
A Speci�cation for an MTV generator

Revision� ���

Je�rey R� Lewis

September ��� ���	

� Introduction

A Message Translation and Validation �MTV� module is a module common in command and

control systems� It performs the functions of translation and validation between three main

representations of messages� External Representation �EXR�� Internal Representation �INR�

and User Representation �USR�� EXR messages are transmitted to and from systems outside

of the command and control system� Such messages tend to be terse and�or encoded for

e�cient communication between systems� Internal representation is how messages are stored

and manipulated by the command and control system of which the MTV component is a part�

The user representation is a format intended for viewing and input by the users of the system�

Translation must be performed between EXR and INR representations� and between INR and

USR representations� Validation must be performed on EXR messages and USR messages	

INR messages are presumed to be valid�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

An MTV generator is a program that takes as input a speci�cation of an MTV module and

produces the code for that module� The following document gives a requirements speci�cation

for MTV modules and thus speci�es what an MTV generator must support�

� The MTV representations

��� The External Representation

An external message consists of bits on a wire��simply a string of bits� Thus is has no explicit

structure	 however� it does have implicit structure described by its message format� According

to the format� an external message is subdivided into �elds of bits or bytes� Fields may be �xed

length or variable length� When variable length� they must be terminated with a delimiter�

The contents of a �eld is an encoding for either symbolic data� numeric data� or text�

For example� the following external message consists of a reporting location �loc�� a Julian

date and time� and a text message� The reporting location�s value is a code for a particular

Air Force Base� The date and time is a binary encoding of January
 at ����am� The text is a

variable length byte��eld� terminated with a period� and is ASCII for Hi��

loc
z���

�
�

day
z �� �

��������

� �z �

�

hour
z �� �

�
��

� �z �

�

minute
z �� �

�

�
� �z �

��

message text
z �� �

�
��
���
� �z �

�H�

�

�
��

� �z �

�i�

��
�

�
� �z �

���

The speci�cation for an EXR is usually part of the requirements levied upon the system

that is employing MTV� Typically� these speci�cations are informal� textual descriptions of the

EXR� An example informal EXR description is presented in �gure
� This is a rather contrived

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

example� pieced together from several actual message formats� but it serves to demonstrate

most of the message features that an MTV system is required to handle� Omitted for brevity

in this example are the details of the bit layout for the �rst two �elds�

��� The Internal Representation

The internal representation is a datatype in the language that the MTV instance is written in�

In this case� that will be Ada� However� what the MTV generator will accept for an INR will be

a subset of Ada datatypes� In particular� the INR can consist of integers� strings� enumerations�

records� variant records� arrays and linked lists� The INR for a given message format is de�ned

by the designer of the system employing MTV�

An INR is assumed to represent a valid message� For INR messages created by MTV� this

is assured by the translation and validation process� The application employing MTV is held

responsible for the validity of any INR message that it creates�

An INR corresponding to the previous example is presented in �gure �� Notice that the

elements of the EXR description correspond roughly to the Ada datatype� There are� however�

signi�cant di�erences� For example� the Detection Con�dence and Probability of Detect �elds�

which are separate in the EXR description are intermingled in a single array in the INR�

��� The User Representation

The user representation is a user�readable character string� The intent of the USR is for

presenting messages to the user in a readable format and as a representation for user input

of messages� A USR should be easily understood by a user familiar with the message format�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

Example Message Format

Field Range of
Number Field Name Field Size Values Amplifying Data

 Reporting Location � bits ��� � � Andrews AFB

 � Peterson AFB
� � Wright Patterson AFB

� Date�Time Group Julian Date � Time
� bits
���� Julian Day
� bits ���� Hours
� bits ���� Minutes

� Message Text
�� chars Variable length string
�max�

Text Delimiter
 � Period

� Altitude or � chars �
��� In thousands of feet
Track Con�dence HH High con�dence

MM Medium con�dence
LL Low con�dence
NN No con�dence

� Contact Data Group This group is repeated zero
or more times in the body
of the message

� chars ���
����� Track Number

 char a H � Hostile

U � Unknown
F � Friendly

� chars ����� Latitude
� chars ����
�� Longitude

Group Delimiter � chars END

� Detection Con�dence � chars aaaaaaaa H � High
M � Medium
L � Low
N � None

Field Separator
 char � Slash

� Probability of Detect � chars nnnnnnnn ���
Note� if no Contact Data is available� each element in the Detection Con�dence �eld must
indicate None

