Abstract

This report constitutes a preliminary definition of a new, high-level program-
ming language called ADL. It uses the mathematical concept of structure
algebras as its unit of modularity. When algebras are used to specify pro-
grams, control structure is fixed first and data structure, or representations,
second. There is no explicit recursion or iteration construct in ADL. Control
is determined by combinators applied to inductively defined algebras. An
intended use of ADL is to provide computational semantics of specialized
software design languages.

An algebra in ADL can be interpreted in various monads, a particular
variety of algebras that has been found useful in programming. ADL also
makes use of coalgebras, a concept dual to that of algebras. With coalgebras,
iterative control structures typical of search algorithms can be specified.

There is a strong notion of type in ADL, guaranteeing that all well-typed
programs terminate. This allows us to use sets as ADL’s semantic domain
and to provide ADL with an equational logic. However, to check the type
correctness of an expression, there can be proof obligations that cannot be
discharged mechanically. A benefit of the equational logic is that an ADL
program is amenable to transformation based upon the equational theories
of its algebras. Transformations are not discussed in this report, however.

Algebraic Design Language
(Preliminary definition)

Richard B. Kieburtz and Jeffrey Lewis
Pacific Software Research Center
Oregon Graduate Institute
of Science & Technology
P.O. Box 91000
Portland, OR 97291-1000 USA

January 14, 1994

1 Introduction

ADL—Algebraic Design Language—is a higher-order software specification language in which
control is expressed through a family of type-parametric combinators, rather than through ex-
plicitly recursive function definitions. ADL is based upon the mathematical concept of structure
algebras and coalgebras. The declaration of an algebraic signature specifies a variety of struc-
ture algebras'. A signature declaration implicitly defines the terms of a particular algebra,
the free term algebra of the signature, which corresponds to a datatype in a typed, functional
programming language such as ML, Haskell or Miranda.

Classes of coalgebras are declared by record signatures. The free coalgebras correspond
to infinite records, and have no direct analogy in most conventional programming languages,
although streams, which can be created in lazy functional languages, provide one such instance.

The functions definable in ADIL are the A-definable morphisms of such algebras and coalge-
bras. Properties of such functions can be proved by applying rules of inductive (or co-inductive)
inference dictated by the structure of the underlying signature.

There are related studies of the use of higher-order combinators for theoretical programming
[MFP9I1, Fok92], however, none has yet been incorporated into a practical system for program
development. The origin of such techniques appears to lie in the work of the Squiggol school
[Bir86, Bir88, Mee&6], subsequently influenced by a thesis by Hagino [Hag87] in which datatype
morphisms are generalized in a categorical framework. A categorical programming language
called Charity [CS92] embodies inductive and coinductive control structures based upon a
categorical framework. The characterization of datatypes as structure algebras (and coalgebras)
[Mac71] can be attributed to Hagino.

ADL has syntax similar to that of the ML language family. Like Standard ML, it consists
of a core language augmented by a module structure. ADL modules, called functors, are

abstracted with respect to structure algebras or coalgebras. The functor construct in ADL

YA wvarietyis a class of algebras that have a common signature.

indeed corresponds to the categorical notion of functor, unlike the like-named construct of
Standard ML.

Unlike Standard ML, ADL has no ref types and has no rec definitions. ADL can be given a
simple semantics over sets. However, domain sets are subject to logically formulated restriction,
and complete type-checking of ADL programs is only semi-decidable. The semantics of ADL
does not rely upon fixpoints and does not require domains of CPQ’s as an underlying structure,
although such an interpretation is certainly possible.

The computational content of ADL can be translated via the semantic equations given
in its metalanguage into a first-order, call-by-value functional language with fixpoints and
exceptions that we call BDL—Basic Domain Language. BDL has no higher-order functions
and no explicit abstraction (i.e. it has no fn expressions, as SML does). However, it does allow
recursive definitions of first-order functions. BDL has a conventional, denotational semantics
expressed in terms of domains. It may be thought of as the “machine language” of an abstract

machine capable of evaluating ADL (and other languages as well).

2 Algebras, Types and signatures

ADL is a higher-order, typed language whose type system is inspired by concepts from the
theory of order-sorted algebras, from Martin-L6f’s type theory and from the Girard-Reynolds
second-order lambda calculus. While ADL does not provide the full generality of the second-
order lambda calculus, it does distinguish between the names of types and the semantics of
types and it contains combinators that are indexed by type names. Its type system is sufficiently
rich that type-checking is not known to be decidable.

Nevertheless, the ADL type system is amenable to an abstract interpretation that is similar
to the Hindley-Milner system with consistent extensions. Type inference in the Hindley-Milner
system, while of exponential complexity in the worst case, has been shown to be feasible in
practice through years of experience with its use in the ML family of languages. The Hindley-

Milner system, which embodies a structural notion of type, guarantees the slogan

“Well-typed programs don’t go wrong”.

This means that programs which satisfy the structural typing rules respect the signatures of
multi-sorted algebras—integer data are never used as reals or as functions, for instance. ADL

adds to the structural typing restrictions the further requirement that
“Well-typed programs always terminate”.

This implies that the type system accommodates the precise description of sets that consti-
tute the domains of functions definable in ADL. Accurate type-checking in ADL requires the
construction of proofs of propositions. This task is made substantially easier than it would be
in an untyped linguistic framework by the underlying approximation furnished by structural
typings.

In Standard ML and related languages, the Hindley-Milner type system is extended with
datatype declarations. A datatype declaration names a type and specifies a finite set of data
constructors. A datatype name may have one or more type variables as parameters, and
thus actually names a type former. When a type variable is introduced as a parameter in a
datatype declaration, the variable is bound by abstraction, rather than universally quantified.
The binding occurrence of an abstracted type variable is its occurrence in the left hand side
of a datatype definition. Application of a type former to a type expression can be understood
syntactically, as the substitution of the argument expression for all occurrences of the type
variable in the datatype declaration.

In ADL, datatype declarations are generalized to signature declarations that specify alge-
braic varieties. Following the conventions of multi-sorted algebras, we call the names of types

and type formers sorts. The generalization can be summarized in the following table:

Parameterized datatypes Varieties

type algebra
type former sort
data constructor operator

The arity is a syntactic property of a sort. The arity indicates how to form type expressions
from sorts. A sort with nullary arity, designated by #, is said to be saturated. A sort with
non-nullary arity, designated by % — #, (*,%) — %, (*,%,%) — *,...1is said to be unsaturated.

An unsaturated sort, s, can form a saturated sort expression by applying it to a tuple that

consists of as many saturated sort expressions as there are asterisks to the left of the arrow in
the arity of s. A type name in ADL is a saturated sort expression. Type variables range over
saturated sort expressions.

ADL departs significantly from functional programming languages such as SML by provid-
ing declarations of signatures that define classes of structure algebras, not simply datatypes.
An algebraic signature consists of a finite set of operator names, together with the type of the
domain of each operator. The codomain of an operator is the carrier type for each particular

algebra.

2.1 Some familiar algebras

Where we would write the declaration of a list datatype in Standard ML as
datatype ’a list = nil | cons of (’a * ’a list)

a corresponding declaration of a family of list-algebras in ADL is written as:
signature List{type c; list(a)/c = {$nil, $cons of (a * c)}}

This declares List{} to be the name of a class of algebras for which there is defined a single
unsaturated sort, list : * — x. The list-sorted algebras have a signature parametric on a type
represented by the variable a. In the signature, the type variable ¢ is used as the name of the

carrier type. The signature consists of a pair of operator names, with typing

type a, ¢ & $nil: c
$cons:a x ¢ — ¢
Properly, the operator $nil could have been given a function type, 1 — ¢, by declaring it as
“$nil of 17. Since 1 is a singleton set, every function in the type 1 — ¢ is isomorphic to an
element in c.
Operator names always begin with ‘$” to distinguish them from other identifiers. A concrete
algebra is specified by a structure that contains bindings for the carrier type and for each

operator of the algebra.

Each signature declaration implicitly defines one specific datatype. This is the type of free
terms, whose operators are the free constructors of the signature (just as for SML datatypes)
and whose elements are the terms constructed by well-typed applications of these constructors.
The names of the data constructors of the datatype of free terms are derived from the names
of operators in the signature by dropping the initial ‘$’ symbol. As a convention, we shall also

capitalize the initial letter of the name of a data constructor.

2.2 Structure algebras

Definition 2.1 : Let T' be a parameterized signature. A T-structure algebra (or T-algebra,
for short) is a pair (¢, h), where ¢ is a type called the carrier of the algebra and h: T(c) — cis
called its structure function.

a

An important special case of a T-algebra occurs when the elements of the signature are
data constructors. Data constructors are unconstrained by equational laws. The set of terms
generated from values of a type a by well-typed applications of the data constructors of T
constitutes a type that we call T'(a). Under suitable constraints on the signature 7', a type
T(a) is the carrier of a T-algebra that is unique modulo the isomorphism class of the parameter,
a. This is called the free term algebra.

