A Specification for an M'TV generator

Revision: 1.7

Jeffrey R. Lewis

September 27, 1993

1 Introduction

A Message Translation and Validation (MTV) module is a module common in command and
control systems. It performs the functions of translation and validation between three main
representations of messages: External Representation (EXR), Internal Representation (INR)
and User Representation (USR). EXR messages are transmitted to and from systems outside
of the command and control system. Such messages tend to be terse and/or encoded for
efficient communication between systems. Internal representation is how messages are stored
and manipulated by the command and control system of which the MTV component is a part.
The user representation is a format intended for viewing and input by the users of the system.
Translation must be performed between EXR and INR representations, and between INR and
USR representations. Validation must be performed on EXR messages and USR messages;

INR messages are presumed to be valid.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 2

An MTYV generator is a program that takes as input a specification of an MTV module and
produces the code for that module. The following document gives a requirements specification

for MTV modules and thus specifies what an MTV generator must support.

2 The MTYV representations

2.1 The External Representation

An external message consists of “bits on a wire”—simply a string of bits. Thus is has no explicit
structure; however, it does have implicit structure described by its message format. According
to the format, an external message is subdivided into fields of bits or bytes. Fields may be fixed
length or variable length. When variable length, they must be terminated with a delimiter.
The contents of a field is an encoding for either symbolic data, numeric data, or text.

For example, the following external message consists of a reporting location (loc), a Julian
date and time, and a text message. The reporting location’s value is a code for a particular
Air Force Base. The date and time is a binary encoding of January 1 at 9:30am. The text is a

variable length byte-field, terminated with a period, and is ASCII for “Hi”.

loc day hour minute message text

e e — e —
010 00000000101001011110010010000110100100101110
—_———— e
1 9 30 LLH” “i” 44.77

The specification for an EXR is usually part of the requirements levied upon the system
that is employing MTV. Typically, these specifications are informal, textual descriptions of the

EXR. An example informal EXR description is presented in figure 1. This is a rather contrived

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 3

example, pieced together from several actual message formats, but it serves to demonstrate
most of the message features that an MTV system is required to handle. Omitted for brevity

in this example are the details of the bit layout for the first two fields.

2.2 The Internal Representation

The internal representation is a datatype in the language that the MTYV instance is written in.
In this case, that will be Ada. However, what the MTV generator will accept for an INR, will be
a subset of Ada datatypes. In particular, the INR can consist of integers, strings, enumerations,
records, variant records, arrays and linked lists. The INR for a given message format is defined
by the designer of the system employing MTV.

An INR is assumed to represent a valid message. For INR messages created by MTV, this
is assured by the translation and validation process. The application employing MTV is held
responsible for the validity of any INR message that it creates.

An INR corresponding to the previous example is presented in figure 2. Notice that the
elements of the EXR description correspond roughly to the Ada datatype. There are, however,
significant differences. For example, the Detection Confidence and Probability of Detect fields,

which are separate in the EXR description are intermingled in a single array in the INR.

2.3 The User Representation

The user representation is a user-readable character string. The intent of the USR is for
presenting messages to the user in a readable format and as a representation for user input

of messages. A USR should be easily understood by a user familiar with the message format,

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp

Example Message Format

Field Range of
Number Field Name Field Size Values Amplifying Data
1 Reporting Location 2 bits 0-2 0 = Andrews AFB
1 = Peterson AFB
2 = Wright Patterson AFB
2 Date/Time Group Julian Date & Time
9 bits 1-366 Julian Day
5 bits 023 Hours
6 bits 0-59 Minutes
4 Message Text 100 chars Variable length string
(max)
Text Delimiter 1 . Period
3 Altitude or 2 chars 01-99 In thousands of feet
Track Confidence HH High confidence
MM Medium confidence
LL Low confidence
NN No confidence
5 Contact Data Group This group is repeated zero
or more times in the body
of the message
4 chars | 0001-9999 | Track Number
1 char a H = Hostile
U = Unknown
F = Friendly
2 chars 00-89 Latitude
3 chars 000-179 | Longitude
Group Delimiter 3 chars END
6 Detection Confidence | 8 chars aaaaaaae | H = High
M = Medium
L = Low
N = None
Field Separator 1 char / Slash
7 Probability of Detect 8 chars nnnnnnnn | 0-9

