
Abstract

This report constitutes a preliminary de�nition of a new� high�level program�
ming language called ADL� It uses the mathematical concept of structure
algebras as its unit of modularity� When algebras are used to specify pro�
grams� control structure is �xed �rst and data structure� or representations�
second� There is no explicit recursion or iteration construct in ADL� Control
is determined by combinators applied to inductively de�ned algebras� An
intended use of ADL is to provide computational semantics of specialized
software design languages�

An algebra in ADL can be interpreted in various monads� a particular
variety of algebras that has been found useful in programming� ADL also
makes use of coalgebras� a concept dual to that of algebras� With coalgebras�
iterative control structures typical of search algorithms can be speci�ed�

There is a strong notion of type in ADL� guaranteeing that all well�typed
programs terminate� This allows us to use sets as ADL�s semantic domain
and to provide ADL with an equational logic� However� to check the type
correctness of an expression� there can be proof obligations that cannot be
discharged mechanically� A bene�t of the equational logic is that an ADL
program is amenable to transformation based upon the equational theories
of its algebras� Transformations are not discussed in this report� however�

Algebraic Design Language
�Preliminary de�nition�

Richard B� Kieburtz and Je�rey Lewis
Paci�c Software Research Center

Oregon Graduate Institute
of Science � Technology

P�O� Box �����
Portland	 OR �
�������� USA

January �
	 ���

� Introduction

ADL�Algebraic Design Language�is a higher�order software speci�cation language in which

control is expressed through a family of type�parametric combinators� rather than through ex�

plicitly recursive function de�nitions� ADL is based upon the mathematical concept of structure

algebras and coalgebras� The declaration of an algebraic signature speci�es a variety of struc�

ture algebras�� A signature declaration implicitly de�nes the terms of a particular algebra�

the free term algebra of the signature� which corresponds to a datatype in a typed� functional

programming language such as ML� Haskell or Miranda�

Classes of coalgebras are declared by record signatures� The free coalgebras correspond

to in�nite records� and have no direct analogy in most conventional programming languages�

although streams� which can be created in lazy functional languages� provide one such instance�

The functions de�nable in ADL are the ��de�nable morphisms of such algebras and coalge�

bras� Properties of such functions can be proved by applying rules of inductive �or co�inductive	

inference dictated by the structure of the underlying signature�

There are related studies of the use of higher�order combinators for theoretical programming

MFP��� Fok�
�� however� none has yet been incorporated into a practical system for program

development� The origin of such techniques appears to lie in the work of the Squiggol school

Bir��� Bir��� Mee���� subsequently in�uenced by a thesis by Hagino
Hag��� in which datatype

morphisms are generalized in a categorical framework� A categorical programming language

called Charity
CS�
� embodies inductive and coinductive control structures based upon a

categorical framework� The characterization of datatypes as structure algebras �and coalgebras	

Mac��� can be attributed to Hagino�

ADL has syntax similar to that of the ML language family� Like Standard ML� it consists

of a core language augmented by a module structure� ADL modules� called functors� are

abstracted with respect to structure algebras or coalgebras� The functor construct in ADL

�A variety is a class of algebras that have a common signature�

�

indeed corresponds to the categorical notion of functor� unlike the like�named construct of

Standard ML�

Unlike Standard ML� ADL has no ref types and has no rec de�nitions� ADL can be given a

simple semantics over sets� However� domain sets are subject to logically formulated restriction�

and complete type�checking of ADL programs is only semi�decidable� The semantics of ADL

does not rely upon �xpoints and does not require domains of CPO�s as an underlying structure�

although such an interpretation is certainly possible�

The computational content of ADL can be translated via the semantic equations given

in its metalanguage into a �rst�order� call�by�value functional language with �xpoints and

exceptions that we call BDL�Basic Domain Language� BDL has no higher�order functions

and no explicit abstraction �i�e� it has no fn expressions� as SML does	� However� it does allow

recursive de�nitions of �rst�order functions� BDL has a conventional� denotational semantics

expressed in terms of domains� It may be thought of as the �machine language� of an abstract

machine capable of evaluating ADL �and other languages as well	�

� Algebras� Types and signatures

ADL is a higher�order� typed language whose type system is inspired by concepts from the

theory of order�sorted algebras� from Martin�L�of�s type theory and from the Girard�Reynolds

second�order lambda calculus� While ADL does not provide the full generality of the second�

order lambda calculus� it does distinguish between the names of types and the semantics of

types and it contains combinators that are indexed by type names� Its type system is su�ciently

rich that type�checking is not known to be decidable�

Nevertheless� the ADL type system is amenable to an abstract interpretation that is similar

to the Hindley�Milner system with consistent extensions� Type inference in the Hindley�Milner

system� while of exponential complexity in the worst case� has been shown to be feasible in

practice through years of experience with its use in the ML family of languages� The Hindley�

Milner system� which embodies a structural notion of type� guarantees the slogan

�Well�typed programs don�t go wrong��

This means that programs which satisfy the structural typing rules respect the signatures of

multi�sorted algebras�integer data are never used as reals or as functions� for instance� ADL

adds to the structural typing restrictions the further requirement that

�Well�typed programs always terminate��

This implies that the type system accommodates the precise description of sets that consti�

tute the domains of functions de�nable in ADL� Accurate type�checking in ADL requires the

construction of proofs of propositions� This task is made substantially easier than it would be

in an untyped linguistic framework by the underlying approximation furnished by structural

typings�

In Standard ML and related languages� the Hindley�Milner type system is extended with

datatype declarations� A datatype declaration names a type and speci�es a �nite set of data

constructors� A datatype name may have one or more type variables as parameters� and

thus actually names a type former� When a type variable is introduced as a parameter in a

datatype declaration� the variable is bound by abstraction� rather than universally quanti�ed�

The binding occurrence of an abstracted type variable is its occurrence in the left hand side

of a datatype de�nition� Application of a type former to a type expression can be understood

syntactically� as the substitution of the argument expression for all occurrences of the type

variable in the datatype declaration�

In ADL� datatype declarations are generalized to signature declarations that specify alge�

braic varieties� Following the conventions of multi�sorted algebras� we call the names of types

and type formers sorts� The generalization can be summarized in the following table�

Parameterized datatypes Varieties

type algebra
type former sort
data constructor operator

The arity is a syntactic property of a sort� The arity indicates how to form type expressions

from sorts� A sort with nullary arity� designated by �� is said to be saturated� A sort with

non�nullary arity� designated by � � �� ��� �	� �� ��� �� �	� �� � � � is said to be unsaturated�

An unsaturated sort� s� can form a saturated sort expression by applying it to a tuple that

�

consists of as many saturated sort expressions as there are asterisks to the left of the arrow in

the arity of s� A type name in ADL is a saturated sort expression� Type variables range over

saturated sort expressions�

ADL departs signi�cantly from functional programming languages such as SML by provid�

ing declarations of signatures that de�ne classes of structure algebras� not simply datatypes�

An algebraic signature consists of a �nite set of operator names� together with the type of the

domain of each operator� The codomain of an operator is the carrier type for each particular

algebra�

��� Some familiar algebras

Where we would write the declaration of a list datatype in Standard ML as

datatype �a list � nil � cons of ��a � �a list�

a corresponding declaration of a family of list�algebras in ADL is written as�

signature List�type c	 list�a�
c � ��nil� �cons of �a � c�

This declares Listfg to be the name of a class of algebras for which there is de�ned a single

unsaturated sort� list � � � �� The list�sorted algebras have a signature parametric on a type

represented by the variable a� In the signature� the type variable c is used as the name of the

carrier type� The signature consists of a pair of operator names� with typing

type a� c � �nil � c
�cons � a� c� c

Properly� the operator �nil could have been given a function type� � � c� by declaring it as

��nil of ��� Since � is a singleton set� every function in the type � � c is isomorphic to an

element in c�

Operator names always begin with ��� to distinguish them from other identi�ers� A concrete

algebra is speci�ed by a structure that contains bindings for the carrier type and for each

operator of the algebra�

�

Each signature declaration implicitly de�nes one speci�c datatype� This is the type of free

terms� whose operators are the free constructors of the signature �just as for SML datatypes	

and whose elements are the terms constructed by well�typed applications of these constructors�

The names of the data constructors of the datatype of free terms are derived from the names

of operators in the signature by dropping the initial ��� symbol� As a convention� we shall also

capitalize the initial letter of the name of a data constructor�

��� Structure algebras

De�nition ��� � Let T be a parameterized signature� A T�structure algebra �or T �algebra�

for short	 is a pair �c� h	� where c is a type called the carrier of the algebra and h � T �c	� c is

called its structure function�

�

An important special case of a T �algebra occurs when the elements of the signature are

data constructors� Data constructors are unconstrained by equational laws� The set of terms

generated from values of a type a by well�typed applications of the data constructors of T

constitutes a type that we call T �a	� Under suitable constraints on the signature T � a type