A T-algebra morphism is a function that maps one T-algebra to another. This notion can
be made precise, but we need some notation to express it. The meaning of T" as a parameterized
signature can be extended to define a signature as the mapping of a function. The following

definitions have been specialized to the case of a single-sorted signature.

Definition 2.2 : Let f:a — b and let ¢ be the (single) sort and kq, ..., K, be the operator
names of the signature 7'. then map_t f : t(a) — ¢(b) is defined as follows:

map_t f = Ax. case x of

Hi(wlv o '7$mi) = Hi(ylv o 7ym,)
fz; ifz;:a
map_t f x; ifz;:t(a)
where y; = < map_s(map_t f)z; if x;:s(t(a)) where s is a l-unsaturated

sort of a signature 7’
; if #; : s’ where s’ is a saturated sort

Definition 2.3 : Let ¢ be the (single) sort of a signature T'. A T-algebra morphism f:a — b
satisfies the commuting diagram below:

Ha) Py

a — b

Example 2.1 : A [list-algebra morphism. Let exp2 = An.2", and let sum and product be the
functions that reduce a list of non-negative integers by addition and multiplication, respectively.
Then the following diagram illustrates exzp?2 as a morphism of list-algebras:

list

list(int) map eap list(int)
sum product
- I -
n cip? n

When a signature declaration satisfies the unitary condition (see Definition 2.6), there exists
for each type a, a free term algebra, (#(a), jt). (This condition is sufficient but not necessary.)
It has the property that for any T-algebra (a, h), the homomorphism h is the unique T-algebra
morphism from the initial term algebra to (a,h). The last statement is summarized in the

following commuting square:

t2(a) > t(a)
Ha h
t(a) h, a

The dotted arrow indicates that the function that makes the diagram commute is uniquely

determined from the other data in the diagram.

Definition 2.4 Let t: %+ — % be an unsaturated sort of a signature T'. An element “k of ¢” of
the t(«) component of T' is called a unit operator if o = 01 % - - - * 0,,, and there is at least one

occurrence of o among the o;. If ¢ = a, then & is said to be perfect.
Definition 2.5 A signature T is zero-based if it contains a unique element “kg of 17.

Definition 2.6 A (single-sorted) signature 7' is unitary if it contains a unique unit operator,

and either
1. the unit operator is perfect, or
2. if the unit operator is given by a signature component “k of o1 * ---* 7,7 then

e only one factor, oy, is «,

o for all factors o; # o = 0; = ¢, where ¢ is the name declared for the carrier of type
t(a),

e T is zero-based.

If a signature T is unitary, the datatype of free terms of T' is the carrier of an algebra. This
algebra is in fact, initial in the category of T-algebras. Thus a (redundant) ADL specification

of the free term algebra for the sort list would be

List{c := list(a); list{$nil := Nil, $cons := Cons}}

It is important to remember the distinction between data constructors in the free term algebra
and operators in the signature of an algebra. Different instances of an operator may have
different types, depending upon the environment in which it appears, as the carrier type will
differ in distinct algebras of the same family. The data constructors are a special case of the
operators for one specific algebra, and their types are fixed, up to variation in the type argument

of an unsaturated sort.

Example 2.2 : Three different list-algebras are:

List{c := int; list{$nil := 0, $cons := (+)}}
List{c := int; list{$nil := 0, $cons := \(x,y) 1+y}}
List{c := list(a) -> list(a);

list{$nil := id,
$cons := \(x,f) \y Cons(x,f y)}}

These List-algebras induce homomorphisms from free List-algebras that represent functions
that sum a list of integers, calculate the length of a list, and catenate two lists, respectively. A
combinator to specify these homomorphisms will be introduced in the next section.

When a signature in ADIL has only a single sort, as does List, an algebra specification may
be abbreviated by omitting the inner set of curly braces and the sort name that is prefixed to

the opening brace. Thus we could abbreviate the first algebra in the list of examples above, as
List{c := int; $nil := 0, $cons := (+)}

Here are the declarations of some other signatures that define useful classes of algebras in

ADL:

signature Nat{type c; nat/c = {$zero, $succ of cl}}

signature Tree{type c; tree(a)/c = {$tip of a, $fork of (c * c)}}

signature Bush{type c; bush(a)/c = {$leaf of a, $branch of list(c)}}

Note that nat is a saturated sort, while tree and bush are both l-unsaturated.

2.8 The reduce combinator

If ¢ is a 1-unsaturated sort of the signature 7', a structure function of the class of T-algebras is
any function h :t(a) — a. If T is unitary, and hence has a free term algebra, then h is also the
unique 7T-algebra morphism from (#(a), q) to (a, k), and we call it a homomorphism. (Recall
that the meaning of “morphism” is “form-preserving”. Here the form that is preserved is the
underlying structure of the algebra.) More generally, the composition of a T-algebra morphism
f:a — b with a homomorphism, i.e. ¢ = foh:t(a) — b, is a T-algebra morphism from the
free term algebra, and is uniquely determined by the algebra of its codomain.

ADL defines a combinator, red , that takes an algebra specification to a free-algebra mor-
phism. The red combinator obeys a morphism condition for each algebra on which it is

instantiated. For the algebras we have considered, these equations are:

red[nat] Nat{c; $zero, $succ} Zero = $zero
red[nat] Nat{c; $zero, $succ} (Sucen) = S$succ(red[nat] Nat{c; $zero, $succ} n)
red[list] List{c; $nil, Scons} Nil = $nil
red[list] List{c; $nil, Scons} Cons(x,y) = S$cons(x, red[list] List{c; $nil, Scons})
red(tree] Tree{c; Stip, Sfork} (Tipx) = Stipa

red[tree] Tree{c; $tip, $fork} (Fork(l,r)) = S$fork(red[tree] Tree{c; $tip, $fork} (,
red[tree] Tree{c; $tip, Sfork} r)

red[bush] Bush{c; $leaf, $branch} (Leafz) = $leaf x
red[bush] Bush{c; $leaf, $branch} (Branchy) = $branch(map_list(red[bush] Bush{c; $leaf, $branch})y)
The function map_list, referred to in the last equation above, will be defined below.

Here are some examples of list-algebra morphisms constructed with red [list] and the algebra

specifications given in Example 2.2:

sum_list = red[list] List{c := int; $nil := 0, $cons := (+)}

length = red[list] List{c := int; $nil := 0, $cons := \(x,y) 1+y}

append = red[list] List{c := list(a) -> list(a);

$nil := id,

$cons := \(x,f) \y Cons(x, £ y)}
Further examples of list-algebra morphisms are:

map_list f = red[list] List{c := list(b);
$nil := Nil,

$cons := \(x,y) Cons(f x, y)}
where £ has the type a -> b for some existing type a, and
flatten_list = red[list] List{c := list(a); $nil := Nil, $cons := append}
The typings of the constants defined by these equations are:

sum_list : list(int) -> int

length : list(a) -> int

append : list(a) -> list(a) -> list(a)
map_list : (a -> b) -> list(a) -> 1list(b)

flatten_list : list(list(a)) -> list(a)

Some examples of nat-algebra morphisms are:

ntoi = red[nat] Nat{c := int; $zero := 0, $succ := \n 1+n}
add x = red[nat] Nat{c := int; $zero := x, $succ := Succ}
plus = red[nat] Nat{c := int -> int; $zero := id, $succ := \f \n 1 + £ n}

with typings

ntol : nat -> int
add : nat -> nat -> nat

plus : nat -> int -> int

10

Examples of tree morphisms are:

sum_tree = red[tree] Tree{c := int;
$tip := id,
$fork := (#)}
list_tree = red[tree] Tree{c := list(a);
$tip := \x Cons(x,Nil),
$fork := \(x,y) append x yr
map_tree f = red[tree] Tree{c := tree(a);
$tip := \x Tip(f x),
$fork := Fork}
flatten_tree = red[tree] Tree{c := tree(a);
$tip := id,

$fork := Fork}
with typings

sum_tree : tree(int) -> int
list_tree : tree(a) -> list(a)
map_tree : (a -> b) -> tree(a) -> tree(b)

flatten_tree : tree(tree(a)) -> tree(a)
The analogous examples of bush morphisms are:

sum_bush = red[bush] Bush{c := int;
$leaf := id,
$branch := sum_list}
list_bush = red[bush] Bush{c := list(a);
$leaf := \x Cons(x,Nil),

$branch := flatten_list}

11

map_bush f = red[bush] Bush{c := bush(a);
$leaf := \x Leaf(f x),
$branch := Branch}
flatten_bush = red[bush] Bush{c := bush(a);
$leaf := id,

$branch := Branch}

with typings

sum_bush : bush(int) -> int
list_bush : bush(a) -> list(a)
map_bush : (a -> b) -> bush(a) -> bush(b)

flatten_bush : bush(bush(a)) -> bush(a)

Exercise 2.1 Reverse of a list
a. Specify a list-reduce to compute the reverse of a list.

b. Now specify a second list reduce with carrier type list(a) — lisi(«) to define a function

rev @ list(a) — list(o) — list(«v) that satisfies the equation
revx Nil = reverse x
2.4 Primitive recursion

Recall that Kleene’s primitive recursion scheme to define functions on natural numbers is:

f(Zeroyz1,...;xn) = g(1,...,2,)

f((Sucen),z1,...,2,) = h(Sucen, f(n,a1,...,2,), T1,--.,Tpn)

where g : 13 X ...Xt, —aand h:natxaxty X...x1t, — a. Although the primitive recursion
scheme can be represented as a nat-reduce, the representation is unnatural and if implemented

directly, can result in algorithms with worse-than-expected performance. For instance, the

12

case expression for type nat when expressed as a nat-reduce is

case z of = red[nat] Nat{c;

Zero = g $zero := (Zero, g),
| Succe(z') = ha' $succ := Nz, y) (Succz, hz)}
end

Evaluation of the nat-reduce explicitly traverses the entire structure of a term to construct the
argument needed in the successor instance of the case analysis. This takes time linear in the
size of a nat term, whereas the case primitive is a constant time function.