Note: if no Contact Data is available, each element in the Detection Confidence field must

indicate None

Figure 1: External message format example

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp

type Reporting_Location_Type is (Andrews_AFB,
Peterson_AFB,
Wright_Patterson_AFB) ;

subtype Julian_Day_Type is Integer range 1 .. 366;
subtype Hour_Type is Integer range O .. 23;
subtype Minute_Type is Integer range O .. 59;
type Julian_Date_Time_Record_Type is record
Julian_Day: Julian_Day_Type;
Hour: Hour_Type;
Minute: Minute_Type;
end record;

type Message_Text_Type is array (1 .. 100) of Bytes;

type Track_Info_Discr_Type is (Altitude_Discr, Confidence_Discr);
subtype Track_Altitude_Type is Integer range 1000 .. 99000;
type Confidence_Type is (High, Middle, Low, None);
type Track_Info_Type (Discr: Track_Info_Discr_Type) is record
case Discr is
when Altitude_Discr =>
Altitude: Track_Altitude_Type;
when Confidence_Discr =>
Confidence: Confidence_Type;
end case;
end record;

Figure 2: Internal message format example

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp

type Contact_Data_Type;
type Contact_Data_Link_Type is access Contact_Data_Type;
subtype Track_Number_Type is Integer range 1 .. 9999;
type Force_Code_Type is (Hostile, Unknown, Friendly);
subtype Contact_Latitude_Type is Integer range O .. 89
subtype Contact_Longitude_Type is Integer range 0 .. 179
type Contact_Data_Type is record

Track_Number: Track_Number_Type;

Force_Code: Force_Code_Type;

Latitude: Contact_Latitude_Type;

Longitude: Contact_Longitude_Type;

Next: Contact_Data_Link_Type;
end record;

subtype Barrier_Probability_Type is Integer range 0 .. 9
type Barrier_Segment_Type is record
Detection_Confidence: Confidence_Type;
Probability_of_Detect: Barrier_Probability_Type;
end record;
type Barrier_Array_Type is array (1 .. 8) of Barrier_Segment_Type;

type Example_Message_Type is record
Reporting_Location: Reporting_Location_Type;
Reporting_Time: Julian_Date_Time_Record_Type;
Reporting_Message_Text: Message_Text_Type;
Reporting_Track_Info: Track_Info_Type;
Reporting_Contact_Data: Contact_Data_Link_Type;
Reporting_Barrier_Data: Barrier_Array_Type;

end record;

Figure 3: Internal message format example (cont’d)

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 7

although it may still be too terse for a non-familiar user. For example, a USR message for the

external message from section 2.1 might be:

Peterson AFB 001/09:30 - "Hi"

The design of a USR is left up to the designer of the system employing MTV. There appears
to be no established formal or informal method for describing USRs. This is presumably because

the design of a USR is straightforward, given the structure already established in the INR.

2.4 The Logical Representation

In order to specify the contents of messages independent of their format, a fourth represen-
tation is introduced: the logical representation. The logical representation is a mathematical
representation that precisely delineates what messages can be described by MTV. It is also the
representation in which message constraints are specified. The logical representation does not,
however, describe the physical representation of a message.

Like the INR, the logical representation is a structured representation—unlike the EXR
and USR which are just strings of bits and characters. In fact, a given INR will likely be very
similar in structure to its logical representation. The logical representation, however, is not
tied down to the details of a particular programming language, and enables the specification
of a message format and constraints independent of the programming language being used to
implement it.

A logical message is composed of primitive fields and composite fields. A primitive field in

a logical message is one of:

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 8

string (mazlen) A fixed or variable length character string (optionally bounded in length
by mazlen)
integer (range) An unsigned integer, optionally bounded by range

name An instance of a previously defined logical representation.

Composite fields define the structure of a message. They combine fields into a new field

with a given structure. A composite field is one of:

{ labely: field,, ..., label,: field, } A labelled n-ary product of fields. This is like a

record in Ada.

[labely: field,, ..., label,: field, | A labelled n-ary sum of fields. This is like a variant
record in Ada where the discriminant is implicit and is an enumeration of label;
...label,. The fields are optional—a sum may just be a union of symbolic constants,

corresponding to an enumeration in Ada.
field[n] An array of fields of length n.

field* A sequence of fields (a list). Essentially an array of arbitrary length. This has no
immediate counterpart in Ada, although a sequence is easily implemented using a

linked list.

