual program (or, frequently, the residual).

Several research partial-evaluators are presently in use; the work de-
scribed here made use of Schism [Con92, Con93], which is built on top of
the programming language Scheme.

2 An Experiment in Implementation

We began our investigation of the application of partial evaluation to
database implementation without a specific, detailed agenda. We did have
some ideas about the kinds of automatic transformations that might be pos-
sible. For example, we harbored hopes that through partial evaluation we
might be able to achieve some query simplifications that are conventionally
obtained through algebraic query optimization. The possibility of achieving
such simplifications will be discussed further in later sections. But in our
implementation experiments we decided against attempting to to design a
program that would meet specific objectives when partial-evaluated. In-
stead, we decided to implement the simplest, most naive relational query
processor imaginable, and to observe the ways in which partial evaluation
was able to improve it.

2.1 The Naive Query Processor

For the purpose of this exercise, we implemented the standard relational op-
erators select, project, and join, but we omitted union, intersection,
cross_product and difference. We also ignored some fine points of the

definitions of the operators we did implement. For example, a project
operation may map two distinct tuples in its argument to two result tu-
ples that are identical, since in some cases the attribute or attributes that
distinguished the input tuples will have been projected away. In theory, a
relational processor should perform a duplicate-elimination step following a
projection to suppress redundant tuples in the result; however, we skip this
step. (In defense of our laxness on this point, we note that most commercial
relational databases also skip the duplicate-elimination step unless the user
specifically requests it.)

Another area of simplification is predicates; we provide only a couple of
simple predicate forms. For selection operations, a predicate must have the
form “ATTRIBUTE = constant”, and for join operations the predicate must
have the form “LEFT_ATTR = RIGHT_ATTR”. In the latter case, LEFT_ATTR
denotes an attribute from join’s first argument, and RIGHT_ATTR an at-
tribute from its second. Thanks in part to these simplifications, our entire
query processor is a Schism program of only about 300 lines. Nonetheless,
it is capable of processing complex queries, accessing relation attributes by
attribute name rather than numerical offset, and generating result relations
annotated with new attribute lists.

Nothing in the implementation of the query processor was especially
difficult or complicated, but the correct handling of attribute names did
require some care. At issue is the following: In the interest of efficient use of
storage space, relational databases do not store information about attribute
names in individual tuples; this is true of commercial relational systems,
and we faithfully adhered to the same convention in our miniature query
processor. Thus, relations are stored in much the same way in the database
as they appear in the examples in section 1.1, with a list of attribute names
on top (or off to the side somewhere), and a two-dimensional matrix of
attribute values in another location. Actually, it is conventional to store
the attribute lists of all of the named relations together in a single data
structure, which, as mentioned earlier, is called the database schema; we
adhere to this convention as well.

2.2 The Problem of Attribute Look-ups

Now consider what is involved in evaluating a query such as the query
select(DNUM = 4)(Product) illustrated above in section 1.1. For each tuple
in the Product relation, we must consult the DNUM attribute and compare
it for equality with 4; if equality holds, the tuple becomes part of the output

relation, otherwise we move on to the next tuple. Thus, for each row of the
relation, viewing it as a matrix, we must consult the fourth column, since
the attribute list for Product is (PNAME PNUMBER PLOC DNUM).

But what if the argument of select were not Product, but instead
were some complex subquery possibly involving joins? What column should
we look in to find DNUM in that case? In the result relation produced
by the sample query join(DNUM = DNUMBER)(Product,Dept_Locations)
from section 1.1, the DNUM attribute is again in the fourth col-
uman. If, however, the arguments are reversed, the query be-
comes join(DNUMBER = DNUM)(Dept_Locations,Product); then the
Dept_Locations attributes precede the Product attributes in the result,
and DNUM falls in the sizth column. Moreover, in general the attribute lists
of join results do not appear in the database schema—they are synthesized
attribute lists—and so there is no schema entry we can consult to find the
column number associated with DNUM.

2.3 A Crude Look-up Technique

To give our operators sufficient information to evaluate predicates and join
conditions, we let their arguments be pairs of attribute lists and relations
rather than just relations; and similarly they produce a pair consisting of an
attribute list and a relation as their result. In particular, the join operator
must synthesize a new attribute list as well as calculate a result relation.

With the attribute lists passed along in the arguments to the operators,
it is easy to find the column number corresponding to an attribute. In
select, for example, we iterate over the tuples of the argument relation,
as described above, and for each tuple, we loop in lock-step through both
the attribute list and the tuple columns until we find the attribute name we
are looking for. We then know we are positioned at the correct column in
the tuple to compare against the constant in the selection predicate. This
code is horribly inefficient—not least because we loop through the attribute
list once for each tuple—but convenient to write, because we never have
to bother with column numbers. By scanning the attribute list and tuple
columns in tandem, we obtain a simple, reliable search.

One can imagine gradations of improvement over the crude attribute
loop-up technique just described. At the first gradation, one would com-
pute a column number corresponding to the attribute name once and for
all before commencing iteration over the tuples; then the appropriate at-
tribute could be fetched on a per-tuple basis by a simple array access, us-

ing the column number as an index. At a higher gradation, one might
consider a pre-analysis of the entire query for the purpose of resolving at-
tribute names to column numbers prior to evaluation of the query. Thus,
the query select(DNUM = 4)(Product) would be transcribed as something
along the lines of select([column 3] = 4)(Product), with all attribute in-
dexes pre-computed. Note that with the attribute indexes pre-computed, it
is no longer necessary to pass around attribute lists in the arguments to the
query operators. Simple matrices of values are then sufficient; consideration
of attribute names is entirely removed from actual query evaluation.

However, we did not attempt any such improvements in coding our naive
query processor. Such improvements increase the complexity of a program,
risk the introduction of bookkeeping errors, and can entail substantial labor.
Consequently, we stuck with the simplest attribute look-up technique we
could think of—the lock-step scan described above.

2.4 Partial-Evaluation of the Naive Query Processor

In partial-evaluating the naive query processor, we found it most fruitful to
supply the schema and query as static data, and leave the relations them-
selves dynamic. Thus, we provided to the partial-evaluator exactly the same
information that would be available to a conventional query optimizer—
the schema and query. Given this combination of static data, the partial-
evaluator produced residuals with a remarkable property: though they men-
tion attribute names because we specified that the result of a query should
consist of an attribute list as well as a relation, they make no use what-
soever of attribute names in actual query evaluation. In other words, the
partial-evaluator automatically generated the highest gradation of improve-
ment over the crude attribute look-up technique described in the previous
section.