A primitive recursive function is, however, a structure function of a related variety of
structure algebras, one in which the carrier always has the form nat* a for some type a. This
motivates us to define an operator on signatures, with which to obtain new families of structure
algebras whose homomorphisms are primitive recursive.

Let delta be the operator that takes a signature for sort ¢ to a derived signature that has
the same set of operator names, but in which every occurrence of the carrier type, ¢, in the
typing of an operator is replaced by t’ * ¢ (where ¢’ designates a saturated instance of the sort

t). Thus, for example,
delta nat = {type ¢; $zero, $succof nat* c}

We can name this signature in a declaration:
signature PR nat = delta nat;

and use PR_nat in the definition of a primitive recursive reduce. In general, for a signature T
with a single sort, ¢, the reduce of Pr_T satisfies the equations (for each free constructor, K;):

red[t] Pr-T{c; $k1,...,%kn} Ki(21,...,&m,)
= $Hi(y17 R ymz)

(z;, red[t]) ProT{c; $Ky,...,8Kk,} ;) if o7 = ¢
where y; = < (a;, map_s (red[t] Pr-T{c; $k1,....9K,}) z;) if o5 = s(c)
T otherwise

To define a factorial function, for instance, one could write

13

fact = red[nat] PR_nat{c := int;

zero := 1,

succ := \(m,n) ntoi(Succ m) * n}

To define a general primitive recursion scheme for natural numbers, declare a higher-order

structure functor, Pr, by

type a;

Pr(g,h) = red[nat] PR_nat{c := a;

$zero := g,

h}

$succ :

This defines a family of PR_nat algebras, with structure functions Pr(g,h) : nat — a, for each

pair (¢ : a, h: nat*a — a). In terms of this scheme, the factorial function is defined by
fact = Pr(1,\(m,n) ntoi(Succ m) * n)

where the type variable a has been instantiated to int.

Exercise 2.2 Splitting a list

Define splitat : char — list(char) — list(char) X list(char)

splitat ¢ xs is specified as follows:

If the list xs contains an occurrence of the character, ¢, then splitat ¢ xs yields the pair of the
prefix and suffix of the first occurrence of ¢ in zs. Otherwise, it yields the pair (s, Nil).

Hint: Use primitive recursion for list.

2.5 Proof rules for algebras

Inference rules for the particular algebras introduced in the previous section are summarized
below. The rule for the Nat-algebra is natural induction, as one would expect. For the List,
Tree and Bush algebras, the rules are those of “structural induction” for the datatypes that

correspond to the free algebras. Note that we do not have to treat induction as a special rule

14

of the logic—the inductive proof rules account for the computational content of the algebra

morphisms. This has been noted previously by Goguen [Gog80] and others.

¢ type P(8$zero) P(n) = P(8succn)
Vn : nat. P(red[nat] Nat{c, $zero, $succ} n)

¢ type P($nil) P(y) = P(Scons(z,y))
Vy' : list(a). P(red[list] List{c, $nil, $cons} y')

¢ type P(Stipa) P(y) N P(z) = P(Sfork(y, z))
Vy' : tree(a). P(red[tree] Tree{c, $tip, $fork} y')

c type P($leaf x) Yy e Vys: list(c). y in ys = P(y) = P($branch ys)
Vz : $branch(a). P(red[bush] Bush{c, $leaf, $branch} z)

3 Morphisms of non-initial structure algebras

Recall the diagram in terms of which a 7T-algebra morphism is defined:

Ha) Py

f

a — b

The initial algebra homomorphisms illustrated in the diagram are h, k, map_t f and the com-
posite, foh = k o map_t f. Each of these can be expressed in terms of the combinator red
and the appropriate T-algebra. However, f is also a T-algebra morphism, and under certain
conditions, it may also be expressed in terms of a combinator. Suppose there exists a function
p:a— t(a) such that poh = idy,). (However, p is not necessarily a right inverse for h.) Then

f must satisfy the recursion equation

f=komap_tfop

when its domain is restricted to the image of ¢(a) under h.

15

Let F'$t(a) designate a type isomomorphic to t(a). Typically, it will be a disjoint union of
alternatives including a, t(a), the “unit” type, 1, and products of these. It represents an explicit
one-level unfolding of the structure of terms of type #(a). Then a function p’ : a — ES$t(a)
may be isomorphic to a left inverse for h as described in the preceding paragraph. With this
nomenclature, an isomorphic relative of the recursion equation given above can be summarized

in the diagram below, which reveals the structure more clearly:

/

E$t(a)~—L @
map_E$t f \f
ES$t(b) b

Following the suggestion outlined above, ADL introduces a combinator with which to construct
morphisms whose domains are T-algebras that are not initial. We call this combinator hom .
It takes three parameters; the sort of the structure function that is to be mapped, the structure
algebra in the codomain of the morphism and a partition relation that is the “inverse” structure
function of its domain algebra. The partition relation is typically expressed as a conditional
or a case expression that tests a value of type a to reveal the structure of the algebra. The
codomain of the partition relation is E$t(a), which is a disjoint union of the domain types of
the set of operators of the signature 7.

Thus we write hom[t] T{b; k} p, where k : t(b) — b and p : @ — t(a). Here is an example

that illustrates the construction of a T-algebra morphism with hom .

Example 3.1 : Calculate the largest power of 2 that factors a given positive integer.

Consider the Nat-algebra defined by:
Nat {c := int; $zero:=m, $succ:= An2 X n}
in which the free variable m represents an odd, positive integer. The carrier of this algebra is

the set consisting of {m, 2m, 4m,8m,...}. To invert the structure function, construct a function

16

that recovers the natural number giving the power of two that multiplies m in forming any

element of the carrier. That is, let

p : int — F$nat(int)
P =def \ if n mod 2 <> 0 then $zero
else $succ(n div 2)

where FE$nat is a derived, unsaturated sort. This sort belongs to no declared variety, thus has
no signature and cannot form the type of the domain or codomain of other, explicitly defined
functions.

Notice that in the above definition, the operators of the Nat algebra, $zero and $suce, assume
specific types by binding the carrier as int. These occurrences of $zero and $succ represent the
operators of the particular Nat-algebra that is presumed to structure the int-typed domain of
the Nat-algebra morphism being defined.

To complete the solution of the problem, we need to specify a Nat algebra that yields an
integer representation of a power of 2. To give an exponent of two, we can use the algebra
that represents a natural number as a positive integer. This algebra was used to specify the
function ntoi in an earlier example. (Notice that the bindings given to the operator symbols
§zero and $succ in this algebra are not the same as the bindings presumed in in the definition
of p above. In general, they need not even have the same typings.) Thus, we get an algorithm

expressed in ADL as:
pwr_2 = hom[nat] Nat{c := int; $zero = 0, $succ = \n 1+n} p
The equation satisfied by pwr_2 is:

pwr_2n = if nmod 2 # 0 then 0
else 1+ pwr_2(n div 2)

To obtain an explicit representation of the factor that is a power of 2, the Nat-algebra can

be modified to calculate that factor. This solution is

pwr_2’ = hom[nat] Nat{c := int; $zero = 1, $succ = \n 2*n} p

17

Example 3.2 : log, of a positive integer.
By modifying the algebra in the domain of the partition relation in the previous example

we can obtain an algorithm for the base 2 logarithm of a positive integer. Let

p’ @ int — E$nat(int)
P =def \n if n div 2 = 0 then $zero
else $succ(n div 2)

log_2 = hom[nat] Nat{c := int; $zero = 0, $succ = \n 1+n} p’