A logical representation for the example message is in figure 4.

Id:

spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp

message Julian_Date_Time = {
Julian_Day: integer (1-366),
Hour: integer (0-23),
Minute: integer (0-59)

¥

message Confidence = [High, Medium, Low, None |

message ContactData = {
TrackNumber: integer (1-9999),
ForceCode: | Hostile, Unknown, Friendly],
Position: { Latitude: integer,
Longitude: integer }

}

message Barrier_Segment = {
Detection_Confidence: Confidence,
Probability_of_Detect: integer (0-99),

}

message Example = {
Reporting_Location: [Andrews_AFB,
Peterson_AFB,
Wright_Patterson AFB |,
Reporting_Time: Julian_Date_Time,
Reporting_Message_Text: string (100)
Reporting_Altitude_or_Track_Confidence: [Altitude: integer,
Track_Confidence: Confidence],
Reporting_Contact _Data: ContactData*
Reporting_Barrier_Data: Barrier_Segment[8]

Figure 4: Logical Representation Example

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 10

3 Message Translation

For each of the three primary MTV representations (EXR, INR and USR), a translation must
be defined to and from the logical representation. In describing these translations, however, it
will become evident that they perform the dual role of serving as formal specifications for the
representation being targeted (EXR, INR and USR). Indeed, the specification for an EXR (or
USR) to Logical translation can easily be seen as a specification for a parser of a particular
external (or user) message format.

To describe the possible range of translations required of an MTV system, a set of primitive
translation functions and combinators that build on them is presented for each of the EXR «
Logical and USR « Logical translations. A combinatoris a function that takes other translation
functions as arguments. The translation for a message is built up by specifying the translations
of the primitive fields, then combining those translations using combinators.

Unlike the requirements for EXR and USR translations, the requirements for INR transla-
tions are very simple. Since the two representations have similar structure, all that is required
is to be able to specify the following mappings: integer < Integer, string < String, product <
record, sum « variant record, array < array and sequence < linked list.

In the following, a pattern refers to something with the expressive power of regular expres-
sions. For convenience, a single quoted string indicates a bitstring, and a double quoted string

indicates a character string.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 11

3.1 EXR to Logical

The translation from EXR to Logical is a mapping from bitstrings to logical representations.
Each of the following functions and combinators takes the indicated arguments and a bitstring
to be translated. Since fields can be variable length, each function or combinator returns both
the appropriate logical representation, and the number of bits consumed in translation.

The following are the translation functions for primitive fields:

ascii(length): bits — string x integer Convert a fixed length string of bits, length
bytes long, into a character string using an ASCII interpretation. The returned

length is length of the input string in bits.

vascii(delim): bits — string x integer Convert a variable length string of bits into
a character string using an ASCII interpretation. The string is delimited with the
string specified in the delim argument. The returned length is the length of the

ASCII encoded string plus the length of the delimiter, in bits.

binary(length): bits — integer X integer Convert a string of bits of the specified
length into an integer using the binary conversion appropriate for the architecture
of implementation. The returned length is the same as the input length.

asc2int(length): bits — integer x integer Convert a string of bits, interpreted as
an ASCII string of digits length bytes long, into an integer. The returned length is

length of the input string in bits.

In addition, both binary and asc2int may be modified by a combination of the the simple

arithmetic operators 4+, —, X and + to specify offsets and scaling.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 12

The following are the translation combinators for composite fields:

{spec ...spec,, }+ bits — {label; : field,, ..., label, : field,} X integer
Convert a bitstring into a logical product structure. The specs are either a translation
specification for a field

label; : translation

or a delimiter spec

delim

or simply a number of bits to skip

(skip)

There must be exactly one translation spec for each element of the logical structure,
although they need not be in order. The length returned is the total length consumed

by the entire record.