We imagine that most readers will not be interested in the actual Schism
code that exhibits these effects. However, for those who are, we have pro-
vided several appendices. Appendix A (page 25) gives the Schism source for
the naive query processor. Appendices B—D illustrate several specializations
of that source code produced by the Schism partial-evaluator. Appendix B
(page 30) shows an example where all the data is static, including the rela-
tions; in this case, the residual code has the query result embedded within
it, and performs no work when evaluated. Appendix C (page 32) shows
a classic example of the elimination of references to attribute names. The
function choose-rows.2 is an unfolded and specialized variant of select

that knows exactly where to look in a tuple for the selection attribute: the
expression (equal? °’f (nth (car rows) 6)) compares column number 6
of the current tuple ((car rows)) against the constant ’£ given in the se-
lection predicate of the query supplied as static data. Of course, 6 is the
position of the sEX attribute in the employee attribute list (FNAME MINIT
LNAME SSN BDATE ADDR SEX SALARY SUPERSSN DNO) in the static schema
at the top of page 30. The experiment in Appendix D (page 33) is similar
in spirit, but more complex; in particular, it shows that partial evaluation
is unfazed by the synthesized attribute lists that arise in join subqueries.

3 Conventional Query Optimization

In the previous discussion we showed how partial evaluation could relieve a
database implementor of some of the tedious and error-prone coding that
goes into making a database perform well. That is, the implementor could
partial-evaluate a more straightforward implementation to obtain many of
the same improvements that are traditionally obtained by hand. But the
improvements we have discussed up to this point are not of the variety that
are ordinarily considered in the literature on database query optimization.
That literature is less concerned with low-level implementation details than
with high-level, algebraic transformation of queries.

For example, one simple transformation allows a composition of selec-
tions to be rewritten as a single selection:

select(g)(select(p)(R)) = select(p A q)(R) (1)

The left-hand expression first takes a pass over R to select the elements that
satisfy predicate p, and then takes another pass over those that do—this
time to select the ones that also satisfy predicate ¢. The rule says that we
may achieve the same effect by taking a single pass over R and selecting the
elements that satisfy both p and ¢. Aside from its simplicity, this example is
entirely characteristic of the kind of transformation that arises in algebraic
query optimization. So it is interesting to ask whether there is any way
to achieve a transformation of this kind within the framework of partial
evaluation. We will return to this question presently.

But first we note that the foregoing example, while characteristic of
query optimization from a strictly algebraic viewpoint, fails to bring out
one of the central concerns in query optimization: cost estimation. Our
sample transformation is virtually guaranteed to be beneficial when carried

out in the direction of the arrow. In other words, the right-hand expression
is so likely to be less costly to evaluate than the left-hand expression, that
one may treat the rule as a reliable heuristic, without bothering to analyze
whether it will yield savings in a particular instance.

However, many algebraic transformations in database query optimiza-
tion do not share this trait; for example, the rule

select(q)(join(p)(R, S)) = join(p)(select(q)(R),S) (2)

is usually beneficial when applicable, but not always. The idea behind this
transformation is that by performing a selection on the input to the join
operator, rather than on its output, one reduces the amount of data that
the join operator must process, and hence the cost of the operator. But this
intuition can mislead in some situations. As an extreme example, suppose R
is extremely large, and S is expected to be empty; then the result of the join
may also be expected to be empty. In this situation, the cost of evaluating
the left-hand expression will be essentially the same as the cost of evaluating
the expression R, whereas the cost of evaluating the right-hand expression
will be essentially the same as the cost of evaluating select(g)(R), which
may be significantly greater.

Although for simplicity’s sake we have used an example that may be
somewhat pathological, it illustrates an effect that is not confined to patho-
logical situations. In general there is no definite direction in which a given
algebraic transformation rule should be applied, and consequently modern
query optimizers rely on cost estimation strategies to choose a low-cost
expression from among the different formulations of a query that can be
obtained through a succession of transformations. If we want to obtain the
same kind of optimization behavior through partial evaluation, we must find
a way to incorporate a cost model and cost-based decision-making strategy
into the code that will be partially evaluated.

There is a further complication lurking in the example just given. We
noted that transformation rule 2, carried out in the direction of the arrow,
is usually beneficial when applicable. What is this applicability constraint?
The answer is that a select may be “pushed inside of” a join in the manner
expressed by rule 2 only when the selection predicate ¢ refers exclusively to
attributes of R, and not to any attributes of S. Thus, if we wish to achieve
this transformation through partial evaluation, we must ensure that the
applicability constraint is satisfied.

In the remainder of this section, we examine the ways in which partial
evaluation might be helpful in simplifying some aspects of conventional query

optimization, and the reasons why it appears difficult to apply it to other
aspects.

3.1 On-the-fly Generation of Algebraic Laws

It seems at first a tantalizing possibility that one might be able to construct
a query evaluator in such a way that partial-evaluating it with respect to a
query involving a select of a select, as described above, would automatically
yield a residual in which only a single select was used. (Of course, in the
residual that single select might not appear explicitly as an invocation of
the select function, but would probably itself be unfolded and further
optimized. The point is that one might hope that a pair of loops, implicit
in the original code, would be reduced to a single loop in the residual.) In
effect, the partial evaluator would be discovering and applying an algebraic
transformation on the fly.

This approach to transforming queries would be a radical departure from
the conventional approach, which maintains a collection of algebraic laws
that have been recorded by the database implementor. The approach based
on on-the-fly transformations might seem promising with respect to imple-
mentation effort and reliability, because it obviates the construction of a list
of algebraic laws. However, on closer inspection it appears that approach
based on on-the-fly transformations is neither desirable nor feasible. It is
not desirable because it apparently provides no way to consider estimated
evaluation cost in the application of algebraic laws. The impediments to
feasibility are discussed below.

Despite this pessimistic assessment of on-the-fly transformations, it is
interesting to consider what would be involved in achieving them through
partial evaluation. Considering this question may help provide techniques
for assuring the correctness of algebraic laws, and may also shed some light
on the limitations of current partial-evaluation technology.

3.1.1 Simplifying the Problem

We wish to construct an example of code that can be partial-evaluated to
obtain the effect of an algebraic transformation from query optimization.
To make our task as easy as possible, we will confine our attention to the
simple transformation discussed above, in which two selects are reduced to
one. To further simplify the problem, we will assume that relations are bags
of tuples, not sets. Also, we will write our selection operations in terms of

10

a more general operator that has proved convenient in expressing queries
[BTBN91]. We will call this operator &.