Example 3.3 : Filtering a list

The function filter p : list(a) — list(a) reconstructs from a list given as its argument, a
list of the subsequence of its elements that satisfy the predicate function p : a — bool. This
function can be directly constructed as an instance of red for a suitable list algebra. However,
we propose an algebraic variety to represent the two cases that occur in filtering—an element

of the list is either to be included or omitted.
signature Slist{type c; slist(a)/c = {$nomore, $include of axc, $omit of cl}}
A definition of filter p can be given as a morphism of Slist-algebras:

filter p = hom[slist] Slist{c := list(a);

$nomore = Nil,

$include = Cons,

$omit = id}

(\xs case xs of

Nil => $nomore

| Cons(x,xs’) => if p x then $include(x,xs’)

else $omit xs’

end)

18

Example 3.4 : Quicksort

A quicksort of a list of integers requires two functions, one that partitions a list,
part @ int — list(int) — list(int) X list(int)

and another that sorts a list, sort : list(int) — list(int). The function part can be defined as a

reduce:

part a = red[list] List{c := list(int)*1list(int);
$nil := (Nil,Nil),
$cons := \(b,(xs,ys)) if b<a then (Cons(b,xs),ys)

else (xs,Cons(b,ys))}

The function sort, however, is a divide-and-conquer algorithm with the structure of a binary

tree. It can be expressed as a hom of the algebraic variety:

signature Btree{type c; btree(a)/c = {$emptytree, $node of cxaxcl}
sort = hom[btree] Btree{c := list(int);
$emptytree := Nil,
$node := \(xs,x,ys) append xs (Cons(x,ys))}
(\xs case xs of
Nil => $emptytree
| Cons(x,xs’) =>
let (ys,ys’) = part x xs’
in $node(ys,x,ys’)

end)

Notice that although the control is a tree traversal, the sort function has type list(int) —
list(int). There is no data structure corresponding to the datatype btree(list(int)). This is a

“treeless” tree traversal.

19

Exercise 3.1 Another form of bush

Given signature Bush'{type c; bush'(a)/c = {$leaf’ of a, $branch’ of nat * (nat — ¢)}}
construct a morphism of type bush(a) — bush/(a) that is invertible. (Construct its inverse,

too.)

Exercise 3.2 Splitting a list more efficiently
The function splitat defined by primitive recursion does more computation than is necessary.
It recursively evaluates the function on the tail of a list that has already been successfully split.

Reformulate the function as a hom[list].

Exercise 3.3 Factors of a positive integer
Give a function, factors, that takes a positive integer N and a list of positive integers M to a

list of the factors of N by M, and which satisfies the following equations:

factors N Nil = Cons(N, Nil)
factors N Cons(m, M') = Cons(m, factors (N/m) Cons(m, M")) if m divides N
factors N Cons(m, M') = factors N M’ otherwise

Prove that your solution satisfies the equations.

3.1 Proof rules for morphisms of non-initial algebras

Properties of functions constructed with hom can be verified by applying the proof rules of the
T-algebra, as described earlier, provided that the construction actually is a T-algebra morphism.
Recall that for a construction hom[t]T{b; k}p to be a T-algebra morphism, the partition relation
p must be a left inverse of the structure function of a T-algebra, (a, k). Since we do not know
h in general, we require a condition that can be applied directly to p itself. Note that if p is a
left inverse, it is also a right inverse to h on some subset of the elements of type a. Thus p is
necessarily formally correct; it constructs results by well-typed (in the Hindley-Milner system)
application of operators of the signature 7. However, its application to an arbitrary element
x : a might fail to be defined; z may not be in the codomain of A. The additional requirement
can be stated in terms of a total ordering on ¢ that must be provided to discharge the proof

obligation.

20

Definition 3.1 Let T be a signature declared by
signature 7' = {type ¢; s(a)/c={...8k;0f t;x X -+ X tiym, -..}}

Let P be a predicate over a. Suppose that (<) C a X a is a well-founded ordering on the set
{z :a | P(z)}. We say that a function p : ¢ — s(a) calculates a T-inductive partition of the
set {z:a | P(a)}if

y; < iftijzc

Vo ia. P(z) = VSk; € Topa =Skri(ya, ., Ym;) = Vi € Loomy { Ve selisy = 2 <a ity = $(c)

where ¢ is a 1-unsaturated sort (s’ # s) and elt_s’ is an infix notation for the two-place predicate

defined by:
z=a = zeltd SK Y1, -2,y Ymy)
zelts'y = zelts SEl(yi,. . ¥, s Um,;)

for all operators $x! in the signature of sort s'.

a

In the definition above, the predicate P characterizes a subset of type a elements on which
the morphism is well-defined. Any properties of the morphism deduced with the proof rules
of the T-algebra will be valid only for points of the domain that satisfy P. In Example 3.1,
a suitable subset and its well-ordering is the natural order, (<), on positive integers. The
partition relation p induces a natinductive partition. In Example 3.2, the same ordering is
used but the set is the non-negative integers. In Examples 3.3 and 3.4, a suitable ordering on
list(int) is xs < ys iff length xs < length ys. The verification condition for the function part of

the Quicksort example becomes
xs = Cons(z,z8') A partz xs' = (ys,ys') = ys < xs Ays' < as

Definition 3.1 of T-inductive partition of a set extends without complication to algebras of
a multi-sorted signature. What becomes more complicated in such a case is the well-founded

order, which may need to relate terms of different sorts.

21

4 The ADL type system

Logical properties of morphisms of the structure algebras associated with datatypes can be
derived by inductive proof rules. Each such property is formalized as a predicate over a set.
ADL types can be interpreted as sets, although as we shall see later, when the hom combinator
is introduced, proof obligations arise in verifying that a syntactically legal term is semantically
valid with respect to the ADL type system.

Since types are sets, the restriction of a type by a predicate defines a set that may be
considered as a subtype of a structurally defined type. We call such subtypes domain types. An
ADL domain type is expressed with set comprehension notation, as for instance, {z : ¢ | P(z)},
where t is a structural type expression and P stands for a predicate. In the type system of
ADL, domain types occur only on the left of the arrow type constructor. Domain types express

restrictions in the types of functions.

Syntax of type expressions

typ ::= identifier primitive types
| typ *typ products
| domtyp — typ function types
| identifier(typ[, typ]) datatypes

domtyp = typ
| {identifier : typ | Identifier(expr)} restricted domain types

The Hindley-Milner type system is based upon a structural notion of type and is not ex-
pressive enough to distinguish among domain types of ADL. Thus, its type-checking algorithm
is not powerful enough to ensure that a syntactically well-formed ADL expression is meaning-
ful, but requires additional evidence as proof. Nevertheless, we find it useful to employ the
Hindley-Milner type system as an approximation to ADL’s type system. The Hindley-Milner
type-inference algorithm is an abstract interpretation of ADL that approximates its type as-
signments. Whenever Hindley-Milner type checking asserts that an expression is badly typed,
it cannot be well-typed in the ADL type system. When Hindley-Milner type inference assigns
a type to an expression, that typing will be structurally compatible with any ADL typing of

the expression.

22

For example, given a pair of ADL functions with typings f : {z : &1 | P(2)} — 3 and
g {z:t2 | Q(2)} — t3, a structural (Hindley-Milner) typing approximates the ADL typings
as [1 1y — ty and g : ty — t3. It will judge their composition to be well-typed, with typing
gof : 11 — t3. An ADL typing of the composition has the form go f : {z :¢; | R(2)} — {3,
and it carries a proof obligation to show that R(z) = P(z) A Q(fz). To discharge the proof
obligation requires a logical deduction based upon algebric properties of the function f.

To determine whether a function application is well-typed is too complex for Hindley-Milner
typing alone. To know that f a is well-typed, one must furnish evidence that P(a) holds. Func-
tion types in ADL may involve restrictions expressed in domain types, and these restrictions
may include arithmetic formulas. For this reason, ADL does not have principal types, nor
unicity of types. Domain restrictions are needed to express the termination conditions for
combinators that express morphisms of non-initial structure algebras.

Domain restrictions must be expressible with first-order predicates. As a practical conse-
quence, this implies that a domain restriction cannot assert a property of the result of applying
a function-typed variable. For example, given a function f : {z :#; | Pa} — t3, we can

express the typing of a function that composes its argument on the left of f as
Ag.gof i (ta—t3)—{a:ty | Pa} — 13

The type of the formal parameter, ¢, is only structural; it requires no domain predicate to be
imposed.

If, however, we attempt to type the function Ah. f o h that composes its argument on the
right of f, we find that it is impossible to do so with only a first-order domain predicate. The
predicate must express that every point in the codomain of / satisfies the domain predicate P,
and to express this restriction requires quantification over all points in the domain of h. The
only kind of typing restriction that can be expressed of a function-typed variable is a domain
restriction. However, this can be quite powerful.