T �a	 is the carrier of a T �algebra that is unique modulo the isomorphism class of the parameter�

a� This is called the free term algebra�

A T�algebra morphism is a function that maps one T �algebra to another� This notion can

be made precise� but we need some notation to express it� The meaning of T as a parameterized

signature can be extended to de�ne a signature as the mapping of a function� The following

de�nitions have been specialized to the case of a single�sorted signature�

�

De�nition ��� � Let f � a� b and let t be the �single	 sort and ��� � � � � �n be the operator

names of the signature T � then map t f � t�a	� t�b	 is de�ned as follows�

map t f � �x� case x of

�
�i�x�� � � � � xmi

	� �i�y�� � � � � ymi
	

where yj �

�������
������

f xj if xj � a
map t f xj if xj � t�a	
map s �map t f	 xj if xj � s�t�a		 where s is a ��unsaturated

sort of a signature T �

xj if xj � s
� where s� is a saturated sort

De�nition ��� � Let t be the �single	 sort of a signature T � A T�algebra morphism f � a� b
satis�es the commuting diagram below�

t�a�
map tf

� t�b�

h

� �

k

a
f
� b

Example ��� � A list�algebra morphism� Let exp� � �n�
n� and let sum and product be the
functions that reduce a list of non�negative integers by addition and multiplication� respectively�
Then the following diagram illustrates exp� as a morphism of list�algebras�

list�int�
maplist exp�

� list�int�

sum

� �

product

int �

exp�
int

�

When a signature declaration satis�es the unitary condition �see De�nition
��	� there exists

for each type a� a free term algebra� �t�a	� �a	� �This condition is su�cient but not necessary�	

It has the property that for any T �algebra �a� h	� the homomorphism h is the unique T �algebra

morphism from the initial term algebra to �a� h	� The last statement is summarized in the

following commuting square�

�

t��a�
map th

p p p p p p p p p p p p p� t�a�

�a

� �

h

t�a�
h

p p p p p p p p p p p p p� a

The dotted arrow indicates that the function that makes the diagram commute is uniquely

determined from the other data in the diagram�

De�nition ��� Let t � � � � be an unsaturated sort of a signature T � An element �� of �� of

the t��	 component of T is called a unit operator if � � �� � � � � � �m and there is at least one

occurrence of � among the �i� If � � �� then � is said to be perfect�

De�nition ��� A signature T is zero�based if it contains a unique element ��� of ���

De�nition ��	 A �single�sorted	 signature T is unitary if it contains a unique unit operator�

and either

�� the unit operator is perfect� or

� if the unit operator is given by a signature component �� of �� � � � � � �m� then

� only one factor� �i� is ��

� for all factors �j �� �� �j � c� where c is the name declared for the carrier of type

t��	�

� T is zero�based�

�

If a signature T is unitary� the datatype of free terms of T is the carrier of an algebra� This

algebra is in fact� initial in the category of T �algebras� Thus a �redundant	 ADL speci�cation

of the free term algebra for the sort list would be

List�c �� list�a�	 list��nil �� Nil� �cons �� Cons

�

It is important to remember the distinction between data constructors in the free term algebra

and operators in the signature of an algebra� Di�erent instances of an operator may have

di�erent types� depending upon the environment in which it appears� as the carrier type will

di�er in distinct algebras of the same family� The data constructors are a special case of the

operators for one speci�c algebra� and their types are �xed� up to variation in the type argument

of an unsaturated sort�

Example ��� � Three di�erent list�algebras are�

List�c �� int	 list��nil �� �� �cons �� ���

List�c �� int	 list��nil �� �� �cons �� ��x�y� ��y

List�c �� list�a� �� list�a�	

list��nil �� id�

�cons �� ��x�f� �y Cons�x�f y�

These List�algebras induce homomorphisms from free List�algebras that represent functions

that sum a list of integers� calculate the length of a list� and catenate two lists� respectively� A

combinator to specify these homomorphisms will be introduced in the next section�

When a signature in ADL has only a single sort� as does List� an algebra speci�cation may

be abbreviated by omitting the inner set of curly braces and the sort name that is pre�xed to

the opening brace� Thus we could abbreviate the �rst algebra in the list of examples above� as

List�c �� int	 �nil �� �� �cons �� ���

Here are the declarations of some other signatures that de�ne useful classes of algebras in

ADL�

signature Nat�type c	 nat
c � ��zero� �succ of c

signature Tree�type c	 tree�a�
c � ��tip of a� �fork of �c � c�

signature Bush�type c	 bush�a�
c � ��leaf of a� �branch of list�c�

Note that nat is a saturated sort� while tree and bush are both ��unsaturated�

�

��� The reduce combinator

If t is a ��unsaturated sort of the signature T � a structure function of the class of T �algebras is

any function h � t�a	� a� If T is unitary� and hence has a free term algebra� then h is also the

unique T �algebra morphism from �t�a	� �a	 to �a� h	� and we call it a homomorphism� �Recall

that the meaning of �morphism� is �form�preserving�� Here the form that is preserved is the

underlying structure of the algebra�	 More generally� the composition of a T �algebra morphism

f � a � b with a homomorphism� i�e� g � f 	 h � t�a	 � b� is a T �algebra morphism from the

free term algebra� and is uniquely determined by the algebra of its codomain�

ADL de�nes a combinator� red � that takes an algebra speci�cation to a free�algebra mor�

phism� The red combinator obeys a morphism condition for each algebra on which it is

instantiated� For the algebras we have considered� these equations are�

red
nat� Natfc� �zero� �succg Zero � �zero

red
nat� Natfc� �zero� �succg �Succn	 � �succ �red
nat� Natfc� �zero� �succg n	

red
list� Listfc� �nil� �consgNil � �nil

red
list� Listfc� �nil� �consg Cons �x� y	 � �cons �x� red
list� Listfc� �nil� �consg 	

red
tree� Treefc� �tip� �forkg �Tipx	 � �tipx

red
tree� Treefc� �tip� �forkg �Fork �l� r		 � �fork �red
tree� Treefc� �tip� �forkg l�
red
tree� Treefc� �tip� �forkg r	

red
bush� Bushfc� �leaf � �branchg �Leafx	 � �leaf x

red
bush� Bushfc� �leaf � �branchg �Branch y	 � �branch �map list �red
bush� Bushfc� �leaf � �branchg	 y	

The function map list� referred to in the last equation above� will be de�ned below�

Here are some examples of list�algebra morphisms constructed with red
list� and the algebra

speci�cations given in Example
�
�

sum�list � red�list� List�c �� int	 �nil �� �� �cons �� ���

length � red�list� List�c �� int	 �nil �� �� �cons �� ��x�y� ��y

append � red�list� List�c �� list�a� �� list�a�	

�nil �� id�

�

�cons �� ��x�f� �y Cons�x� f y�

Further examples of list�algebra morphisms are�

map�list f � red�list� List�c �� list�b�	

�nil �� Nil�

�cons �� ��x�y� Cons�f x� y�

where f has the type a �� b for some existing type a� and

flatten�list � red�list� List�c �� list�a�	 �nil �� Nil� �cons �� append

The typings of the constants de�ned by these equations are�

sum�list � list�int� �� int

length � list�a� �� int

append � list�a� �� list�a� �� list�a�

map�list � �a �� b� �� list�a� �� list�b�

flatten�list � list�list�a�� �� list�a�

Some examples of nat�algebra morphisms are�

ntoi � red�nat� Nat�c �� int	 �zero �� �� �succ �� �n ��n

add x � red�nat� Nat�c �� int	 �zero �� x� �succ �� Succ

plus � red�nat� Nat�c �� int �� int	 �zero �� id� �succ �� �f �n � � f n

with typings

ntoi � nat �� int

add � nat �� nat �� nat

plus � nat �� int �� int

�

Examples of tree morphisms are�

sum�tree � red�tree� Tree�c �� int	

�tip �� id�

�fork �� ���

list�tree � red�tree� Tree�c �� list�a�	

�tip �� �x Cons�x�Nil��

�fork �� ��x�y� append x y

map�tree f � red�tree� Tree�c �� tree�a�	

�tip �� �x Tip�f x��

�fork �� Fork

flatten�tree � red�tree� Tree�c �� tree�a�	

�tip �� id�

�fork �� Fork

with typings

sum�tree � tree�int� �� int

list�tree � tree�a� �� list�a�

map�tree � �a �� b� �� tree�a� �� tree�b�

flatten�tree � tree�tree�a�� �� tree�a�

The analogous examples of bush morphisms are�

sum�bush � red�bush� Bush�c �� int	

�leaf �� id�

�branch �� sum�list

list�bush � red�bush� Bush�c �� list�a�	

�leaf �� �x Cons�x�Nil��

�branch �� flatten�list

��

map�bush f � red�bush� Bush�c �� bush�a�	

�leaf �� �x Leaf�f x��

�branch �� Branch

flatten�bush � red�bush� Bush�c �� bush�a�	

�leaf �� id�

�branch �� Branch

with typings

sum�bush � bush�int� �� int

list�bush � bush�a� �� list�a�

map�bush � �a �� b� �� bush�a� �� bush�b�

flatten�bush � bush�bush�a�� �� bush�a�

Exercise ��� Reverse of a list

a� Specify a list�reduce to compute the reverse of a list�

b� Now specify a second list reduce with carrier type list��	 � list��	 to de�ne a function

rev � list��	� list��	 � list��	 that satis�es the equation

rev x Nil � reverse x

��� Primitive recursion

Recall that Kleene�s primitive recursion scheme to de�ne functions on natural numbers is�

f �Zero� x�� � � � � xn	 � g �x�� � � � � xn	

f ��Succ n	� x�� � � � � xn	 � h �Succ n� f �n� x�� � � � � xn	� x�� � � � � xn	

where g � t�� � � �� tn � a and h � nat�a� t�� � � �� tn � a� Although the primitive recursion

scheme can be represented as a nat�reduce� the representation is unnatural and if implemented

directly� can result in algorithms with worse�than�expected performance� For instance� the