Like select, ® is a parameterized operator. But select has a single
parameter, which is a predicate, and its argument is a relation (whose ele-
ments are tuples); whereas ¢ has three parameters, and its argument is a
bag—it need not be a bag of tuples. A few examples will give a feeling for
the way ® works:

¢(0,square, +){} = 0
¢(0,square, +){3} = 9

The first example illustrates what ® does if its argument is the empty bag:
it simply returns its first parameter—zero in this instance. The second
example illustrates what ® does if its argument is a singleton bag: the second
parameter of @ is a function—square in this instance—and this function is
applied to the contents of the singleton bag. Thus, square(3) = 9.

Now what about bags that are neither empty nor singleton bags? In the
following example, we abbreviate ®(0, square, +) as just W:

U{1,3,5% = W1} + U3} + g5}
= square(l) 4+ square(3) + square(5)
= 1+9+25
= 35

The argument to W has been broken down into singleton bags, and ¥ sepa-
rately applied to each of them. The results have then been combined using
®’s third parameter—which in this instance is +.

It may not be immediately apparent what ® has to do with selection.
However, selection may easily be expressed with ®. For example, the ex-
pression

O ({}, Ax.if even(z) then {2} else {}, W)

selects just the even elements of a bag. All the complexity is in the second
parameter, so let us first consider singletons as example arguments; for
readability we again use ¥ to abbreviate ® with bound parameters (in this

case ®({}, Az.if even(z) then {2} else {},v)).

U{2} = if even(2) then {2} else {}}

{23

U{3} = if even(3) then {3} else {}}
= {}

11

So we see that this W correctly performs selection on singletons. It also
correctly performs selection on the empty bag, since in that case it simply
returns the first parameter to ®, which is now the empty bag. For bags with
multiple elements, selection is performed on the singleton constituents, and
the results are combined with the bag union W. Thus,

U{2,3,4,5,6} = {2luf{fuwf4w{}w{6}
= {2,4,6}.

In the following we consider the operator select no further, since its func-
tionality is subsumed by ®.

We now give a general, inductive definition for . The definition is
straightforward; indeed, it is very similar to some of the examples given
above.

(I)(ev [@){} = € (3)
e, f,B)(XWY) = (e, f,0)(X) D e, f,B)(Y) (5)

3.1.2 The Promotion Theorem for ¢

The operator ® obeys a law that has been referred to as the promotion
theorem:

Let U = ®(e,g,®); then o ®({}, f,W) = P(e, Vo f, @) (6)

When & is parameterized to perform selection, this theorem gives us the
result we want: it says that performing two selections in succession is equiv-
alent to a single selection involving a more complicated predicate.! Con-
sequently, if we are able to automate the transformation expressed by this
theorem, we will have achieved our goal. As it turns out, we can use partial
evaluation to automate the transformation in part, but not completely.?

'Readers seeking a justification for this interpretation of the promotion theorem may
profit from the following observations. Recall that when ® is parameterized for selection, f
will be a function of the form Az.if p(z) then {z} else {}} for some predicate p. Thus the
composition ¥ o f may be written as Az.if p(z) then U{z} else U{}, which simplifies
to Az.if p(z) then g(z) else e. We then see that with this simplification, the right-hand
side of the promotion theorem contains only a single occurrence of the looping operators
® and .

2Since this paper was first written, it has come to the authors’ attention that the use
of partial evaluation for very similar transformations has previously been investigated by
Lawall [Law93].

12

To understand the approach one might take to automating the transfor-
mation, it may help to examine a simple proof of the promotion theorem.
The proof is by induction, and proceeds by case analysis of the three dif-
ferent kinds of bags that appear in the definition of ® above: empty bags,
singleton bags, and composite bags. For each kind of bag B, we wish to
show that applying the left-hand side of (6) to B, gives the same result as
applying the right-hand side to B.

Throughout the following proof, we use the abbreviation ¥ = ®(e, ¢, ®).

Case B = {}}:
LHS: (Voo ({}, fiw)f) = (e} f,w){h)
= v{}
= (e, 9,0){}
RHS: Ple, Vo fia){} = e
Case B = {z}:
LHS: (Wod({}, fw))fz} = ig?(({{)})}yfy W) {})
RHS: Sle, Vo f,a)f{z} = (Pof)(z)
= Y(f(2))

Case B=(XWwY):
Induction hypothesis:

(Vo d({}, f,w))(X)
(Vo d({}, f,w))(Y)

Then we have

LHS: (\IIO(I)({}mfv Uj))(X

P(e,¥o f,®)(X) and
S(e,Uo f,R)(Y).

&

WY))
)W e({}, f,w)(Y))
)@

U({}, fw)(Y))

(Wod({}, fru))()®

(Wo o({{}, f,w))(Y)
(e £,0)(X) 0 0 Be o)1)
by induction hypothesis

)

({3}, /W)X
(£} fie)(X
(X

(l
A

KA
-~
e
}N
_/
—~

RHS: ®(e,¥o f,@)(XWY)
= ®le,Vo f,@)(X)@ P(e, Vo f,@)(Y)

13

With the exception of the invocation of the induction hypothesis in the case
B = (X WY), every step of the proof is either a simple application—or
in the terminology of partial evaluation, a simple unfolding—of one of the
equations in the definition of ®, or else an expansion of the definition of
composition (i.e., (go f)(z) = g(f(2))).

We may imagine transcribing the definition of ® as a function in a
Schism program. Then partial-evaluating expressions of the form (¥ o
S}, fLw){} or (o d({}, f,w)){z]} should yield the same residuals
that would have been obtained from the expressions ®(e, ¥ o f,@){} or
$(e, Vo f,@){z}, which is exactly the effect we want. That is, partial eval-
uation may be expected to expand and simplify these expressions in just
the way we did in our proof above. Starting with the left-hand side of the
promotion theorem, we will not arrive precisely at the right-hand side of
the theorem; but the result we obtain will presumably be no more costly to
evaluate than if we actually obtained the right-hand side.

Unfortunately, when the argument is of the form (X wY'), partial eval-
uation will not be quite so successful, because invocation of the induction
hypothesis does not correspond to anything that we know of in partial eval-
uation. Use of the induction hypothesis does correspond to the folding step
of the Burstall-Darlington program transformation paradigm [BD77], so a
rewrite step of this kind is not categorically beyond the reach of automation;
but it may not fit into the partial-evaluation framework.

