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Introduction

Of great interest to forecasters of the economy is predicting the “business cycle”, or the overall level of
economic activity. The business cycle affects society as a whole by its fluctuations in economic quantities
such as the unemployment rate (the misery index), corporate profits (which affect stock market prices),
the demand for manufactured goods and new housing units, bankruptcy rates, investment in research
and development, investment in capital equipment, savings rates, and so on. The business cycle also
affects important socio-political factors such as the the general mood of the people and the outcomes of
elections.

A scientific model of business cycle dynamics is not yet available due to the complexities of the
economic system, the impossibility of doing controlled experiments on the economy, and the non-
quantifiable factors such as mass psychology and sociology which influence economic activity. Given
the absence of reliable or convincing scientific models of the business cycle, economists have resorted to
analyzing and forecasting economic activity by using the empirical “black box” techniques of standard
linear time series analysis.

We have developed robust predictive models of the business cycle based on neural networks which
outperform the standard linear AR models used by most economists.

Economic statistics for the U.S. such as the national income and product accounts and the indices of
leading, coincident, and lagging indicators have been collected and computed by the Bureau of Economic
Analysis of the Department of Commerce since 1946.

The standard measures of economic activity used by economists to track the business cycle are the
Gross Domestic Product (GDP)1 and the Index of Industrial Production (IP). GDP is a broader measure
of economic activity than is IP. However, GDP is computed by the Department of Commerce on only a
quarterly basis, while Industrial Production is computed and published monthly.

We have focussed on the Index of Industrial Production rather than GDP for three reasons. First,
being published monthly, there is more data available for Industrial Production than for GDP. Second,
the IP series is more timely than GDP and is therefore watched more closely by business, financial, and
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1In 1990, GDP replaced Gross National Product (GNP) as a standard measure of domestic economic activity. GNP includes
so-called “factor payments” to and “factor income” from foreign sources which are not included in GDP. These factors relate to
interest, dividends, and reinvested earnings by foreign subsidiaries of US companies. As such, they are not really part of the
domestic economy. GDP also includes the consumption of fixed capital, and important effect which is not captured by GNP.
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economic professionals for making business, trading, or policy decisions. Third, the IP series is more
interesting and challenging from a time series forecasting standpoint than is GDP.

Predicting the U.S. Index of Industrial Production

Our experiments on forecasting the monthly U.S. Index of Industrial Production include both regression
and classification approaches and a variety of both linear and nonlinear techniques. In the interest of
brevity, however, we present only a summary of our regression results for a standard benchmark. The
results presented here are preliminary.

Our standard benchmark is to predict the monthly Index of Industrial Production for January 1980 to
January 1990 for models trained on January 1950 to December 1979.

Rather than predict the actual index, which is non-stationary, we constructed models to predict the
rates of return of the index on six time scales: one month, two months, three, six, nine, and twelve
months. The rates of return are close enough to being stationary the enable construction of predictive
models. However, we did find conclusive evidence of nonstationarity for the rates of return series.2 A
summary of our preliminary results is shown in Table 1 below.3

We computed and compared five predictors: a trivial predictor, a univariate linear AR model, a
multivariate linear regression model, and two types of neural net models.

The trivial predictors estimate the X-month rate of return for any time during the test period as
the average X-month rate of return during the training period. If the series were truly stationary, the
normalized average squared error for the trivial predictors on the test set would be very close to 1.00.
(Note that the normalized prediction errors are computed by dividing the average squared error by the
test set variance.) However, we see in Table 1 that their performance is slightly worse (by 4% to 12%).
This is due to nonstationarities (shifting means) in the rate of return series.

The univariate AR model uses past values of just the one month rate of return series for computing
one step predictions. The order of the AR model, fourteen, was selected via the minimum AIC criterion.
Predictions on time horizons greater than one month are obtained by iterating the one step predictions
forward. With the exception of the twelve month iterated predictions, the AR(14) model outperformed
the trivial predictor.

The remaining three models, linear regression and two flavors or neural nets, were fit to a data set
containing 30 input series. The 30 input series consisted of five filtered versions of each of six raw input
series. The six raw series were the Index of Leading Indicators, housing starts, the money supply M2,
the S&P 500 Index, and two variables related to interest rates.

The linear regression models were fit to make direct predictions on the various time horizons on the
basis of a subset of the 30 available input variables. The variable subsets were selected via a stepwise
regression algorithm and contained four to six variables. The linear regression models outperform
both the AR(14) models and trivial predictors for one, two, and three month predictions, but perform
significantly worse for six, nine, and twelve month predictions. The poor performance on the longer
prediction horizons could be due to nonlinearities in the problem, poor extrapolation performance, or
spurious regressions. The excellent performance of the neural networks suggests that nonlinearity is a
likely explanation.

We fit two layer neural network regression models (with a nonlinear internal layer and a linear output
layer) using two simulators, neuz and proj. The neuz nets were trained using stochastic gradient
descent, early stopping via a validation set, and the new PCA Regularization method (see Levin, Leen,

2The issue of nonstationarity will be discussed in greater detail elsewhere.
3The table presents normalized prediction errors, which are average squared errors on the test set divided by the test set variance.

Note that since these variances are different for each prediction horizon, the normalized errors for the different horizons are not
directly comparable.)
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and Moody 1993). The proj nets were trained using the Levenburg-Marquardt algorithm, and network
pruning after training was accomplished via the methods described in Moody and Utans (1991). The
internal layer nonlinearities for the neuz nets were sigmoidal, while some of the proj nets included
quadratic nonlinearities as described in Moody and Yarvin (1991). Both simulators utilized robust error
measures similar to the Huber measure.

As is apparent from Table 1, both simulators produced networks which significantly outperformed
the linear regression, AR(14), and trivial predictors for all prediction horizons. The proj nets performed
best for the one and two month predictions, while the neuz nets performed extremely well for three,
six, nine, and twelve month predictions. Relative to the trivial predictors, the best neural nets yielded
reductions in forecast errors of from 28 % to 43 %. It should be emphasized that these results are
preliminary, that our work is continuing, and that we expect to obtain even better neural net results.

Prediction Trivial Univariate Multivariate neuz Nets proj Nets
Horizon (Average of AR(14) Model Linear Reg. w/ PCA Pruning w/ BDI Pruning
(Months) Training Set) Iterated Pred. Direct Pred. Direct Pred. Direct Pred.

1 1.04 0.90 0.87 0.81 0.75
2 1.07 0.97 0.85 0.77 0.76
3 1.09 1.07 0.96 0.75 0.83
6 1.10 1.07 1.38 0.73 0.96
9 1.10 0.96 1.38 0.67 0.90

12 1.12 1.23 1.20 0.64 0.73

Table 1: Comparative summary of normalized prediction errors for rates of return on Industrial Production
for five model types for the Jan 1950 - Dec 1979 / Jan 1980 - Jan 1990 benchmark problem. The neural
network models computed by our simulatorsneuz and proj significantly outperform the linear models.
(See text for a description of the normalized prediction errors.)

As is apparent from these results, the U.S. Index of Industrial Production exhibits significant nonlin-
earity, and by using state of the art neural network learning, regularization, and pruning methods, it is
possible to obtain substantial forecast improvements over standard linear techniques.
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