�

case expression for type nat when expressed as a nat�reduce is

case x of

Zero� g
j Succ�x�	 � h x�

end

� red
nat�Natfc�
�zero �� �Zero� g	�
�succ �� ��x� y	 �Succ x� h x	g

Evaluation of the nat�reduce explicitly traverses the entire structure of a term to construct the

argument needed in the successor instance of the case analysis� This takes time linear in the

size of a nat term� whereas the case primitive is a constant time function�

A primitive recursive function is� however� a structure function of a related variety of

structure algebras� one in which the carrier always has the form nat � a for some type a� This

motivates us to de�ne an operator on signatures� with which to obtain new families of structure

algebras whose homomorphisms are primitive recursive�

Let delta be the operator that takes a signature for sort t to a derived signature that has

the same set of operator names� but in which every occurrence of the carrier type� c� in the

typing of an operator is replaced by t� � c �where t� designates a saturated instance of the sort

t	� Thus� for example�

delta nat � ftype c� �zero� �succ of nat � cg

We can name this signature in a declaration�

signature PR nat � delta nat	

and use PR nat in the de�nition of a primitive recursive reduce� In general� for a signature T

with a single sort� t� the reduce of Pr T satis�es the equations �for each free constructor� Ki	�

red
t� Pr Tfc� ���� � � � � ��ng Ki�x�� � � � � xmi
	

� ��i�y�� � � � � ymi
	

where yj �

���
��

�xj � red
t�Pr Tfc� ���� � � � � ��ng xj	 if �ij � c
�xj �map s �red
t�Pr Tfc� ���� � � � � ��ng	 xj	 if �ij � s�c	
xj otherwise

To de�ne a factorial function� for instance� one could write

��

fact � red�nat� PR�nat�c �� int	

zero �� ��

succ �� ��m�n� ntoi�Succ m� � n

To de�ne a general primitive recursion scheme for natural numbers� declare a higher�order

structure functor� Pr� by

type a	

Pr�g�h� � red�nat� PR�nat�c �� a	

�zero �� g�

�succ �� h

This de�nes a family of PR nat algebras� with structure functions Pr�g� h	 � nat � a� for each

pair �g � a� h � nat � a� a	� In terms of this scheme� the factorial function is de�ned by

fact � Pr�����m�n� ntoi�Succ m� � n�

where the type variable a has been instantiated to int�

Exercise ��� Splitting a list

De�ne splitat � char � list�char	 � list�char	� list�char	

splitat c xs is speci�ed as follows�

If the list xs contains an occurrence of the character� c� then splitat c xs yields the pair of the

pre�x and su�x of the �rst occurrence of c in xs� Otherwise� it yields the pair �xs�Nil	�

Hint� Use primitive recursion for list�

��� Proof rules for algebras

Inference rules for the particular algebras introduced in the previous section are summarized

below� The rule for the Nat�algebra is natural induction� as one would expect� For the List�

Tree and Bush algebras� the rules are those of �structural induction� for the datatypes that

correspond to the free algebras� Note that we do not have to treat induction as a special rule

��

of the logic�the inductive proof rules account for the computational content of the algebra

morphisms� This has been noted previously by Goguen
Gog� � and others�

c type P ��zero	 P �n	 � P ��succn	

n � nat� P �red
nat�Natfc� �zero� �succgn	

c type P ��nil	 P �y	� P ��cons�x� y		

y� � list�a	� P �red
list�Listfc� �nil� �consg y�	

c type P ��tip x	 P �y	� P �z	� P ��fork�y� z		

y� � tree�a	� P �red
tree�Treefc� �tip� �forkg y�	

c type P ��leaf x	
y � c�
ys � list�c	� y in ys � P �y	� P ��branch ys	

z � �branch�a	� P �red
bush�Bushfc� �leaf � �branchg z	

� Morphisms of non�initial structure algebras

Recall the diagram in terms of which a T �algebra morphism is de�ned�

t�a�
map tf

� t�b�

h

� �

k

a
f
� b

The initial algebra homomorphisms illustrated in the diagram are h� k� map t f and the com�

posite� f 	 h � k 	 map t f � Each of these can be expressed in terms of the combinator red

and the appropriate T �algebra� However� f is also a T �algebra morphism� and under certain

conditions� it may also be expressed in terms of a combinator� Suppose there exists a function

p � a� t�a	 such that p 	 h � idt�a�� �However� p is not necessarily a right inverse for h�	 Then

f must satisfy the recursion equation

f � k 	map t f 	 p

when its domain is restricted to the image of t�a	 under h�

��

Let E�t�a	 designate a type isomomorphic to t�a	� Typically� it will be a disjoint union of

alternatives including a� t�a	� the �unit� type� �� and products of these� It represents an explicit

one�level unfolding of the structure of terms of type t�a	� Then a function p� � a � E�t�a	

may be isomorphic to a left inverse for h as described in the preceding paragraph� With this

nomenclature� an isomorphic relative of the recursion equation given above can be summarized

in the diagram below� which reveals the structure more clearly�

E�t�a�
p�

� a

map E�t f

� �

f

E�t�b� �

k
b

Following the suggestion outlined above� ADL introduces a combinator with which to construct

morphisms whose domains are T �algebras that are not initial� We call this combinator hom �

It takes three parameters� the sort of the structure function that is to be mapped� the structure

algebra in the codomain of the morphism and a partition relation that is the �inverse� structure

function of its domain algebra� The partition relation is typically expressed as a conditional

or a case expression that tests a value of type a to reveal the structure of the algebra� The

codomain of the partition relation is E�t�a	� which is a disjoint union of the domain types of

the set of operators of the signature T �

Thus we write hom
t�Tfb� kg p� where k � t�b	 � b and p � a � t�a	� Here is an example

that illustrates the construction of a T �algebra morphism with hom �

Example ��� � Calculate the largest power of
 that factors a given positive integer�

Consider the Nat�algebra de�ned by�

Nat fc �� int� �zero ��m� �succ �� �n
� ng

in which the free variable m represents an odd� positive integer� The carrier of this algebra is

the set consisting of fm�
m� �m� �m� � � �g� To invert the structure function� construct a function

��

that recovers the natural number giving the power of two that multiplies m in forming any

element of the carrier� That is� let

p � int� E�nat�int	
p �def nn if n mod � �� � then �zero

else �succ�n div ��

where E�nat is a derived� unsaturated sort� This sort belongs to no declared variety� thus has

no signature and cannot form the type of the domain or codomain of other� explicitly de�ned

functions�

Notice that in the above de�nition� the operators of the Nat algebra� �zero and �succ� assume

speci�c types by binding the carrier as int� These occurrences of �zero and �succ represent the

operators of the particular Nat�algebra that is presumed to structure the int�typed domain of

the Nat�algebra morphism being de�ned�

To complete the solution of the problem� we need to specify a Nat algebra that yields an

integer representation of a power of
� To give an exponent of two� we can use the algebra

that represents a natural number as a positive integer� This algebra was used to specify the

function ntoi in an earlier example� �Notice that the bindings given to the operator symbols

�zero and �succ in this algebra are not the same as the bindings presumed in in the de�nition

of p above� In general� they need not even have the same typings�	 Thus� we get an algorithm

expressed in ADL as�

pwr�� � hom�nat� Nat�c �� int	 �zero � �� �succ � �n ��n
 p

The equation satis�ed by pwr � is�

pwr � n � if nmod
 �� then
else � ! pwr � �n div
	

To obtain an explicit representation of the factor that is a power of
� the Nat�algebra can

be modi�ed to calculate that factor� This solution is

pwr��� � hom�nat� Nat�c �� int	 �zero � �� �succ � �n ��n
 p

��

Example ��� � log� of a positive integer�

By modifying the algebra in the domain of the partition relation in the previous example

we can obtain an algorithm for the base
 logarithm of a positive integer� Let

p� � int � E�nat�int	
p� �def nn if n div � � � then �zero

else �succ�n div ��

log�� � hom�nat� Nat�c �� int	 �zero � �� �succ � �n ��n
 p�

Example ��� � Filtering a list

The function �lter p � list�a	 � list�a	 reconstructs from a list given as its argument� a

list of the subsequence of its elements that satisfy the predicate function p � a � bool� This

function can be directly constructed as an instance of red for a suitable list algebra� However�

we propose an algebraic variety to represent the two cases that occur in �ltering�an element

