
On the Application of Partial Evaluation to

Database Optimization

Scott Daniels and Bennet Vance
Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

December �� ����

� Introduction

The theory and practice of partial evaluation have attracted increasing inter�
est in recent years� and the techniques it o�ers have been applied to a variety
of problems in compilation and the design of algorithms� To our knowledge�
however� little work has been done to investigate its possible applications to
database systems� In this paper we describe some very preliminary work we
have done with a view to remedying this gap in partial�evaluation research�
Our speci�c focus of attention is optimization of database implementations�

We will discuss both actual partial�evaluation experiments we have al�
ready carried out and more speculative ideas that we have thought about
but not implemented� The techniques we will consider have potential appli�
cation both to relational and object�oriented database systems� However�
most of our initial work is based completely on relational databases� We
begin by reviewing basics of the relational algebra� then touch on the ter�
minology of partial evaluation before proceeding to describe our research
results and research ideas�

��� Quick sketch of relational algebra

The relational database model treats a database as a collection of named re�
lations� A relation can be thought of as a labelled table� where the columns
are called �attributes�� The rows are called �tuples� in the relation� and
are� conceptually at least� unordered and distinct� That is� a relation is
an attribute list and a set of tuples that are described by that attribute

	

list� You can consider the attribute list to be a �type� for the relation tu�
ples� Relations are the values in relational algebra� and there are a standard
set of operators on those values� all of which produce relations as results

select���� project���� join����� cross product���� intersection����
union���� and difference����

A typical textbook relation
EN���

Product pname pnumber plocation dnum

ProductX � Bellaire �

ProductY � Sugarland �

ProductZ � Houston �

Computerization �� Sta�ord �

Reorganization �� Houston �

Newbene	ts �� Sta�ord �

The select operator takes two inputs� a parameter and an argument�
The parameter is a predicate which is evaluated with respect to a tuple and
returns either true or false� The argument is a relation� which supplies a
set of tuples over which the predicate will be applied� The result of a select
is a relation� with the same attribute list as the argument relation� contain�
ing only those tuples for which the predicate was true� As an example�
select�dnum � ���Product� is shown�

pname pnumber plocation dnum

Computerization �� Sta�ord �

Newbene	ts �� Sta�ord �

The project operator also takes two inputs� a parameter and an ar�
gument� The parameter is a list of attributes �drawn from the attributes
in its argument� The argument is a relation� which supplies data for the
projection �and a set of attributes to draw on�� The result of a project

is a new relation� with an attribute list that matches the parameter� and
containing tuples with the chosen attributes� For this example� we show
project�
dnum� plocation���Product��

dnum plocation

� Bellaire

� Sugarland

� Houston

� Sta�ord

� Houston

�

The join operator takes three inputs� a parameter and two arguments�
The parameter is a �join condition�� a predicate on a pair of tuples �one from
each of the two arguments� which identi�es which pairs of tuples should be
in the resulting relation� The attribute list of the result is the concatenation
of the attribute lists of the two argument relations� The tuples in the result
are formed by concatenating every pair of input tuples that satisfy the join
condition� We will have to� of course� provide another relation for our second
argument�

Dept Locations dnumber dlocation

� Houston

� Sta�ord

� Bellaire

� Sugarland

� Houston

Here we show join�dnum � dnumber��Product� Dept Locations��

pname pnumber plocation dnum dnumber dlocation

ProductX � Bellaire � � Bellaire

ProductX � Bellaire � � Sugarland

ProductX � Bellaire � � Houston

ProductY � Sugarland � � Bellaire

ProductY � Sugarland � � Sugarland

ProductY � Sugarland � � Houston

ProductZ � Houston � � Bellaire

ProductZ � Houston � � Sugarland

ProductZ � Houston � � Houston

Computerization �� Sta�ord � � Sta�ord

Reorganization �� Houston � � Houston

Newbene	ts �� Sta�ord � � Sta�ord

The cross product operator behaves like an unconstrained join� In
fact� cross product can be implemented simply as join�true��

As we have said� the attributes lists can be considered a �type� for
relational tuples� The union� intersection� and difference operators all
behave quite similarly� in that they implement the obvious set operations�
take no �parameters�� and take two arguments� which must be relations
with matching attribute lists�

The names of all the named relations in the database� along with their
corresponding attribute lists� is called the database schema�

�

��� Partial Evaluation

It is beyond the scope of this paper to explain partial evaluation
Con���
CD���� nor is it necessary to understanding the paper to know a great deal
about the subject� However� it will be helpful to introduce a few basic terms�

A partial�evaluator accepts as input a program P and a portion of the
input data that P needs to execute� and produces another program as out�
put� More precisely� let us say that the program P acts as a function of two
arguments� the �rst of which is known� and the second of which is not� thus
we invoke P as P �s� d�� where the value of s is known� Then the partial�
evaluator� given P and s as input� generates a new program Ps� The new
program Ps acts as a function of one argument� and the intent is that Ps�d�
should be equivalent to� but more e�cient to evaluate than� P �s� d�� The
argument s is known as static data� the argument d as dynamic data� and
the program Ps as the residual program �or� frequently� the residual��

Several research partial�evaluators are presently in use� the work de�
scribed here made use of Schism
Con��� Con���� which is built on top of
the programming language Scheme�

� An Experiment in Implementation

We began our investigation of the application of partial evaluation to
database implementation without a speci�c� detailed agenda� We did have
some ideas about the kinds of automatic transformations that might be pos�
sible� For example� we harbored hopes that through partial evaluation we
might be able to achieve some query simpli�cations that are conventionally
obtained through algebraic query optimization� The possibility of achieving
such simpli�cations will be discussed further in later sections� But in our
implementation experiments we decided against attempting to to design a
program that would meet speci�c objectives when partial�evaluated� In�
stead� we decided to implement the simplest� most naive relational query
processor imaginable� and to observe the ways in which partial evaluation
was able to improve it�

��� The Naive Query Processor

For the purpose of this exercise� we implemented the standard relational op�
erators select� project� and join� but we omitted union� intersection�
cross product and difference� We also ignored some �ne points of the

�

de�nitions of the operators we did implement� For example� a project

operation may map two distinct tuples in its argument to two result tu�
ples that are identical� since in some cases the attribute or attributes that
distinguished the input tuples will have been projected away� In theory� a
relational processor should perform a duplicate�elimination step following a
projection to suppress redundant tuples in the result� however� we skip this
step� �In defense of our laxness on this point� we note that most commercial
relational databases also skip the duplicate�elimination step unless the user
speci�cally requests it��

Another area of simpli�cation is predicates� we provide only a couple of
simple predicate forms� For selection operations� a predicate must have the
form �attribute � constant�� and for join operations the predicate must
have the form �left attr � right attr�� In the latter case� left attr

denotes an attribute from join�s �rst argument� and right attr an at�
tribute from its second� Thanks in part to these simpli�cations� our entire
query processor is a Schism program of only about ��� lines� Nonetheless�
it is capable of processing complex queries� accessing relation attributes by
attribute name rather than numerical o�set� and generating result relations
annotated with new attribute lists�

Nothing in the implementation of the query processor was especially
di�cult or complicated� but the correct handling of attribute names did
require some care� At issue is the following
 In the interest of e�cient use of
storage space� relational databases do not store information about attribute
names in individual tuples� this is true of commercial relational systems�
and we faithfully adhered to the same convention in our miniature query
processor� Thus� relations are stored in much the same way in the database
as they appear in the examples in section 	�	� with a list of attribute names
on top �or o� to the side somewhere�� and a two�dimensional matrix of
attribute values in another location� Actually� it is conventional to store
the attribute lists of all of the named relations together in a single data
structure� which� as mentioned earlier� is called the database schema� we
adhere to this convention as well�

��� The Problem of Attribute Look�ups

Now consider what is involved in evaluating a query such as the query
select�dnum � ���Product� illustrated above in section 	�	� For each tuple
in the Product relation� we must consult the dnum attribute and compare
it for equality with �� if equality holds� the tuple becomes part of the output

�

relation� otherwise we move on to the next tuple� Thus� for each row of the
relation� viewing it as a matrix� we must consult the fourth column� since
the attribute list for Product is �pname pnumber ploc dnum��

But what if the argument of select were not Product� but instead
were some complex subquery possibly involving joins� What column should
we look in to �nd dnum in that case� In the result relation produced
by the sample query join�dnum � dnumber��Product� Dept Locations�
from section 	�	� the dnum attribute is again in the fourth col�
umn� If� however� the arguments are reversed� the query be�
comes join�dnumber � dnum��Dept Locations� Product�� then the
Dept Locations attributes precede the Product attributes in the result�
and dnum falls in the sixth column� Moreover� in general the attribute lists
of join results do not appear in the database schema�they are synthesized
attribute lists�and so there is no schema entry we can consult to �nd the
column number associated with dnum�

��� A Crude Look�up Technique

To give our operators su�cient information to evaluate predicates and join
conditions� we let their arguments be pairs of attribute lists and relations
rather than just relations� and similarly they produce a pair consisting of an
attribute list and a relation as their result� In particular� the join operator
must synthesize a new attribute list as well as calculate a result relation�

With the attribute lists passed along in the arguments to the operators�
it is easy to �nd the column number corresponding to an attribute� In
select� for example� we iterate over the tuples of the argument relation�
as described above� and for each tuple� we loop in lock�step through both
the attribute list and the tuple columns until we �nd the attribute name we
are looking for� We then know we are positioned at the correct column in
the tuple to compare against the constant in the selection predicate� This
code is horribly ine�cient�not least because we loop through the attribute
list once for each tuple�but convenient to write� because we never have
to bother with column numbers� By scanning the attribute list and tuple
columns in tandem� we obtain a simple� reliable search�

One can imagine gradations of improvement over the crude attribute
loop�up technique just described� At the �rst gradation� one would com�
pute a column number corresponding to the attribute name once and for
all before commencing iteration over the tuples� then the appropriate at�
tribute could be fetched on a per�tuple basis by a simple array access� us�

�

ing the column number as an index� At a higher gradation� one might
consider a pre�analysis of the entire query for the purpose of resolving at�
tribute names to column numbers prior to evaluation of the query� Thus�
the query select�dnum � ���Product� would be transcribed as something
along the lines of select�
column �� � ���Product�� with all attribute in�
dexes pre�computed� Note that with the attribute indexes pre�computed� it
is no longer necessary to pass around attribute lists in the arguments to the
query operators� Simple matrices of values are then su�cient� consideration
of attribute names is entirely removed from actual query evaluation�

However� we did not attempt any such improvements in coding our naive
query processor� Such improvements increase the complexity of a program�
risk the introduction of bookkeeping errors� and can entail substantial labor�
Consequently� we stuck with the simplest attribute look�up technique we
could think of�the lock�step scan described above�

��� Partial�Evaluation of the Naive Query Processor

In partial�evaluating the naive query processor� we found it most fruitful to
supply the schema and query as static data� and leave the relations them�
selves dynamic� Thus� we provided to the partial�evaluator exactly the same
information that would be available to a conventional query optimizer�
the schema and query� Given this combination of static data� the partial�
evaluator produced residuals with a remarkable property
 though they men�
tion attribute names because we speci�ed that the result of a query should
consist of an attribute list as well as a relation� they make no use what�
soever of attribute names in actual query evaluation� In other words� the
partial�evaluator automatically generated the highest gradation of improve�
ment over the crude attribute look�up technique described in the previous
section�

We imagine that most readers will not be interested in the actual Schism
code that exhibits these e�ects� However� for those who are� we have pro�
vided several appendices� Appendix A �page ��� gives the Schism source for
the naive query processor� Appendices B�D illustrate several specializations
of that source code produced by the Schism partial�evaluator� Appendix B
�page ��� shows an example where all the data is static� including the rela�
tions� in this case� the residual code has the query result embedded within
it� and performs no work when evaluated� Appendix C �page ��� shows
a classic example of the elimination of references to attribute names� The
function choose�rows�� is an unfolded and specialized variant of select

�

that knows exactly where to look in a tuple for the selection attribute
 the
expression �equal� �f �nth �car rows� 	�� compares column number �
of the current tuple ��car rows�� against the constant �f given in the se�
lection predicate of the query supplied as static data� Of course� � is the
position of the sex attribute in the employee attribute list �fname minit

lname ssn bdate addr sex salary superssn dno� in the static schema
at the top of page ��� The experiment in Appendix D �page ��� is similar
in spirit� but more complex� in particular� it shows that partial evaluation
is unfazed by the synthesized attribute lists that arise in join subqueries�

� Conventional Query Optimization

In the previous discussion we showed how partial evaluation could relieve a
database implementor of some of the tedious and error�prone coding that
goes into making a database perform well� That is� the implementor could
partial�evaluate a more straightforward implementation to obtain many of
the same improvements that are traditionally obtained by hand� But the
improvements we have discussed up to this point are not of the variety that
are ordinarily considered in the literature on database query optimization�
That literature is less concerned with low�level implementation details than
with high�level� algebraic transformation of queries�

For example� one simple transformation allows a composition of selec�
tions to be rewritten as a single selection

select�q��select�p��R��� select�p� q��R� �	�

The left�hand expression �rst takes a pass over R to select the elements that
satisfy predicate p� and then takes another pass over those that do�this
time to select the ones that also satisfy predicate q� The rule says that we
may achieve the same e�ect by taking a single pass over R and selecting the
elements that satisfy both p and q� Aside from its simplicity� this example is
entirely characteristic of the kind of transformation that arises in algebraic
query optimization� So it is interesting to ask whether there is any way
to achieve a transformation of this kind within the framework of partial
evaluation� We will return to this question presently�

But �rst we note that the foregoing example� while characteristic of
query optimization from a strictly algebraic viewpoint� fails to bring out
one of the central concerns in query optimization
 cost estimation� Our
sample transformation is virtually guaranteed to be bene�cial when carried