Figure
� External message format example

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

type Reporting�Location�Type is Andrews�AFB�

Peterson�AFB�

Wright�Patterson�AFB��

subtype Julian�Day�Type is Integer range � �� ����

subtype Hour�Type is Integer range
 �� ���

subtype Minute�Type is Integer range
 �� ���

type Julian�Date�Time�Record�Type is record

Julian�Day� Julian�Day�Type�

Hour� Hour�Type�

Minute� Minute�Type�

end record�

type Message�Text�Type is array � �� �

� of Bytes�

type Track�Info�Discr�Type is Altitude�Discr� Confidence�Discr��

subtype Track�Altitude�Type is Integer range �

 �� ��

�

type Confidence�Type is High� Middle� Low� None��

type Track�Info�Type Discr� Track�Info�Discr�Type� is record

case Discr is

when Altitude�Discr ��

Altitude� Track�Altitude�Type�

when Confidence�Discr ��

Confidence� Confidence�Type�

end case�

end record�

Figure �� Internal message format example

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

type Contact�Data�Type�

type Contact�Data�Link�Type is access Contact�Data�Type�

subtype Track�Number�Type is Integer range � �� �����

type Force�Code�Type is Hostile� Unknown� Friendly��

subtype Contact�Latitude�Type is Integer range
 �� ��

subtype Contact�Longitude�Type is Integer range
 �� ���

type Contact�Data�Type is record

Track�Number� Track�Number�Type�

Force�Code� Force�Code�Type�

Latitude� Contact�Latitude�Type�

Longitude� Contact�Longitude�Type�

Next� Contact�Data�Link�Type�

end record�

subtype Barrier�Probability�Type is Integer range
 �� �

type Barrier�Segment�Type is record

Detection�Confidence� Confidence�Type�

Probability�of�Detect� Barrier�Probability�Type�

end record�

type Barrier�Array�Type is array � �� �� of Barrier�Segment�Type�

type Example�Message�Type is record

Reporting�Location� Reporting�Location�Type�

Reporting�Time� Julian�Date�Time�Record�Type�

Reporting�Message�Text� Message�Text�Type�

Reporting�Track�Info� Track�Info�Type�

Reporting�Contact�Data� Contact�Data�Link�Type�

Reporting�Barrier�Data� Barrier�Array�Type�

end record�

Figure �� Internal message format example �cont�d�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

although it may still be too terse for a non�familiar user� For example� a USR message for the

external message from section ��
 might be�

Peterson AFB

�	
���
 � �Hi�

The design of a USR is left up to the designer of the system employing MTV� There appears

to be no established formal or informal method for describing USRs� This is presumably because

the design of a USR is straightforward� given the structure already established in the INR�

��� The Logical Representation

In order to specify the contents of messages independent of their format� a fourth represen�

tation is introduced� the logical representation� The logical representation is a mathematical

representation that precisely delineates what messages can be described by MTV� It is also the

representation in which message constraints are speci�ed� The logical representation does not�

however� describe the physical representation of a message�

Like the INR� the logical representation is a structured representation�unlike the EXR

and USR which are just strings of bits and characters� In fact� a given INR will likely be very

similar in structure to its logical representation� The logical representation� however� is not

tied down to the details of a particular programming language� and enables the speci�cation

of a message format and constraints independent of the programming language being used to

implement it�

A logical message is composed of primitive �elds and composite �elds� A primitive �eld in

a logical message is one of�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

string �maxlen� A �xed or variable length character string �optionally bounded in length

by maxlen�

integer �range� An unsigned integer� optionally bounded by range

name An instance of a previously de�ned logical representation�

Composite �elds de�ne the structure of a message� They combine �elds into a new �eld

with a given structure� A composite �eld is one of�

f label�� �eld�� � � � � labeln� �eldn g A labelled n�ary product of �elds� This is like a

record in Ada�

� label�� �eld�� � � � � labeln� �eldn � A labelled n�ary sum of �elds� This is like a variant

record in Ada where the discriminant is implicit and is an enumeration of label�

� � � labeln� The �elds are optional�a sum may just be a union of symbolic constants�

corresponding to an enumeration in Ada�

�eld�n� An array of �elds of length n�

�eld� A sequence of �elds �a list�� Essentially an array of arbitrary length� This has no

immediate counterpart in Ada� although a sequence is easily implemented using a

linked list�

A logical representation for the example message is in �gure ��

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

message Julian Date Time � f

Julian Day� integer �
������
Hour� integer �������
Minute� integer ������

g

message Con�dence � � High� Medium� Low� None �

message ContactData � f

TrackNumber� integer �
�������
ForceCode� � Hostile� Unknown� Friendly ��
Position� f Latitude� integer�

Longitude� integer g
g

message Barrier Segment � f

Detection Con�dence� Con�dence�
Probability of Detect� integer �������

g

message Example � f
Reporting Location� � Andrews AFB�

Peterson AFB�
Wright Patterson AFB ��

Reporting Time� Julian Date Time�
Reporting Message Text� string �
���
Reporting Altitude or Track Con�dence� � Altitude� integer�

Track Con�dence� Con�dence ��
Reporting Contact Data� ContactData
Reporting Barrier Data� Barrier Segment���

g

Figure �� Logical Representation Example

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

� Message Translation

For each of the three primary MTV representations �EXR� INR and USR�� a translation must

be de�ned to and from the logical representation� In describing these translations� however� it

will become evident that they perform the dual role of serving as formal speci�cations for the

representation being targeted �EXR� INR and USR�� Indeed� the speci�cation for an EXR �or

USR� to Logical translation can easily be seen as a speci�cation for a parser of a particular

external �or user� message format�

To describe the possible range of translations required of an MTV system� a set of primitive

translation functions and combinators that build on them is presented for each of the EXR �

Logical and USR� Logical translations� A combinator is a function that takes other translation

functions as arguments� The translation for a message is built up by specifying the translations

of the primitive �elds� then combining those translations using combinators�

Unlike the requirements for EXR and USR translations� the requirements for INR transla�

tions are very simple� Since the two representations have similar structure� all that is required

is to be able to specify the following mappings� integer � Integer� string � String� product �

record� sum � variant record� array� array and sequence � linked list�

In the following� a pattern refers to something with the expressive power of regular expres�

sions� For convenience� a single quoted string indicates a bitstring� and a double quoted string

indicates a character string�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp

��� EXR to Logical

The translation from EXR to Logical is a mapping from bitstrings to logical representations�

Each of the following functions and combinators takes the indicated arguments and a bitstring

to be translated� Since �elds can be variable length� each function or combinator returns both

the appropriate logical representation� and the number of bits consumed in translation�

The following are the translation functions for primitive �elds�

ascii�length�� bits � string � integer Convert a �xed length string of bits� length

bytes long� into a character string using an ASCII interpretation� The returned

length is length of the input string in bits�

vascii�delim�� bits � string � integer Convert a variable length string of bits into

a character string using an ASCII interpretation� The string is delimited with the

string speci�ed in the delim argument� The returned length is the length of the

ASCII encoded string plus the length of the delimiter� in bits�

binary�length�� bits � integer � integer Convert a string of bits of the speci�ed

length into an integer using the binary conversion appropriate for the architecture

of implementation� The returned length is the same as the input length�

asc�int�length�� bits � integer � integer Convert a string of bits� interpreted as

an ASCII string of digits length bytes long� into an integer� The returned length is

length of the input string in bits�

In addition� both binary and asc�int may be modi�ed by a combination of the the simple

arithmetic operators !� �� � and � to specify o�sets and scaling�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

The following are the translation combinators for composite �elds�

fspec� � � �specmg� bits � flabel� � �eld�� � � � � labeln � �eldng � integer

Convert a bitstring into a logical product structure� The specs are either a translation

speci�cation for a �eld

labeli � translation

or a delimiter spec

delim

or simply a number of bits to skip

�skip�

There must be exactly one translation spec for each element of the logical structure�

although they need not be in order� The length returned is the total length consumed

by the entire record�

�spec� � � � specn�� bits � � label� � �eld�� � � � � labeln � �eldn � � integer

Convert a bitstring into a logical sum structure� Each of the specs is of the form�

pattern� labeli � translation

where pattern is a discrimination pattern that determines whether the bitstring

represents a value from the labeli element of the sum� There must be exactly one

spec for each element of the logical sum� although they need not be in order� Each

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

discrimination pattern is applied to the bitstring in order until one matches� then

the associated translation is applied� For the case of a sum element where the �eld

is omitted� the translation is similarly omitted� and the number of bits consumed is

the length of the matching pattern� The length returned is the length consumed by

the applied translation�

translation �length�� bits � �eld�length� � integer Convert a bitstring into a logical ar�

ray of length length� The �eld type �eld is the same as the �eld type of translation�

The length returned is the total length consumed by all the translations�

seq�translation� end�pattern� delim�� bits � �eld� � integer Convert a bitstring into

a logical sequence� The end�pattern is a pattern to match on the bitstring to deter�

mine when the end of the sequence has been reached� The delim is an inter�element

delimiter� The speci�ed translation is repeated and the results made into a logical

sequence until end�pattern matches� The �eld type �eld is the same as the �eld

type of translation� The length returned is the total length consumed by all the

translations �including delimiters��

In addition� a record translation spec may be modi�ed by a distribution operator� A

distribution operator is used to convert a record whose �elds are each an array of the same

length into an array of records� each �eld of which is now a singleton� In short� it converts a

record of arrays into an array of records� This is indicated by pre�xing the record spec with

array distr� It is an error to specify a distribution to a record all of whose �elds aren�t an

array of the same length� Similarly� an array of records may be factored into a record of arrays

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

using array factor�

A translation from EXR to Logical for the Example message is presented in �gure ��

��� Logical to EXR

The operation necessary for Logical to EXR are then a straightforward variation on the EXR to

Logical operations� Note that it is not necessary here to return the additional length information

that was necessary in the EXR � Logical case for keeping track of how much of the bitstring

was consumed by a translation�

ascii�length�� string � bits Convert a logical string of the speci�ed length into an

ASCII character bitstring�

vascii�delim�� string � bits Convert a variable length logical string into a delimited

ASCII character bitstring�

binary�length�� integer � bits Convert a logical integer into a bitstring of the speci�

�ed length using the conversion appropriate for the architecture of implementation�

int�asc�length�� integer � bits Convert a logical integer into an ASCII character

bitstring of the speci�ed length�

fspec� � � �specmg� flabel� � �eld�� � � � � labeln � �eldng � bits Convert a logical product struc�

ture into a bitstring� The specs are either a translation speci�cation for a �eld

labeli � translation

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

Loc � � "��� � Andrews AFB�
"
�� � Peterson AFB�
"

� � Wright Patterson AFB �

Date � f Julian Day� binary���� Hour� binary���� Minute� binary��� g

Con�dence � � HH� � High�
MM� � Medium�
LL� � Low�
NN� � None �

ContactData � f asc�int����
� H� � Hostile�
U� � Unknown�
F� � Friendly ��

asc�int����
asc�int��� g

Barrier Segments � f Detection Con�dence� Con�dence����
���
Probability of Detect� asc�int�
���� g

Example � f Reporting Location� Loc�
Reporting Time� Date�
Reporting Message Text� vascii���� g
Reporting Altitude or Track Con�dence�

� ����� � Altitude� asc�int���
����
� � Track Con�dence� Con�dence �

Reporting Contact Data� seq�ContactData� END�� ���
END��
Reporting Barrier Data� array distr Barrier Segments g

Figure �� EXR � Logical translation example

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

or a delimiter spec

delim

or simply a number of bits to skip

�skip�

There must be exactly one translation spec for each element of the logical structure�

although they need not be in order�

�spec� � � � specn�� � label� � �eld�� � � � � labeln � �eldn � � bits Convert a logical sum struc�

ture into a bitstring� Each of the specs is of the form�

labeli � �tag� translation�

The tag is a bitstring to identify this element of the sum� if necessary� There must

be exactly one spec for each element of the logical sum� although they need not be

in order� For the case of a sum element where the �eld is omitted� the translation is

similarly omitted�

translation �length�� �eld�length� � bits Convert a logical array of the speci�ed length

into a bitstring� The �eld type �eld is the same as the �eld type of translation�

seq�translation� delim�� �eld� � bits Convert a logical sequence into a bitstring� The

delim is an inter�element delimiter� The �eld type �eld is the same as the �eld type

of translation�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

In addition� both binary and int�asc may be modi�ed by a combination of the the simple

arithmetic operators !� �� � and � to specify o�sets and scaling� Further� distributions and

factors� as described in the previous section� may also be applied to these translations�

��� USR to Logical

The translation for USR to Logical is very similar to the one for EXR to Logical� The most

signi�cant di�erence is that everything in the USR is characters� not bits�

ascii�length�� chars � string � integer Convert a �xed length string of characters�

length long� into a string using an ASCII interpretation� The returned length is

length of the input string�

vascii�delim�� chars � string � integer Convert a variable length string of charac�

ters into a string using an ASCII interpretation� The string is delimited with the

string speci�ed in the delim argument� The returned length is the length of the

string plus the length of the delimiter�

asc�int�length�� chars � integer � integer Convert an ASCII string of digits length

bytes long� into an integer� The returned length is length of the input string�

fspec� � � �specmg� chars � flabel� � �eld�� � � � � labeln � �eldng � integer Convert a char�

acter string into a logical product structure� The specs are the same as for EXR

to Logical� except that the skip is in chars� not bits� There must be exactly one

translation spec for each element of the logical structure� although they need not be

in order� The length returned is the total length consumed by the entire record�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

�spec� � � � specn�� chars � � label� � �eld�� � � � � labeln � �eldn � � integer Convert a char�

acter string into a logical sum structure� Each of the specs is of the form�

pattern� labeli � translation

where pattern is a discrimination pattern that determines whether the bitstring

represents a value from the labeli element of the sum� There must be exactly one

spec for each element of the logical sum� although they need not be in order� Each

discrimination pattern is applied to the bitstring in order until one matches� then

the associated translation is applied� For the case of a sum element where the �eld

is omitted� the translation is similarly omitted� The length returned is the length

consumed by the applied translation�

translation �length�� chars � �eld�length� � integer Convert a character string into a

logical array of length length� The �eld type �eld is the same as the �eld type of

translation� The length returned is the total length consumed by all the translations�

seq�translation� end�pattern� delim�� chars � �eld� � integer Convert a character string

into a logical sequence� The end�pattern is a pattern to match on the character string

to determine when the end of the sequence has been reached� The delim is an inter�

element delimiter� The speci�ed translation is repeated and the results made into a

logical sequence until end�pattern matches� The �eld type �eld is the same as the

�eld type of translation� The length returned is the total length consumed by all the

translations �including delimiters��

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp
�

��� Logical to USR

The translation for Logical to USR is very similar to the one for Logical to EXR�

ascii�length�� string � chars Convert a logical string of the speci�ed length into an

ASCII character string�

vascii�delim�� string � chars Convert a variable length logical string into a delimited

ASCII character string�

int�asc�length�� integer � chars Convert a logical integer into an ASCII character

string of the speci�ed length�

fspec� � � �specmg� flabel� � �eld�� � � � � labeln � �eldng � chars The specs are the same as

for Logical to EXR except that the skip is in chars� not bits� There must be exactly

one translation spec for each element of the logical structure� although they need

not be in order�

�spec� � � � specn�� � label� � �eld�� � � � � labeln � �eldn � � chars Convert a logical sum struc�

ture into a character string� Each of the specs is of the form�

labeli � �tag� translation�

The tag is a character string to identify this element of the sum� if necessary� There

must be exactly one spec for each element of the logical sum� although they need not

be in order� For the case of a sum element where the �eld is omitted� the translation

is similarly omitted�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp ��

translation �length�� �eld�length� � chars Convert a logical array of the speci�ed length

into a character string� The �eld type �eld is the same as the �eld type of translation�

seq�translation� delim�� �eld� � chars Convert a logical sequence into a character string�

The delim is an inter�element delimiter� The �eld type �eld is the same as the �eld

type of translation�

� Message Validity

Messages have associated with them a notion of validity� There are two aspects to this�

� intra��eld validity� The data in a �eld is in the range of valid data for that �eld�

� inter��eld validity� The data in interdependent �elds conform to speci�ed constraints�

Intra� and inter��eld validity are speci�ed by constraints in the logical representation� Intra�

�eld validity is speci�ed in the declarations of each logical �eld� The valid range of data for

an intra��eld constraint is either implicit �e�g� delimited by the possible elements of a sum�� or

explicit �e�g� the bounds on an integer �eld�� Inter��eld validity is speci�ed as propositions on

the logical speci�cation that must be satis�ed�

The details of an invalid message are given by its validity indicator� a value that gives

diagnostic information about what�s wrong with a message� Each message format has a unique

validity indicator tailored to the speci�cs of that format�

Derived from analysis of the speci�cation of possible translations� the various intra��eld

constraint indicators are as follows�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp �

MessageTruncated This indicates that at some point in the translation� it was deter�

mined that the bitstring was too short for the speci�ed translation�

MessageTooLong This indicates that at the end of the translation for a message� the

total number of bits consumed was not equal to the length of the message�

UnterminatedString This indicates that the delimiter for a variable length string was

not found�

StringTooLong This indicates that a variable length string exceeded its optional max�

imum length�

InvalidDigit This indicates that in an asc�int translation� the �eld contained an ASCII

character that was not a digit ����

OutOfRange This indicates that an integer was out of its speci�ed range�

MissingDelimiter This indicates that a delimiter speci�ed between two �elds in a

record� or between two elements of a sequence� did not match the contents of the

message at that point�

DiscriminationFailure This indicates that no discrimination pattern for a union matched�

UnterminatedSequence This indicates that the end of a sequence was not found�

An inter��eld constraint is given a name for reference in the validity indicator� It is a

predicate� de�ned as follows�

� simple comparisons on integer or string terms� �� 	�� �� ��
 and � �for strings� lexico�

graphic ordering is used�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp ��

� complex constraints using connectives and� or� not and implies

� quanti�ers � and for expressing constraints over arrays and sequences

An integer or string term is�

� a logical �eld name

� a simple arithmetic expression on �integer� terms using !� �� � and �

� a length function for sequences and variable length strings

For example the following expresses the constraint mentioned in the note at the bottom of

the EXR description�

length�Reporting Contact Data� � � implies

�x in Reporting Barrier Data� x�Detection Con�dence � None

� Test generation

The MTV generator must be able to generate its own tests� In particular� for each message

format� a set of test data is to be supplied by the designer of the format� who also supplies the

appropriate validity indicator� The generated test will translate and validate all the test data�

indicating any inconsistencies between the speci�ed validity indicator and the actual validity

indicator�

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp ��

� The MTV artifact

The artifact produced by the MTV generator will be a module in the target language with a

datatype for the INR� a declaration for its validity indicator and the following function interface�

� a value function from EXR to INR

� an image function INR to EXR

� a check function that indicates the validity of a given EXR� returning a validity indicator

that describes the nature of the problem

� a value function from USR to INR

� an image function INR to USR

� a check function that indicates the validity of a given USR

The value and image functions are derived from the speci�ed translations to and from the

logical representation� In particular�

value�x � EXR� � INR � LogicaltoINR�EXRtoLogical�x��

image�x � INR� � EXR � LogicaltoEXR�INRtoLogical�x��

value�x � USR� � INR � LogicaltoINR�USRtoLogical�x��

image�x � INR� � USR � LogicaltoUSR�INRtoLogical�x��

This module will be realized by an Ada package whose PDL is similar to the one given in

�gure ��

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp ��

with MTV�Common�

package MTV�instance is

�� INTERNAL REPRESENTATION

type INR is ���

�� EXTERNAL REPRESENTATION

subtype EXR is Bitstring

�� Functions for converting between EXRs and INRs

function ImageValue�In � in INR� return EXR�

function ValueImage�In � in EXR� return INR�

�� Function for checking the validity of an EXR

type EXR�Validity�Indicator is ����

function CheckImage�In � in EXR� return EXR�Validity�Indicator�

�� USER REPRESENTATION

subtype USR is VString

�� Functions for converting between USRs and INRs

function ImageValue�In � in INR� return USR�

function ValueImage�In � in USR� return INR�

�� Function for checking the validity of a USR

type USR�Validity�Indicator is ����

function CheckImage�In � in USR� return USR�Validity�Indicator�

�� Constraint raised by Image and Value functions

Constraint�Error � exception�

end MTV�Instance

Figure �� Ada PDL for an MTV instance

Id� spec�tex�v ��� ����	
�	�� ����
�
� jlewis Exp ��

A requirement of the value functions is that they raise an exception when the input message

violates constraints� In Ada� the Constraint Error exception will be the one raised� The user

may then consult the validity indicator returned by the check function for details of which

constraint was violated�

Finally� it is required that each of the value�image pairs form a retraction pair� i�e� that

the following two conditions always hold�

value�image�x�� � x

image�value�x�� � x whenever check�x� indicates a valid message