of the list is either to be included or omitted�

signature Slist�type c	 slist�a�
c � ��nomore� �include of a�c� �omit of c

A de�nition of �lter p can be given as a morphism of Slist�algebras�

filter p � hom�slist� Slist�c �� list�a�	

�nomore � Nil�

�include � Cons�

�omit � id

��xs case xs of

Nil �� �nomore

� Cons�x�xs�� �� if p x then �include�x�xs��

else �omit xs�

end�

�

��

Example ��� � Quicksort

A quicksort of a list of integers requires two functions� one that partitions a list�

part � int� list�int	� list�int	� list�int	

and another that sorts a list� sort � list�int	 � list�int	� The function part can be de�ned as a

reduce�

part a � red�list� List�c �� list�int��list�int�	

�nil �� �Nil�Nil��

�cons �� ��b��xs�ys�� if b�a then �Cons�b�xs��ys�

else �xs�Cons�b�ys��

The function sort� however� is a divide�and�conquer algorithm with the structure of a binary

tree� It can be expressed as a hom of the algebraic variety�

signature Btree�type c	 btree�a�
c � ��emptytree� �node of c�a�c

sort � hom�btree� Btree�c �� list�int�	

�emptytree �� Nil�

�node �� ��xs�x�ys� append xs �Cons�x�ys��

��xs case xs of

Nil �� �emptytree

� Cons�x�xs�� ��

let �ys�ys�� � part x xs�

in �node�ys�x�ys��

end�

Notice that although the control is a tree traversal� the sort function has type list�int	 �

list�int	� There is no data structure corresponding to the datatype btree�list�int		� This is a

�treeless� tree traversal�

��

Exercise ��� Another form of bush

Given signature Bush�ftype c� bush��a	�c � f�leaf � of a� �branch� of nat � �nat� c	gg

construct a morphism of type bush�a	 � bush��a	 that is invertible� �Construct its inverse�

too�	

Exercise ��� Splitting a list more e�ciently

The function splitat de�ned by primitive recursion does more computation than is necessary�

It recursively evaluates the function on the tail of a list that has already been successfully split�

Reformulate the function as a hom
list��

Exercise ��� Factors of a positive integer

Give a function� factors� that takes a positive integer N and a list of positive integers M to a

list of the factors of N by M � and which satis�es the following equations�

factors N Nil � Cons�N�Nil	
factors N Cons�m�M �	 � Cons�m� factors �N�m	 Cons�m�M �		 if m divides N
factors N Cons�m�M �	 � factors N M � otherwise

Prove that your solution satis�es the equations�

��� Proof rules for morphisms of non�initial algebras

Properties of functions constructed with hom can be veri�ed by applying the proof rules of the

T �algebra� as described earlier� provided that the construction actually is a T�algebra morphism�

Recall that for a construction hom
t�Tfb� kgp to be a T �algebra morphism� the partition relation

p must be a left inverse of the structure function of a T �algebra� �a� h	� Since we do not know

h in general� we require a condition that can be applied directly to p itself� Note that if p is a

left inverse� it is also a right inverse to h on some subset of the elements of type a� Thus p is

necessarily formally correct� it constructs results by well�typed �in the Hindley�Milner system	

application of operators of the signature T � However� its application to an arbitrary element

x � a might fail to be de�ned� x may not be in the codomain of h� The additional requirement

can be stated in terms of a total ordering on a that must be provided to discharge the proof

obligation�

De�nition ��� Let T be a signature declared by

signature T � ftype c� s�a	�c � f� � � ��i of ti� � � � � � timi
� � �gg

Let P be a predicate over a� Suppose that ��	
 a � a is a well�founded ordering on the set

fx � a j P �x	g� We say that a function p � a � s�a	 calculates a T�inductive partition of the

set fx � a j P �x	g if

x � a� P �x	 �
��i � T� p x� ��i�y�� � � � � ymi
	�
j � ���mi

�
yj � x if tij � c

z� z elt s� yj � z � x if tij � s��c	

where s� is a ��unsaturated sort �s� �� s	 and elt s� is an in�x notation for the two�place predicate

de�ned by�
z � x � z elt s� ���i�y�� � � � � x� � � � � ymi

	
z elt s� y � z elt s� ���i�y�� � � � � y� � � � � ymi

	

for all operators ���i in the signature of sort s��

�

In the de�nition above� the predicate P characterizes a subset of type a elements on which

the morphism is well�de�ned� Any properties of the morphism deduced with the proof rules

of the T �algebra will be valid only for points of the domain that satisfy P � In Example ����

a suitable subset and its well�ordering is the natural order� ��	� on positive integers� The

partition relation p induces a nat�inductive partition� In Example ��
� the same ordering is

used but the set is the non�negative integers� In Examples ��� and ���� a suitable ordering on

list�int	 is xs � ys i� length xs � length ys� The veri�cation condition for the function part of

the Quicksort example becomes

xs � Cons �x� xs�	 � part x xs� � �ys� ys�	 � ys � xs � ys� � xs

De�nition ��� of T �inductive partition of a set extends without complication to algebras of

a multi�sorted signature� What becomes more complicated in such a case is the well�founded

order� which may need to relate terms of di�erent sorts�

�

� The ADL type system

Logical properties of morphisms of the structure algebras associated with datatypes can be

derived by inductive proof rules� Each such property is formalized as a predicate over a set�

ADL types can be interpreted as sets� although as we shall see later� when the hom combinator

is introduced� proof obligations arise in verifying that a syntactically legal term is semantically

valid with respect to the ADL type system�

Since types are sets� the restriction of a type by a predicate de�nes a set that may be

considered as a subtype of a structurally de�ned type� We call such subtypes domain types� An

ADL domain type is expressed with set comprehension notation� as for instance� fx � t j P �x	g�

where t is a structural type expression and P stands for a predicate� In the type system of

ADL� domain types occur only on the left of the arrow type constructor� Domain types express

restrictions in the types of functions�

Syntax of type expressions

typ ��� identi�er primitive types
j typ � typ products
j domtyp� typ function types
j identi�er�typ
� typ�	 datatypes

domtyp ��� typ
j fidenti�er � typ j Identi�er�expr	g restricted domain types

The Hindley�Milner type system is based upon a structural notion of type and is not ex�

pressive enough to distinguish among domain types of ADL� Thus� its type�checking algorithm

is not powerful enough to ensure that a syntactically well�formed ADL expression is meaning�

ful� but requires additional evidence as proof� Nevertheless� we �nd it useful to employ the

Hindley�Milner type system as an approximation to ADL�s type system� The Hindley�Milner

type�inference algorithm is an abstract interpretation of ADL that approximates its type as�

signments� Whenever Hindley�Milner type checking asserts that an expression is badly typed�

it cannot be well�typed in the ADL type system� When Hindley�Milner type inference assigns

a type to an expression� that typing will be structurally compatible with any ADL typing of

the expression�

For example� given a pair of ADL functions with typings f � fx � t� j P �x	g � t� and

g � fx � t� j Q�x	g � t�� a structural �Hindley�Milner	 typing approximates the ADL typings

as f � t� � t� and g � t� � t�� It will judge their composition to be well�typed� with typing

g 	 f � t� � t�� An ADL typing of the composition has the form g 	 f � fx � t� j R�x	g � t��

and it carries a proof obligation to show that R�x	 � P �x	 � Q�f x	� To discharge the proof

obligation requires a logical deduction based upon algebric properties of the function f �

To determine whether a function application is well�typed is too complex for Hindley�Milner

typing alone� To know that f a is well�typed� one must furnish evidence that P �a	 holds� Func�

tion types in ADL may involve restrictions expressed in domain types� and these restrictions

may include arithmetic formulas� For this reason� ADL does not have principal types� nor

unicity of types� Domain restrictions are needed to express the termination conditions for

combinators that express morphisms of non�initial structure algebras�

Domain restrictions must be expressible with �rst�order predicates� As a practical conse�

quence� this implies that a domain restriction cannot assert a property of the result of applying

a function�typed variable� For example� given a function f � fx � t� j P xg � t�� we can

express the typing of a function that composes its argument on the left of f as

�g� g 	 f � �t� � t�	� fx � t� j P xg � t�

The type of the formal parameter� g� is only structural� it requires no domain predicate to be

imposed�

If� however� we attempt to type the function �h� f 	 h that composes its argument on the

right of f � we �nd that it is impossible to do so with only a �rst�order domain predicate� The

predicate must express that every point in the codomain of h satis�es the domain predicate P �

and to express this restriction requires quanti�cation over all points in the domain of h� The

only kind of typing restriction that can be expressed of a function�typed variable is a domain

restriction� However� this can be quite powerful�

Given a proof that a function�typed variable satis�es a domain restriction at every occur�

rence in an expression� the variable may be abstracted from the expression and given a domain�

restricted function type� For instance� suppose that in an expression �x� e � t� � t�� the free

�

variable f occurs in an applicative position and satis�es a structural typing f � t� � t�� If in ad�

dition� at every occurrence of f in e �each of the form f e�	 one can show that P x� Re�� then

the abstraction can be given a typing �f� �x� e � �fy � t� j Ryg � t�	 � fx � t� j P xg � t��

An application of a function h � �fy � t� j Ryg � t�	� fx � t� j P xg � t� to an argument

e� � fy � t� j Qyg � t� is judged to be well�typed if there is a proof that
y � t�� Ry � Qy�

��� Typing combinator expressions

The function composition operator is one instance of an ADL combinator whose arguments

can have domain�restricted function types� The ADL combinators red and hom are further

instances� and they require special typing rules� These combinators are applied to algebra

speci�cations� so it is necessary to specify what constitutes a well�typed algebra speci�cation�

For simplicity� we illustrate the formal rules for a single�sorted algebra A� with sort symbol s

and carrier �type	 symbol c� Let Index �"s	 designate the index set of the signature of sort s�

Let t� t�� t�� � � � range over types and f�� f�� � � � range over expressions� Let � range over typing

environments� �A typing environment is a �nite mapping of type variables to types�	 The

judgement form � � e � t is read as �expression e has type t in the typing environment ��� The

rule for well�typing of an algebra speci�cation is�

i � Index �"s	�
� � type�� � � fi � ti � t

� ti � �c
t�c���i	

� � type�� � �Alg Afc �� t� sf� � ���i �� fi� � � �gg

in which �c is the type environment that agrees with � on all type variables except c� which is

not in its domain�

Well�typing of an algebra speci�cation is a hypothesis for the typing of a reduce combinator�

The rule is�

� � type�� � �Alg Afc �� t� sf� � ���i �� fi� � � �gg

� � type�� � � red
s�Afc �� t� sf� � ���i �� fi� � � �gg � s��	� t

To type instances of non�initial algebra morphisms� we require a typing for partition rela�

tions� The codomain of a partition relation does not have a unique structural type� for it is only

speci�ed up to a variety� To express this� ADL provides a unique type constructor� E�s��	� to

correspond to each �unsaturated	 sort� s� The type of a partition relation for this sort will be

�

of the form t� � E�s�t�	� where t� is a type� the type of the carrier of the domain algebra for an

instance of hom
s�� The well�typing of a partition relation furnishes an additional hypothesis

of the typing rule for hom�

p � t� � E�s�t�	

� � type�� � �Alg Afc �� t� sf� � ���i �� fi� � � �gg

� � hom
s�Afc �� t� sf� � ���i �� fi� � � �gg p � t� � t

For an example� consider typing the de�nition of pwr � in Example ���� First� we check

the well�typing of the nat algebra� For the carrier binding c �� int� the operator typings will

be �zero � int and �succ � int � int� These are satis�ed by the bindings �zero �� m and

�succ �� �nn ! �� where m � int� Thus the algebra speci�cation Natfc �� int� natf�zero ��

m� �succ �� �nn! �gg is well�typed�

Next we type the partition relation� p� In this relation� the operators �zero and �succ

are considered to be unbound� and so their typings are expressed with the codomain type

represented by E�nat��	� Choosing � � int we get the speci�c typings �zero � E�nat�int	 and

�succ � int � E�nat�int	� which gives p the typing p � int � E�nat�int	� Applying the rule

for structural typing of hom gives

pwr � � hom
nat�Natfc �� int� natf�zero �� m� �succ �� �nn! �gg p � int � int

However� to get the proper ADL typing� we must provide a domain predicate under which

the algorithm can be proved to terminate� A termination condition is that the operation

�nn div
 must be compatible with a well�ordering relation over the predicated domain� A

suitable domain restriction is
n � int� n �� � Thus a proper ADL typing is

pwr � � fn � int j n �� g � int

This typing is not unique� however� Another proper typing is

pwr � � fn � int j n 	 g � int

�

� Monads

Monads are mathematical structures that have found considerable use in programming� Know�

ing that a program is to be interpreted in a particular monad allows us to �take for granted�

the structure of the monad without explicit notation� Common examples are monads of excep�

tions �we take for granted that exceptions are propagated� and shall only express unexceptional

terms	 and monads of state transformers �we take for granted that state is threaded through

computations in a deterministic order	�

Recognition that monads are useful in programming is relatively recent
Mog��� Wad� ��

Monads have been used to explain control constructs such as exceptions
Spi� � and advocated

as a basis for formulating reusable modules
Wad�
��

Monads cannot be speci�ed with the simple� sorted signature declarations available in ADL�

Instead� ADL provides a prede�ned variety� whose signature is

signature Monadftype M�a	� monad�a	�M�a	 � f�unit of a� �mult ofM�M�a		gg

where M�a	 is type expression in which the parameter a has only positive occurrences �with

respect to the arrow constructor	� Positive occurrences are de�ned in terms of a predicate Posa�

de�ned as follows�
Posa�a	 � true

Posa�b	 � true if b �� a
Posa�X � Y 	 � Posa�X	� Posa�Y 	
Posa�X ! Y 	 � Posa�X	� Posa�Y 	
Posa�X � Y 	 � Nega�X	� Posa�Y 	

Nega�a	 � false

Nega�b	 � true if b �� a
Nega�X � Y 	 � Nega�X	� Nega�Y 	
Nega�X ! Y 	 � Nega�X	� Nega�Y 	
Nega�X � Y 	 � Posa�X	�Nega�Y 	

where a and b denote atomic type expressions� For example� the following propositions are

satis�ed� according to the de�nition�

Nega�a� b	
Posb�a� b	
Posa��a� b	� a	

�

Neither Posa nor Nega holds of the expression a� a� which contains both positive and negative

occurrences�

A monad is not a free algebra� there are three equations to be satis�ed�

multMa 	 unitMM�a� � idM�a� ��	

multMa 	 �map M unitMa 	 � idM�a� �
	

multMa 	multMM�a� � multMa 	 �map MmultMa 	 ��	

There is another function that can be de�ned in terms of the components of a monad and it is

often more convenient to use this function than multM � This is the natural extension�

extM � �a�M�b		�M�a	�M�b	

extM f �def mult
M 	map M f

It is easy to prove a number of identities for ext�

extM multMa � idM�a� ��	

extM f 	 unitM � f ��	

extM �extM f 	 g	 � extM f 	 extM g ��	

extM idM�a� � multMa ��	

extM �unitM 	 f	 � map M f ��	

A function of the form unitM 	 f � a�M�b	 or extM �unitM 	 f	 � M�a	� M�b	 is said

to be proper for the monad� whereas a function with codomain M�b	 that cannot be composed

in this way is said to be non�proper�

To extend a function whose domain type is a product� i�e� f � a � b � M�c	� the monad

M must be accompanied by a product distribution function� distM � M�a	�M�b	�M�a�b	�

This allows us to form an extension �extM f	 	 distM � M�a	 �M�b	 � M�c	 that can be

composed with a pair of functions in the monad�

Generally� there is no unique way to form a product distribution function� We require only

a single coherence property of such a function� namely that

distM 	 �unitMa � unitMb 	 � unitMa�b ��	

�

When M is a monad derived from an inductive algebraic signature� it is also sensible to

have a distribution function to be used with primitive recursion�

dist�M � �a�M�a		� �b�M�b		� M�a� b	

The coherence condition required of the primitive recursive product distribution function is�

dist�M 	 �hida� unit
M
a i � hidb� unit

M
b i	 � unitMa�b �� 	

��� Monad declarations in ADL

Monads can be declared in a declaration format that resembles an algebra speci�cation for the

monad algebra�

monad f name ��type expr�	� �type id	 � type expr�
�unit �� expression�

�mult �� expressiong

The square brackets are meta�syntax to indicate that the �rst instance of type expr� is optional�

depending upon the particular monad� A monad declaration is valid i� the type expr to the

right of the equals contains only positive occurrences of the type id and the monad equations

are satis�ed� An ADL translator can check the �rst of these conditions but will not always be

able to verify the equations automatically�

��� Some useful monads

There are several structures that will be recognized as features of programming languages and

which correspond to monads�

����� Exceptions

monad fExi��	 � freef�just of �� �excig�
�unit �� �x Just�x	�
�mult �� �t case t is

Just�x	 �	 x

j i �	 �exci
endg

where i ranges over identi�ers� excluding �Just��

�

in which the keyword free is not a proper sort� but designates the carrier of the free algebra

of the bracketed signature it precedes� This declaration de�nes an indexed family of monads

that correspond to a family of exceptions� indexed by identi�ers�

For example� the type expression ExNothing�term�int		 expresses a type whose proper values

are in the datatype term�int	 and whose improper value is the identi�er Nothing� an exception

name� Since the type constructor of this particular monad has structure similar to that of an

inductive signature� values in the monad can be analyzed by a case expression�

A function f � a � b that has been de�ned without thought of exceptions is �lifted� into

a monad Exi by its map function� map Exi f � The lifted function� which is proper for the

monad� propagates the exception i but neither raises this exception nor handles it� In ADL we

designate a proper function of a given monad by the use of heavy brackets�
jf j��

A distribution function for the monad of exceptions that evaluates a pair from left to right

is�

distExi�x� y	 � case x of

Just�x�	 �	 case y of
Just�y�	 �	 Just�x�� y�	

j i �	 i

end

j i �	 i

end

Alternatively� one could de�ne a distribution function that would evaluate pairs from right to

left�

There is a useful primitive recursive product distribution function for the monad of excep�

tions�

dist�Exi��u� x	� �v� y		 � case x of

Just�x�	 �	 case y of
Just�y�	 �	 Just�x�� y�	

j i �	 Just�x�� v	
end

j i �	 case y of
Just�y�	 �	 Just�u� y�	

j i �	 i

end

end

�

Note that while dist uses the exception as an anihilator� dist� treats it more nearly as an identity

element�

����� State transformers

The monad of state transformers a�ords a generic� functional speci�cation of the use of state in

computing� State can be of any type and the operations on a state component are not speci�ed

in the monad�

monad fSt��	��	 � � � �� ��
�unit �� �a �b �a� b	�
�mult �� �t �b let �s� b�	 � t b in s b�g

The product distribution function speci�es how a state component is threaded through the

computation of a pair� Here is a left�to�right product distribution function�

distSt � ��s�� s�	�b let �a�� b
�	 � s� b in

let �a�� b��	 � s� b
� in

��a�� a�	� b
��	

����� State readers

An important special case of state transformers occurs when a computation does not change

the state� For such a case� we can use a simpler monad� the monad of state readers�

monad fSr��	��	 � � � ��
�unit �� �a �b a�

�mult �� �t �b t bg

The product distribution function for state readers is unbiased as to order of evaluation of the

components of a pair�

distSr �� ��s�� s�	�b �s� b� s� b	

�

����� The continuation
passing monad

The well�known CPS transformation used in compiler design is another instance of a familiar

monad�

monad fCPS��	 � ��� �	� ��
�unit �� �a �c c a�
�mult �� �t �c t ��s s c	g

in which � is a free variable ranging over types�

The CPS monad can be given a left�to�right product distribution function�

distCPS �� ��t�� t�	�c t� ��x t� ��y c �x� y			

It could also be given a right�to�left product distribution� but this is not usually done� The

choice is completely arbitrary�

��� Composite monads

The monad constructions introduced above can be used in conjunction with one another to

specify composite monads� However� composition of monads is a bit tricky� arbitrary composi�

tions do not exist� nor is there an operator to compose monads� Functors compose uniformly�

but they are not directly represented in ADL except in the module facility�

In specifying a composite monad� the order in which the constituents are grouped is sig�

ni�cant� The permissible orders of grouping are described by the string below� in which a

parenthesized name indicates that the constituent may be repeated� Any constituent may be

omitted�

�Sr	 �St	 �Sr	CPS �Sr	 �Ex	 �Sr	

Although state readers can be placed anywhere in the composite� the normal position would

be at the far left� A state reader simply indicates that every computation may depend upon a

static state object� such as an environment that maps identi�ers to their meanings�

When a state transformer is introduced in a composite� the state component is implicitly

paired with every value resulting from a computation� and every computation is implicitly

��

dependent upon the current state component� Thus� for instance� the type of a composite

St�int	 �CPS�string		 will be int� ��string� int	� �	� ��

The CPS monad does not form a composite with itself� The monad of exceptions could� in

principle� be introduced earlier in the string of component monads but the composite would

probably not be what is intended� There are also monads corresponding to many familiar

datatypes� and we have not addressed the question of how to include them in composites�

However� datatypes seem to be more useful in ADL to characterize algebras �emphasizing

control structure	 than to characterize monads �emphasizing data structure	�

����� Unit and multiplier

For the composites we have considered� the rules for forming the unit are simple�

unitSt�S�M � �x unitM 	 �unitSt�S� x	

unitM�M� � unitM� 	 unitM� when M� �� St�S	

The rules governing the multiplier of a composite monad are somewhat more complex�

Given monads M� and M�� a rule for deriving a composite multiplier is�

multM�M� � mapM� �multM�	 	multM� 	mapM� �distM�
M�

	

where distM�
M�

� M��M���		 � M��M���		 is a polymorphic function that distributes the

structure of one monad over the other� Here are some examples of such monad distribution

functions�

dist
St�A�
St�B� � �t � St�A	 �St�B	 �X		�a � A�b � B let ��x� b�	� a�	 � t a b in ��x� a�	� b�	

dist
St�A�
ExNothing

� �t � ExNothing�St�A		�a � A
case t is

Just�s	� Just�s a	
j Nothing� Nothing

end

dist
St�A�
CPS � �t � ��X � �	� �	�a � A�c � ��X �A	 � �	 t ��s c �s a		

�

distCPSExNothing
� �t � ExNothing��X � �	 � �	�c � �ExNothing�X � �	

case t is
Just�t�	 � t� �c 	 Just	

j Nothing� cNothing
end

Ordinarily� declarations of monads and the required distribution functions will be supplied in

an ADL library and would not ordinarily be constructed �on�the��y� by an ADL programmer�

��� Interpreting an algebra in a monad

When the carrier of an algebra has the structure of a monad� we say that the algebra is

interpreted in the monad� This allows us to specify functions that carry the monad operations

�for free�� For instance� if a Nat�algebra is interpreted in a monad M�a	� and s � a� a� we can

make the binding �succ ��
j s j� to designate mapM s � M�a	 �M�a	� If x � a we could write

j x j� to designate unitM x� Interpreting an algebra in a monad a�ords a notational shortcut to

specifying functions that are proper for the monad�

Example ��� � For example� we can interpret the algebra of trees with carrier ExNothing�tree�string		

to specify a function that replaces Tip nodes in the tree structure if the contents of the Tip

match a speci�ed string�

replace�in�tree s t �

red�tree� Pr�Tree�c�� Ex�Nothing�tree�string��	

�tip �� �x if s�x then ��t�� else Nothing�

�fork �� ��Fork�� o dist��Ex

Using a case discrimination eliminates the disjoint union� we obtain a space�e�cient algorithm

for tree replacement�

replace x t u � case replace�in�tree x t u is

Just�u�� �� u�

� Nothing �� u

end

��

The algorithm is space�e�cient because a tree in which no replacement is required is not copied�

The value delivered by replace in such a case is the original data structure� Note also that if the

monad ExNothing is implemented with control transfers rather than by tagged values� then the

case discrimination and the distribution function distEx have virtually no performance cost�

�

Exercise ��� Labeling a tree

Given a signature of binary trees with labeled nodes�

signature Btreeftype c� btree�a	�c � fnt� node of c � a � cgg

give an algorithm to copy a tree� replacing the labels on its nodes by a depth��rst enumeration

with integers beginning with � at the root� Could you do a breadth��rst enumeration as well#

Exercise ��� Breaking lines of text

Given a list of character strings representing individual words� form a list of strings representing

lines of text with a length bound L given as a parameter� Fit as many words onto a line as

it will contain without over�ow� Separate adjacent words on a line by blank spaces counting

one character� If a word is encountered whose length exceeds the bound� return an exception

named long word�

Exercise ��� Justifying lines of text

Extend the solution of Exercise ��� to justify text on both right and left margins by inserting

additional blanks between words on a line to secure spacing as nearly even as possible on each

line� If only one word �ts on a line� left justify it�

��

� Coinductive signatures

So far� we have only considered the signatures of algebras� in which each operator has a typing

of the form opi � ti�� � � � � � ti�mi
� c� where c designates the type of the carrier� When the

operators are free and the carrier is the set of terms they construct� the signature de�nes a

datatype that corresponds to its free term algebra� There is a dual to this construction�

Suppose operators were given typings of the form opi � c� ti��� � � �� ti�mi
� and the collection

of operators given in a signature were the projection functions of a record template� When

the operators are free and the carrier is the set of �in�nite	 records from which they project

�eld values� the signature de�nes a coinductive datatype that corresponds to its free term

coalgebra� In general� however� the operators of a coalgebra should be thought of as witnesses

of the structure imposed upon the carrier� Coalgebras play as signi�cant a role in ADL as do

algebras� They de�ne iterative control structures�

The quintessential coinductive coalgebra has the following signature�

cosig Streamftype c� str��	�c � f�shd � ��
�stl � cgg

A free Stream coalgebra has as its carrier a type str��	 whose elements are in�nite streams�

The two functions Shd � str��	 � � and Stl � str��	 � str��	 are de�ned as projections on a

stream whose elements are of type �� Every stream is in�nite� that is� it is always meaningful

to apply the projection operators to a stream� even though there is no way to witness the entire

stream at once� A stream provides a good model for an incrementally readable input �le� The

projection Shd yields the value of the �rst element of a stream� just as a get operation on an

open �le produces a value from the �le bu�er� The projection Stl yields a stream but that

stream is not manifested until projections of it are taken� The situation is familiar in languages

with lazy evaluation rules� but the operational semantics of ADL involve call�by�value�

In an in�nite stream� there are both �nite and in�nite paths� A path is expressed by a

well�typed composition of the operators Shd and Stl� A �nite path is one that ends in Shd� To

generate all paths in a stream� a control structure must support repeated applications of Stl

until there is a �nal application of Shd� which terminates the path�

��

��� Generators and coalgebra morphisms

De�nition 	�� Let t denote an unsaturated sort of a coalgebra signature� A T�coalgebra

consists of a pair �c� k	 where c is a type� the carrier of the coalgebra� and k � c � t�c	 is a

co�structure function�

De�nition 	�� A function g � a � b is a T�coalgebra morphism if there are T �algebras �a� h	

and �b� k	 such that the following square commutes�

a
g
� b

h

�

k

�

t�a�
map t g

� t�b�

�

in which t is the �single	 sort of the coalgebra T �

A T �coalgebra generator is a function of a type a � t�b	 equal to the composition of a