�

out in the direction of the arrow� In other words� the right�hand expression
is so likely to be less costly to evaluate than the left�hand expression� that
one may treat the rule as a reliable heuristic� without bothering to analyze
whether it will yield savings in a particular instance�

However� many algebraic transformations in database query optimiza�
tion do not share this trait� for example� the rule

select�q��join�p��R� S��� join�p��select�q��R�� S� ���

is usually bene�cial when applicable� but not always� The idea behind this
transformation is that by performing a selection on the input to the join
operator� rather than on its output� one reduces the amount of data that
the join operator must process� and hence the cost of the operator� But this
intuition can mislead in some situations� As an extreme example� suppose R
is extremely large� and S is expected to be empty� then the result of the join
may also be expected to be empty� In this situation� the cost of evaluating
the left�hand expression will be essentially the same as the cost of evaluating
the expression R� whereas the cost of evaluating the right�hand expression
will be essentially the same as the cost of evaluating select�q��R�� which
may be signi�cantly greater�

Although for simplicity�s sake we have used an example that may be
somewhat pathological� it illustrates an e�ect that is not con�ned to patho�
logical situations� In general there is no de�nite direction in which a given
algebraic transformation rule should be applied� and consequently modern
query optimizers rely on cost estimation strategies to choose a low�cost
expression from among the di�erent formulations of a query that can be
obtained through a succession of transformations� If we want to obtain the
same kind of optimization behavior through partial evaluation� we must �nd
a way to incorporate a cost model and cost�based decision�making strategy
into the code that will be partially evaluated�

There is a further complication lurking in the example just given� We
noted that transformation rule �� carried out in the direction of the arrow�
is usually bene�cial when applicable� What is this applicability constraint�
The answer is that a selectmay be �pushed inside of� a join in the manner
expressed by rule � only when the selection predicate q refers exclusively to
attributes of R� and not to any attributes of S� Thus� if we wish to achieve
this transformation through partial evaluation� we must ensure that the
applicability constraint is satis�ed�

In the remainder of this section� we examine the ways in which partial
evaluation might be helpful in simplifying some aspects of conventional query

�

optimization� and the reasons why it appears di�cult to apply it to other
aspects�

��� On�the��y Generation of Algebraic Laws

It seems at �rst a tantalizing possibility that one might be able to construct
a query evaluator in such a way that partial�evaluating it with respect to a
query involving a select of a select� as described above� would automatically
yield a residual in which only a single select was used� �Of course� in the
residual that single select might not appear explicitly as an invocation of
the select function� but would probably itself be unfolded and further
optimized� The point is that one might hope that a pair of loops� implicit
in the original code� would be reduced to a single loop in the residual�� In
e�ect� the partial evaluator would be discovering and applying an algebraic
transformation on the �y�

This approach to transforming queries would be a radical departure from
the conventional approach� which maintains a collection of algebraic laws
that have been recorded by the database implementor� The approach based
on on�the��y transformations might seem promising with respect to imple�
mentation e�ort and reliability� because it obviates the construction of a list
of algebraic laws� However� on closer inspection it appears that approach
based on on�the��y transformations is neither desirable nor feasible� It is
not desirable because it apparently provides no way to consider estimated
evaluation cost in the application of algebraic laws� The impediments to
feasibility are discussed below�

Despite this pessimistic assessment of on�the��y transformations� it is
interesting to consider what would be involved in achieving them through
partial evaluation� Considering this question may help provide techniques
for assuring the correctness of algebraic laws� and may also shed some light
on the limitations of current partial�evaluation technology�

����� Simplifying the Problem

We wish to construct an example of code that can be partial�evaluated to
obtain the e�ect of an algebraic transformation from query optimization�
To make our task as easy as possible� we will con�ne our attention to the
simple transformation discussed above� in which two selects are reduced to
one� To further simplify the problem� we will assume that relations are bags
of tuples� not sets� Also� we will write our selection operations in terms of

	�

a more general operator that has proved convenient in expressing queries

BTBN�	�� We will call this operator �

Like select� is a parameterized operator� But select has a single
parameter� which is a predicate� and its argument is a relation �whose ele�
ments are tuples�� whereas has three parameters� and its argument is a
bag�it need not be a bag of tuples� A few examples will give a feeling for
the way works

 ��� square�!�ffgg � �

 ��� square�!�ff�gg � �

The �rst example illustrates what does if its argument is the empty bag

it simply returns its �rst parameter�zero in this instance� The second
example illustrates what does if its argument is a singleton bag
 the second
parameter of is a function�square in this instance�and this function is
applied to the contents of the singleton bag� Thus� square��� � ��

Now what about bags that are neither empty nor singleton bags� In the
following example� we abbreviate ��� square�!� as just "

"ff	� �� �gg � "ff	gg! "ff�gg! "ff�gg

� square�	� ! square��� ! square���

� 	 ! �! ��

� ��

The argument to " has been broken down into singleton bags� and " sepa�
rately applied to each of them� The results have then been combined using
 �s third parameter�which in this instance is !�

It may not be immediately apparent what has to do with selection�
However� selection may easily be expressed with � For example� the ex�
pression

 �ffgg� �x�if even�x� then ffxgg else ffgg���

selects just the even elements of a bag� All the complexity is in the second
parameter� so let us �rst consider singletons as example arguments� for
readability we again use " to abbreviate with bound parameters �in this
case �ffgg� �x�if even�x� then ffxgg else ffgg�����

"ff�gg � if even��� then ff�gg else ffgg

� ff�gg

"ff�gg � if even��� then ff�gg else ffgg

� ffgg

		

So we see that this " correctly performs selection on singletons� It also
correctly performs selection on the empty bag� since in that case it simply
returns the �rst parameter to � which is now the empty bag� For bags with
multiple elements� selection is performed on the singleton constituents� and
the results are combined with the bag union �� Thus�

"ff�� �� �� �� �gg � ff�gg � ffgg � ff�gg � ffgg � ff�gg

� ff�� �� �gg�

In the following we consider the operator select no further� since its func�
tionality is subsumed by �

We now give a general� inductive de�nition for � The de�nition is
straightforward� indeed� it is very similar to some of the examples given
above�

 �e� f���ffgg � e ���

 �e� f���ffxgg � f�x� ���

 �e� f����X � Y � � �e� f����X�� �e� f����Y � ���

����� The Promotion Theorem for

The operator obeys a law that has been referred to as the promotion

theorem

Let " � �e� g�	�� then "
 �ffgg� f��� � �e�"
 f�	� ���

When is parameterized to perform selection� this theorem gives us the
result we want
 it says that performing two selections in succession is equiv�
alent to a single selection involving a more complicated predicate�� Con�
sequently� if we are able to automate the transformation expressed by this
theorem� we will have achieved our goal� As it turns out� we can use partial
evaluation to automate the transformation in part� but not completely��

�Readers seeking a justi�cation for this interpretation of the promotion theorem may
pro�t from the following observations� Recall that when � is parameterized for selection� f
will be a function of the form �x�if p�x� then ffxgg else ffgg for some predicate p� Thus the
composition � � f may be written as �x�if p�x� then �ffxgg else �ffgg� which simpli�es
to �x�if p�x� then g�x� else e� We then see that with this simpli�cation� the right	hand
side of the promotion theorem contains only a single occurrence of the looping operators
� and ��

�Since this paper was �rst written� it has come to the authors
 attention that the use
of partial evaluation for very similar transformations has previously been investigated by
Lawall �Law�
��

	�

To understand the approach one might take to automating the transfor�
mation� it may help to examine a simple proof of the promotion theorem�
The proof is by induction� and proceeds by case analysis of the three dif�
ferent kinds of bags that appear in the de�nition of above
 empty bags�
singleton bags� and composite bags� For each kind of bag B� we wish to
show that applying the left�hand side of ��� to B� gives the same result as
applying the right�hand side to B�

Throughout the following proof� we use the abbreviation " � �e� g�	��

Case B � ffgg�

LHS
 �"
 �ffgg� f����ffgg � "� �ffgg� f���ffgg�
� "ffgg
� �e� g�	�ffgg
� e

RHS
 �e�"
 f�	�ffgg � e

Case B � ffxgg�

LHS
 �"
 �ffgg� f����ffxgg � "� �ffgg� f���ffxgg�
� "�f�x��

RHS
 �e�"
 f�	�ffxgg � �"
 f��x�
� "�f�x��

Case B � �X � Y ��

Induction hypothesis

�"
 �ffgg� f�����X�� �e�"
 f�	��X� and
�"
 �ffgg� f�����Y � � �e�"
 f�	��Y ��

Then we have
LHS
 �"
 �ffgg� f�����X � Y �

� "� �ffgg� f����X � Y ��
� "� �ffgg� f����X�� �ffgg� f����Y ��

� "� �ffgg� f����X��	
"� �ffgg� f����Y ��

� �"
 �ffgg� f�����X�	
�"
 �ffgg� f�����Y �

� �e�"
 f�	��X�	 �e�"
 f�	��Y �
by induction hypothesis

RHS
 �e�"
 f�	��X � Y �
� �e�"
 f�	��X�	 �e�"
 f�	��Y �

	�

With the exception of the invocation of the induction hypothesis in the case
B � �X � Y �� every step of the proof is either a simple application�or
in the terminology of partial evaluation� a simple unfolding�of one of the
equations in the de�nition of � or else an expansion of the de�nition of
composition �i�e�� �g
 f��x� � g�f�x����

We may imagine transcribing the de�nition of as a function in a
Schism program� Then partial�evaluating expressions of the form �"

 �ffgg� f����ffgg or �"
 �ffgg� f����ffxgg should yield the same residuals
that would have been obtained from the expressions �e�"
 f�	�ffgg or
 �e�"
 f�	�ffxgg� which is exactly the e�ect we want� That is� partial eval�
uation may be expected to expand and simplify these expressions in just
the way we did in our proof above� Starting with the left�hand side of the
promotion theorem� we will not arrive precisely at the right�hand side of
the theorem� but the result we obtain will presumably be no more costly to
evaluate than if we actually obtained the right�hand side�

Unfortunately� when the argument is of the form �X � Y �� partial eval�
uation will not be quite so successful� because invocation of the induction
hypothesis does not correspond to anything that we know of in partial eval�
uation� Use of the induction hypothesis does correspond to the folding step
of the Burstall�Darlington program transformation paradigm
BD���� so a
rewrite step of this kind is not categorically beyond the reach of automation�
but it may not �t into the partial�evaluation framework�

There is an another respect in which current partial�evaluation technol�
ogy may not be up to the task of automating a transformation such as
that expressed by the promotion theorem� Above we considered the appli�
cation of "
 �ffgg� f����let us call this expression E�to particular bag
constructs� viz�� ffgg� ffxgg� and �X � Y �� But what if E were applied to an
arbitrary argument B whose structure was completely unknown� We would
still like to obtain the bene�ts o�ered by the promotion theorem� which
holds for arbitrary arguments� However� if B is dynamic� no such bene�ts
will be obtained by partial�evaluating the application E�B��

A simple rewrite of E�B� can overcome this obstacle� We may write
E�B� as

case B of

ffgg � E�ffgg�
ffxgg � E�ffxgg�

�X � Y � � E�X � Y ��

Now the argument to E is partially static in each instance� and enough

	�

information is available to unfold in the manner we illustrated above�
But it would be tedious to have to perform this rewriting of E�B� by hand�
It would be preferable if the partial�evaluator carried out rewrites of this
kind automatically prior to unfolding and specialization�� Moreover� as we
shall discuss in section �� there are other situations in which automatically
inserting code that separates di�erent cases may be bene�cial� There is a
danger� however� that indiscriminate rewriting of this kind could do more
harm than good� since its immediate e�ect is to increase both code size
and execution time� Sophisticated analysis might be required to determine
whether and where to insert case discrimination constructs�

����� Summary

There is a tantalizing possibility that partial evaluation can be made to au�
tomatically carry out query optimizations that are conventionally achieved
through application of rewrite rules� However� even for the simple opti�
mization we considered in depth in this section� current partial�evaluation
technology is inadequate to automate the process completely� For more com�
plicated transformations� such as the example involving join we gave in the
introduction to this section� the di�culties are greater� and the prospects of
overcoming them are dimmer�

��� An Optimizing Query Evaluator

On one level� the conclusions of the previous section are discouraging� in that
the prospects of using partial evaluation to perform on�the��y generation of
transformations are not bright� But the idea of generating transformations
on the �y may not be the best application of partial evaluation to query op�
timization anyway� If one were to succeed in achieving such transformations�
then new problems would be created that might be even more di�cult to
surmount� Probably the biggest of these is the problem of integrating query
evaluation cost estimation and cost�based decision�making into the partial�
evaluation framework�

In this section we consider a less radical departure from the conventions
of query optimization� and suggest a use of partial evaluation that allows us

�Lawall �Law�
� has shown how one can coax a partial	evaluator into performing this
kind of rewriting automatically by �rst inserting calls to a copy function at strategic points
in the code to be expanded� However� the insertion of these calls to copy apparently must
still be carried out manually�

	�

to continue to use cost estimation to control an optimizer search� In current
query processing systems� optimization is a completely separate step from
query execution� Thus� a query algebra expression is optimized to produce
a query plan� and subsequently the query execution engine is invoked to
carry out the instructions in the query plan� The alternative we will now
consider is to combine these two steps into a single query�evaluation step
that accepts an algebraic query as input� and produces the query result as
output� However� our intent is not that this query evaluator should proceed
in such a naive manner as the evaluator of section �� Rather� we intend that
it should incorporate within it a rule�based optimization search to decide
the best way to execute the query� but rather than emitting a query plan� it
may immediately proceed to perform the execution strategy it has decided
on�

Now if we make available as static data all the information that would
have been available to a conventional optimizer�in other words� if we supply
as static data an algebraic query as well as the database statistics that
serve as the basis for cost estimation�then partial evaluation of our query
evaluator should yield a residual in which optimization decisions have been
pre�computed� Thus� the residual plays the same role as a query plan in
a more conventional approach� The partial�evaluation step corresponds to
running the optimizer� and executing the residual corresponds to running a
query execution engine with the query plan as input�

One may ask what we have gained by combining the optimizer and exe�
cution engine into a single monolithic program� By keeping them separate�
as is conventional� one would appear to have better modularity� and at �rst
glance� it seems that at best partial evaluation allows us to get back to our
starting point�it achieves the separation of the optimization and execution
phases of query processing� But this initial impression is misleading�

First of all� combining the optimizer and execution engine does not mean
they have to be bundled together in a huge mass of spaghetti code� The
source code for these two components may still be nicely modularized� and
the interface between them may still be kept narrow� What has changed
is that when optimization and execution are separate phases� the interface
is a data structure �viz�� a query plan�� whereas when the two phases are
combined into one� the interface between them is a function�call interface�

Second� and more important� is that use of partial evaluation to mimic
the e�ect of the optimization phase is only one of many possible outcomes
of applying partial evaluation to the combined program� This particular
outcome is of interest because it shows that we have not lost functionality

	�

in taking the partial�evaluation approach�the partial�evaluation approach
is at least as general as that of separating optimization and execution� But
there are also other outcomes of interest� which may be obtained by varying
the choice of static data supplied to the partial�evaluator� If some frag�
ment of the data needed for optimization is made dynamic� then some opti�
mization decisions will be postponed until execution time� Such a scenario
corresponds to the provision of dynamic query plans in the Volcano query
processing system
GW���� That is� sometimes one cannot reliably make
good choices among the alternative execution strategies for some subexpres�
sion of a query on the basis of the data available at optimization time� the
best choice may depend on the amount of memory available when the query
executes� and other factors that the optimizer cannot predict� In such cases
the query plan may incorporate a special operator that allows the optimiza�
tion decision to be made at execution time� Implementing this provision
involves writing code to generate the special operator �in the optimizer� and
additional code to recognize and interpret the operator �in the execution
engine�� as well as duplication of some code to perform cost�based decision�
making� which occurs both in the optimizer and the execution engine� None
of this extra coding is required if the generation of dynamic plans is achieved
as a by�product of partial evaluation�

However� there are indeed respects in which combining the optimizer
and execution engine is likely to be detrimental� One serious drawback of
partial�evaluating a query evaluator as a substitute for an explicit optimiza�
tion phase producing a query plan as output is that the result of partial
evaluation �i�e�� the residual� will potentially be a very large piece of code�
in contrast to a query plan� which is usually very small�

��� Using Partial Evaluation for Cost Estimation

As noted above� partial evaluation does not appear to be well�suited to ap�
plying transformations on queries conditionally� depending on the estimated
evaluation costs of the pre�transformation and post�transformation versions
of the query� Thus� it is probably best to stick with an optimization model
in which the transformation steps are under the control of an optimizer that
computes costs and incorporates them into its search strategy� There re�
mains� however� the possibility that partial evaluation could help with the
cost estimation itself� by way of an intriguing if slightly outlandish imple�
mentation technique�

It should be borne in mind that cost estimation for query optimization

	�

is a poorly developed art� Cost estimates produced and used by current
optimizers are crude to say the least� but what is perhaps worse is that
considerable coding e�ort is required to obtain even these crude estimates�
Optimizer generators create optimizers automatically� given a �le of trans�
formation rules that the optimizer should consider when optimizing a query

GM���� But optimizer generators also require the database implementor
to supply support functions that are di�cult to generate automatically�
Among the support functions that must be coded by hand are cost esti�
mation functions for each operator that may appear in query plans� These
cost estimation functions� in turn� rely partly on size estimation functions
that estimate the amount of data that each operator in a query plan will
produce as output� The size estimation functions are also di�cult to gener�
ate automatically� and so these� too� must be hand�coded by the database
implementor�

Thus� it is certainly of interest to explore ways of automating the process
of cost estimation as well as that of size estimation� One of the remarkable
characteristics of partial evaluation is that it allows the insertion of extra
layers of interpretation in a system for essentially no cost� So we imagine
proceeding as follows� Rather than writing our query execution engine in C
or some other conventional implementation language� we might write it in a
language of our own devising�let us call this language Bunbury
Wil����
Bunbury will have much the expressiveness of any other language� but we
will keep it simple enough so that we may easily write an interpreter for
it� Then by partial�evaluating the interpreter� taking our query execution
engine as static data� we obtain object code for the execution engine that
is essentially as good as compiled code� �It is as good in principle� if our
object code is in T� it will have trouble competing with C code� but here
we are more concerned with concepts than with short�term practicability��
So far we have not really changed anything�we have just added a layer of
interpretation� which the partial�evaluator then obligingly removes again for
us�

But now we are in a position to be devious in ways that were not possible
before� Without changing the query execution engine� we may start making
small changes to the Bunbury interpreter that will point us in the direction
of automatic cost estimation� The �rst step is to change the interpretation
of disk reads and disk writes so that we not only perform these operations�
but we also count how many of them we have done� �We could also count up
approximately how much CPU time we use� if we wished to develop a more
precise cost model�� We may provide a means for the count to be examined

	�

on completion of query execution� so that executing a query supplies us not
only with the query result� but also with the cost in disk I#O of executing
the query� Thus� to estimate the cost of a query �or subquery�� we may
simply pass the query to the execution engine� discard the query result� and
retain the computed cost� Needless to say� there is a defect in this technique

to estimate the cost of a query� we had to execute the query� obviously we
do not want to do that�

The next step� then� is to further revise our interpreter so that when it
interprets an I#O operation� it counts it but does not actually do the I#O�
This change saves time� but introduces a new di�culty� Since the I#O is
not being performed� we lack the information we need to proceed with the
computation� For this reason another change is necessitated
 the interpreter
must operate on and produce some kind of estimated value�corresponding
to the size estimates in conventional query optimization�in place of actual
values� When I#O is supposed to be performed� a crude approximation to
the data to have been fetched may be constructed on the basis of database
statistics� and used in place of the actual data� When a loop is encountered�
probably the best interpretation strategy is to estimate the number of loop
iterations and the e�ect of each iteration� and to extrapolate the e�ects from
these pieces of information� Note that the domains for estimated values will
not necessarily be the same as the domains for the values that they estimate�
For example� it would probably make most sense to estimate a Boolean using
a real value in the range
�� 	�� in other words� the estimate for a Boolean
value would be a probability�

The ideas we have suggested in this section are extremely speculative�
and it is not clear that they are workable� It is also unclear whether the
e�ort in coding an interpreter that performs abstract interpretation over
a domain of costs and estimated values� as we have described� would be
smaller than the e�ort in coding cost and size estimation support functions
as required by existing optimizer generators� But the current technology
is hardly satisfactory� and promises to become even more unwieldy when
applied to object�oriented databases� It therefore seems worthwhile to look
into even relatively bizarre alternatives�

	�

� Code�splitting and Specialization to Quasi�

constants

The previous sections focused mainly on the application of partial evaluation
to relational databases� Our database research interests� however� lie in the
realm of object�oriented� rather than relational� databases� While partial
evaluation of code in an object�oriented database bears some resemblance
to �normal� partial evaluation� there are some striking di�erences� When
translating database queries� unlike when compiling normal programming
languages� we �database researchers� treat CPU as being a nearly free re�
source� and concentrate on reducing input#output activity� This perspective
gives a very di�erent slant on optimization� It also results in quite some con�
fusion when language and database optimization people talk� There is also
a real di�erence in the environment in which we process code�

In a normal programming language environment� most of the data is un�
known� Partial evaluation is used to embed the data that is known through�
out the code� and thus speed up the whole program� Often there is an initial
step in partial evaluation� called �binding time analysis��
JSS��� This anal�
ysis takes facts about what data will be known and is meant to speed up the
incorporation of data once that data is provided�

In a database� query optimization is usually performed with the data
close at hand� Most of the data is known� but some of it may change before
the query is run� We are dealing with a embarrassment of riches as far as
obtaining sample values for particular expressions� At �rst glance� �binding
time analysis� seems the exact opposite of what we want� It would appear
that the appropriate kind of speci�cation would simply indicate which in�
formation is not certain to �hold still�� facts about what data will possibly
di�er when we actually execute the query�

Another place in which databases di�er from languages is in their cost
models� The time to access data in a database so far outweighs the time
spent computing with the data that the cost of computation in query opti�
mization is typically ignored� There is some justi�cation for this attitude�
Using extremely rough �gures for current architectures� a disk takes ten mil�
liseconds to retrieve data� while RAM takes a hundred nanoseconds� This
is a di�erence of �ve orders of magnitude� perhaps su�cient justi�cation for
ignoring CPU costs�

While database researchers typically call this disk access I#O� there is
a big di�erence between this I#O and the typically programming language

��

treatment of I#O� The I#O operations that compiler researchers talk about
are not� typically� optional� In a �normal� programming language� I#O is
treated as the border between the program and the world in which it op�
erates� Since the compiler has no control over �and little understanding
of� that world� the compiler cannot make choices about what I#O to per�
form� nor even when the I#O may be re�ordered� Within a database� the
devices and#or �les that constitute the database system are �owned� by
the database� It is assumed that both read and write access to this store
is the sole province of the database system� so I#O re�ordering �and even
elimination� is fair game�

In the Self system�
CU��� very little is known until run time� This sys�
tem does not even really have a user�visible type system to guide their code
selection and compilation� The authors use a technique called �selective
code splitting� to produce specialization points where there were none be�
fore� Basically� they insert a �cheap� test for the expected case� and then
copy the ensuing code� once for the most common case� and once for the
other cases� This allows their code to work for all cases �by using the un�
changed original source�� while working e�ciently for the most common case
�by using the specialized source�� In the case of object�oriented code� the
specialization can resolve implementation questions� thus not only eliminat�
ing the need for a run�time method lookup� but providing the opportunity
to unfold method bodies in�line� Unlike many optimization techniques� this
one may be freely applied to any piece of code� The worst it can do to code
cost is add a small constant overhead for the tests �and increase code size��
Recall that we have already examined some case introductions in the pre�
ceding sections when dealing with the operator� the inserted cases provide
more static information for the partial�evaluator to work with�

What do we hope to gain� In unfolding messages� we hope to expose
the contained code� resolve message�to�method bindings� and� at least in
some cases� remove some of the data fetches from the run�time expression�
Remember� there is a substantial bonus for removing a data reference� If
the result of sending a message to an object can be determined by partial
evaluation� the substitution of the appropriate constant may mean a reduc�
tion in total I#O� Because of the huge ratio between simple calculation and
disk access� we expect visible performance bene�ts from such optimizations�

If we can propagate constants far enough� we may be able to pre�compute
our way through user�implemented indices in bulk data structures� or even
perform some selects at query optimization time� We must place our em�
phasis on eliminating data fetches� it will do us little good simply to reduce

�	

computation on data once retrieved� When we can discern the value of a
boolean which controls a conditional statement� however� incorporating that
value into the expression yields a simpler expression� This simpli�cation may
be necessary to produce e�ective code analysis�

This technique of case�insertion can work for us in other ways as well�
Because our environment is loaded with data� and because we can look at
data at query optimization time if we so desire� we can use the values from
the database itself to help provide reasonable alternatives for case insertion�

� Conclusions

We have seen how partial evaluation can be extremely e�ective in carry�
ing out low�level optimizations in a database implementation� and have
discussed ways in which it might be applied to a variety of problems in
higher�level optimization of both relational and object�oriented databases�
We have covered a mixture of techniques ranging from the experimentally
proven to the wildly speculative� There is plenty of room for work at both
ends of the spectrum� Despite the remarkable results obtained for low�level
optimizations� it is not yet clear that they are applicable to real database
systems� the gulf between a toy query evaluator and an actual system is too
great to allow de�nite conclusions to be drawn� But the possibility of ob�
taining similar results in a larger� more credible context is certainly alluring�
There are many exciting possibilities in the application of partial evaluation
to database optimization� and they have only begun to be explored�

Acknowledgments

We are indebted to Charles Consel for his generous assistance and advice�
Thanks also to David Burke� Luke Hornof� and Barbara Moura for answering
questions� and to Mike Ashley and Julia Lawall for providing improved
versions of Schism�

This work was supported in part by NSF grant IRI �	 	�����

References

BD��� R� M� Burstall and J� Darlington� A transformation system for
developing recursive programs� Journal of the ACM� ���	�
���
��� January 	����

��

BTBN�	� Val Breazu�Tannen� Peter Buneman� and Shamim Naqvi� Struc�
tural recursion as a query language� In Paris Kanellakis and
Joachim W� Schmidt� editors� Database Programming Lan�

guages� Bulk Types � Persistent Data� The Third International

Workshop� pages ��	�� Nafplion� Greece� August 	��	� Morgan
Kaufmann�

CD��� Charles Consel and Olivier Danvy� Tutorial notes on partial eval�
uation� In Proceedings of the Twentieth Annual SIGACT Sympo�

sium on Principles of Programming Languages� ACM� January
	����

Con��� Charles Consel� Binding time analysis for higher order untyped
functional languages� In 	

� ACM Conference on Lisp and

Functional Programming� pages �������� ACM� 	����

Con��� Charles Consel� Report on Schism �

� Paci�c Software Research
Center� Oregon Graduate Institute of Science $ Technology� Oc�
tober 	���� Draft�

Con��� Charles Consel� A tour of Schism
 A partial evaluation system
for higher�order applicative languages� In PEPM���
PEP����
pages 	���	���

CU��� Craig Chambers and David Ungar� Customization
 Optimiz�
ing compiler technology for SELF� a dynamically�typed object�
oriented programming language� SIGPLAN Notices� �����
	���
	��� 	����

EN��� Ramez Elmasri and Shamkant B� Navathe� Fundamentals of

Database Systems� Benjamin#Cummings� 	����

GM��� Goetz Graefe and William J� McKenna� The Volcano optimizer
generator
 Extensibility and e�cient search� In Proceedings of

the IEEE Conference on Data Engineering� pages �����	�� Vi�
enna� Austria� April 	����

GW��� Goetz Graefe and Karen Ward� Dynamic query evaluation plans�
In James Cli�ord� Bruce Lindsay� and David Maier� editors� Pro�
ceedings of the 	
�
 ACM SIGMOD International Conference on

the Management of Data� pages �������� Portland� Oregon� June
	����

��

JSS��� Neil D� Jones� Peter Sestoft� and Harald S%ndergaard� Mix
 A
self�applicable partial evaluator for experiments in compiler gen�
eration� Lisp and Symbolic Computation� ��	�
����� February
	����

Law��� Julia L� Lawall� Proofs by structural induction using partial
evaluation� In PEPM���
PEP���� pages 	���	���

PEP��� Proceedings of the ACM SIGPLAN Symposium on Partial Evalu�

ation and Semantics�Based Program Manipulation� Copenhagen�
Denmark� June 	����

��

Appendix A � The Program

 Data Structures� �Types have an initial capital letter�

 Schema � List� Relation�Descriptor �

 Relations � List� Relation �

 Query � �select Predicate Query�
 �join Query Query�

 �project Attribute�List Query�
 �Relation�Name�

 Labeled�Relation� Labeled�Relation�Attribute�List Relation�

 Relation�Descriptor � � Relation�Name Attribute�List �

 Relation�Name � Symbol

 Attribute�List � List� Attribute�Name �

 Attribute�Name � Symbol

 Relation � List� Row �

 Row � List� Attribute�Val �

 Attribute�Val � Value

 Predicate � Triple� ��� Attribute�Name Value �

 main� Schema x Relations x Query �� Relation

 Just pass things along to real code

�define �main schema relations query�

�db schema relations query

��

 db� Schema x Relations x Query �� Relation

 Decompose query and evaluate ops

�define �db schema relations query�

�if �atom� query�

�findRelation query schema relations�

�case �car query�

��join� �db�join �cadr query�

�db schema relations �caddr query��

�db schema relations �cadddr query����

��select� �db�select �cadr query�

�db schema relations �caddr query����

��project� �db�project �cadr query�

�db schema relations �caddr query����

�else ���bad query operator���

�

��

��

findRelation� Symbol x Schema x Relations �� Labeled�Relation

�define �findRelation Relation�name schema relations�

�if �null� schema�

�Labeled�Relation ��bogus�labels� Relations�

�if �equal� Relation�name �fst �hd schema���

�Labeled�Relation �snd �hd schema�� �hd relations��

�findRelation Relation�name �tl schema� �tl relations��

�

��

 db�select � Predicate x labeled�relation �� labeled�relation

�define �db�select pred lrel�

�let ���Labeled�Relation labels rows� lrel��

�Labeled�Relation labels

�choose�rows pred labels rows �����

��

choose�rows� Predicate x Attribute�List x Rows x Rows �� Rows

�define �choose�rows pred labels rows accumulator�

�if �null� rows�

accumulator

�choose�rows pred labels �tl rows�

�if �pred�holds� pred labels �hd rows��

�cons �hd rows� accumulator�

accumulator�

�

��

 pred�holds� � Predicate x Attribute�List x Row �� Boolean

�define �pred�holds� pred labels row�

�equal� �caddr pred� �get�attribute �cadr pred� labels row�

��

 find�attribute � Name x Attribute�List x Row �� Value

 Retrieve one column element ��no�such�attribute

 if not in Attr�List�

�define �find�attribute name labels row�

��

�if �null� labels�

�no�such�attribute

�if �equal� name �hd labels��

�hd row�

�find�attribute name �tl labels� �tl row���

��

db�project�List�attrs� x Labeled�Relation �� Labeled�relation

�define �db�project attrs lrel�

�let ���Labeled�Relation labels rows� lrel��

�Labeled�Relation attrs �project�rows attrs labels rows��

��

 project�rows � List�attrs� x relation�tags x List�rows� ��

 List�narrow�rows�

�define �project�rows attrs labels rows�

�if �null� rows�

���

�cons �trim�row attrs labels �hd rows��

�project�rows attrs labels �tl rows���

��

 trim�row � List�attrs� x relation�tags x row �� narrow�row

�define �trim�row attrs labels row�

�if �null� attrs�

���

�cons �get�attribute �hd attrs� labels row�

�trim�row �tl attrs� labels row��

��

 db�join � join�pred x Labeled�relation x Labeled�relation ��

 Labeled�relation

 join�pred � label x label

 that is� join�pred combines label from first relation and

 label from second relation� and specifies an equijoin�

 This implementation works as a natural join as well� i�e��

 redundant attribute names in the joined tuples are removed

 �which of course is
 a bad thing if the join was not on

��

 the attribute in question�����

�define �db�join join�pred lrel� lrel��

�let ���Labeled�Relation labels� rows�� lrel��

��Labeled�Relation labels� rows�� lrel���

�Labeled�Relation

�ordered�set�union labels� labels��

�outer�loop join�pred labels� labels� rows� rows� �����

��

 outer�loop � join�pred x Attribute�List x Attribute�List x

 Relation x Relation x Relation �� Relation

 Does outer loop of the join ��� a row at a time from rows�

�define �outer�loop join�pred attrs� attrs� rows� rows� accum�

�if �null� rows��

accum

�outer�loop join�pred attrs� attrs� �tl rows�� rows�

�inner�loop join�pred attrs� attrs� �hd rows��

rows� accum��

��

 inner�loop � join�pred x Attribute�List x Attribute�List x

 Row x Relation x Relation �� Relation

 Does the inner loop of the join �� processing one row of the

 outer relation

 Accomplished by looping a row at a time through rows�

�define �inner�loop join�pred attrs� attrs� row� rows� accum�

�if �null� rows��

accum

�inner�loop join�pred attrs� attrs� row� �tl rows��

�match join�pred attrs� attrs� row� �hd rows�� accum��

��

 match � join�pred x Attribute�List x Attribute�List x Row x

 Row x Relation �� Relation

 The real guts of a join� Combines two rows of a cross�

 product to add to a relation �or not��

�define �match join�pred attrs� attrs� row� row� accum�

�if �equal� �get�attribute �car join�pred� attrs� row��

�get�attribute �cadr join�pred� attrs� row���

��

�cons �trim�row �ordered�set�union attrs� attrs��

�vdappend attrs� attrs� attrs��

�vdappend attrs� row� row���

accum�

accum

��

 ordered�set�union � Attribute�List x Attribute�List ��

 Attribute�List

 Combines a pair of attribute lists into the attribute list

 for a join of the two described relations�

�define �ordered�set�union set� set��

�rev �back�ordered�set�union set� �rev set����

�

 back�ordered�set�union � Attribute�List x Attribute�List ��

 Attribute�List

 auxilliary function to ordered�set�union� produces a result

reversed in attribute order of its first arg�

�define �back�ordered�set�union set� set��

�if �null� set��

set�

�back�ordered�set�union �tl set��

�if �mem� �hd set�� set��

set�

�cons �hd set�� set����

��

 vdappend� Attribute�List x Row x Other�Row �� Extended�Row

 vdappend �� Scott � Bennet�s special append� The Attribute�

 List describes the first Row� This was needed to get �nth�s

 in result tail

�define �vdappend first�shape first�row second�row�

�if �null� first�shape� second�row

�cons �hd first�row�

�vdappend �tl first�shape� �tl first�row� second�row��

��

��

Appendix B � Experiment �� Fully Static Data

�� �schema� data� query� all static for Partial Evaluation

� �employee �fname minit lname ssn bdate addr sex

salary superssn dno��

�department �dname dnumber mgrssn mgrstartdate��

�dept�locations �dnumber dlocation��

�product �pname pnumber plocation dnum��

�works�on �essn pno hours��

�dependent �essn dependent�name sex bdate relationship���

� �
 employee

�John B Smith �����	��� ���JAN���

���� Fondren� Houston� TX� M ����� ��������� ��

�Franklin T Wong ��������� ���DEC���

�	�� Voss� Houston� TX� M ����� ���		���� � �

�Alicia J Zelaya ��������� ���JUL���

����� Castle� Spring� TX� F ����� ���	����� � �

�Jennifer S Wallace ���	����� ���JUN���

���� Berry� Bellaire� TX� F ����� ���		���� � �

�Ramesh K Narayan 			������ ���SEP���

��� Fire Oak� Humble� TX� M ����� ��������� � �

�Joyce A English ��������� ���JUL�	�

��	�� Rice� Houston� TX� F ����� ��������� � �

�Ahmad V Jabbar ��������� ���MAR���

���� Dallas� Houston� TX� M ����� ���	����� � �

�James E Borg ���		���� ���NOV���

���� Stone� Houston� TX� M ����� null ���

�
 department

�Research � ��������� ���MAY����

�Administration � ���	����� ���JAN����

�Headquarters � ���	����� ���JAN�����

�
 dept�locations

�� Houston� �� Stafford� �� Bellaire�

�� Sugarland� �� Houston��

��

�
 product

�ProductX � Bellaire ��

�ProductY � Sugarland ��

�ProductZ � Houston ��

�Computerization �� Stafford ��

�Reorganization �� Houston ��

�Newbenefits �� Stafford ���

�
 works�on

������	��� � ����� ������	��� � ���� �			������ � �����

������	��� � ����� ������	��� � ���� �			������ � �����

���������� � ����� ���������� � ����� ���������� � �����

���������� � ����� ���������� �� ����� ���������� �� �����

���������� �� ����� ���������� �� ����� ���������� �� �����

���������� �� ���� ����	����� �� ����� ����	����� �� �����

����		���� �� null��

�
 dependent

���������� Alice F ���APR��	 daughter�

���������� Theodore M ���OCT��� son�

���������� Joy F ���MAY��� spouse�

����	����� Abner M ���FEB��� spouse�

������	��� Michael M ���JAN��� son�

������	��� Alice F ���DEC��� daughter�

������	��� Elizabeth F ���MAY��� spouse���

�select �� dno ��

�project �fname dno�

�select �� sex f�

�join �essn ssn� works�on employee����

�� Sugared Residual From Partial Evaluator �answer here�

��define �main���

���fname dno�

��jennifer �� �jennifer �� �alicia �� �alicia ������

�	

Appendix C � Experiment �� Relations Dynamic

�� �schema� query� static� data left dynamic for Partial Eval

�� Note� employee relation moved down in list

� �department �dname dnumber mgrssn mgrstartdate��

�dept�locations �dnumber dlocation��

�product �pname pnumber plocation dnum��

�employee �fname minit lname ssn bdate addr sex salary

superssn dno��

�works�on �essn pno hours��

�dependent �essn dependent�name sex bdate relationship���

DYNAMIC

�select �� sex f� employee�

�� Sugared Residual Produced by Partial Evaluator

�� �Attribute list known� all db accesses positional�

�define �main�� relations�

�list ��fname minit lname ssn bdate addr sex salary

superssn dno�

�choose�rows��

�nth �list ��fname minit lname ssn bdate addr

sex salary superssn dno�

�nth relations ���

��

������

�define �choose�rows�� rows accumulator�

�if �null� rows�

accumulator

�choose�rows��

�cdr rows�

�if �equal� �f �nth �car rows� 	��

�cons �car rows� accumulator�

accumulator����

��

Appendix D � Experiment �� Complex Query

�� �schema� query� static� data left dynamic for Partial Eval

� �employee �fname minit lname ssn bdate addr sex

salary superssn dno��

�department �dname dnumber mgrssn mgrstartdate��

�dept�locations �dnumber dlocation��

�product �pname pnumber plocation dnum��

�works�on �essn pno hours��

�dependent �essn dependent�name sex bdate relationship���

� �department �dname dnumber mgrssn mgrstartdate��

�dept�locations �dnumber dlocation��

�product �pname pnumber plocation dnum��

�employee �fname minit lname ssn bdate addr sex salary

superssn dno��

�works�on �essn pno hours��

�dependent �essn dependent�name sex bdate relationship���

DYNAMIC

�select �� dno �� �project �fname dno� �select �� sex f�

�join �essn ssn� works�on employee����

�� Sugared Residual Produced by Partial Evaluator

�� �Attribute list known� all db accesses positional�

�� Query structure discernible�

�define �main�� relations�

�labeled�relation

��fname dno�

�choose�rows�	

�project�rows��

�choose�rows��

�outer�loop�� �nth relations ��

�car relations�

����

��

�����

������

�define �choose�rows�� rows accumulator�

�if �null� rows�

accumulator

�choose�rows��

�cdr rows�

�if �equal� �f �nth �car rows� ���

�cons �car rows� accumulator�

accumulator����

�define �choose�rows�	 rows accumulator�

�if �null� rows�

accumulator

�choose�rows�	

�cdr rows�

�if �equal� �� �nth �car rows� ���

�cons �car rows� accumulator�

accumulator����

�define �project�rows�� rows�

�if �null� rows�

���

�cons �list �nth �car rows� �� �nth �car rows� ����

�project�rows�� �cdr rows�����

�define �outer�loop�� rows� rows� accum�

�if �null� rows��

accum

�outer�loop��

�cdr rows��

rows�

�inner�loop�� �car rows�� rows� accum����

�define �inner�loop�� row� rows� accum�

�if �null� rows��

accum

�inner�loop��

��

row�

�cdr rows��

�if �equal� �car row�� �nth �car rows�� ���

�cons �list �car row��

�nth row� ��

�nth row� ��

�car �car rows���

�nth �car rows�� ��

�nth �car rows�� ��

�nth �car rows�� ��

�nth �car rows�� ��

�nth �car rows�� ��

�nth �car rows�� 	�

�nth �car rows�� ��

�nth �car rows�� ��

�nth �car rows�� ���

accum�

accum����

��

