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Abstract

We give a method for performing the center manifold reduction that eliminates
the need to transform the original equations of motion into eigencoordinates. To
achieve this, we write the center manifold as an embedding, rather than as a graph
over the center subspace.

1 Introduction

The center manifold reduction is a technique for eliminating non-essential degrees
of freedom in bifurcation problems. The low-dimensional equations of motion on
the center manifold, or their projection onto the center subspace, tell us about the
flow in the vicinity of the bifurcation point.

This paper provides an alternative to the graph construction commonly used
to identify the center manifold [1, 2, 3, for example]. Instead, we construct the
center manifold as an embedding. The technique eliminates the need to transform
the original equations of motion into eigencoordinates, thus emphasizing that the
center manifold is a geometric object whose specification does not require particular
coordinates.

2 The Graph Construction

Consider a vector field f(X) : RV — RN with an equilibrium at the origin. Let
D fy be the linear part of the vector field at this equilibrium. The center subspace
E° is the space spanned by the (generalized) eigenvectors of D fy corresponding to



eigenvalues with zero real part. The center manifold is tangent to £ at X = 0 and
is invariant under the flow of f.

In the usual center manifold reduction, one transforms the equations of motion
into eigen-coordinates. Omne then writes the center manifold as a graph over the
center subspace, the latter having been linearly decoupled from the other degrees of
freedom by the coordinate transformation. [1, 2].

In the eigen-coordinates, the system of differential equations has the form [1, p.

&= Bz + F(z,y)
y=Cy+G(z,y) (1)

where B has eigenvalues with real part equal to zero and C' has eigenvalues with
negative real part!. The functions F' and G, and their first derivatives, vanish at
the origin.

The center manifold is written as a graph

We={(z,y) |y=~nrz)}, h(0)=Dhr0)=0 (2)

in the neighborhood of the origin. The boundary conditions h(0) = 0 and Dh(0) =0
insure that the center manifold passes through the equilibrium and is tangent to E¢
at the equilibrium. Since the center manifold is invariant under the flow, one can
substitute y = h(x) into the second equation of (1) and obtain

Dh(z) [ Bz + F(xz,h(z))] — Ch(z) — G(z,h(z)) = 0 (3)

This is solved for h(z) by expanding in a power series about the origin. With the
center manifold identified, the vector field on y = h(x) is projected onto the center
subspace

& = Bz + F(x,h(z)). (4)

The stability of the equilibrium for the full system (1) is given by the stability for
the reduced system (4).

3 The Center Manifold as an Embedding

The above procedure requires an initial transformation to eigencoordinates. For
high-dimensional systems this (block) diagonalization is prohibitive for hand cal-
culation and one turns to a machine implementation. Unfortunately, diagonalizing
large algebraic matrices can be difficult for symbolic computation systems.

We give an alternative center manifold reduction that dispenses with the need to
perform the initial coordinate transformation. The procedure requires only knowl-
edge of the vectors spanning the center subspace. For systems where D f o has zero
eigenvalues, the center subspace is just the kernel of D f(. In our experience, sym-
bolic computation packages are able to find kernels of matrices with little difficulty.

"We assume that the unstable subspace is empty, though this is not necessary for the construction.



We assume that the original system of equations
X = f(X) (5)

has an equilibrium at the origin; f(0) = 0. For simplicity we assume that D f o has a
one-dimensional kernel spanned by v,.. It is straightforward to extend the procedure
to multi-dimensional kernels.

Before proceeding, we need to establish some notation. We denote by Df [a]
the action of Df on the vector a. The result is a vector with components
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(Df[a])' =

j=1

where a' denotes the it" component, of the vector a. Similarly D?f [a,b] is the action
of the second derivative D?f on the pair of vectors a,b. The result is a vector with
components

(D?*f fla,b]) al b¥.
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Contractions of higher order derivatives are similarly defined.
We write the center manifold as an embedding from R' — RV,

1
Xem(1) = v, 7 + w(t) = v, 7 + w(0)+ = wT,(O) 4. (6)
having expanded the embedding function w(7) in a Taylor series about 7 = 0, and
denoted derivatives of w with respect to 7 by subscripts. The embedding function
satisfies the boundary conditions

w(0) = 0, w.(0) = w;, =0 with w Lwv, . (7)

Here we choose w to lie in the orthogonal complement to v,.. We could use another
splitting, e.g. choose w in the range of D f . This leads to a different parameteriza-
tion of the center manifold, that is w(7) will have a different functional form. This
is illustrated in the example in §4.
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Figure 1: Center manifold W¢ and center subspace E°.