T �coalgebra structure function with a T �coalgebra morphism� i�e� it is a diagonal arrow in a

diagram such as the one above� A generator is characterized by a coalgebra speci�cation in

ADL� A coalgebra speci�cation is an instance of a coalgebra signature� and provides a type

for the carrier and speci�c functions for the operators of the signature� However� the type

parameter of an unsaturated sort� t� is not restricted to be the same as the carrier� as is the

case in the mathematical de�nition �De�nition ���	�

The construction of a generalized co�structure function can be understood in terms of

the diagram below� which represents one level of �unfolding� of the recursive de�nition of a

free coalgebra� To express the unfolding� we require some notation for the general case of

the coalgebraic structure expressed in a signature� For simplicity� we consider a single�sorted

signature whose sort is unsaturated with a single parameter� i�e� t � � � �� Suppose the

signature consists of n operators� The ith operator has a typing c� ti�� � � � � � ti�mi
where c is

the type variable representing the carrier� a is the type variable representing the type parameter

��

of the sort t� and each of the ti�j is either c or a� We can represent such types by c� Fi�a� c	�

capturing with the symbol Fi the structure of the i
th codomain type� Note that we can use the

same symbol to designate a composite function of type Fi�a� c	 � Fi�a� t�a		 that is obtained

by the component�wise application of f � a� a to each component of type a� and g � c� t�a	

to each component of type c� We designate the component�wise application by Fi�f� g	� for

each i � ���n� This notational convention is used in the following diagram� in which �n means

the n�fold product of the indexed family of components�

a
g

��
nFi�b� a�

k

p

p

p

p

p

p

p

p

p

p

p

p

p

� �

�
nFi�idb� k�

t�b� �

out
�
nFi�b� t�b��

in which out is a natural �i�e� polymorphic	 isomorphism� The generalized co�structure func�

tion� k� satis�es the equation

k � out�� 	 �nFi�id� k	 	 g

The data on which k depends consists of the sort� t� and the coalgebra speci�ed by g� In ADL�

a generalized co�structure function is de�ned in terms of a combinator gen applied to these

data�

Example 	�� For example� the following expression generates a stream of ascending integers

from an integer given as its argument�

from � gen
str� Streamfc �� int� �shd �� id� �stl �� add �g

Thus from generates the sequence of non�negative integers� We have the following equalities�

Shd �from 	 �

Stl �from 	 �	 � from �

Shd �Stl �from 	 �		 � �

Stl �Stl �from 	 �		 � from

� � � � � � �

��

From these equalities we see that every �nite path of the stream from can be witnessed� Note

that the witnesses gotten by applying Stl are suspended� The typing of Stl is

Stl � str��	 � �� str��	

Explicit suspension is necessary because ADL is a call�by�value language�

Example 	�� A stream constructor function can be de�ned in terms of the stream generator

combinator and the �rst and second projections of a cartesian product� Cartesian products

exist in ADL because all functions are total� A stream constructor str cons � a�str�a	� str�a	

is�

str cons � gen
str� Streamfc �� a� �shd �� fst� �stl �� sndg

�

��� Witness paths

To compose a witness function for a coalgebra� we can formulate an inductive algebra to

characterize a path grammar for the coalgebra� A path grammar generates all instances of

�nite paths� or witness functions� for the coalgebra� A path grammar is a meta�language

concept� and is not formally expressible in ADL� Path grammars are useful for reasoning about

coalgebras� however�

For Stream�coalgebras� all paths are linear� formed by iteration of the Stl operator� Thus a

path grammar for Stream may be expressed as an instance of a Nat algebra whose carrier is a

function from str��	 to the set of terms produced by witnessing a stream� We call this set of

terms L�str��		� It corresponds to the union of the codomains of all the witness functions in

the signature of the coalgebra� This union of codomains is not expressible as a type in ADL�

paths
str� � red
nat�Natfc �� str��	 � L�str��		� �zero �� �shd� �succ �� �s� s � �stlg

where g � f � �x� g�f x �		�

A natural number determines a path for str��	� and hence a witness function� For example�

Shd �paths
str� Succ�Succ�Zero		 �from 		 �

��

For other coalgebras� the path grammars have more complex structure than Nat algebras�

Example 	�� A coalgebraic variety with particularly simple structure is given by the signature

cosig Iterftype c� inf�c � f�step � cgg

A generator for this coalgebra calculates a least �xpoint of the function bound to �step� Let

f � a� a� Then

�x f � gen
inf � Iterfc �� a� �step �� fg

This generated object is not only in�nitary� it has no �nite witness paths� However� this does

not necessarily mean that it is devoid of computational meaning� If a � b � d� then �x f has

an interpretation as the least �xpoint of f � in a domain of partial functions� However� �x f is

typed as inf by the structural typing rules of ADL� not as b� d� hence no application of �x f

is well typed�

Example 	�� Another interesting coalgebraic variety is expressed by the signature

cosig BinTreeftype c� bintree��	�c � f�val � ��
�left� �right � cgg

A generator for bintree�int	 is�

gen
bintree�BinTreefc �� int�
�val �� id�
�left �� �m�
m�

�right �� �m�
m! �g

When this generator is applied to the integer value �� it generates the in�nite� binary tree

whose integer labels enumerate the tree breadth��rst�

A bintree generator incrementally generates streams of data witnessed via a sequence of

binary decisions� The generator

gen
bintree�BinTreefc �� bool�
�val �� id�

�left �� �s���
�right �� �s� ttg

��

�where tt and ff are the identi�ers of the boolean constants	 generates a tree whose paths

correspond to �nite and in�nite sequences of boolean�valued labels� Thus the set of paths

contains the set of rational fractions in a binary representation� Its path grammar is speci�ed

with a list�bool	 algebra�

paths
bintree� � red
list�Listfc �� bintree��	� L�bintree��		�
�nil �� id�

�cons �� ��b� s	� if b then s � Right else s � Leftg

�

��� Proof rules for generators

Coinductive proof rules assert properties that can be witnessed on all paths by which values of

a coinductively generated object are accessed�

For example� the single proof rule for Stream generators is�

c type x � c P �x	� P ��stl x	

P �x	 �
i � nat� P �paths
str� i �gen
str� Streamfc� �shd �� id� �stlg x		

For BinTree generators �Example ���	� the proof rule is�

c type x � c P �x	 � P ��left x	 P �x	� P ��right x	

P �x	 �
s � list�bool	� P �paths
bintree� s �gen
bintree�BinTreefc� �val �� id� �left� �rightg x		

	 Constructing coalgebra morphisms

Generators have limited direct use as control paradigms for algorithms� However� just as is the

case for algebras� the morphisms of non�free coalgebras will yield many useful control schemes�

To calculate a coalgebra morphism� it would be su�cient to have an inverse to the arrow

on the right�hand side of the morphism diagram of De�nition ��
� Then an equation to be

satis�ed by a coalgebra morphism k can be read from the diagram below�

a
g

� �
nFi�a�

k

� �

�
nFi�k�

b �
p

�
nFi�b�

�

in which the projection function� p� may involve a selection conditional on the data� and may

even be a partial function�

	�� The combinator cohom

To realize morphisms of coalgebras that are not free� ADL provides a combinator� cohom� that

takes as arguments a coalgebra and a splitting function� The splitting function speci�es a

path for witness of the coalgebra�s carrier� The splitting function typically involves decisions

conditional on witnessed values of the carrier� and thus� recursive elaboration of the path is

implied� Just as was the case with morphisms of non�free algebras� there are proof obligations

to show that an instance of cohom is well�founded �and hence� well�de�ned	�

In implementing such a control structure� each application of an operator whose codomain

includes the carrier� such as �stl� must be suspended or else the recursive elaboration of its

repeated application would fail to terminate� a�ording no opportunity to witness �nite paths�

To make e�ective the suspension of projections by operators whose codomain type contains

an instance of the carrier� any projection operator whose codomain includes the carrier is

implicitly suspended in ADL� Suspension is not necessary for projections whose codomain type

does not involve the carrier� For example� the operators of str��	 are given the typings

�shd � c� �
�stl � c� � � c

where � designates the unique type with a single element� which is designated by �	� A type

� � c is the type of a suspended value� To obtain an actual value� an applicative expression

such as �stl s must be applied to an additional argument� namely �stl s �	�

Example ��� For a familiar example of a str�algebra morphism� consider the construction

from functions p � c� bool and r � c� c�

whilec �p� r	 � cohom
str� Streamfc� �shd �� idc� �stl �� rg
���x� y	� if p x then y �	 else x	

This is the useful unbounded iteration construct found in nearly all programming languages� It

encompasses the paradigm of linear search� To be well�de�ned in ADL� a while iteration must