Given a proof that a function-typed variable satisfies a domain restriction at every occur-
rence in an expression, the variable may be abstracted from the expression and given a domain-

restricted function type. For instance, suppose that in an expression Az.e : t; — t3, the free

23

variable f occursin an applicative position and satisfies a structural typing f : ¢ — 5. If in ad-

dition, at every occurrence of f in e (each of the form fe’) one can show that P2 = Re’, then

the abstraction can be given a typing Af.Az.e : {y:t1 | Ry} —t3) = {z:t1 | Pz} — ts.
An application of a function h : ({y:t; | Ry} — t2) = {2 :t1 | Pz} — 13 to an argument

e {y:t1 | Qy} — tyis judged to be well-typed if there is a proof that Vy : t;. Ry = Q y.
4.1 Typing combinator expressions

The function composition operator is one instance of an ADL combinator whose arguments
can have domain-restricted function types. The ADL combinators red and hom are further
instances, and they require special typing rules. These combinators are applied to algebra
specifications, so it is necessary to specify what constitutes a well-typed algebra specification.
For simplicity, we illustrate the formal rules for a single-sorted algebra A, with sort symbol s
and carrier (type) symbol ¢. Let Index(X;) designate the index set of the signature of sort s.
Let t,11,t2,- - - range over types and fi, fo, - range over expressions. Let p range over typing
environments. (A typing environment is a finite mapping of type variables to types.) The
judgement form p F e : ¢ is read as “expression e has type ¢ in the typing environment p.” The

rule for well-typing of an algebra specification is:
Vi € Index(X;). [typel,pb fi © t; —

A i = pelt/cl(o:)
[a s typel, p Fay, A=t s{...8x;:= fi,...}}

in which p. is the type environment that agrees with p on all type variables except ¢, which is
not in its domain.
Well-typing of an algebra specification is a hypothesis for the typing of a reduce combinator.

The rule is:
[z type], p Fay A{e:=1t, s{...$x; := fi,...}}
[a s type], p b red[s] A{c:=1t, s{...8k; := fi,...}} : s(a) = 1

To type instances of non-initial algebra morphisms, we require a typing for partition rela-

tions. The codomain of a partition relation does not have a unique structural type, for it is only
specified up to a variety. To express this, ADL provides a unique type constructor, F$s(«), to

correspond to each (unsaturated) sort, s. The type of a partition relation for this sort will be

24

of the form ¢ — F$s(t'), where t' is a type, the type of the carrier of the domain algebra for an
instance of hom[s]. The well-typing of a partition relation furnishes an additional hypothesis

of the typing rule for hom.

p ot — E$s(t)
[a s type], ptayy Af{c:i=t, s{...$r; := fi,.. . }}
pthom[s|A{c:=1t,s{...8x; = fi,..}}p : t/ =t

For an example, consider typing the definition of pwr_2 in Example 3.1. First, we check
the well-typing of the nat algebra. For the carrier binding ¢ := int, the operator typings will
be $zero : int and $succ : int — int. These are satisfied by the bindings $zero := m and
§sucec := Ann + 1, where m : int. Thus the algebra specification Nat{c := int; nat{$zero :=
m, $succ:= Ann+ 1}} is well-typed.

Next we type the partition relation, p. In this relation, the operators $zero and $succ
are considered to be unbound, and so their typings are expressed with the codomain type
represented by E$nat(c), Choosing o = int we get the specific typings $zero : ESnat(int) and
§succ @ int — ES$nat(int), which gives p the typing p : int — FS$nat(int). Applying the rule

for structural typing of hom gives
pwr_2 = hom[natf] Nat{c := int; nat{$zero:=m, $succ:= Ann+1}}p : int — int

However, to get the proper ADL typing, we must provide a domain predicate under which
the algorithm can be proved to terminate. A termination condition is that the operation
Ann div 2 must be compatible with a well-ordering relation over the predicated domain. A

suitable domain restriction is Vn : int. n # 0. Thus a proper ADL typing is
pwr_2 : {n:int |n#0} — int
This typing is not unique, however. Another proper typing is

pwr_2 : {n:int |n >0} — int

25

5 Monads

Monads are mathematical structures that have found considerable use in programming. Know-
ing that a program is to be interpreted in a particular monad allows us to “take for granted”
the structure of the monad without explicit notation. Common examples are monads of excep-
tions (we take for granted that exceptions are propagated, and shall only express unexceptional
terms) and monads of state transformers (we take for granted that state is threaded through
computations in a deterministic order).

Recognition that monads are useful in programming is relatively recent [Mog91, Wad90].
Monads have been used to explain control constructs such as exceptions [Spi90] and advocated
as a basis for formulating reusable modules [Wad92].

Monads cannot be specified with the simple, sorted signature declarations available in ADL.

Instead, ADL provides a predefined variety, whose signature is
signature Monad{type M (a); monad(a)/M(a) = {$unit of a, $mult of M(M(a))}}

where M (a) is type expression in which the parameter a has only positive occurrences (with
respect to the arrow constructor). Positive occurrences are defined in terms of a predicate Pos,,

defined as follows:
true

(a) =
(b) = trueif b # a
Pos, (X YY) = Posa(X) A Pos,(Y')
Pos,(X +Y) = Pos,(X) A Pos,(Y)
Pos,(X —Y) = Neg,(X) A Pos,(Y)
(a
(b
(
(

Neg,(a) = false
Neg,(b) = trueif b # a
Neg,(X *Y) = Neg,(X) A Neg,(Y)

Neg,(X +Y) = Neg,(X) A Neg, (V)
Neg,(X —Y) = Pos,(X) A Neg,(Y)

where a and b denote atomic type expressions. For example, the following propositions are

satisfied, according to the definition:

Neg,(a — b)
Posy(a — b)
Pos,((a — b) — a)

26

Neither Pos, nor Neg, holds of the expression a« — «a, which contains both positive and negative
occurrences.

A monad is not a free algebra; there are three equations to be satisfied:

multM o unz’t%(a) = idy(q) (1)
mult™ o (map_Munit?) = idpr(a) (2)
mult o mult%(a) = mult™ o (map_M mult) (3)

There is another function that can be defined in terms of the components of a monad and it is
often more convenient to use this function than mult™. This is the natural extension,

ext” : (a — M(b)) — M(a) — M(b)

extM f =def multM o map_M f

It is easy to prove a number of identities for ext;

ext™ mult)! = idyy, (4)
ext™ founitM = f (5)
extM (extM fog) = et foextM g (6)
et idypy = mult) (7)
ext™ (unit o f) = map_M f (8)

A function of the form unit™ o f : a — M(b) or extM (unit™ o f) : M(a) — M(b) is said
to be proper for the monad, whereas a function with codomain M (b) that cannot be composed
in this way is said to be non-proper.

To extend a function whose domain type is a product, i.e. f : a x b — M(c), the monad

(b) — M(axb).
(c)

M must be accompanied by a product distribution function, dist™ : M(a)yx M
This allows us to form an extension (ext™ f)o dist™ : M(a) x M(b) — M(c) that can be
composed with a pair of functions in the monad.

Generally, there is no unique way to form a product distribution function. We require only

a single coherence property of such a function, namely that
dist™ o (unit) x unit)?)y = unithl, (9)

27

When M is a monad derived from an inductive algebraic signature, it is also sensible to

have a distribution function to be used with primitive recursion,
dist2" 2 (a x M(a)) x (bx M(b)) — M(a x b)
The coherence condition required of the primitive recursive product distribution function is:
dist2™ o ((id,, unit!?y x (idy, unit)!)) = unithl, (10)
5.1 Monad declarations in ADL

Monads can be declared in a declaration format that resembles an algebra specification for the
monad algebra,

monad { name [(type expr.)] (type id) = type expr;
$unit := expression,
$mult := expression}

The square brackets are meta-syntax to indicate that the first instance of type expr. is optional,
depending upon the particular monad. A monad declaration is valid iff the type expr to the
right of the equals contains only positive occurrences of the type id and the monad equations
are satisfied. An ADL translator can check the first of these conditions but will not always be

able to verify the equations automatically.
5.2 Some useful monads

There are several structures that will be recognized as features of programming languages and

which correspond to monads.

5.2.1 Exceptions

monad {Ex(a) = free{$just of v, exc;};
$unit := Az Just(z),

$mult := Mt case t is
Just(z) => z
| @ => Sexc
end}

where i ranges over identifiers, excluding “Just”.

28

in which the keyword free is not a proper sort, but designates the carrier of the free algebra
of the bracketed signature it precedes. This declaration defines an indexed family of monads
that correspond to a family of exceptions, indexed by identifiers.

For example, the type expression EavNothmg(term(int)) expresses a type whose proper values
are in the datatype term(int) and whose improper value is the identifier Nothing, an exception
name. Since the type constructor of this particular monad has structure similar to that of an
inductive signature, values in the monad can be analyzed by a case expression.

A function f : a — b that has been defined without thought of exceptions is “lifted” into
a monad Fz; by its map function, map_Fz; f. The lifted function, which is proper for the
monad, propagates the exception ¢ but neither raises this exception nor handles it. In ADL we
designate a proper function of a given monad by the use of heavy brackets, | f].