[specy .. .spec,]: bits — [label, : field,, ..., label, : field,] X integer

Convert a bitstring into a logical sum structure. FEach of the specs is of the form:

pattern = label; : translation

where pattern is a discrimination pattern that determines whether the bitstring
represents a value from the label; element of the sum. There must be exactly one

spec for each element of the logical sum, although they need not be in order. Fach

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 13

discrimination pattern is applied to the bitstring in order until one matches, then
the associated translation is applied. For the case of a sum element where the field
is omitted, the translation is similarly omitted, and the number of bits consumed is
the length of the matching pattern. The length returned is the length consumed by

the applied translation.

translation [length]: bits — field[length] x integer Convert a bitstring into a logical ar-
ray of length length. The field type field is the same as the field type of translation.

The length returned is the total length consumed by all the translations.

seq(translation, end-pattern, delim): bits — field® x integer Convert a bitstring into
a logical sequence. The end-pattern is a pattern to match on the bitstring to deter-
mine when the end of the sequence has been reached. The delim is an inter-element
delimiter. The specified translation is repeated and the results made into a logical
sequence until end-pattern matches. The field type field is the same as the field
type of translation. The length returned is the total length consumed by all the

translations (including delimiters).

In addition, a record translation spec may be modified by a distribution operator. A
distribution operator is used to convert a record whose fields are each an array of the same
length into an array of records, each field of which is now a singleton. In short, it converts a
record of arrays into an array of records. This is indicated by prefixing the record spec with
array_distr. It is an error to specify a distribution to a record all of whose fields aren’t an

array of the same length. Similarly, an array of records may be factored into a record of arrays

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 14

using array_factor.

A translation from EXR to Logical for the Example message is presented in figure 5.

3.2 Logical to EXR

The operation necessary for Logical to LXR are then a straightforward variation on the EXR to
Logical operations. Note that it is not necessary here to return the additional length information
that was necessary in the EXR — Logical case for keeping track of how much of the bitstring

was consumed by a translation.

ascii(length): string — bits Convert a logical string of the specified length into an

ASCII character bitstring.

vascii(delim): string — bits Convert a variable length logical string into a delimited

ASCII character bitstring.

binary(length): integer — bits Convert a logical integer into a bitstring of the speci-

fied length using the conversion appropriate for the architecture of implementation.

int2asc(length): integer — bits Convert a logical integer into an ASCII character

bitstring of the specified length.

{specy .. .spec,, }+ {labely : field,, ..., label, : field,} — bits Convert a logical product struc-

ture into a bitstring. The specs are either a translation specification for a field

label; : translation

Id:

spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp

Loc = [‘00" = Andrews_AF'B,
‘10’ = Peterson_AFB,
‘117 = Wright_Patterson AFB]

Date = { Julian_Day: binary(9), Hour: binary(5), Minute: binary(6) }

Confidence = [“HH” = High,
“MM” = Medium,
“LL” = Low,
“NN” = None]

ContactData = { asc2int(4),
[“H” = Hostile,
“U” = Unknown,
“F” = Friendly |,
asc2int(2),
asc2int(3) }

Barrier_Segments = { Detection_Confidence: Confidence[8],

“/777
Probability _of_Detect: asc2int(1)[8] }

Example = { Reporting_Location: Loc,

Reporting_Time: Date,
Reporting_Message_Text: vascii(“.”) }
Reporting_Altitude_or_Track_Confidence:

[[0-9] = Altitude: asc2int(2) * 1000,

. = Track_Confidence: Confidence]

Reporting_Contact_Data: seq(ContactData, “END”, “7),
“:E)ND??7
Reporting_Barrier_Data: array_distr Barrier_Segments }

Figure 5: EXR — Logical translation example

15

Id:

spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 16

or a delimiter spec

delim

or simply a number of bits to skip

(ship)

There must be exactly one translation spec for each element of the logical structure,

although they need not be in order.

[specy .. .spec,]: [labely : field,, ..., label, : field, | — bits Convert a logical sum struc-

ture into a bitstring. Each of the specs is of the form:

label; : (tag, translation)

The tag is a bitstring to identify this element of the sum, if necessary. There must
be exactly one spec for each element of the logical sum, although they need not be
in order. For the case of a sum element where the field is omitted, the translation is

similarly omitted.

translation [length]: field[length] — bits Convert a logical array of the specified length

into a bitstring. The field type field is the same as the field type of translation.

seq(translation, delim): field* — bits Convert a logical sequence into a bitstring. The
delim is an inter-element delimiter. The field type field is the same as the field type

of translation.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 17

In addition, both binary and int2asc may be modified by a combination of the the simple
arithmetic operators +, —, X and + to specify offsets and scaling. Further, distributions and

factors, as described in the previous section, may also be applied to these translations.