��

be shown to be bounded� This question will be addressed when we consider proof rules and

�niteness conditions for coalgebra morphisms�

Example ��� Another paradigm for the recursive generation of a stream is the following� Let

f � str�a	� str�a	� De�ne

rec�f	 � a� str�a	

rec�f	 � cohom
str� Streamfc �� a� �shd �� id� �stl �� idg
���x� y	� str cons �x� f �y �				

An equation that this coalgebra morphism satis�es is

rec�f	 � str cons 	 hida� f 	 rec�f	i

Example ��� With a bintree morphism� we can specify binary search�

bsearch �key � int	 � cohom
bintree�BinTreefc� �val� �left� �rightg
���n� l� r	� if n � key then n

else if n � key then l �	
else r �		

Here� the coalgebra speci�cation is incomplete� as bindings for the carrier and the operators

have not been given� Binary search can be programmed for any bintree coalgebra whose witness

function has int as its codomain�

Exercise ��� Consider an algebra of labeled� binary trees given by the following signature�

signature Ltreefc type�
ltree��	�c � f�empty�

�node of c � a � cgg

Give an algorithm in ADL to construct from an arbitrary instance of an ltree in the free term

algebra� a new copy whose nodes are labeled by their enumeration in a breadth��rst traversal�

Hint� Assume that there is a stream of integers that are the generators for the labels to be used

at each level in the tree� Use these to label the tree� then construct the stream with the paradigm

of Example 	���

�

	�� Typing coalgebra combinators

Like algebra speci�cations� coalgebra speci�cations also have simple structural typing rules�

The rules presented in this preliminary report are restricted to a single�sorted coalgebra �with

sort s and signature "s	�

The �rst rule is one for typing a coalgebra speci�cation� The judgement form �
 �Coalg

Af� � �g� can be read as �the coalgebra speci�cation Af� � �g is well�typed relative to the envi�

ronment ���

���i� �i	 � "s�
� � type��
 � ei � t� ti

� ti �

�
��

t�c���i	 if c does not occur in �i

��i	 otherwise

� � type��
 �Coalg Afc �� t� s��	�c � f� � ���i �� ei� � � �gg

The typing rule for a generator is then�

� � type��
 �Coalg Afc �� t� s��	�c � f� � ���i �� ei� � � �gg

� � type��
 � gen
s�Afc �� t� s��	�c � f� � ���i �� ei� � � �gg � t� s��	

To give a typing for cohom� one must type a splitting function in addition to a coalgebra

speci�cation�

g � �t� � � � � � tn	� t�

� � type��
 �Coalg Afc �� t� s��	�c � f� � ���i �� ei� � � �gg

 � cohom
s�Afc �� t� s��	�c � f� � ���i �� ei� � � �gg g � t� t�

	�� Termination conditions for cohom

A function de�ned by a cohom combinator selects a particular path for access of a value from

its coalgebra� Thus any property that can be inferred of all �nite paths in the coalgebra will

hold for any path selected by an application of a function de�ned by a cohom� provided that

the path is �nite� The additional proof obligation for a cohom is just a proof of �niteness� or a

termination proof�

A �niteness proof can be formalized as a proof that the set of paths that may be selected

by a cohom is well�ordered� Typically� such a proof will hold only when the domain of the

function is restricted by a predicate� A �niteness predicate can be inductively de�ned through

clauses that mimic the structure of a coinductive proof� An inductive proof consists of a set

��

of implication schemas and a rule establishing that a given predicate holds of each element of

a set� by a �nite chain of implications drawn from instances of the schemas� Inductive proof

is an argument by which to establish a property of a set in terms of its construction� The

construction of morphisms of certain varieties of structure algebras help to shape the necessary

�niteness arguments in terms of well�ordering relations� thus the technique is applicable to

establish properties of the codomains of algebra morphisms of these varieties�

Dually� A coinductive proof consists of a set of implication schemas and a rule establishing

that a given predicate holds for each witness of a set� by a �nite chain of implications drawn

from instances of the schema� Coinductive proof is an argument by which to establish a

property of a set in terms of its witnesses� The construction of morphisms of certain varieties of

coalgebras helps to shape the �niteness arguments in terms of well�orderings� thus the technique

is applicable to establish properties of the domains of coalgebra morphisms of these varieties�

A �niteness predicate is the least speci�c assertion that can be made about the domain of

a coalgebra morphism� It asserts only that all �nite witnesses are de�ned� Thus a �niteness

predicate characterizes the domain of a coalgebra morphism� The structure of such a �niteness

proof is that

� a predicate� P � holds of some initial values by direct implication from facts� i�e� without

use of any implication that involves P in its hypothesis� and

� for every operator� ��i of the coalgebra� let �x�� � � � � xn	 � ��i x�

Then P �x	 � P �x�	 � � � � � P �xn	�

Example ��� �

For the construct while�p� r	� a �niteness predicate is the least speci�c that satis�es

p x � � � P �x	

P �r x	 � P �x	

subject to the condition that there exists a well�ordering� ��	� such that
x� P �x	 � r x � x�

Then P �x	 is a termination condition for the evaluation of while�p� r	 x�

��

 Transformational development of algorithms

The ADL language has been designed to lend itself to transformational development� i�e� the im�

provement of algorithms by meaning�preserving� algebraic transformation of programs� Trans�

formational development is an old idea� but the algebraic aspect of program transformation

has been emphasized by Richard Bird
Bir��� Bir��� and his coworkers� The deforestation

algorithms proposed by Wadler
Wad��� furnish a good example of general transformations�

Wadler
Wad��� and Malcolm
Mal��� have observed that there are general classes of theorems

that have instances for any inductive datatype� Such theorems are not only useful in justifying

transformations� they may be automated as tactics for the application of term rewrites that ac�

tually e�ect the transformations� This observation is the basis for a higher�order transformation

tool �HOT	 currently being developed for use with ADL programs�

References

Bir��� Richard S� Bird� The promotion and accumulation strategies in transformational pro�

gramming� ACM Transactions on Programming Languages and Systems� ���	����$

� �� ����� Addendum� Ibid� ���	��� ���
 �����	�

Bir��� Richard S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of

Programming and Calculi of Discrete Design� volume �� of NATO Series F� Springer�

Verlag� �����

Bir��� Richard S� Bird� Lectures on constructive functional programming� In M� Broy�

editor� Constructive Methods in Computing Science� volume �
 of NATO Series F�

Springer�Verlag� �����

Bir��� Richard S� Bird� Knuth�s problem revisited� In B� M�oller� editor� Constructing

Programs from Speci�cations� North�Holland� �����

CS�
� J� R� B� Cockett and D� Spencer� Strong categorical datatypes� In R� A� G� Seely�

editor� International Meeting on Category Theory�
��
� AMS� ���
�

��

Fok�
� Maarten M� Fokkinga� Law and Order in Algorithmics� PhD thesis� University of

Twente� Twente� The Netherlands� February ���
�

Gog� � Joe A� Goguen� How to prove inductive hypotheses without induction� In W� Bibel

and R� Kowalski� editors� Proc� �th Conference on Automated Deduction� volume ��

of Lecture Notes in Computer Science� pages ���$���� Springer Verlag� ��� �

Hag��� T� Hagino� A Categorical Programming Language� PhD thesis� University of Edin�

burgh� �����

Mac��� Saunders MacLane� Categories for the Working Mathematician� Springer�Verlag�

�����

Mal��� Grant Malcolm� Homomorphisms and promotability� In J� L� A� van de Snepscheut�

editor� Mathematics of Program Construction� volume ��� of Lecture Notes in Com�

puter Science� pages ���$���� Springer�Verlag� June �����

Mee��� Lambert Meertens� Algorithmics�towards programming as a mathematical activity�

In Proc� of the CWI Symbposium on Mathematics and Computer Science� pages
��$

���� North�Holland� �����

MFP��� Erik Meijer� Maarten Fokkinga� and Ross Paterson� Functional programming with

bananas� lenses� envelopes and barbed wire� In Proc� of �th ACM Conf� on Functional

Programming Languages and Computer Architecture� volume �
� of Lecture Notes in

Computer Science� pages �
�$���� Springer�Verlag� August �����

Mog��� Eugenio Moggi� Notions of computations and monads� Information and Computation�

����	���$�
� July �����

Spi� � Mike Spivey� A functional theory of exceptions� Science of Computer Programming�

���
�$�
� ��� �

��

Wad��� Philip Wadler� Deforestation� Transforming programs to eliminate trees� In ESOP
���

volume � of Lecture Notes in Computer Science� pages ���$���� Springer�Verlag�

March �����

Wad��� Philip Wadler� Theorems for free% In Proc� of �th ACM Conf� on Functional Program�

ming Languages and Computer Architecture� pages ���$���� ACM Press� September

�����

Wad� � Philip Wadler� Comprehending monads� In Proc�
��� ACM Conference on Lisp and

Functional Programming� pages ��$��� ��� �

Wad�
� Philip Wadler� The essence of functional programming� In Conference Record of

the Nineteenth Annual ACM Symposium on Principles of Programming Languages�

pages �$��� ACM Press� January ���
�

��

