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INTRODUCTION

The rate of convergence for gradient descent algorithms, both batch and stochastic, can be improved by including in the
weight update a “momentum” term proportional to the previous weight update. Several authors [1, 2] give conditions
for convergence of the mean and covariance of the weight vector for momentum LMS with constant learning rate.
However stochastic algorithms require that the learning rate decay over time in order to achieve true convergence of
the weight (in probability, in mean square, or with probability one).

This paper uses the dynamics of weight space probabilities [3, 4] to address stochastic gradient algorithms with
learning rate annealing and momentum. This theoretical framework provides a simple, unified treatment of asymptotic
convergence rates and asymptotic normality. The results for algorithms without momentum have been previously
discussed in the literature. Here we gather those results under a common theoretical structure and extend them to
stochastic gradient descent with momentum.

DENSITY EVOLUTION AND ASYMPTOTICS

We consider stochastic optimization algorithms with weight � � RN . We confine attention to a neighborhood of a
local optimum �� and express the dynamics in terms of the weight error v � � � ��. For simplicity we treat the
continuous time algorithm 1

dv�t�

dt
� ��t�H � v�t�� x�t� � (1)

where ��t� is the learning rate at time t, H : RN �RK � RN is the weight update function and x�t� is the data fed
to the algorithm at time t. For stochastic gradient algorithms H � �rv E�v� x�t� �, the gradient of the instantaneous
cost function.

1Although algorithms are executed in discrete time,continuous time formulations are often advantagous for analysis.
The passage from discrete to continuous time is treated in various ways depending on the needs of the theoretical
exposition. Kushner and Clark [5] define continous time functions that interpolate the discrete time process in order to
establish an equivalence between the asymptotic behavior of the discrete time stochastic process, and solutions of an
associated deterministic differential equation. Heskes [6] draws on the results of Bedeaux et al. [7] that link (discrete
time) random walk trajectories to the solution of a (continuous time) master equation. Heskes’ master equation is
equivalent to our Kramers-Moyal expansion (3) below.



Convergence (in mean square) to �� is characterized by the average squared norm of the weight error E � j v j2 � �
Trace C where

C �
Z

dNv v vT P �v� t� (2)

is the weight error correlation matrix and P �v� t� is the probability density at v at time t. In [3] we show that the
probability density evolves according to the Kramers-Moyal expansion
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where Hjk denotes the jthk component of the N -component vector H , and h� � �ix denotes averaging over the density
of inputs. Differentiating (2) with respect to time, using (3) and integrating by parts, we obtain the equation of motion
for the weight error correlation
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Asymptotics of the Weight Error Correlation

We wish to study the late time behavior of (4). Since the update functionH�v� x� is in general non-linear in v, the time
evolution of the correlation matrix Cij is coupled to higher moments E � vi vj vk � � � � of the weight error. However,
the learning rate is assumed to follow a schedule ��t� that satisfies the requirements for convergence in mean square to
a local optimum. Thus at late times the density becomes sharply peaked about v � 02. This suggests that we expand
H�v� x� in a power series about v � 0 and retain the lowest order non-trivial terms in (4) leaving:

dC

dt
� ���t�

�
�RC� � �C RT �

�
� ��t�2 D � (5)

where R is the Hessian of the average cost function h E ix, and

D � �
H�0� x�H�0� x�T

�
x

(6)

is the diffusion matrix, both evaluated at the local optimum��. (Note thatRT � R.) We use (5) with the understanding
that it is valid for large t. The solution to (5) is

C�t� � U�t� t0�C�t0�U
T �t� t0� �

Z t

t0

d� ����2 U�t� �� D UT �t� �� � (7)

where the evolution operator U�t2� t1� is

U�t2� t1� � exp

�
�R

Z t2

t1

d� ����

	
� (8)

2In general the density will have nonzero components outside the basin of ��. We are neglecting these, for the
purpose of calculating the second moment of the the local density in the vicinity of ��.



We assume, without loss of generality, that the coordinates are chosen so that R is diagonal (D won’t be) with
eigenvalues �i� i � 1 � � �N . Then with ��t� � �0�t we obtain

E � j v j2� � Trace �C�t� � �
NX
i�1
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We define

�crit � 1
2�min

(10)

and identify two regimes for which the behavior of (9) is fundamentally different:

1. �0 � �crit: E � jvj2 � drops off asymptotically as 1�t.

2. �0 	 �crit: E � jvj2 � drops off asymptotically as

�
1
t

��2�0 �min �

i.e. more slowly than 1�t.

Figure 1 shows results from simulations of an ensemble of 2000 networks trained by LMS, and the prediction
from (9). For the simulations, input data were drawn from a gaussian with zero mean and variance R � 1�0. The
targets were generated by a noisy teacher neuron. The upper two curves in each plot (dotted) depict the behavior for
�0 	 �crit � 0�5 . The remaining curves (solid) show the behavior for �0 � �crit.
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Fig.1: LEFT – Simulation results from an ensemble of 2000 one-dimensional
LMS algorithms with R � 1�0, D � 1�0 and � � �0�t. RIGHT – The-
oretical predictions from equation (9). Curves correspond to (top to bottom)
�0 � 0.2, 0.4, 0.6, 0.8, 1.0, 1.5 .

Asymptotic Normality

This formalism yields asymptotic normality rather simply. At late times, ��t� becomes very small and one can truncate
the Kramers-Moyal expansion (3) to second order in �, leaving a Fokker-Planck equation. As the density becomes
peaked up about v � 0, the linear part of the drift and the constant part of the diffusion dominate and the dynamics is
governed by
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where repeated indices are summed over3. Next, we define a time-dependent coordinate transformation

yi � hij�t� vj (12)

P �v� t� � P̃ �y� t� h � (13)

where h �Det �hij�t��. The Fokker-Planck equation, expressed in terms of the y variables, reads
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Depending on �0 and R, different choices for hij are required to obtain stationary solutions. Summarizing the results
(in one dimension for simplicity)

1. �0 � �crit:

y � v
p
t is asymptotically normal with variance �2

0 D��2�0R � 1�.

2. �0 � �crit:

y � v
p
t�Ln�t� is asymptotically normal with variance �2

0 D.

3. �0 	 �crit:

Using the new variable y � v t��0 R� the drift term in the Fokker-Planck equation (14)
vanishes, leaving a pure diffusion process. The diffusion coefficient goes to zero as
t2��0 R�1�. Thus the density P̃ �y� freezes at late times and we expect y to approach some
non-trivial random variable. Though not rigorous, this argument is consistent with the
results of Major and Revesz [9, and references therein].

The conditions for “optimal” (i.e. 1�t) convergence of the weight error correlation, and the related results on
asymptotic normality were previously discussed in the stochastic approximation literature [10, 11, and references
therein]. The present formal structure provides the results with relative ease and facilitates the extension to stochastic
gradient descent with momentum.

STOCHASTIC SEARCH WITH MOMENTUM

The discrete time algorithm for stochastic optimization with momentum is:

v�t� 1� � v�t� � ��t� H �v�t�� x�t�� � � Ω�t� (15)

Ω�t� 1� � v�t� 1�� v�t�

� Ω�t� � ��t� H �v�t�� x�t�� � �� � 1� Ω�t�� (16)

3Equation (11) can be derived rigorously by writing the weight error as the sum of deterministic and stochastic
contributions v � � �

p
� 
 and using these coordinates in the Kramers-Moyal expansion (3). This prescription

corresponds to Van Kampen’s system size expansion [6, 8]. The deterministic piece � evolves by descent along
the average or true gradient, approaching zero exponentially. The lowest order (in �) piece of the Kramers-Moyal
expansion for the density of the fluctuations P �
� t� is equivalent to (11).



or in continuous time,

dv�t�

dt
� ��t� H �v�t�� x�t�� � � Ω�t� (17)

dΩ�t�

dt
� ��t� H �v�t�� x�t�� � �� � 1� Ω�t�� (18)

Weight Error Correlation

As before, we are interested in the late time behavior of E � jvj2 �. To this end, we define the 2N -dimensional variable
Z � �v�Ω�T and, following the arguments of the previous sections, expand H �v�t�� x�t�� in a power series about
v � 0 retaining the linear part of the drift, and the constant part of the diffusion matrix. In this approximation the
correlation matrix C � E�ZZT � evolves according to

dC

dt
� KC � CKT � ��t�2 D (19)

with

K �
� ���t� R �I
���t�R �� � 1�I

�
� D �

�
D D
D D

�
� (20)

I is the N �N identity matrix, and R and D are defined as before.
The evolution operator is now

U�t2� t1� � exp

�Z t2

t1

d� K���

	
(21)

and the solution to (19) is

C � U�t� t0� C�t0� U
T
�t� t0� �

Z t
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T
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The squared norm of the weight error is the sum of first N diagonal elements of C. In coordinates for which R is
diagonal and with ��t� � �0�t, we find that for t� t0
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This reduces to (9) when � � 0. Equation (23) defines two regimes of interest:

1. �0��1� �� � �crit: E�jvj2� drops off asymptotically as 1�t.

2. �0��1� �� 	 �crit: E�jvj2� drops off asymptotically as

�
1
t

� 2�0�min
1��

�

i.e. more slowly than 1�t.

The form of (23) and the conditions following it show that the asymptotics of gradient descent with momentum are
governed by the effective learning rate

�eff �
�

1� �
�

Figure 2 compares simulations with the predictions of (23) for fixed �0 and various �. The simulations were
performed on an ensemble of 2000 networks trained by LMS as described previously but with an additional momentum



term of the form given in (15). The upper three curves (dotted) show the behavior of E�jvj 2� for �eff 	 �crit. The
solid curves show the behavior for �eff � �crit.
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Fig.2: LEFT – Simulation results from an ensemble of 2000 one-dimensional LMS
algorithms with momentum with R � 1�0, D � 1�0, and �0 � 0�2. RIGHT –
Theoretical predictions from equation (23). Curves correspond to (top to bottom)
� � 0.0, 0.4, 0.5, 0.6, 0.7, 0.8 .

Asymptotic Normality

The derivation of asymptotic normality proceeds similarly to the case without momentum. One first makes a (time-
dependent) transformation into coordinates that diagonalize the driftK. The coefficients of the resulting Fokker-Planck
equation are expanded in powers of �1�t� and terms dominant at large t are retained. One finds that if

�eff0
� �0

1� �
�

1
2�min

then
p
t v is asymptotically normal with variance

�eff0
2 D

2R�eff0
� 1

�

DISCUSSION

We have used the dynamics of the weight space probabilities to derive the asymptotic behavior of densities and weight
error correlation for annealed stochastic gradient algorithms with momentum. The late time behavior is governed by
the effective learning rate �eff � ���1 � ��. For learning rate schedules �0�t, if �0 eff � 1��2�min�, then the
squared norm of the weight error v � � � �� falls off as 1�t and

p
t v is asymptotically normal.
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