A distribution function for the monad of exceptions that evaluates a pair from left to right
is:

dist™ (z,y) = case x of
Just(z') => case y of
Just(y') => Just(a',y')
| 1=>1
end
| 1=>1
end

Alternatively, one could define a distribution function that would evaluate pairs from right to
left.

There is a useful primitive recursive product distribution function for the monad of excep-
tions.

dist2"% ((u,), (v, y)) = case z of
Just(z') => case y of
Just(y') => Just(z',y’)
| i => Just(a',v)
end
| ¢=> case y of
Just(y') => Just(u,y’)
| 1=>1
end
end

29

Note that while dist uses the exception as an anihilator, dist2 treats it more nearly as an identity

element.

5.2.2 State transformers

The monad of state transformers affords a generic, functional specification of the use of state in
computing. State can be of any type and the operations on a state component are not specified

in the monad.

monad {St(3)(a) = f — a x
$unit := Xa Ab(a,b),
$mult := Xt Xb let (s,0') = tbin sb'}

The product distribution function specifies how a state component is threaded through the
computation of a pair. Here is a left-to-right product distribution function:
dist™ = A(s1,55) Ab let (ay,b') = s1 b in

let (ag,b"”) =530 in
((a1,az),0")

5.2.3 State readers

An important special case of state transformers occurs when a computation does not change
the state. For such a case, we can use a simpler monad, the monad of state readers.
monad {Si{f)(a) = 4 — a:

$unit := Aa b a,
$Smult :== A\t Xbtb}

The product distribution function for state readers is unbiased as to order of evaluation of the

components of a pair.

dist® := A(s1,52) Ab (51, 52 0)

30

5.2.4 The continuation-passing monad

The well-known CPS transformation used in compiler design is another instance of a familiar

monad.

monad {CPS«) = (o —) — 3;
$unit := Aa Acca,
$Smult := At Act(Assc)}

in which 3 is a free variable ranging over types.

The CPS monad can be given a left-to-right product distribution function:
dist?"® := Nty t9) Aety Az ty Ay e (z,9)))

It could also be given a right-to-left product distribution, but this is not usually done. The

choice is completely arbitrary.

5.3 Composite monads

The monad constructions introduced above can be used in conjunction with one another to
specify composite monads. However, composition of monads is a bit tricky; arbitrary composi-
tions do not exist, nor is there an operator to compose monads. Functors compose uniformly,
but they are not directly represented in ADL except in the module facility.

In specifying a composite monad, the order in which the constituents are grouped is sig-
nificant. The permissible orders of grouping are described by the string below, in which a
parenthesized name indicates that the constituent may be repeated. Any constituent may be

omitted.

(Sr) (St) (Sr) CPS(Sr) (Fz)(Sr)

Although state readers can be placed anywhere in the composite, the normal position would
be at the far left. A state reader simply indicates that every computation may depend upon a
static state object, such as an environment that maps identifiers to their meanings.

When a state transformer is introduced in a composite, the state component is implicitly

paired with every value resulting from a computation, and every computation is implicitly

31

dependent upon the current state component. Thus, for instance, the type of a composite
St(int) (CPS(string)) will be int — ((string x int) —) — 3.

The CPS monad does not form a composite with itself. The monad of exceptions could, in
principle, be introduced earlier in the string of component monads but the composite would
probably not be what is intended. There are also monads corresponding to many familiar
datatypes, and we have not addressed the question of how to include them in composites.
However, datatypes seem to be more useful in ADL to characterize algebras (emphasizing

control structure) than to characterize monads (emphasizing data structure).

5.3.1 Unit and multiplier

For the composites we have considered, the rules for forming the unit are simple:

unit™ ™M = xp unit™ o (unz’tSt(S))

unitMhi M =y o ynatMe when My # St 9)

The rules governing the multiplier of a composite monad are somewhat more complex.

Given monads My and M3, a rule for deriving a composite multiplier is:
mult™ M2 = e (multM2) o mult™ o map™ (dzst’]]\\fé)

where distjj\\fé i My(Mi(«)) — Mqi(Mz(e)) is a polymorphic function that distributes the
structure of one monad over the other. Here are some examples of such monad distribution

functions:

dz'stgjg = M:SH(A)(SHB)(X))Aa: AXb: Blet ((z,b),a')=tabin ((z,d'),b)
. St(A
dzstEgNo)thmg = At: E$N0thingt(igt(A)) Aa: A
case 1 is
Just(s) = Just(sa)
| Nothing = Nothing

end

dz'st%}g’g) = M:(X=0)—=DPra:AXc: (X xA)— B)t(Asc(sa))

32

distgff;othmg = At: ExNothing((X — ﬂ) — ﬂ) Ac: (ExNothing(X — ﬂ)
case { 1s
Just(t') = t' (¢ o Just)
| Nothing = ¢ Nothing
end

Ordinarily, declarations of monads and the required distribution functions will be supplied in

an ADL library and would not ordinarily be constructed “on-the-fly” by an ADL programmer.

5.4 Interpreting an algebra in a monad

When the carrier of an algebra has the structure of a monad, we say that the algebra is
interpreted in the monad. This allows us to specify functions that carry the monad operations
“for free”. For instance, if a Nat-algebra is interpreted in a monad M (a), and s : a — a, we can
make the binding $succ:= || s | to designate map™ s : M(a) — M(a). If 2 : a we could write
| z | to designate unit™ z. Interpreting an algebra in a monad affords a notational shortcut to

specifying functions that are proper for the monad.

Example 5.1 : For example, we can interpret the algebra of trees with carrier Exyohing(tree(string))
to specify a function that replaces Tip nodes in the tree structure if the contents of the Tip

match a specified string.

replace_in_tree s t =
red[tree] Pr_Tree{c:= Ex_Nothing(tree(string));
$tip := \x if s=x then [|t|] else Nothing,

$fork := [|Fork|] o dist2_Ex}

Using a case discrimination eliminates the disjoint union, we obtain a space-eflicient algorithm

for tree replacement.

replace x t u = case replace_in_tree x t u is
Just(u’) => u’
| Nothing => u

end

33

The algorithm is space-efficient because a tree in which no replacement is required is not copied.
The value delivered by replace in such a case is the original data structure. Note also that if the
monad Ernoghing is implemented with control transfers rather than by tagged values, then the

tEl’

case discrimination and the distribution function dist™ have virtually no performance cost.

Exercise 5.1 Labeling a tree

Given a signature of binary trees with labeled nodes,
signature Btree{type c; btree(a)/c = {nt, node of ¢ a *c}}

give an algorithm to copy a tree, replacing the labels on its nodes by a depth-first enumeration

with integers beginning with 1 at the root. Could you do a breadth-first enumeration as well?

Exercise 5.2 Breaking lines of text

Given a list of character strings representing individual words, form a list of strings representing
lines of text with a length bound I given as a parameter. Fit as many words onto a line as
it will contain without overflow. Separate adjacent words on a line by blank spaces counting
one character. If a word is encountered whose length exceeds the bound, return an exception

named long_word.

Exercise 5.3 Justifying lines of text
Extend the solution of Exercise 5.1 to justify text on both right and left margins by inserting
additional blanks between words on a line to secure spacing as nearly even as possible on each

line. If only one word fits on a line, left justify it.

34

6 Coinductive signatures

So far, we have only considered the signatures of algebras, in which each operator has a typing
of the form op; : ¢;1 * ... % t;,,, — ¢, where ¢ designates the type of the carrier. When the
operators are free and the carrier is the set of terms they construct, the signature defines a
datatype that corresponds to its free term algebra. There is a dual to this construction.

Suppose operators were given typings of the form op; : ¢ — #; 1% ...%%; ,,, and the collection
of operators given in a signature were the projection functions of a record template. When
the operators are free and the carrier is the set of (infinite) records from which they project
field values, the signature defines a coinductive datatype that corresponds to its free term
coalgebra. In general, however, the operators of a coalgebra should be thought of as witnesses
of the structure imposed upon the carrier. Coalgebras play as significant a role in ADL as do
algebras. They define iterative control structures.

The quintessential coinductive coalgebra has the following signature:

cosig Stream{type ¢; str(a)/c = {$shd : «,
$stl = c}}

A free Stream coalgebra has as its carrier a type str(a) whose elements are infinite streams.
The two functions Shd : str(o) — « and Stl: str(«) — str(o) are defined as projections on a
stream whose elements are of type a. Every stream is infinite; that is, it is always meaningful
to apply the projection operators to a stream, even though there is no way to witness the entire
stream at once. A stream provides a good model for an incrementally readable input file. The
projection Shd yields the value of the first element of a stream, just as a get operation on an
open file produces a value from the file buffer. The projection S yields a stream but that
stream is not manifested until projections of it are taken. The situation is familiar in languages
with lazy evaluation rules, but the operational semantics of ADL involve call-by-value.

