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Abstract

Stochastic optimization algorithms typically use learning rate
schedules that behave asymptotically as �
t� � ���t� The ensem	
ble dynamics 
Leen and Moody� ���� for such algorithms provides
an easy path to results on mean squared weight error and asymp	
totic normality� We apply this approach to stochastic gradient
algorithms with momentum� We show that at late times� learning
is governed by an e�ective learning rate �e� � ���
� � �� where

� is the momentum parameter� We describe the behavior of the
asymptotic weight error and give conditions on �e� that insure

optimal convergence speed� Finally� we use the results to develop
an adaptive form of momentum that achieves optimal convergence
speed independent of ���

� Introduction

The rate of convergence for gradient descent algorithms� both batch and stochastic�
can be improved by including in the weight update a �momentum� term propor	
tional to the previous weight update� Several authors 
Tugay and Tanik� �����
Shynk and Roy� ����� give conditions for convergence of the mean and covariance
of the weight vector for momentum LMS with constant learning rate� However
stochastic algorithms require that the learning rate decay over time in order to
achieve true convergence of the weight 
in probability� in mean square� or with
probability one��



This paper uses our previous work on weight space probabilities 
Leen and Moody�
���� Orr and Leen� ���� to study the convergence of stochastic gradient algo	
rithms with annealed learning rates of the form � � ���t� both with and without
momentum� The approach provides simple derivations of previously known results
and their extension to stochastic descent with momentum� Speci�cally� we show
that the mean squared weight misadjustment drops o� at the maximal rate � ��t
only if the e�ective learning rate �e� � ���
�� �� is greater than a critical value

which is determined by the Hessian�

These results suggest a new algorithm that automatically adjusts the momentum
coe�cient to achieve the optimal convergence rate� This algorithm is simpler than
previous approaches that either estimate the curvature directly during the descent

Venter� ����� or measure an auxilliary statistic not directly involved in the opti	
mization 
Darken and Moody� ������

� Density Evolution and Asymptotics

We consider stochastic optimization algorithms with weight � � RN � We con�ne
attention to a neighborhood of a local optimum �� and express the dynamics in
terms of the weight error v � � � ��� For simplicity we treat the continuous time
algorithm �

dv
t�

dt
� �
t�H � v
t�� x
t� � 
��

where �
t� is the learning rate at time t� H is the weight update function and
x
t� is the data fed to the algorithm at time t� For stochastic gradient algorithms
H � �rv E
v� x
t� �� minus the gradient of the instantaneous cost function�

Convergence 
in mean square� to �� is characterized by the average squared norm
of the weight error E � j v j� � � Trace C where

C �

Z
dNv v vT P 
v� t� 
��

is the weight error correlation matrix and P 
v� t� is the probability density at v and
time t� In 
Leen and Moody� ���� we show that the probability density evolves
according to the Kramers	Moyal expansion

�P �v� t�

�t
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�Although algorithms are executed in discrete time� continuous time formulations are
often advantagous for analysis� The passage from discrete to continuous time is treated
in various ways depending on the needs of the theoretical exposition� Kushner and Clark
����� de�ne continous time functions that interpolate the discrete time process in order
to establish an equivalence between the asymptotic behavior of the discrete time stochastic
process� and solutions of an associated deterministic di�erential equation� Heskes et al�
������ draws on the results of Bedeaux et al� ������ that link �discrete time� random
walk trajectories to the solution of a �continuous time� master equation� Heskes� master
equation is equivalent to our Kramers�Moyal expansion �Leen and Moody� ������



where Hjk denotes the jthk component of the N 	component vector H � and h� � �ix
denotes averaging over the density of inputs� Di�erentiating 
�� with respect to
time� using 
� and integrating by parts� we obtain the equation of motion for the
weight error correlation

dC

dt
� �
t�

Z
dNv P 
v� t�

�
v
�
H
v� x�T

�
x
� hH
v� x� ix v

T
�
�

�
t��
Z

dNv P 
v� t�
�
H
v� x�H
v� x�T

�
x

� 
��

��� Asymptotics of the Weight Error Correlation

Convergence of v can be understood by studying the late time behavior of 
���
Since the update function H
v� x� is in general non	linear in v� the time evolution
of the correlation matrix Cij is coupled to higher moments E � vi vj vk � � � � of the
weight error� However� the learning rate is assumed to follow a schedule �
t� that
satis�es the requirements for convergence in mean square to a local optimum� Thus
at late times the density becomes sharply peaked about v � ��� This suggests
that we expand H
v� x� in a power series about v � � and retain the lowest order
non	trivial terms in 
�� leaving�

dC

dt
� ��
t�

�

RC� � 
C RT �

�
� �
t�� D � 
��

where R is the Hessian of the average cost function h E ix� and

D �
�
H
�� x�H
�� x�T

�
x


��

is the di�usion matrix� both evaluated at the local optimum ��� 
Note that R
T �

R�� We use 
�� with the understanding that it is valid for large t� The solution to

�� is

C
t� � U
t� t��C
t��U
T 
t� t�� �

Z t

t�

d� �
��� U
t� �� D UT 
t� �� � 
��

where the evolution operator U
t�� t�� is

U
t�� t�� � exp

�
�R

Z t�

t�

d� �
��

	
� 
��

We assume� without loss of generality� that the coordinates are chosen so that R is
diagonal 
D won�t be� with eigenvalues �i� i � � � � �N � Then with �
t� � ���t we
obtain

E � j v j�� � Trace �C
t� � �
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�In general the density will have nonzero components outside the basin of ��� We are
neglecting these� for the purpose of calculating the second moment of the the local density
in the vicinity of ���



We de�ne

�crit �
�

��min


���

and identify two regimes for which the behavior of 
�� is fundamentally di�erent�

�� �� 	 �crit� E � jvj� � drops o� asymptotically as ��t�

�� �� 
 �crit� E � jvj� � drops o� asymptotically as
�

�
t

����� �min �

i�e� more slowly than ��t�

Figure � shows results from simulations of an ensemble of ���� networks trained by
LMS� and the prediction from 
��� For the simulations� input data were drawn from
a gaussian with zero mean and variance R � ���� The targets were generated by
a noisy teacher neuron 
i�e� targets ���x � �� where h�i � � and h��i � ���� The
upper two curves in each plot 
dotted� depict the behavior for �� 
 �crit � ��� �
The remaining curves 
solid� show the behavior for �� 	 �crit�
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Fig��� LEFT � Simulation results from an ensemble of ���� one�dimensional
LMS algorithms with R 	 ���� �� 	 ��� and � 	 ���t� RIGHT � Theo�
retical predictions from equation ���� Curves correspond to �top to bottom�
�� 	 ���� ���� ���� ��� ���� ��� �

By minimizing the coe�cient of ��t in 
��� the optimal learning rate is found to
be �opt � ���min� This formalism also yields asymptotic normality rather simply

Orr and Leen� ������ These conditions for �optimal� 
i�e� ��t� convergence of
the weight error correlation and the related results on asymptotic normality have
been previously discussed in the stochastic approximation literature 
Darken and
Moody� ����� Goldstein� ����� White� ����� and references therein� � The present
formal structure provides the results with relative ease and facilitates the extension
to stochastic gradient descent with momentum�

� Stochastic Search with Constant Momentum

The discrete time algorithm for stochastic optimization with momentum is�

v
t� �� � v
t� � �
t� H �v
t�� x
t�� � � �
t� 
���



�
t� �� � v
t� ��� v
t�

� �
t� � �
t� H �v
t�� x
t�� � 
� � �� �
t�� 
���

or in continuous time�

dv
t�

dt
� �
t� H �v
t�� x
t�� � � �
t� 
��

d�
t�

dt
� �
t� H �v
t�� x
t�� � 
� � �� �
t�� 
���

As before� we are interested in the late time behavior of E � jvj� �� To this end� we
de�ne the �N 	dimensional variable Z � 
v���T and� following the arguments of
the previous sections� expand H �v
t�� x
t�� in a power series about v � � retaining
the lowest order non	trivial terms� In this approximation the correlation matrix
C � E�ZZT � evolves according to

dC

dt
� KC � CKT � �
t�� D 
���

with

K �

�
��
t� R �I
��
t�R 
� � ��I

�
� D �

�
D D
D D

�
� 
���

I is the N �N identity matrix� and R and D are de�ned as before� The evolution
operator is now

U
t�� t�� � exp

�Z t�

t�

d� K
��

	

���

and the solution to 
��� is

C � U
t� t�� C
t�� U
T

t� t�� �

Z t

t�

d� ��
�� U
t� �� D U
T

t� �� 
���

The squared norm of the weight error is the sum of �rst N diagonal elements of C�
In coordinates for which R is diagonal and with �
t� � ���t� we �nd that for t� t�

E�jvj�� �
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This reduces to 
�� when � � �� Equation 
��� de�nes two regimes of interest�

�� ���
�� �� 	 �crit� E�jvj
�� drops o� asymptotically as ��t�

�� ���
�� �� 
 �crit� E�jvj
�� drops o� asymptotically as�

�

t

� ����min
���

�

i�e� more slowly than ��t�



The form of 
��� and the conditions following it show that the asymptotics of
gradient descent with momentum are governed by the e�ective learning rate

�e� �
�

�� �
�

Figure � compares simulations with the predictions of 
��� for �xed �� and various
�� The simulations were performed on an ensemble of ���� networks trained by
LMS as described previously but with an additional momentum term of the form
given in 
���� The upper three curves 
dotted� show the behavior of E�jvj�� for
�e� 
 �crit� The solid curves show the behavior for �e� 	 �crit�

The derivation of asymptotic normality proceeds similarly to the case without mo	
mentum� Again the reader is referred to 
Orr and Leen� ����� for details�
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Fig��� LEFT � Simulation results from an ensemble of ���� one�dimensional LMS al�
gorithms with momentum with R 	 ���� �� 	 ���� and �� 	 ���� RIGHT �
Theoretical predictions from equation ����� Curves correspond to �top to bottom�
� 	 ���� ���� ���� ���� ���� �� �

� Adaptive Momentum Insures Optimal Convergence

The optimal constant momentum parameter is obtained by minimizing the coe�	
cient of ��t in 
���� Imposing the restriction that this parameter is positive� gives

�opt � max
�� �� ���min�� 
���

As with �opt� this result is not of practical use because� in general� �min is unknown�

For �	dimensional linear networks� an alternative is to use the instantaneous esti	

mate of �� b�
t� � x�
t� where x
t� is the network input at time t� We thus de�ne
the adaptive momentum parameter to be

�adapt � max
�� �� ��x
�� 
�	dimension�� 
���

An algorithm based on 
��� insures that the late time convergence is optimally fast�
An alternative route to achieving the same goal is to dispense with the momentum
term and adaptively adjust the learning rate� Venter 
����� proposed an algorithm

�E�jvj�� diverges for j�j 	 �� For �� 
 � 
 �� E�jvj�� appears to converge but oscil�
lations are observed� Additional study is required to determine whether � in this range
might be useful for improving learning�



that iteratively estimates � for �	D algorithms and uses the estimate to adjust ���
Darken and Moody 
����� propose measuring an auxiliary statistic they call �drift�
that is used to determine whether or not �� 	 �crit� The adaptive momentum
scheme generalizes to multiple dimensions more easily than Venter�s algorithm�
and� unlike Darken and Moody�s scheme� does not involve calculating an auxiliary
statistic not directly involved with the minimization�

A natural extension to N dimensions is to de�ne a matrix of momentum coe�cients�
 � I��� x x

T � where I is the N �N identity matrix� By zeroing out the negative
eigenvalues of � we obtain the adaptive momentum matrix

�adapt � I � c x xT � where c � min
��� ��
x
Tx��� 
���
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Fig��� Simulations of ��D LMS with ���� networks initialized at v� 	 ���� ��� and with
�� 	 �� �� 	 ��� �� 	 �� and �crit 	 ����� LEFT� � 	 �� RIGHT � � 	 �adapt� Dashed
curves correspond to adaptive momentum�

Figure  shows that our adaptive momentum not only achieves the optimal con	
vergence rate independent of the learning rate parameter �� but that the value of
log
E�jvj��� at late times is nearly independent of �� and smaller than when mo	
mentum is not used� The left graph displays simulation results without momentum�
Here� convergence rates clearly depend on �� and are optimal for �� 	 �crit � �����
When �� is large there is initially signi�cant spreading in v so that the increased
convergence rate does not result in lower log
E�jvj��� until very late times 
t �

�
�����

The graph on the right shows simulations with adaptive momentum� Initially� the
spreading is even greater than with no momentum� but log
E�jvj��� quickly decreases
to reach a much smaller value� In addition� for t �

�
��� the optimal convergence

rate 
slope�	�� is achieved for all three values of �� and the curves themselves lie
almost on top of one another� In other words� at late times 
t �

�
���� the value of

log
E�jvj��� is independent of �� when adaptive momentum is used�

� Summary

We have used the dynamics of the weight space probabilities to derive the asymp	
totic behavior of the weight error correlation for annealed stochastic gradient algo	
rithms with momentum� The late time behavior is governed by the e�ective learning
rate �e� � ���
�� ��� For learning rate schedules ���t� if �e� 	 ��
��min�� then

the squared norm of the weight error v � ���� falls o� as ��t� From these results
we have developed a form of momentum that adapts to obtain optimal convergence
rates independent of the learning rate parameter�
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