The first condition in (7), along with the form of the embedding (6), insures
that the center manifold passes through the equilibrium at the origin. The second
condition in (7) insures that the center manifold is tangent to the center subspace
E° at the equilibrium. The geometry of the construction is shown in Figure 1.

Since the center manifold is invariant under the flow, the vector field at any point
on X, must be tangent to X.,,. Hence we can write

dXCTn
dr

= o7) (vr +wr (7)) (8)

f(Xcm(T)) = a(T)

where a(7) is a real-valued function. Note that since f(0) =0,

a(0) =0 . (9)

3.1 Flow on the Center Manifold

Points on the center manifold evolve under the flow according to

y erm . chm
Xem = — T = .f(Xcm(T)) = (1{(7—)7 (10)
dr
having used (8) in the last equality. Thus
T = a(r) ; (11)

the scaling function «(7) gives the time rate of change of the embedding parameter
7 induced by the motion on the center manifold.

3.2 Solving the Embedding Equation

The embedding function w(7) and the scaling function «(7) are found by solving
the tangency condition (8) in a Taylor series expansion about 7 = (0. For the first
order term, take the derivative of (8) with respect to 7

dX, cm

dr

Df] | = Df[ve4+w;] = a7 (vp +w:) + @wer. (12)
Evaluating (12) at 7 = 0 using (7) and (9) and the fact that Dfo[v,] = 0 gives
-, =a-(0) =0 . (13)

This expresses the fact that the linear part of the motion along the center manifold
vanishes at the origin. For the second order term, we take the derivative of (12)
with respect to 7 leaving

-Df[u’TT] + -sz [‘U,«-FUJT, 1)7«—|—’w7—:|

= Qrr (Ur+w’r) + 20 Wrr + QWrrr. (14)



Evaluating this at 7 = 0 leaves
Dfolwrry] + D%fo [y 0] = rry vy (15)

Now let v; be the span of the left kernel of D fg. Left multiply (15) by v; and solve
for ar7, to obtain

Arryg = v - D2 fo[vp,v0] [ (v 0). (16)

With this expression for a;r,, (15) can be solved for w;r,

Wrry = Lil ( Qrrg Ur — D2f0 [’UM‘U,«] ) (17)
where L is the restriction of Df o to v;-, and L™! is its inverse.”
The procedure can be extended to arbitrary order. For reference the third order
terms are
v+ (3D folve, wer ] + D3 folvr. ve, vr] — 3rry (V1 - Wrry) )
Orrry = (18)

vy Uy

Wrrrg = L_l(aTTT(J?IUT + 30 Wrry — 3D2fﬂ[wrrmvr] - Dgf(][v'r« Up, IU?“])' (19)

We note that to obtain « to third order (and hence the motion on the center manifold
to third order), we need only compute w to second order. This holds similarly for
higher order calculations of «.

The reader familiar with the Liapunov-Schmidt (LS) reduction [4] will note a
similarity between the computations involved in that technique, and those in equa-
tions (12) — (19). Both the center manifold reduction and the LS reduction are used
to analyze bifurcations of equilibria. The LS reduction provides a low-dimensional,
or reduced, function whose zeroes are in one-one correspondence with the zeroes of
the vector field f. However unlike the algorithm given here, the LS reduction does
not locate the center manifold.

4 An Example: The Lorenz Equations

The Lorenz equations

T = o(y—ux)
g = pr—y—mz
z = xy—pPz

have an equilibrium at (z,y, z) = (0,0,0) with linearization

—0c o 0
Dfo=| p -1 0
0 0 -p

2The map L : vt — Range ( Dfy ) is invertible. From (15), arr v, — D% fy [vy, v ] is in Range ( D fq ).

Consequently w,,, is uniquely defined in v;-.



At p =1, Df( has right and left kernels v, = {1,1,0} and v; = {1/0,1,0} respec-
tively.
We construct the center manifold as an embedding from (7, p) into (z,y, z, p)

Xem = 0.7 + w(r, p) with w L v, (20)
subject to the tangency condition

f(Xem(T.p),p) = a(r.p) (v +w(T.p)) . (21)

Differentiating this with respect to p leaves
Dflw,)+ f, = a,(v,+w;) + aw, (22)

where f, = 0f/0p. Evaluating the derivatives at the bifurcation point (7, p) = (0, 1)
and dotting with v; gives
apo = 0.

Substituting this result into (22) and evaluating the result at the bifurcation point
leaves

Dfolw,,]=0.

Since w L v,, this requires that
Wy, = 0.

To obtain the 7p terms, we differentiate (22) with respect to 7 :

D2f [“),m v +w.]| + Df [wm] + Df, [vp, +w;] =

arp (Up +wr) + arWrp + QpWrr + G Wrrp. (23)

Evaluating this at the bifurcation point and solving for a,,, and w,,,, we find

v (Dfpo [vr]) o
. = = 24
“reo vy U, 140 (24)
L Divoloe)) = { 5= 5 0 - ©9)
W = rpy Up — oo lUr]) = , , .
Po Po Po 2(1—|—O‘)’2(1+O’)/
The terms second order in 7 are given by (16) and (17),
Orry = 0 (26)
wrr, = 40,0,2/8}. (27)

Thus to second order the center manifold is given by

: 1
Xem(T,p) = 0,7 + wep,7(p—1) + FWrro T

) () S e



To calculate the motion on the center manifold, we need the coefficient a7,
from (18). Since D? f and a7, are both zero, we have
3up - D% f olvp, werr ] _ —6o
vy Uy Bl 40)

Aqrrrg =

Finally, the term arr,, is shown to be zero by differentiating (23) with respect to
7, evaluating the resulting expression at the bifurcation point, and dotting with v;.

Including terms of order 7(p—1). 72, 72(p— 1), and 73, the motion on the center
manifold is given by

. 1 . ;
T = «ar) = 5()’,,—7,—0 ™4+ ArpoT(p—1) + ...

o 3 o

—mf —l—H—OT(p—l)... (29)

which is the normal form for a super-critical pitchfork bifurcation.

4.1 Alternative Parameterization

In the construction above, we wrote the center manifold in terms of components in
E¢ and E°! as depicted in Figure 1. The constraint w(7) L v, uniquely defines the
preimage of Df( used to solve for the coefficients in the series expansion of w(7)
(e.g. (17) and (19) ). One can, however, use any other convenient decomposition.
For example we can require w(7) € Range(Dfg) as in Figure 2. This defines a
different preimage of D f g and leads to different functional forms for w(7) and a(7).
These differences amount to a reparameterization of the center manifold.

Figure 2: Alternative parameterization of the center manifold.
For the example of the Lorenz system, writing the center manifold as

Xew(7, p) = 0,7 + @(7,p), b € Range (Df o) (30)

results in a Wz, , that differs from (25). Specifically, we find

N { —0 1 0}
Wry, = .
po (1+0)2 (1+4+0)%



The remaining coefficients, azz,. wsz,, and az,, are the same as (26), (27), and
(24) respectively. To second order, the center manifold is given by

This agrees with the expression obtained by the usual graph procedure [2, 3]. The
parameterizations in terms of 7 and 7 are related by the transformation

- 2(1+0)?—(c—1)(p—1) N
N 2(1+0)2

O((p—l)Q)) (32)

as can be verified by substituting into (28) and retaining terms of order 7, 72, and
T(p—1).

5 Summary

We have presented a technique to identify the center manifold, and the flow on
the center manifold, in a coordinate-independent manner. This is accomplished by
writing the center manifold as an embedding, rather than as a graph over the center
subspace. With this technique it is not necessary to transform the original system
to coordinates for which the linear part of the vector field is block-diagonal. This
provides a practical advantage for computation.
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