3.3 USR to Logical

The translation for USR to Logical is very similar to the one for EXR to Logical. The most

significant difference is that everything in the USR is characters, not bits.

ascii(length): chars — string x integer Convert a fixed length string of characters,
length long, into a string using an ASCII interpretation. The returned length is

length of the input string.

vascii(delim): chars — string X integer Convert a variable length string of charac-
ters into a string using an ASCII interpretation. The string is delimited with the
string specified in the delim argument. The returned length is the length of the

string plus the length of the delimiter.

asc2int(length): chars — integer X integer Convert an ASCII string of digits length

bytes long, into an integer. The returned length is length of the input string.

{spec; ...spec,, }+ chars — {label : field,, ..., label, : field,} x integer Convert a char-
acter string into a logical product structure. The specs are the same as for EXR
to Logical, except that the skip is in chars, not bits. There must be exactly one
translation spec for each element of the logical structure, although they need not be

in order. The length returned is the total length consumed by the entire record.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 18

[specy .. .spec,]: chars — [labely : field;, ..., label, : field, | x integer Convert a char-

acter string into a logical sum structure. Each of the specs is of the form:

pattern = label; : translation

where pattern is a discrimination pattern that determines whether the bitstring
represents a value from the label; element of the sum. There must be exactly one
spec for each element of the logical sum, although they need not be in order. Fach
discrimination pattern is applied to the bitstring in order until one matches, then
the associated translation is applied. For the case of a sum element where the field
is omitted, the translation is similarly omitted. The length returned is the length

consumed by the applied translation.

translation [length]: chars — field[length] x integer Convert a character string into a
logical array of length length. The field type field is the same as the field type of

translation. The length returned is the total length consumed by all the translations.

seq(translation, end-pattern, delim): chars — field® x integer Convert a character string
into a logical sequence. The end-pattern is a pattern to match on the character string
to determine when the end of the sequence has been reached. The delim is an inter-
element delimiter. The specified translation is repeated and the results made into a
logical sequence until end-pattern matches. The field type field is the same as the
field type of translation. The length returned is the total length consumed by all the

translations (including delimiters).

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 19

3.4 Logical to USR

The translation for Logical to USR is very similar to the one for Logical to EXR.

ascii(length): string — chars Convert a logical string of the specified length into an

ASCII character string.

vascii(delim): string — chars Convert a variable length logical string into a delimited

ASCII character string.

int2asc(length): integer — chars Convert a logical integer into an ASCII character

string of the specified length.

{specy ...spec,, }: {label; : field,, ..., label, : field,} — chars The specs are the same as
for Logical to EXR except that the skip is in chars, not bits. There must be exactly
one translation spec for each element of the logical structure, although they need

not be in order.

[spec, .. .spec,): [labely : field, ..., label, : field, | — chars Convert alogical sum struc-

ture into a character string. Fach of the specs is of the form:

label; : (tag, translation)

The tag is a character string to identify this element of the sum, if necessary. There
must be exactly one spec for each element of the logical sum, although they need not
be in order. For the case of a sum element where the field is omitted, the translation

is similarly omitted.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 20

translation [length]: field[length] — chars Convert a logical array of the specified length

into a character string. The field type fieldis the same as the field type of translation.

seq(translation, delim): field® — chars Convert alogical sequence into a character string.
The delim is an inter-element delimiter. The field type field is the same as the field

type of translation.

4 Message Validity

Messages have associated with them a notion of validity. There are two aspects to this:
¢ intra-field validity. The data in a field is in the range of valid data for that field.
e inter-field validity. The data in interdependent fields conform to specified constraints.

Intra- and inter-field validity are specified by constraints in the logical representation. Intra-
field validity is specified in the declarations of each logical field. The valid range of data for
an intra-field constraint is either implicit (e.g. delimited by the possible elements of a sum), or
explicit (e.g. the bounds on an integer field). Inter-field validity is specified as propositions on
the logical specification that must be satisfied.

The details of an invalid message are given by its validity indicator, a value that gives
diagnostic information about what’s wrong with a message. Each message format has a unique
validity indicator tailored to the specifics of that format.

Derived from analysis of the specification of possible translations, the various intra-field

constraint indicators are as follows:

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 21
MessageTruncated This indicates that at some point in the translation, it was deter-
mined that the bitstring was too short for the specified translation.

MessageTooLong This indicates that at the end of the translation for a message, the

total number of bits consumed was not equal to the length of the message.

UnterminatedString This indicates that the delimiter for a variable length string was

not found.

StringTooLong This indicates that a variable length string exceeded its optional max-

imum length.

InvalidDigit This indicates that in an asc2int translation, the field contained an ASCII

character that was not a digit 0-9.
OutOfRange This indicates that an integer was out of its specified range.

MissingDelimiter This indicates that a delimiter specified between two fields in a
record, or between two elements of a sequence, did not match the contents of the

message at that point.
DiscriminationFailure This indicates that no discrimination pattern for a union matched.
UnterminatedSequence This indicates that the end of a sequence was not found.

An inter-field constraint is given a name for reference in the validity indicator. It is a

predicate, defined as follows:

e simple comparisons on integer or string terms: =, #, <, >, < and > (for strings, lexico-

graphic ordering is used)

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 22
e complex constraints using connectives and, or, not and implies
o quantifiers V and 3 for expressing constraints over arrays and sequences
An integer or string term is:
e a logical field name
e a simple arithmetic expression on (integer) terms using +, —, x and +
¢ a length function for sequences and variable length strings

For example the following expresses the constraint mentioned in the note at the bottom of

the EXR description:

length(Reporting_Contact_Data) = 0 implies

Yz in Reporting_Barrier_Data, .Detection_Confidence = None

5 Test generation

The MTV generator must be able to generate its own tests. In particular, for each message
format, a set of test data is to be supplied by the designer of the format, who also supplies the
appropriate validity indicator. The generated test will translate and validate all the test data,
indicating any inconsistencies between the specified validity indicator and the actual validity

indicator.

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 23

6 The MTV artifact

The artifact produced by the MTV generator will be a module in the target language with a

datatype for the INR, a declaration for its validity indicator and the following function interface:

e a value function from EXR to INR

an image function INR to EXR

a check function that indicates the validity of a given EXR, returning a validity indicator

that describes the nature of the problem

e a value function from USR to INR

an image function INR to USR

a check function that indicates the validity of a given USR

The value and image functions are derived from the specified translations to and from the

logical representation. In particular:

value(z : EXR) : INR = LogicaltoINR(EXRtoLogical(x))
image(z : INR) : EXR = LogicaltoEXR(INRtoLogical z))
value(z : USR) : INR = LogicaltoINR(USRtoLogical(x))

image(z : INR) : USR = LogicaltoUSR(INRtoLogical(x))

This module will be realized by an Ada package whose PDL is similar to the one given in

figure 6.

Id:

spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp

with MTV_Common;
package MTV_instance is
-- INTERNAL REPRESENTATION
type INR is

-- EXTERNAL REPRESENTATION
subtype EXR is Bitstring

-- Functions for converting between EXRs and INRs
function Image(Value_In : in INR) return EXR;
function Value(Image_In : in EXR) return INR;

-- Function for checking the validity of an EXR
type EXR_Validity_Indicator is ...;
function Check(Image_In : in EXR) return EXR_Validity_Indicator;

-- USER REPRESENTATION
subtype USR is VString

-- Functions for converting between USRs and INRs
function Image(Value_In : in INR) return USR;
function Value(Image_In : in USR) return INR;

-- Function for checking the validity of a USR
type USR_Validity_Indicator is ...;
function Check(Image_In : in USR) return USR_Validity_Indicator;

-- Constraint raised by Image and Value functions

Constraint_Error : exception;
end MTV_Instance

Figure 6: Ada PDL for an MTV instance

24

Id: spec.tex,v 1.7 1993/09/27 17:30:03 jlewis Exp 25

A requirement of the value functions is that they raise an exception when the input message
violates constraints. In Ada, the Constraint Error exception will be the one raised. The user
may then consult the validity indicator returned by the check function for details of which
constraint was violated.

Finally, it is required that each of the wvalue/image pairs form a retraction pair, i.e. that

the following two conditions always hold:

value(itmage(z)) =

image(value(z)) = whenever check(z) indicates a valid message