In an infinite stream, there are both finite and infinite paths. A path is expressed by a
well-typed composition of the operators Shd and Stl. A finite path is one that ends in Shd. To
generate all paths in a stream, a control structure must support repeated applications of Stl

until there is a final application of Shd, which terminates the path.

35

6.1 Generators and coalgebra morphisms

Definition 6.1 Let ¢ denote an unsaturated sort of a coalgebra signature. A T-coalgebra
consists of a pair (¢, k) where ¢ is a type, the carrier of the coalgebra, and k : ¢ — t(c) is a

co-structure function.

Definition 6.2 A function g : @ — b is a T-coalgebra morphism if there are T-algebras (a, h)

and (b, k) such that the following square commutes:

in which ¢ is the (single) sort of the coalgebra 7.

A T-coalgebra generator is a function of a type a — t(b) equal to the composition of a
T-coalgebra structure function with a T-coalgebra morphism, i.e. it is a diagonal arrow in a
diagram such as the one above. A generator is characterized by a coalgebra specification in
ADL. A coalgebra specification is an instance of a coalgebra signature, and provides a type
for the carrier and specific functions for the operators of the signature. However, the type
parameter of an unsaturated sort, ¢, is not restricted to be the same as the carrier, as is the
case in the mathematical definition (Definition 6.1).

The construction of a generalized co-structure function can be understood in terms of
the diagram below, which represents one level of “unfolding” of the recursive definition of a
free coalgebra. To express the unfolding, we require some notation for the general case of
the coalgebraic structure expressed in a signature. For simplicity, we consider a single-sorted
signature whose sort is unsaturated with a single parameter, i.e. ¢ : * — *. Suppose the
signature consists of n operators. The i*" operator has a typing ¢ — ti1 % ...k 1, where cis

the type variable representing the carrier, a is the type variable representing the type parameter

36

of the sort ¢, and each of the ¢; ; is either ¢ or a. We can represent such types by ¢ — Fi(a,c),
capturing with the symbol F; the structure of the ¥ codomain type. Note that we can use the
same symbol to designate a composite function of type Fi(a,c¢) — Fi(a,t(a)) that is obtained
by the component-wise application of f:a — a to each component of type a, and g : ¢ — t(a)
to each component of type ¢. We designate the component-wise application by F;(f,g), for
each ¢ € 1..n. This notational convention is used in the following diagram, in which X" means

the n-fold product of the indexed family of components.

a J x"Fi(b, a)
t(b) X" Fi(b,t(b))

out

in which out is a natural (i.e. polymorphic) isomorphism. The generalized co-structure func-

tion, k, satisfies the equation
k=out™ ox"F(idk)og

The data on which k depends consists of the sort, ¢, and the coalgebra specified by g. In ADL,
a generalized co-structure function is defined in terms of a combinator gen applied to these

data.

Example 6.1 For example, the following expression generates a stream of ascending integers

from an integer given as its argument:
from = gen[str] Stream{c := int; $shd := id, $stl:= add 1}

Thus from 0 generates the sequence of non-negative integers. We have the following equalities:

Shd(from0) = 0
Stl(from0)() = from1

Shd (St (from0)()) = 1

SU(St(from0)()) = from?2

37

From these equalities we see that every finite path of the stream from0 can be witnessed. Note

that the witnesses gotten by applying St are suspended. The typing of Stlis
Stl 2 str{a) — 1 — str(a)
Explicit suspension is necessary because ADL is a call-by-value language.

Example 6.2 A stream constructor function can be defined in terms of the stream generator
combinator and the first and second projections of a cartesian product. Cartesian products
exist in ADL because all functions are total. A stream constructor str_cons : ax str(a) — str(a)
is:

str_cons = gen|[str] Stream{c := a; $shd := fst, $stl:= snd}

a

6.2 Witness paths

To compose a witness function for a coalgebra, we can formulate an inductive algebra to
characterize a path grammar for the coalgebra. A path grammar generates all instances of
finite paths, or witness functions, for the coalgebra. A path grammar is a meta-language
concept, and is not formally expressible in ADL. Path grammars are useful for reasoning about
coalgebras, however.

For Stream-coalgebras, all paths are linear, formed by iteration of the Stl operator. Thus a
path grammar for Stream may be expressed as an instance of a Nat algebra whose carrier is a
function from str(a) to the set of terms produced by witnessing a stream. We call this set of
terms L(str(«)). It corresponds to the union of the codomains of all the witness functions in

the signature of the coalgebra. This union of codomains is not expressible as a type in ADL.
paths[str] = red[nat] Nat{c := str(a) — L(str(«)); $zero:= $shd, $succ:= As.s e §stl}

where go f = Az.g(fa()).

A natural number determines a path for str(«), and hence a witness function. For example,
Shd (paths]str] Succ(Suce(Zero)) (from0)) = 2

38

For other coalgebras, the path grammars have more complex structure than Nat algebras.
Example 6.3 A coalgebraic variety with particularly simple structure is given by the signature

cosig Iter{type c; inf/c = {$step : c}}

A generator for this coalgebra calculates a least fixpoint of the function bound to $step. Let

f :a— a. Then
fiz f = gen[inf] Iter{c := a; $step := [}

This generated object is not only infinitary, it has no finite witness paths. However, this does
not necessarily mean that it is devoid of computational meaning. If « = b — d, then fiz f has
an interpretation as the least fixpoint of f, in a domain of partial functions. However, fix fis
typed as inf by the structural typing rules of ADL, not as b — d, hence no application of fiz f
is well typed.

Example 6.4 Another interesting coalgebraic variety is expressed by the signature

cosig BinTree{type c; bintree(a)/c = {$val : «,
$left, Sright : ¢}}

A generator for bintree(int) is:

gen[bintree] BinTree{c := int;
$val := id,
$left := Am.2m,
$right := Am.2m + 1}

When this generator is applied to the integer value 1, it generates the infinite, binary tree
whose integer labels enumerate the tree breadth-first.
A bintree generator incrementally generates streams of data witnessed via a sequence of
binary decisions. The generator
gen[bintree] BinTree{c := bool,
$val := id,

$left := As. ff,
$right := As. tt}

39

(where tt and ff are the identifiers of the boolean constants) generates a tree whose paths
correspond to finite and infinite sequences of boolean-valued labels. Thus the set of paths
contains the set of rational fractions in a binary representation. Its path grammar is specified
with a list(bool) algebra.
pathsbintree] = red[list] List{c := bintree(a) — L(bintree());

$nil := id,

$cons := A(b, s).1f b then s e Right else s e Left}
O

6.3 Proof rules for generators

Coinductive proof rules assert properties that can be witnessed on all paths by which values of
a coinductively generated object are accessed.
For example, the single proof rule for Stream generators is:

c type T:c P(z) = P($stlx)
P(x) = Vi: nat. P(paths[str]i(gen[str] Stream{c; $shd := id, $stl} x))

For BinTree generators (Example 6.4), the proof rule is:

ctype wx:c P(z)= P($lefta) P(z) = P($right z)
P(z) = Vs : list(bool). P(paths[bintree] s (gen[bintree] BinTree{c; $val := id, $left, $right} x))

7 Constructing coalgebra morphisms

Generators have limited direct use as control paradigms for algorithms. However, just as is the
case for algebras, the morphisms of non-free coalgebras will yield many useful control schemes.

To calculate a coalgebra morphism, it would be sufflicient to have an inverse to the arrow
on the right-hand side of the morphism diagram of Definition 6.2. Then an equation to be

satisfied by a coalgebra morphism k& can be read from the diagram below,

a g x" Fy(a)
b g XnFZ(b)

40

in which the projection function, p, may involve a selection conditional on the data, and may

even be a partial function.

7.1 The combinator cohom

To realize morphisms of coalgebras that are not free, ADL provides a combinator, cohom, that
takes as arguments a coalgebra and a splitting function. The splitting function specifies a
path for witness of the coalgebra’s carrier. The splitting function typically involves decisions
conditional on witnessed values of the carrier, and thus, recursive elaboration of the path is
implied. Just as was the case with morphisms of non-free algebras, there are proof obligations
to show that an instance of cohom is well-founded (and hence, well-defined).

In implementing such a control structure, each application of an operator whose codomain
includes the carrier, such as $stl, must be suspended or else the recursive elaboration of its
repeated application would fail to terminate, affording no opportunity to witness finite paths.

To make effective the suspension of projections by operators whose codomain type contains
an instance of the carrier, any projection operator whose codomain includes the carrier is
implicitly suspended in ADL. Suspension is not necessary for projections whose codomain type

does not involve the carrier. For example, the operators of str(«) are given the typings

$shd : ¢ — «

$stl : c =1 — ¢

where 1 designates the unique type with a single element, which is designated by (). A type
1 — ¢ is the type of a suspended value. To obtain an actual value, an applicative expression

such as $stls must be applied to an additional argument, namely $stls ().