There is an another respect in which current partial-evaluation technol-
ogy may not be up to the task of automating a transformation such as
that expressed by the promotion theorem. Above we considered the appli-
cation of W o ®({}}, f,w)—let us call this expression E—to particular bag
constructs, viz., {}, {z}, and (X WY). But what if £ were applied to an
arbitrary argument B whose structure was completely unknown? We would
still like to obtain the benefits offered by the promotion theorem, which
holds for arbitrary arguments. However, if B is dynamic, no such benefits
will be obtained by partial-evaluating the application F(B).

A simple rewrite of F/(B) can overcome this obstacle. We may write
E(B) as

case B of
& = EED

=} = E{=z})
(XWY) = EXWY).

Now the argument to F is partially static in each instance, and enough

14

information is available to unfold ® in the manner we illustrated above.
But it would be tedious to have to perform this rewriting of £'(B) by hand.
It would be preferable if the partial-evaluator carried out rewrites of this
kind automatically prior to unfolding and specialization.> Moreover, as we
shall discuss in section 4, there are other situations in which automatically
inserting code that separates different cases may be beneficial. There is a
danger, however, that indiscriminate rewriting of this kind could do more
harm than good, since its immediate effect is to increase both code size
and execution time. Sophisticated analysis might be required to determine
whether and where to insert case discrimination constructs.

3.1.3 Summary

There is a tantalizing possibility that partial evaluation can be made to au-
tomatically carry out query optimizations that are conventionally achieved
through application of rewrite rules. However, even for the simple opti-
mization we considered in depth in this section, current partial-evaluation
technology is inadequate to automate the process completely. For more com-
plicated transformations, such as the example involving join we gave in the
introduction to this section, the difficulties are greater, and the prospects of
overcoming them are dimmer.

3.2 An Optimizing Query Evaluator

On one level, the conclusions of the previous section are discouraging, in that
the prospects of using partial evaluation to perform on-the-fly generation of
transformations are not bright. But the idea of generating transformations
on the fly may not be the best application of partial evaluation to query op-
timization anyway. If one were to succeed in achieving such transformations,
then new problems would be created that might be even more difficult to
surmount. Probably the biggest of these is the problem of integrating query
evaluation cost estimation and cost-based decision-making into the partial-
evaluation framework.

In this section we consider a less radical departure from the conventions
of query optimization, and suggest a use of partial evaluation that allows us

?Lawall [Law93] has shown how one can coax a partial-evaluator into performing this
kind of rewriting automatically by first inserting calls to a copy function at strategic points
in the code to be expanded. However, the insertion of these calls to copy apparently must
still be carried out manually.

15

to continue to use cost estimation to control an optimizer search. In current
query processing systems, optimization is a completely separate step from
query execution. Thus, a query algebra expression is optimized to produce
a query plan, and subsequently the query execution engine is invoked to
carry out the instructions in the query plan. The alternative we will now
consider is to combine these two steps into a single query-evaluation step
that accepts an algebraic query as input, and produces the query result as
output. However, our intent is not that this query evaluator should proceed
in such a naive manner as the evaluator of section 2. Rather, we intend that
it should incorporate within it a rule-based optimization search to decide
the best way to execute the query; but rather than emitting a query plan, it
may immediately proceed to perform the execution strategy it has decided
on.

Now if we make available as static data all the information that would
have been available to a conventional optimizer—in other words, if we supply
as static data an algebraic query as well as the database statistics that
serve as the basis for cost estimation—then partial evaluation of our query
evaluator should yield a residual in which optimization decisions have been
pre-computed. Thus, the residual plays the same role as a query plan in
a more conventional approach. The partial-evaluation step corresponds to
running the optimizer, and executing the residual corresponds to running a
query execution engine with the query plan as input.

One may ask what we have gained by combining the optimizer and exe-
cution engine into a single monolithic program. By keeping them separate,
as is conventional, one would appear to have better modularity; and at first
glance, it seems that at best partial evaluation allows us to get back to our
starting point—it achieves the separation of the optimization and execution
phases of query processing. But this initial impression is misleading.

First of all, combining the optimizer and execution engine does not mean
they have to be bundled together in a huge mass of spaghetti code. The
source code for these two components may still be nicely modularized, and
the interface between them may still be kept narrow. What has changed
is that when optimization and execution are separate phases, the interface
is a data structure (viz., a query plan), whereas when the two phases are
combined into one, the interface between them is a function-call interface.

Second, and more important, is that use of partial evaluation to mimic
the effect of the optimization phase is only one of many possible outcomes
of applying partial evaluation to the combined program. This particular
outcome is of interest because it shows that we have not lost functionality

16

in taking the partial-evaluation approach—the partial-evaluation approach
is at least as general as that of separating optimization and execution. But
there are also other outcomes of interest, which may be obtained by varying
the choice of static data supplied to the partial-evaluator. If some frag-
ment of the data needed for optimization is made dynamic, then some opti-
mization decisions will be postponed until execution time. Such a scenario
corresponds to the provision of dynamic query plans in the Volcano query
processing system [GWR89]. That is, sometimes one cannot reliably make
good choices among the alternative execution strategies for some subexpres-
sion of a query on the basis of the data available at optimization time; the
best choice may depend on the amount of memory available when the query
executes, and other factors that the optimizer cannot predict. In such cases
the query plan may incorporate a special operator that allows the optimiza-
tion decision to be made at execution time. Implementing this provision
involves writing code to generate the special operator (in the optimizer) and
additional code to recognize and interpret the operator (in the execution
engine), as well as duplication of some code to perform cost-based decision-
making, which occurs both in the optimizer and the execution engine. None
of this extra coding is required if the generation of dynamic plans is achieved
as a by-product of partial evaluation.

However, there are indeed respects in which combining the optimizer
and execution engine is likely to be detrimental. One serious drawback of
partial-evaluating a query evaluator as a substitute for an explicit optimiza-
tion phase producing a query plan as output is that the result of partial
evaluation (i.e., the residual) will potentially be a very large piece of code,
in contrast to a query plan, which is usually very small.

3.3 Using Partial Evaluation for Cost Estimation

As noted above, partial evaluation does not appear to be well-suited to ap-
plying transformations on queries conditionally, depending on the estimated
evaluation costs of the pre-transformation and post-transformation versions
of the query. Thus, it is probably best to stick with an optimization model
in which the transformation steps are under the control of an optimizer that
computes costs and incorporates them into its search strategy. There re-
mains, however, the possibility that partial evaluation could help with the
cost estimation itself, by way of an intriguing if slightly outlandish imple-
mentation technique.

It should be borne in mind that cost estimation for query optimization

17

is a poorly developed art. Cost estimates produced and used by current
optimizers are crude to say the least, but what is perhaps worse is that
considerable coding effort is required to obtain even these crude estimates.
Optimizer generators create optimizers automatically, given a file of trans-
formation rules that the optimizer should consider when optimizing a query
[GM93]. But optimizer generators also require the database implementor
to supply support functions that are difficult to generate automatically.
Among the support functions that must be coded by hand are cost esti-
mation functions for each operator that may appear in query plans. These
cost estimation functions, in turn, rely partly on size estimation functions
that estimate the amount of data that each operator in a query plan will
produce as output. The size estimation functions are also difficult to gener-
ate automatically, and so these, too, must be hand-coded by the database
implementor.

Thus, it is certainly of interest to explore ways of automating the process
of cost estimation as well as that of size estimation. One of the remarkable
characteristics of partial evaluation is that it allows the insertion of extra
layers of interpretation in a system for essentially no cost. So we imagine
proceeding as follows. Rather than writing our query execution engine in C
or some other conventional implementation language, we might write it in a
language of our own devising—Ilet us call this language BUNBURY [Wil95].
BunBURY will have much the expressiveness of any other language, but we
will keep it simple enough so that we may easily write an interpreter for
it. Then by partial-evaluating the interpreter, taking our query execution
engine as static data, we obtain object code for the execution engine that
is essentially as good as compiled code. (It is as good in principle; if our
object code is in T, it will have trouble competing with C code, but here
we are more concerned with concepts than with short-term practicability.)
So far we have not really changed anything—we have just added a layer of
interpretation, which the partial-evaluator then obligingly removes again for
us.

But now we are in a position to be devious in ways that were not possible
before. Without changing the query execution engine, we may start making
small changes to the BUNBURY interpreter that will point us in the direction
of automatic cost estimation. The first step is to change the interpretation
of disk reads and disk writes so that we not only perform these operations,
but we also count how many of them we have done. (We could also count up
approximately how much CPU time we use, if we wished to develop a more
precise cost model.) We may provide a means for the count to be examined

18

on completion of query execution, so that executing a query supplies us not
only with the query result, but also with the cost in disk 1/O of executing
the query. Thus, to estimate the cost of a query (or subquery), we may
simply pass the query to the execution engine, discard the query result, and
retain the computed cost. Needless to say, there is a defect in this technique:
to estimate the cost of a query, we had to execute the query; obviously we
do not want to do that.

The next step, then, is to further revise our interpreter so that when it
interprets an 1/O operation, it counts it but does not actually do the 1/0.
This change saves time, but introduces a new difficulty. Since the 1/0 is
not being performed, we lack the information we need to proceed with the
computation. For this reason another change is necessitated: the interpreter
must operate on and produce some kind of estimated value—corresponding
to the size estimates in conventional query optimization—in place of actual
values. When 1/0 is supposed to be performed, a crude approximation to
the data to have been fetched may be constructed on the basis of database
statistics, and used in place of the actual data. When a loop is encountered,
probably the best interpretation strategy is to estimate the number of loop
iterations and the effect of each iteration, and to extrapolate the effects from
these pieces of information. Note that the domains for estimated values will
not necessarily be the same as the domains for the values that they estimate.
For example, it would probably make most sense to estimate a Boolean using
a real value in the range [0, 1]; in other words, the estimate for a Boolean
value would be a probability.

The ideas we have suggested in this section are extremely speculative,
and it is not clear that they are workable. It is also unclear whether the
effort in coding an interpreter that performs abstract interpretation over
a domain of costs and estimated values, as we have described, would be
smaller than the effort in coding cost and size estimation support functions
as required by existing optimizer generators. But the current technology
is hardly satisfactory, and promises to become even more unwieldy when
applied to object-oriented databases. It therefore seems worthwhile to look
into even relatively bizarre alternatives.

19

4 Code-splitting and Specialization to Quasi-
constants

The previous sections focused mainly on the application of partial evaluation
to relational databases. Our database research interests, however, lie in the
realm of object-oriented, rather than relational, databases. While partial
evaluation of code in an object-oriented database bears some resemblance
to “normal” partial evaluation, there are some striking differences. When
translating database queries, unlike when compiling normal programming
languages, we (database researchers) treat CPU as being a nearly free re-
source, and concentrate on reducing input/output activity. This perspective
gives a very different slant on optimization. It also results in quite some con-
fusion when language and database optimization people talk. There is also
a real difference in the environment in which we process code.

In a normal programming language environment, most of the data is un-
known. Partial evaluation is used to embed the data that is known through-
out the code, and thus speed up the whole program. Often there is an initial
step in partial evaluation, called “binding time analysis.”[JSS89] This anal-
ysis takes facts about what data will be known and is meant to speed up the
incorporation of data once that data is provided.

In a database, query optimization is usually performed with the data
close at hand. Most of the data is known, but some of it may change before
the query is run. We are dealing with a embarrassment of riches as far as
obtaining sample values for particular expressions. At first glance, “binding
time analysis” seems the exact opposite of what we want. It would appear
that the appropriate kind of specification would simply indicate which in-
formation is not certain to “hold still,” facts about what data will possibly
differ when we actually execute the query.

Another place in which databases differ from languages is in their cost
models. The time to access data in a database so far outweighs the time
spent computing with the data that the cost of computation in query opti-
mization is typically ignored. There is some justification for this attitude.
Using extremely rough figures for current architectures, a disk takes ten mil-
liseconds to retrieve data, while RAM takes a hundred nanoseconds. This
is a difference of five orders of magnitude, perhaps sufficient justification for
ignoring CPU costs.

While database researchers typically call this disk access 1/O, there is
a big difference between this 1/O and the typically programming language

20

treatment of 1/O. The 1/O operations that compiler researchers talk about
are not, typically, optional. In a “normal” programming language, 1/0 is
treated as the border between the program and the world in which it op-
erates. Since the compiler has no control over (and little understanding
of) that world, the compiler cannot make choices about what [/O to per-
form, nor even when the 1/O may be re-ordered. Within a database, the
devices and/or files that constitute the database system are “owned” by
the database. It is assumed that both read and write access to this store
is the sole province of the database system, so [/O re-ordering (and even
elimination) is fair game.

In the Self system,[CUR9| very little is known until run time. This sys-
tem does not even really have a user-visible type system to guide their code
selection and compilation. The authors use a technique called “selective
code splitting” to produce specialization points where there were none be-
fore. Basically, they insert a (cheap) test for the expected case, and then
copy the ensuing code, once for the most common case, and once for the
other cases. This allows their code to work for all cases (by using the un-
changed original source), while working efficiently for the most common case
(by using the specialized source). In the case of object-oriented code, the
specialization can resolve implementation questions, thus not only eliminat-
ing the need for a run-time method lookup, but providing the opportunity
to unfold method bodies in-line. Unlike many optimization techniques, this
one may be freely applied to any piece of code. The worst it can do to code
cost is add a small constant overhead for the tests (and increase code size).
Recall that we have already examined some case introductions in the pre-
ceding sections when dealing with the ® operator, the inserted cases provide
more static information for the partial-evaluator to work with.

What do we hope to gain? In unfolding messages, we hope to expose
the contained code, resolve message-to-method bindings, and, at least in
some cases, remove some of the data fetches from the run-time expression.
Remember, there is a substantial bonus for removing a data reference. If
the result of sending a message to an object can be determined by partial
evaluation, the substitution of the appropriate constant may mean a reduc-
tion in total 1/0O. Because of the huge ratio between simple calculation and
disk access, we expect visible performance benefits from such optimizations.

If we can propagate constants far enough, we may be able to pre-compute
our way through user-implemented indices in bulk data structures, or even
perform some selects at query optimization time. We must place our em-
phasis on eliminating data fetches; it will do us little good simply to reduce

21

computation on data once retrieved. When we can discern the value of a
boolean which controls a conditional statement, however, incorporating that
value into the expression yields a simpler expression. This simplification may
be necessary to produce effective code analysis.

This technique of case-insertion can work for us in other ways as well.
Because our environment is loaded with data, and because we can look at
data at query optimization time if we so desire, we can use the values from
the database itself to help provide reasonable alternatives for case insertion.

5 Conclusions

We have seen how partial evaluation can be extremely effective in carry-
ing out low-level optimizations in a database implementation, and have
discussed ways in which it might be applied to a variety of problems in
higher-level optimization of both relational and object-oriented databases.
We have covered a mixture of techniques ranging from the experimentally
proven to the wildly speculative. There is plenty of room for work at both
ends of the spectrum. Despite the remarkable results obtained for low-level
optimizations, it is not yet clear that they are applicable to real database
systems; the gulf between a toy query evaluator and an actual system is too
great to allow definite conclusions to be drawn. But the possibility of ob-
taining similar results in a larger, more credible context is certainly alluring.
There are many exciting possibilities in the application of partial evaluation
to database optimization, and they have only begun to be explored.

Acknowledgments

We are indebted to Charles Consel for his generous assistance and advice.
Thanks also to David Burke, Luke Hornof, and Barbara Moura for answering
questions, and to Mike Ashley and Julia Lawall for providing improved
versions of Schism.

This work was supported in part by NSE grant IRI 91 18360.

References

[BD77] R. M. Burstall and J. Darlington. A transformation system for
developing recursive programs. Journal of the ACM, 24(1):44—
67, January 1977.

22

[BTBNO91] Val Breazu-Tannen, Peter Buneman, and Shamim Naqvi. Struc-

[CDY3]

[Con90]

[Con92]

[Con93]

[CUSY)

[EN8Y]

[GMO3]

[GWS9]

tural recursion as a query language. In Paris Kanellakis and
Joachim W. Schmidt, editors, Database Programming Lan-
guages: Bulk Types & Persistent Data, The Third International
Workshop, pages 9-19, Nafplion, Greece, August 1991. Morgan
Kaufmann.

Charles Consel and Olivier Danvy. Tutorial notes on partial eval-
uation. In Proceedings of the Twentieth Annual SIGACT Sympo-
sium on Principles of Programming Languages. ACM, January
1993.

Charles Consel. Binding time analysis for higher order untyped
functional languages. In 1990 ACM Conference on Lisp and
Functional Programming, pages 264-272. ACM, 1990.

Charles Consel. Report on Schism ’92. Pacific Software Research
Center, Oregon Graduate Institute of Science & Technology, Oc-
tober 1992. Draft.

Charles Consel. A tour of Schism: A partial evaluation system
for higher-order applicative languages. In PEPM-93 [PEP93],
pages 145-154.

Craig Chambers and David Ungar. Customization: Optimiz-
ing compiler technology for SELF, a dynamically-typed object—
oriented programming language. SIGPLAN Notices, 24(7):146—
160, 1989.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
Database Systems. Benjamin/Cummings, 1989.

Goetz Graefe and William J. McKenna. The Volcano optimizer
generator: Extensibility and efficient search. In Proceedings of
the IEEFE Conference on Data Fngineering, pages 209-218, Vi-
enna, Austria, April 1993.

Goetz Graefe and Karen Ward. Dynamic query evaluation plans.
In James Clifford, Bruce Lindsay, and David Maier, editors, Pro-
ceedings of the 1989 ACM SIGMOD International Conference on
the Management of Data, pages 358-366, Portland, Oregon, June
1989.

23

(19589

[Law93]

[PEP93]

Neil D. Jones, Peter Sestoft, and Harald Sgndergaard. Mix: A
self-applicable partial evaluator for experiments in compiler gen-
eration. Lisp and Symbolic Computation, 2(1):9-50, February
1989.

Julia L. Lawall. Proofs by structural induction using partial
evaluation. In PEPM-93 [PEP93], pages 155-166.

Proceedings of the ACM SIGPLAN Symposium on Partial Fvalu-
ation and Semantics-Based Program Manipulation, Copenhagen,
Denmark, June 1993.

24

Appendix A — The Program

;33 Data Structures: (Types have an initial capital letter)

; Schema = List(Relation-Descriptor)

; Relations = List(Relation)

; Query = (select Predicate Query) | (join Query Query)
; | (project Attribute-List Query) | (Relation-Name)
; Labeled-Relation= Labeled-Relation(Attribute-List Relation)
; Relation-Descriptor = (Relation-Name Attribute-List)

; Relation-Name = Symbol

; Attribute-List = List(Attribute-Name)
; Attribute-Name = Symbol

; Relation = List(Row)

; Row = List(Attribute-Val)

; Attribute-Val = Value

; Predicate = Triple("=" Attribute-Name Value)

; main: Schema x Relations x Query -> Relation
; Just pass things along to real code
(define (main schema relations query)

(db schema relations query

))

; db: Schema x Relations x Query -> Relation
; Decompose query and evaluate ops
(define (db schema relations query)
(if (atom? query)
(findRelation query schema relations)
(case (car query)
[(join) (db-join (cadr query)
(db schema relations (caddr query))
(db schema relations (cadddr query)))]
[(select) (db-select (cadr query)
(db schema relations (caddr query)))]
[(project) (db-project (cadr query)
(db schema relations (caddr query)))]
[else > ((bad query operator))]

))

25

;findRelation: Symbol x Schema x Relations -> Labeled-Relation
(define (findRelation Relation-name schema relations)
(if (null? schema)
(Labeled-Relation ’(bogus-labels) Relations)
(if (equal? Relation-name (fst (hd schema)))
(Labeled-Relation (snd (hd schema)) (hd relations))
(findRelation Relation-name (tl schema) (tl relations))

))

; db-select : Predicate x labeled-relation -> labeled-relation
(define (db-select pred lrel)
(let ([(Labeled-Relation labels rows) lrel])

(Labeled-Relation labels
(choose-rows pred labels rows °()))

))

;choose-rows: Predicate x Attribute-List x Rows x Rows -> Rows
(define (choose-rows pred labels rows accumulator)
(if (null? rows)
accumulator
(choose-rows pred labels (tl rows)
(if (pred-holds? pred labels (hd rows))
(cons (hd rows) accumulator)
accumulator)

))

; pred-holds? : Predicate x Attribute-List x Row -> Boolean
(define (pred-holds? pred labels row)
(equal? (caddr pred) (get-attribute (cadr pred) labels row)
)

; find-attribute : Name x Attribute-List x Row -> Value

; Retrieve one column element (’no-such-attribute
; if not in Attr-List)
(define (find-attribute name labels row)

26

(if (null? labels)
’no-such-attribute
(if (equal? name (hd labels))
(hd row)
(find-attribute name (tl labels) (tl row)))
D)

;db-project:List(attrs) x Labeled-Relation -> Labeled-relation
(define (db-project attrs lrel)
(let ([(Labeled-Relation labels rows) lrel])

(Labeled-Relation attrs (project-rows attrs labels rows))

))

; project-rows : List(attrs) x relation-tags x List(rows) ->
; List(narrow-rows)
(define (project-rows attrs labels rows)
(if (null? rows)
O
(cons (trim-row attrs labels (hd rows))
(project-rows attrs labels (tl rows)))
)

; trim-row : List(attrs) x relation-tags x row —-> narrow-row
(define (trim-row attrs labels row)
(if (null? attrs)
O]
(cons (get-attribute (hd attrs) labels row)
(trim-row (tl attrs) labels row))
))

; db-join : join-pred x Labeled-relation x Labeled-relation ->
; Labeled-relation

; join-pred = label x label

; that is, join-pred combines label from first relation and

; label from second relation, and specifies an equijoin.

; This implementation works as a natural join as well, i.e.,

; redundant attribute names in the joined tuples are removed

; (which of course is ; a bad thing if the join was not on

27

; the attribute in question...).
(define (db-join join-pred lrell lrel2)
(let ([(Labeled-Relation labelsl rowsl) lreli]
[(Labeled-Relation labels2 rows2) 1lrel2])
(Labeled-Relation
(ordered-set-union labelsl labels?2)

(outer-loop join-pred labelsl labels2 rowsl rows2 ’()))
)

; outer-loop : join-pred x Attribute-List x Attribute-List x
; Relation x Relation x Relation -> Relation
; Does outer loop of the join --- a row at a time from rowsl
(define (outer-loop join-pred attrsl attrs2 rowsl rows2 accum)
(if (null? rows1)
accum
(outer-loop join-pred attrsl attrs2 (tl rowsl) rows2
(inner-loop join-pred attrsl attrs2 (hd rowsl)
rows2 accum))

))

; inner-loop : join-pred x Attribute-List x Attribute-List x
; Row x Relation x Relation -> Relation
; Does the inner loop of the join -- processing one row of the
; outer relation
; Accomplished by looping a row at a time through rows2
(define (inner-loop join-pred attrsl attrs2 rowl rows2 accum)
(if (null? rows2)
accum
(inner-loop join-pred attrsl attrs2 rowl (tl rows2)
(match join-pred attrsl attrs2 rowl (hd rows2) accum))

))

; match : join-pred x Attribute-List x Attribute-List x Row x
; Row x Relation -> Relation
; The real guts of a join. Combines two rows of a cross-
; product to add to a relation (or not).
(define (match join-pred attrsl attrs2 rowl row2 accum)
(if (equal? (get-attribute (car join-pred) attrsl rowl)
(get-attribute (cadr join-pred) attrs2 row2))

28

(cons (trim-row (ordered-set-union attrsl attrs2)
(vdappend attrsl attrsl attrs2)
(vdappend attrsl rowl row2))
accum)
accum

))

; ordered-set-union : Attribute-List x Attribute-List ->
; Attribute-List
; Combines a pailr of attribute lists into the attribute list
; for a join of the two described relations.
(define (ordered-set-union setl set2)
(rev (back-ordered-set-union set2 (rev setl)))

; back-ordered-set-union : Attribute-List x Attribute-List ->
; Attribute-List
; auxilliary function to ordered-set-union. produces a result
;reversed in attribute order of its first arg.
(define (back-ordered-set-union setl set2)
(if (null? seti)
set2
(back-ordered-set-union (tl setl)
(if (mem? (hd setl) set2)
set2
(cons (hd setl) set2)))
)

; vdappend: Attribute-List x Row x Other-Row -> Extended-Row
; vdappend -- Scott & Bennet’s special append. The Attribute-
; List describes the first Row. This was needed to get ‘nth’s
; in result tail
(define (vdappend first-shape first-row second-row)

(if (null? first-shape) second-row

(cons (hd first-row)
(vdappend (tl first-shape) (tl first-row) second-row))
))

29

Appendix B — Experiment 1: Fully Static Data

>> (schema, data, query) all static for Partial Evaluation

((employee (fname minit lname ssn bdate addr sex
salary superssn dno))
(department (dname dnumber mgrssn mgrstartdate))
(dept_locations (dnumber dlocation))
(product (pname pnumber plocation dnum))
(works_on (essn pno hours))
(dependent (essn dependent_name sex bdate relationship)))

((; employee

(John B Smith 123456789 09-JAN-55
731 Fondren, Houston, TX" M 30000 333445555 5)

(Franklin T Wong 333445555 08-DEC-45
"638 Voss, Houston, TX" M 40000 888665555 5)

(Alicia J Zelaya 999887777 19-JUL-58
"3321 Castle, Spring, TX" F 25000 987654321 4)

(Jennifer S Wallace 987654321 20-JUN-31
"291 Berry, Bellaire, TX" F 43000 888665555 4)

(Ramesh K Narayan 666884444 15-SEP-52
97 Fire Oak, Humble, TX" M 38000 333445555 5)

(Joyce A English 453453453 31-JUL-62
"5631 Rice, Houston, TX" F 25000 333445555 5)

(Ahmad V Jabbar 987987987 29-MAR-59
980 Dallas, Houston, TX" M 25000 987654321 4)

(James E Borg 888665555 10-NOV-27
"450 Stone, Houston, TX" M 55000 null 1))

(; department

(Research 5 333445555 22-MAY-78)
(Administration 4 987654321 01-JAN-85)
(Headquarters 4 987654321 01-JAN-85))

(; dept_locations
(1 Houston) (4 Stafford) (5 Bellaire)
(5 Sugarland) (5 Houston))

30

(; product

(ProductX 1 Bellaire 5)
(ProductY 2 Sugarland 5)
(ProductZ 3 Houston 5)
(Computerization 10 Stafford 4)
(Reorganization 20 Houston 1)
(Newbenefits 30 Stafford 4))
(; works_on
(123456789 1 32.5) (123456789 2 7.5) (666884444 3 40.0)
(123456789 1 32.5) (123456789 2 7.5) (666884444 3 40.0)
(453453453 1 20.0) (453453453 2 20.0) (333445555 2 10.0)
(333445555 3 10.0) (333445555 10 10.0) (333445555 20 10.0)
(999887777 30 30.0) (999887777 10 10.0) (987987987 10 35.0)
(987987987 30 5.0) (987654321 30 20.0) (987654321 20 15.0)
(888665555 20 null))
(; dependent
(333445555 Alice F 05-APR-76 daughter)
(333445555 Theodore M 25-0CT-73 son)
(333445555 Joy F 03-MAY-48 spouse)
(987654321 Abner M 29-FEB-32 spouse)
(123456789 Michael M 01-JAN-78 son)
(123456789 Alice F 31-DEC-78 daughter)
(123456789 Elizabeth F 05-MAY-57 spouse)))
(select (= dno 4)

(project (fname dno)

(select (= sex f)

(join (essn ssn) works_on employee))))

>> Sugared Residual From Partial Evaluator (answer here)

((define (main.1)
> ((fname dno)
((jennifer 4) (jennifer 4) (alicia 4) (alicia 4)))))

31

Appendix C — Experiment 2: Relations Dynamic

>> (schema, query) static, data left dynamic for Partial Eval
>> Note: employee relation moved down in list

((department (dname dnumber mgrssn mgrstartdate))
(dept_locations (dnumber dlocation))
(product (pname pnumber plocation dnum))
(employee (fname minit lname ssn bdate addr sex salary
superssn dno))
(works_on (essn pno hours))
(dependent (essn dependent_name sex bdate relationship)))

DYNAMIC

(select (= sex f) employee)

>> Sugared Residual Produced by Partial Evaluator
>> (Attribute list known, all db accesses positional)

(define (main.1 relations)
(1ist ’(fname minit lname ssn bdate addr sex salary
superssn dno)
(choose-rows.2
(nth (list ’(fname minit lname ssn bdate addr
sex salary superssn dno)
(nth relations 3))
iy
O

(define (choose-rows.2 rows accumulator)
(if (null? rows)
accumulator
(choose-rows.2
(cdr rows)
(if (equal? ’f (nth (car rows) 6))
(cons (car rows) accumulator)
accumulator))))

32

Appendix D — Experiment 3: Complex Query

>> (schema, query) static, data left dynamic for Partial Eval

((employee (fname minit lname ssn bdate addr sex
salary superssn dno))
(department (dname dnumber mgrssn mgrstartdate))
(dept_locations (dnumber dlocation))
(product (pname pnumber plocation dnum))
(works_on (essn pno hours))
(dependent (essn dependent_name sex bdate relationship)))

((department (dname dnumber mgrssn mgrstartdate))
(dept_locations (dnumber dlocation))
(product (pname pnumber plocation dnum))
(employee (fname minit lname ssn bdate addr sex salary
superssn dno))
(works_on (essn pno hours))
(dependent (essn dependent_name sex bdate relationship)))

DYNAMIC

(select (= dno 4) (project (fname dno) (select (= sex f)
(join (essn ssn) works_on employee))))

>> Sugared Residual Produced by Partial Evaluator
>> (Attribute list known, all db accesses positional,
>> Query structure discernible)

(define (main.1 relations)

(labeled-relation
> (fname dno)

(choose-rows.6

(project-rows.5

(choose-rows.4
(outer-loop.2 (nth relations 4)
(car relations)

7))

33

7))
70)))

(define (choose-rows.4 rows accumulator)
(if (null? rows)
accumulator
(choose-rows.4
(cdr rows)
(if (equal? ’f (nth (car rows) 9))
(cons (car rows) accumulator)
accumulator))))

(define (choose-rows.6 rows accumulator)
(if (null? rows)
accumulator
(choose-rows.6
(cdr rows)
(if (equal? ’4 (nth (car rows) 1))
(cons (car rows) accumulator)
accumulator))))

(define (project-rows.5 rows)
(if (null? rows)
O
(cons (list (nth (car rows) 3) (nth (car rows) 12))
(project-rows.5 (cdr rows)))))

(define (outer-loop.2 rowsl rows2 accum)
(if (null? rows1)
accum
(outer-loop.2
(cdr rowsl)
rows2
(inner-loop.3 (car rowsl) rows2 accum))))

(define (inner-loop.3 rowl rows2 accum)
(if (null? rows2)
accum
(inner-loop.3

34

rowl
(cdr rows2)
(if (equal? (car rowl) (nth (car rows2) 3))
(cons (list (car rowl)
(nth rowl 1)
(nth rowl 2)
(car (car rows2))
(nth (car rows2) 1)
(nth (car rows2) 2)
(nth (car rows2) 3)
(nth (car rows2) 4)
(nth (car rows2) 5)
(nth (car rows2) 6)
(nth (car rows2) 7)
(nth (car rows2) 8)
(nth (car rows2) 9))
accum)
accum))))

35