Example 7.1 For a familiar example of a str-algebra morphism, consider the construction

from functions p : ¢ — booland r : ¢ — ¢,

while. (p,r) = cohom[str] Stream{c; $shd := id., $stl:=r}
(A(z,y).if pa then y () else z)

This is the useful unbounded iteration construct found in nearly all programming languages. It

encompasses the paradigm of linear search. To be well-defined in ADL, a while iteration must

41

be shown to be bounded. This question will be addressed when we consider proof rules and

finiteness conditions for coalgebra morphisms.

Example 7.2 Another paradigm for the recursive generation of a stream is the following. Let

f : str{a) — str(a). Define

rec(f) : a— str(a)

rec(f) = cohom|[str] Stream{c := a; $shd := id, $stl:= id}
(A, y). streons(z, f(y())))

An equation that this coalgebra morphism satisfies is
rec(f) = str_conso (id,, f o rec(f))
Example 7.3 With a bintree morphism, we can specify binary search.

bsearch(key : int) = cohom[bintree|] BinTree{c; $val, $left, $right}
(A(n,l,r).if n = key then n
else if n < key then [()
else r ())

Here, the coalgebra specification is incomplete, as bindings for the carrier and the operators
have not been given. Binary search can be programmed for any bintree coalgebra whose witness

function has int as its codomain.
Exercise 7.1 Consider an algebra of labeled, binary trees given by the following signature:

signature Liree{c type;
ltree(cr) /e = { $empty,
$node of c * a * c}}

Give an algorithm in ADL to construct from an arbitrary instance of an liree in the free term
algebra, a new copy whose nodes are labeled by their enumeration in a breadth-first traversal.
Hint: Assume that there is a stream of integers that are the generators for the labels to be used
at each level in the tree. Use these to label the tree, then construct the stream with the paradigm

of Frample 7.2.

42

7.2 Typing coalgebra combinators

Like algebra specifications, coalgebra specifications also have simple structural typing rules.
The rules presented in this preliminary report are restricted to a single-sorted coalgebra (with
sort s and signature Xy).

The first rule is one for typing a coalgebra specification. The judgement form “p Fcgalg
A{---}” can be read as “the coalgebra specification A{---} is well-typed relative to the envi-

ronment p”.

V($7;,00) € Xs. [s type], p Fe it — 1
1 — p[t/c](oy) if ¢ does not occur in o;
ANt = .
p(oy) otherwise

[= type], p Feoalg A{c:=1; s(a)/c={---$mi =€+ }}
The typing rule for a generator is then:

[type], p Fooalg A{c:=1; s(a)/e={---3m; :=¢€;,--}}
[z type], p b gen[s] A{c:=t; s(a)/e={---Smi:=¢;,--}} : t — s(«)

To give a typing for cohom, one must type a splitting function in addition to a coalgebra
specification.

g (tg X Xt,) =1t
[ov : type], p Feoalg A{c:=t; s(a)/c={---8mi:=ei;--}}
p F cohom[s] A{c:=t; s(a)/e={--%m =€, }}g : t =¥

7.8 Termination conditions for cohom

A function defined by a cohom combinator selects a particular path for access of a value from
its coalgebra. Thus any property that can be inferred of all finite paths in the coalgebra will
hold for any path selected by an application of a function defined by a cohom, provided that
the path is finite. The additional proof obligation for a cohom is just a proof of finiteness, or a
termination proof.

A finiteness proof can be formalized as a proof that the set of paths that may be selected
by a cohom is well-ordered. Typically, such a proof will hold only when the domain of the
function is restricted by a predicate. A finiteness predicate can be inductively defined through

clauses that mimic the structure of a coinductive proof. An inductive proof consists of a set

43

of implication schemas and a rule establishing that a given predicate holds of each element of
a set, by a finite chain of implications drawn from instances of the schemas. Inductive proof
is an argument by which to establish a property of a set in terms of its construction. The
construction of morphisms of certain varieties of structure algebras help to shape the necessary
finiteness arguments in terms of well-ordering relations, thus the technique is applicable to
establish properties of the codomains of algebra morphisms of these varieties.

Dually, A coinductive proof consists of a set of implication schemas and a rule establishing
that a given predicate holds for each witness of a set, by a finite chain of implications drawn
from instances of the schema. Coinductive proof is an argument by which to establish a
property of a set in terms of its witnesses. The construction of morphisms of certain varieties of
coalgebras helps to shape the finiteness arguments in terms of well-orderings, thus the technique
is applicable to establish properties of the domains of coalgebra morphisms of these varieties.

A finiteness predicate is the least specific assertion that can be made about the domain of
a coalgebra morphism. It asserts only that all finite witnesses are defined. Thus a finiteness
predicate characterizes the domain of a coalgebra morphism. The structure of such a finiteness

proof is that

e a predicate, P, holds of some initial values by direct implication from facts, i.e. without

use of any implication that involves P in its hypothesis, and

e for every operator, $7; of the coalgebra, let (z1,...,2,) = S7; 2.

Then P(z) = P(z1) A--- A P(zy,).

Example 7.4 :

For the construct while(p,r), a finiteness predicate is the least specific that satisfies

pr=f = Pz)

P(rz) = P(z)

subject to the condition that there exists a well-ordering, (<), such that Va. P(z) = r 2 < z.

Then P(x) is a termination condition for the evaluation of while(p,r) z.

44

8 Transformational development of algorithms

The ADL language has been designed to lend itself to transformational development, i.e. the im-
provement of algorithms by meaning-preserving, algebraic transformation of programs. Trans-
formational development is an old idea, but the algebraic aspect of program transformation
has been emphasized by Richard Bird [Bir84, Bir91] and his coworkers. The deforestation
algorithms proposed by Wadler [Wad88] furnish a good example of general transformations.
Wadler [Wad89] and Malcolm [Mal89] have observed that there are general classes of theorems
that have instances for any inductive datatype. Such theorems are not only useful in justifying
transformations, they may be automated as tactics for the application of term rewrites that ac-
tually effect the transformations. This observation is the basis for a higher-order transformation

tool (HOT) currently being developed for use with ADL programs.

References

[Bir84] Richard S. Bird. The promotion and accumulation strategies in transformational pro-
gramming. ACM Transactions on Programming Languages and Systems, 6(4):487—
504, 1984. Addendum: Ibid. 7(3):490-492 (1985).

[Bir86] Richard S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, volume 36 of NATO Series F. Springer-
Verlag, 1986.

[Bir88] Richard S. Bird. Lectures on constructive functional programming. In M. Broy,
editor, Constructive Methods in Computing Science, volume 52 of NATQO Series F.
Springer-Verlag, 1988.

[Bir91] Richard S. Bird. Knuth’s problem revisited. In B. Méller, editor, Constructing
Programs from Specifications. North-Holland, 1991.

[CS92] J. R. B. Cockett and D. Spencer. Strong categorical datatypes. In R. A. G. Seely,
editor, International Meeting on Category Theory, 1991. AMS, 1992.

45

[Fok92]

[Gog&0]

[Hag87]

[Mac71]

[Mal89]

[Mee86]

[MFP91]

[Mog91]

[Spi90]

Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, Twente, The Netherlands, February 1992.

Joe A. Goguen. How to prove inductive hypotheses without induction. In W. Bibel
and R. Kowalski, editors, Proc. 5th Conference on Automated Deduction, volume 87

of Lecture Notes in Computer Science, pages 356-373. Springer Verlag, 1980.

T. Hagino. A Categorical Programming Language. PhD thesis, University of Edin-
burgh, 1987.

Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag,
1971.

Grant Malcolm. Homomorphisms and promotability. In J. L. A. van de Snepscheut,
editor, Mathematics of Program Construction, volume 375 of Lecture Notes in Com-

puter Science, pages 335-347. Springer-Verlag, June 1989.

Lambert Meertens. Algorithmics—towards programming as a mathematical activity.
In Proc. of the CWI Symbposium on Mathematics and Computer Science, pages 289—
334. North-Holland, 1986.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proc. of 5th ACM Conf. on Functional
Programming Languages and Computer Architecture, volume 523 of Lecture Notes in

Computer Science, pages 124-144. Springer-Verlag, August 1991.

Eugenio Moggi. Notions of computations and monads. Information and Computation,

93(1):55-92, July 1991.

Mike Spivey. A functional theory of exceptions. Science of Computer Programming,

14:25-42, 1990.

46

[Wads8]

[WadS89]

[Wad90]

[Wad92]

Philip Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP’S8,
volume 300 of Lecture Notes in Computer Science, pages 344-358. Springer-Verlag,
March 1988.

Philip Wadler. Theorems for free! In Proc. of fth ACM Conf. on Functional Program-
ming Languages and Computer Architecture, pages 347-359. ACM Press, September
1989.

Philip Wadler. Comprehending monads. In Proc. 1990 ACM Conference on Lisp and
Functional Programming, pages 61-78, 1990.

Philip Wadler. The essence of functional programming. In Conference Record of
the Nineteenth Annual ACM Symposium on Principles of Programming Languages,
pages 1-14. ACM Press, January 1992.

47

