
Optimizing Algebraic Programs

OGI� Tech�report �������

Tim Sheard� � Leonidas Fegarasy

Oregon Graduate Institute of Science � Technology
sheard�cse	ogi	edu fegaras�cse	ogi	edu

Abstract

This paper considers a programming language where all control is encoded in algebras

and combinators over algebras	 This language supports higher levels of abstraction than

traditional functional languages and is amenable to calculation based optimization	 Three

well known transformations are illustrated	 Each one� requiring varying levels of insight

and creativity over ordinary functional programs� can be fully automated in an algebraic

language	 The algorithm encoding these transformations is presented	 This algorithm is an

improvement over our previous work since it works over a richer� more expressive language�

encodes more transformations� and is more e
cient	

� Introduction

We have developed a programming style we call algebraic programming because of its reliance
on algebras and combinators for encoding control� Algebraic programs provide two advantages
over traditional functional programs� First� they provide a mechanism for abstracting over type
constructors� i�e� it is possible to encode algorithms which work over any datatype de�nition�
Second� such algorithms have generic theorems� which make it possible to build semantic based
optimizations� Such optimizations are amenable to automation� whereas languages which allow
arbitrary recursive programs lack the structure necessary for this kind of automation without
expensive analysis�

The contributions of this paper are several� First we extend our earlier work��� �� �	

by embedding our optimizations in a richer language� and describe an improved algorithm
for computing them� Our previous work focused on a restricted language which has now
been extended to include all the features of a modern functional programming language� The
improved algorithm works over the entire extended language while the original algorithm worked
only on a syntactically identi�able subset of the restricted language�

�Tim Sheard is supported in part by a contract with Air Force Material Command �F�������	�C�

����
yLeonidas Fegaras is supported by the Advanced Research Projects Agency ARPA order number �� moni�

tored by the US Army Research Laboratory under contract DAAB�
�����C�Q����

�

Second� we report on an actual implementation���
 which includes a user oriented front�end
as well as our optimizing back�end� and a compiler� Experiments with our implementation
illustrate that is feasible� practical� and bene�cial to program in an algebraic style�

Third� we illustrate that it is possible to extend our techniques by the use of optimization
algorithms based upon additional generic theorems� We describe three transformations which
heretofore either required human intervention in the form of eureka� steps or generalization
choices� or time consuming search based analysis� The explicit structure of algebraic programs
makes these transformations evident by simple inspection or reduction based techniques� In
fact� we have developed and implemented an algorithm which utilizes just these three trans�
formations and which manages to capture many well known optimizations� It is our belief that
additional generic strategies can strengthen our algorithm�

� Three Transformations

In the this section we quickly outline three transformations in terms of traditional functional
programming� The �rst two were �rst described over traditional functional programs by
Burstall and Darlington��
� the third is a generic construction of distributive laws we believe
is new in any context� In subsequent sections we describe how algebraic programs make these
transformations evident�

��� Simultaneous Traversal of a Single Structure

Two algorithms which both traverse a single structure can often be fused into a single traversal�
This technique is a generalization of loop fusion to arbitrary data structures� As an example
consider computing the length and sum of a list simultaneously as in the example avg x �
�sum x���len x�� Given the de�nitions

len nil � � sum nil � �
len �cons�x� xs�� � � � �len xs� sum �cons�x� xs�� � x� �sum xs�

we proceed by introducing a function that computes both values� h x � �len x� sum x�� and
by instantiating this function on the two cases which construct legal lists

h nil � �len �� sum ��
� ��� ��

h �cons�x� xs�� � �len�cons�x� xs��� sum�cons�x� xs���
� �� � len xs� x� sum xs�

At this point we need to generalize two of the terms in order to complete the transformation�
It is this step that often requires human intervention�

h �cons�x� xs�� � �� � u� x� v� where �u� v� � �len xs� sum xs�
� �� � u� x� v� where �u� v� � h xs

Thus completing the de�nition of the function that simultaneously computes both the length
and sum of a list�

�

��� Deforestation

Functional programming encourages the de�nition of complex functions as the composition of
simpler ones� This often introduces an unnecessary intermediate data structure� For example
consider computing� len�map f x� where

map f nil � nil
map f �cons�x� xs�� � cons�f x� map f xs�

Computing �map f x� produces an intermediate list which is then consumed by len� We
proceed in much the same manner as for simultaneous traversal� introducing a new function h�
and using the de�nitions to arrange� a recursive call to h�

h x � len�map f x�

h nil � len�map f nil�
� len�nil�
� �

h �cons�x� xs�� � len�map f �cons�x� xs���
� len�cons�f x� map f xs��
� � � �len�map f xs��
� � � h xs

In this example arranging� for the recursive call to appear was easy� In general this is not the
case�

��� Distributive Law Generation

Arranging for the recursive call to appear often depends upon knowledge of distributive laws�
For example consider h x � len�rev x� where

nil � y � y rev nil � nil
�cons�x� xs�� � y � cons�x� xs � y� rev �cons�x� xs�� � �rev xs� � �cons�x� nil��

For the case x � cons�y� ys� we proceed

h �cons�y� ys�� � len�rev �cons�y� ys���
� len��rev ys� � �cons�y� nil���

At this point we need the distributive law� len�x � y� � �len x� � �len y� to complete the
transformation�

� len�rev ys� � len�cons�y� nil��
� len�rev ys� � � � len�nil�
� len�rev ys� � � � �
� h�ys� � �

�

Algebraic programs provide the means to generate this law �and many others� on demand� thus
somewhat alleviating the need for a library of laws� which no matter how large� will often be
incomplete�

� Algebraic Programming in ADL

In this section we describe our implementation of algebraic programming we call ADL �Algebraic
Design Language��

��� Signatures

ADL departs signi�cantly from functional programming languages such as SML by providing
declarations of signatures that de�ne varieties of structure algebras� not simply datatypes� An
algebraic signature consists of a �nite set of operator names� together with the type of the
domain of each operator� The co�domain of an operator is the carrier type for each particular
algebra� For example�

signature List�type c� �list�a��c � ��nil	 �cons of �a
 c���

signature Tree�type c� �tree�a��c � ��tip	 �fork of c
 a
 c��

The list�sorted algebras have a signature parametric on a type represented by the variable a�
The type variable c is used as the name of the carrier type� The signature consists of a pair
of operator names� with typing� �nil � c� �cons � a� c� c � Note that the domain of each
operator is explicit in the signature� and the codomain of each operator is implicitly given by
the carrier�

De�ning a signature in ADL causes several types and functions to be de�ned automatically�
One is the freely constructed type which would correspond to a datatype de�nition in language
like ML� Several other functions and types are de�ned automatically as well� The induced types
and functions of the list signature would be declared as follows in Standard ML�

datatype �a list � nil cons of ��a
 �a list��

datatype ��a	�c� E�list � �nil �cons of ��a
 �c��

fun E�nil �f�a	f�c� �� � ���

fun E�cons �f�a	f�c� �x	y� � �f�a x	 f�c y��

All the functions and types above become accessible to the programmer by simply writing the
signature declaration� Note that list is the usual� recursive� freely constructed type� where the
carrier c has been replaced with the type being de�ned ��a list�� and cons and nil are the
free constructors� The type E�list is a non�recursive type which has one extra type parameter
corresponding to the carrier of the signature� Constructors of this non�recursive type have the
same name as the signature operators� e�g� �cons	 �nil �di�erent from the free constructors
cons and nil� and are called algebra operators� To construct the de�nitions of the functions
E�nil and E�cons from a signature declaration we are guided by the types of the domains
of the corresponding signature operators �nil and �cons� This can be done by lifting the

�

operator to work on functions as follows� �f
 g��x	y� � �f x	 g y�� This construction
guarantees that the functions E�nil and E�cons are functors� Like any functor they preserve
identities and compositions�

E�cons�id� id� � id
E�cons�f� g� � E�cons�h� k� � E�cons�f � h� g � k�

These functions will play an important part in the sequel� Similar types and functions are
induced for tree and other signatures�

��� Algebras

A concrete algebra is speci�ed by a structure that contains bindings for the carrier type and
for each operator of the algebra� Examples for the list and tree algebras include�

List�c �� int� �list��nil �� �	 �cons �� ��x	y� ��y��

List�c �� int� �list��nil �� �	 �cons �� ��x	y� x�y��

Tree�c �� list�a�� �tree��tip �� nil	 �fork �� ��x	y	z� x � �y� � z��

Given the type of the carrier� the assignment of functions to the operators of the signature
must be consistently typed�

��� Combinators

ADL encodes control in a standard set of combinators that take an algebra as an argument and
return a function which is a free algebra morphism �a function over the freely constructed type��
The combinators include map� reduction �fold�catamorphism�� primitive recursion �paramor�
phism�� derive �unfold� anamorphism�� and hom �hylomorphism�� as well as the duals of these
combinators �cohom etc�� and mechanism for interpreting all these morphisms in an arbitrary
monad� We will not discuss these additional mechanisms here���
�

When a combinator is applied to an algebra speci�cation the returned morphism obeys a
set of recursive equations particular to that algebra� For example the red combinator applied
to a list algebra obeys�

red�list
 Listfc� �nil� �consg nil � �nil
red�list
 Listfc� �nil� �consg �cons �x� y�� � �cons �x� red�list
 Listfc� �nil� �consg �

Note that a combinator cannot be typed in an ML�like language since it is parametric over
algebras of any signature�� In general� the recursive equation a combinator obeys can only be
described in a meta�language �since ADL itself has no recursion�� In the meta�language this
can be done using the induced functors� E�ci� Given any constructor ci with type ti � T the
reduction combinator obeys�

red�T
 Tf�ci �� fig �ci x� � fi �E�ci �id� red�T
 Tf�ci �� fig� x�

Some example de�nitions in ADL of functions using red are�

�In ML we could represent an algebra by a tuple of functions� A single function red that takes any algebra
as input and returns a reduction for that algebra cannot be typed�

�

val sum � red�list� List�c��int� �nil �� �	 �cons �� �op �� ��

val len � red�list� List�c��int� �nil �� �	 �cons �� ��x	y� y�� ��

val map f � red�list� List�c��list�a�� �nil �� nil	 �cons �� ��x	y� cons�f x	y� ��

val flatten � red�tree� Tree�c��list�a�� �tip��nil	 �fork����l	x	r� l � �x� � r��

The hom combinator applied to a list algebra with carrier c and a splitting function P �
� � E�list��� �� returns a morphism with type � � c which obeys the recursive equation�

hom�list
 Listfc� �nil �� f� �cons �� gg P x �
case P x of

�nil� f
j �cons �a� b�� g�a� hom�list
 Listfc� �nil �� f� �cons �� gg P b�

The function �hom�T
 Tf� � �g P x� recurses over the structure of T found in x which is induced
by applying the splitting function P � The general equation can again be expressed in terms of
the induced functors�

hom�T
 Tf� � � � �ci �� fi� � � �g P �ci x� �
case P x of
� � �

j �ci y � fi�E�ci �id� hom�T
 Tf� � � � �ci �� fi� � � �g P � y�
� � �

An example de�nition in ADL of a function using hom is the upto function�

val upto � ��m� ��n� �hom�List� �c�� List�int�� �nil �� nil	 �cons �� cons�

�� x �if x�n then �nil else �cons�x	x � ���� m ��

A slightly more complicated example is quick�sort

val flatAlg � �c��list�a�� �tip �� nil	 �fork �� ��l	x	r� l � �x� � r��

val Split � ��x� case x of

nil �� �tip

 cons�x	y� �� �fork�filter ��� x� y	x	filter �� x� y��

val quicksort � hom�tree� flatAlg Split�

In a sense the hom combinator is more general than the red and other combinators� since
all of the other combinators can be expressed in terms of hom� For example

red�T
 Tf� � � � �ci �� fi� � � �g � hom�T
 Tf� � � � �ci �� fi� � � �g out
T

where� outT � Ci � �Ci

OutT is a particularly simple splitting function� it replaces the top�most free constructor with
the its corresponding algebra operator from the type E�T � This has particular importance
for our transformation techniques� since the internal data structures representing programs
manipulated by our algorithms need deal with only a single combinator� The user may use the
simpler combinators which are translated by the compiler into hom�

�

� The Promotion Theorem�

The promotion theorem for red describes the conditions under which the composition of a
function g with a red can be expressed as another red ���� ��
� For a list algebra the theorem
is given below�

�n�� � g�fn���
�c�a� g�r�� � g�fc�a� r��

g�red�list
ffn� fcg x� � red�list
f�n� �cg x

A similar theorem can be expressed for every signature� In general the promotion theorem can
be given for hom as well as red and can be expressed in terms of the induced functors E�ci for
any signature�

�i � hi �E�ci�id� g� � g � fi

g � �hom�T
f� � ��ci �� fi � � �g P � � hom�T
f� � ��ci �� hi � � �g P

The promotion theorem� when used as a left to right rewrite rule� implements a form of fusion�
To apply it� the functions� hi� which meet the stated conditions of the premise must be found�

� Three transformations for Algebraic Programs

In this section we describe how the structure of algebraic programs enables the three transfor�
mations described earlier�

��� Deforestation and The Normalization Algorithm

The Normalization algorithm is an e�ective algorithm for computing the hi�s of the promotion
theorem� It based upon the algorithm of ��	
 extended in the following ways� First� it is based
upon the hom promotion theorem rather than red� second it computes over a richer language�
and terminates over the complete language rather than a syntactically identi�able subset� This
algorithm automates deforestation ��� ��� ��
 and fusion ��
 for algebraic programs�

From the promotion theorems we know only the property that the hi�s should obey� not
how to compute them� The following construction is the basis for the normalization algorithm�
Given�

hi �E�ci�id� g� � g � fi the requisite property

suppose there exists a function g�� with property g�g�� x� � x� Then y�

hi �E�ci�id� g� �E�ci�id� g
��� � g � fi �E�ci�id� g

���
hi �E�ci�id� g � g��� � g � fi �E�ci�id� g��� by functorality of E�ci
hi �E�ci�id� id� � g � fi �E�ci�id� g

��� by property of g��

hi � g � fi �E�ci�id� g��� by functorality of E�ci

ySince in reality g
�� may not exist in the algorithm it only plays the role of a placeholder as shall see in the

sequel�

	

The normalization algorithm works on the formula g�fi�E�ci�id� g���� it attempts to push the
g towards the g�� so that they may cancel each other� In order for the algorithm to be e�ective�
it must rely on no property of g�� other than g�g�� x� � x� and remove all occurrences of
g��� For example consider

len�map f x� � len�red�list� �c��list�a�� �nil��nil	 �cons����x	y� cons�f x	y���

Setting up the equation for nil we begin�

�nil � len nil � �

for cons we proceed�

�cons�z	zs� � len � ���x	y� cons�f x	y�� �E�cons�id	Inv�len�� �z	zs�� �

�cons�z	zs� � len � ���x	y� cons�f x	y�� �z	 �Inv�len�� zs�� �

�cons�z	zs� � len � cons�f z	 �Inv�len�� zs� �

�cons�z	zs� � � � �len ��Inv�len�� zs� �

�cons�z	zs� � � � zs

The normalization algorithm is a reduction engine which carries out this process and which
instantly recognizes illegal uses of g�� by using exceptions� Its reduction rules are based
upon ��reduction� reduction of combinators over freely constructed objects� and the promotion
theorem� Given an inverse free term� it returns an equivalent term �possibly the same term��
For simplicity the algorithm here is expressed in terms of red� though our actual implementation
is based upon hom�

N term � case term of
g�� � raise inverse illegal use of inverse
v � v variable
�t�� � � � � tn� � ��N t��� � � � � �N tn�� tuple
	 v � e � 	 v � �N e� abstraction
ci �x � ci �N �x� construction
�	 v � b� x � N�Beta v b x� � reduction
g�g��y� � y Success ���

g�red�T
f�ci �� fig x� �

�����
����

�red�T
f�ci �� hig x�
where hi � 	 �y �N�g�fi�E�ci �id� g

��� �y���
handle inverse �
�Ng��N�red�T
f�ci �� fig x��

promotion theorem

f x � �N f� �N x� normal application
red�T
f�ci �� fig �ci x� � N�fi�E�ci�id� red�T
f�ci �� fig� x�� combinator reduction
red�T
f�ci �� fig x � red�T
f�ci �� �N fi�g �N x�

Where the variables �y introduced in the promotion step are new variables� If in the promotion
step� N fails to compute the hi� this is signaled by the exception inverse and handled by
normalizing the two pieces of the promotion step independently� thereby no longer introducing
any inverse terms� A proof of correctness of the normalization algorithm can be found in a
technical report���
�

�

��� Simultaneous Traversal and the Tupling Lemma

Algebraic programs make it easy to recognize situations where simultaneous traversal is appli�
cable� Any two reductions over the same variable can be traversed simultaneously� For example
consider the example�

�len x� sum x� �
�red�list
f�nil �� �� �cons �� 	 �x� y� � �� yg x� red�list
f�nil �� �� �cons �� 	 �x� y� � x� yg x�

This example transforms into

red�list
f�nil �� ��� ��� �cons �� 	 �x� �u� v�� � ��� u� x� v�g x

A general formula for this transformation is called the Tupling lemma���
� It can be stated for
red as follows�

� red�T
f� � � � �ci �� fi� � � �g x � red�T
f� � � � �ci �� gi� � � �g x � �
red�T
f� � � � h �fi � �E�ci�id� �rst��� �gi � �E�ci�id� second�� i� � � �g x

where hf� gi x � �f x� g x� and �rst�x� y� � x and second�x� y� � y� An analogous formula
for hom is also useful�

� hom�T
f� � � � �ci �� fi� � � �g P x � hom�T
f� � � � �ci �� gi� � � �g P x � �
hom�T
f� � � � h �fi � �E�ci�id� �rst��� �gi � �E�ci�id� second�� i� � � �g P x

The explicit nature of control in algebraic programs make it possible to recognize and combine
two traversals over a single data structure into a single traversal by inspection�

��� Generating Distribution Laws for Zero Replacements

Chin ��
 relates how the use of laws may improve the deforestation process� We illustrated
this in Section ���� The explicit structure of algebraic programs makes it possible to calculate
some of the necessary laws on demand� In this section we describe how this may be done for
a large class of programs� We believe that similar constructions can be found for other classes
as well� A common function over an arbitrary type T which has a unique zero constructor� Z�
�a nullary constructor like nil for list� is de�ned by�

�ZrT y� x � red �T
 fT � � � � � �Z � y� � � � � �Ci � Ci� � � �g x

Here the operator for the nullary constructor is assigned y as its meaning� and every other
operator is assigned its corresponding free constructor� We call this function a zero replacement
function� ZrT has type T � T � T � A function h�x� y� � Zr y x is associative � h�w� h�x� y�� �
h�h�w� x�� y� �� and has the zero� Z� for both a left and right identity � h�x� Z� � x and
h�Z� y� � y � ���
� Recognize that Zrlist is the list append operator� and that Zrnat is natural
number addition�

�

We postulate that zero replacement functions have an additional important property�
� f
 red�T
� � g � f � �Zr y� � g � f � We make this postulation since the Normalization
algorithm provides an e�ective method to compute g�

For example consider the term length�x � y�� Both length and � are reductions so there
must be a function g such that length�x � y� � g�length x�z� Since length is a reduction
suppose that g is a reduction as well and can be expressed as red�nat
 f�Zero ��m� �Succ ��
ng� where m and n are arbitrary unknown functions� By normalizing both length�x � y�
and red�nat
 f�Zero �� m� �Succ �� ng �length x� we obtain two reductionss which compute
the same value� Matching these terms against each other we �nd bindings for m and n� thus
e�ectively computing g� For example� length �x � y� normalizes to�

red �list

f�nil �� red�list
 f�nil �� Zero� �cons �� 	 �y�� y�� � �Succ y�� g y �

�cons �� 	 �y�� y�� � � Succ y��g

And the term g�length x� � red�nat
f�Zero �� m� �Succ �� ng �length x�g normalizes to�

red �list

f�nil �� m �
�cons �� 	 �y�� y�� � � n y��g x

Matchingx the two terms we �nd bindings for m and n� This is illustrated by the boxed
terms in the diagram above� Recognize that m computes length y thus g is red�list
 f�nil ��
length y� �cons �� 	 �x� y� �Succ yg which can be recognized as g � 	 x ��length y��x� Thus
we have e�ectively computed the law length�x � y� � g�length x� � �length y���length x��

This technique allows us to calculate such laws as

map f �x � y� � �map f x� � �map f y�
length �x � y� � �length x� � �length y�
rev �x � y� � �rev x� � �rev y�
w � �x � y� � �w � x� � �w � y�

This makes possible the automatic fusion of unsafe terms��
� such as map f �rev x� without the
need of any additional laws as was illustrated in Section ��� above�

� Applicability of Algebraic Programs and Future Work

The wide spread use of algebraic programming will depend upon several factors� First the
ease of expressing programs algebraically� second the generality of the optimization techniques
presented here to typical programs� and third the expressiveness of algebraic programs�

Our experience programming algebraically is that it is no harder to program using combi�
nators� than it is using recursion� In fact for some applications it is easier since the combinators

zNote that g is probably dependent on y�
xUni�cation where variables m and n in this case may appear in only one of the terms�

��

encode typical control patterns and relieve the programmers of tedious detail� Unusual control
patterns often must be cast as co�combinators and our experience here is more limited� For
some applications� algorithms can actually be constructed which are independent of their data
structures� This has important implications for reusability�

The optimizations techniques are widely applicable� and we are currently investigating
several other techniques which would make them even more so� Several generic theorems about
combinators which return functions �rather than values� are currently being investigated� We
feel that this is a particularly valuable avenue to pursue since program which deal with state
are quite common and can be cast algebraically using this technique�

The language presented in this paper is limited in that algebraic programs can only traverse
a single data structure at a time� This makes algorithms as simple natural number subtraction
resort to arcane tricks or be simply unencodable� We would like to encode simple algorithms
such as equality� uni�cation� zip� and the nth element of a list function algebraically� and for
these functions to be amenable to automatic transformations� Elsewhere�	
 we report initial
results on encoding these functions algebraically by generalizing the E�ci functors and the
combinators� These generalizations have promotion like theorems but while our experience
with generic transformations is limited� our results so far have been quite encouraging�

� Related Work

This work is related toWater�s on series expressions ���
� His techniques apply only to traversals
of linear data structures such as lists� vectors� and streams�

It is also related to Wadler�s work on listlessness� and deforestation ���� ��� �
� Deforestation
works on all �rst order treeless terms� Treelessness is a syntactic property which guarantees that
terms can be unfolded without introducing in�nite regress� Wadler makes the observation that
some intermediate data structures for primitive types� such as integers� booleans� etc� do not
really take up space� so he developed a method to handle such terms� using a technique he calls
blazing which extends the class of treeless programs� Treelessness can be applied to algebraic
programs and normalizing a treeless program is one of the reasons the inverse exception would
be raised� This is handled by the normalization algorithm by essentially skipping over the
o�ending term� Wadlers language may encode algorithms which induct over several objects
simultaneously which cannot be handled by the algebraic language described here�

Chin�s work on fusion ��
 extends Wadler�s work on deforestation� He generalizes Wadler�s
techniques to all �rst order programs� not just treeless ones� by recognizing and skipping over
terms to which his techniques do not apply in much the same manner the normalization algo�
rithm does� His work also applies to higher order programs in general� This is accomplished by
a higher order removal phase� which �rst removes some higher order functions from a program�
Those not removed are recognizable and are simply skipped� over in the improvement phase�
Our normalization algorithm needs no explicit higher order removal phase� and invents laws on
the y that Chin�s algorithm must know a priori�

Gill� Launchbury and Jones���
 describe a deforestation algorithm currently used in the

��

Glasgow Haskell compiler� It uses two combinators fold� and buildk� and a higher order theorem
which relates the composition of the two� These techniques are limited since the two forms must
be immediately adjacent� while the normalization algorithm will attempt to push these forms
through intermediate compositions� In addition functions de�ned in terms of these combinators
are hardwired into the compiler and there is no ability for a user to construct his own� other
than through composition of existing ones�

Our implementation of ADL is the result of the in uence of ideas from several areas� First�
work by Malcom ���
� Meijer� Fokkinga� and Paterson ���� �
� and Cockett ��� �
 which describe
how to capture patterns of recursion for a large class of algebraic types in a uniform way� Many
of the theorems which our transformation algorithms are based upon can be found here� second�
our previous work on type re ection ���� ��
� and our work on program normalization��� �� �	
�

	 Conclusion

The formalism outlined above combining normalization� Zr law calculation� and the tupling
lemma with beta and eta contraction provides a theoretical basis for calculation based trans�
formations� We conjecture that in addition to the techniques outlined above a handful of other
techniques similar in generality can be found to increase the tools e�ectiveness� The ADL
language and the transformation tool have been implemented� and are in use here at OGI�

References

��
 J� Darlington and R� Burstall� A System which Automatically Improves Programs� Acta
Informatica� �������!��� ��	��

��
 W� Chin� Safe Fusion of Functional Expressions� In Proc� ���� ACM Conference on Lisp
and Functional Programming� San Francisco� Ca�� June �����

��
 J� Cockett and D� Spencer� Strong Categorical Datatypes I� In R� Seely� editor� Inter�
national Meeting on Category Theory ����� Canadian Mathematical Society Proceedings�
Vol� ��� pp �������� AMS� Montreal� �����

��
 J� Cockett and T� Fukushima� About Charity The University of Calgary� Department of
Computer Science� Research Report No� ��"���"��� June �����

��
 L� Fegaras� A Transformational Approach to Database System Implementation� Ph�D�
thesis� Department of Computer Science� University of Massachusetts� Amherst� February
����� Also appeared as CMPSCI Technical Report ������

��
 L� Fegaras� T� Sheard� and D� Stemple� Uniform Traversal Combinators� De�nition�
Use and Properties� In Proceedings of the ��th International Conference on Automated

�our red
kour hom with a simple algebra where all operators are replaced by their free constructors�

��

Deduction �CADE���	
 Saratoga Springs
 New York� pp ���!���� Springer�Verlag� June
�����

�	
 L� Fegaras� T� Sheard and T� Zhou� Improving Programs which Recurse over Multiple
Inductive Structures� Oregon Graduate Institute� Technical report #������ A version
of this paper is ftp�able from cse�ogi�edu��pub�pacsoft�papers�ImpProgRecMult�ps�
Submitted to PEPM����

��
 A� Ferguson� and P� Wadler� When will Deforestation Stop� In Proc� of ���� Glasgow
Workshop on Functional Programming �also as research report ��"R� of Glasgow Univer�
sity�� pp ������ Rothesay� Isle of Bute� August �����

��
 M�M� Fokkinga Calculate Categorically� Formal Aspects of Computing������ Vol �� pp
�	������

���
 M�M� Fokkinga� Tupling and Mutamorphisms� The Squiggolist� ���� �����

���
 A� Gill� J� Launchbury� and S� Peyton Jones A Short Cut to Deforestation In Proceedings
of the conference on Functional Programming and Computer Architecture� Copenhagen�
June ����� pp �������

���
 R� Kieburtz and J� Lewis� Algebraic Design Language �Preliminary De�nition�� Technical
Report #������� Oregon Graduate Institute� �����

���
 J� Hook� R� Kieburtz� and T� Sheard� Generating Programs by Re ection� Oregon Grad�
uate Institute Technical Report �������

���
 G� Malcolm� Homomorphisms and Promotability� In Mathematics of Program Construc�
tion� pp ���!��	� Springer�Verlag� June �����

���
 E� Meijer� M� Fokkinga� and R� Paterson� Functional Programming with Bananas� Lenses�
Envelopes and Barbed Wire� In Proceedings of the �th ACM Conference on Functional
Programming Languages and Computer Architecture
 Cambridge
 Massachusetts� pp ���!
���� August �����

���
 Tim Sheard� Type parametric programming� Technical Report ������� Department of
Computer Science and Engineering� Oregon Graduate Institute� November �����

��	
 Tim Sheard and Leonidas Fegaras� A fold for all seasons� In Proceedings of the conference
on Functional Programming and Computer Architecture� Copenhagen� June �����

���
 T� Sheard and L� Fegaras� Optimizing Algebraic Programs� OGI� Tech�report #�������
The Extended version of this paper� Ftp�able from
cse�ogi�edu��pub�pacsoft�papers�OptAlgProg�ps� Submitted to PEPM����

���
 P� Wadler� Listlessness is Better than Laziness� Lazy Evaluation and Garbage Collection
at Compile�time� In Proc� of the ACM Symposium on Lisp and Functional Programming�
Austin Texas� August� �����

��

���
 P� Wadler� Deforestation� Transforming Programs to Eliminate Trees� Proceedings of the
�nd European Symposium on Programming
 Nancy
 France� March ����� Lecture Notes
in Computer Science ����

���
 R� Waters� Automatic Transformation of Series Expressions into Loops� ACM Transactions
on Programming Languages and Systems� ������������ January �����

A Correctness of the Normalization Algorithm

A reduction red�T
f�ci �� fig is de�ned by the following rules�

red�T
f�ci �� fig � Ck � fk �E�ck�red�T
f�ci �� fig�

where for any constructor Ck � ��T of T � E�ci�f� � K�T� �
�f�� The combinator K is de�ned
by the following inductive equations�

K�T� T
�f� � f
K�T� t�� t�
�f� � K�T� t�
�f��K�T� t�
�f�
K�T� S�t�� � � � � tq�
�f� � mapS�K�T� t�
�f�� � � � �K�T� tq
�f��
K�T� t
�f� � id otherwise

where mapS is a map over the type S���� � � � � �q�� that is� it maps the parametric type
S���� � � � � �q� into the type S���� � � � � �q�� Thus mapS�f�� � � � � fq� requires q functions fi � �i �
�i� one for each type variable�

Figure � displays the meaning function M��t

 � that maps terms t of the language into
values� The binding list � is a partial function from term variables to values� We assume that
all the free variables in the term t have a binding in �� Figure � displays the normalization
algorithm N ��t

 that maps a term t into another term or possibly into nothing� That is� the
type of N is term�maybe�term�� Operation t� � t� returns either a pair of terms� if both t�
and t� are terms� or nothing if any of them is nothing� Similarly� operation f � e applies f to e
if both f and e are terms� otherwise it returns nothing�

just�a� � just�b� � just�a� b�
nothing � x � nothing
x � nothing � nothing

just�f� � just�a� � just�f a�
nothing � x � nothing
x � nothing � nothing

We will show in Theorem � that the normalization algorithm preserves the meaning of a term�
The only law that we will use to prove this theorem is the promotion theorem that describes
a meaning preserving transformation� First we will prove an important property of the nor�
malization algorithm� It says that a reduction behaves like a homomorphism under certain
conditions� This condition is described in Figure � and states exactly the case in which the
normalization algorithm does not construct a value $nothing� at any level of normalization�

��

Theorem � �Homomorphic Property� For any reduction g � S � � and for any terms
ei � �i and f � ��T such that P ��K�T�S
�g��f�e��

 is true
 there exists a term X that does not
depend on g and ei such that

N ��K�T� S
�g��f�e��

 � N ��X

 � �N ��K�T� �
�g� e

�

Proof Let g � red�T
f�ci �� gig and G � K�T� S
�g�� We will use induction over the term f �
There are three possible ways to form f � as a variable� as a reduction� and as a construction�
Induction base If f has the form 	z�zi then the theorem is true �X is identity��
Induction hypothesis We will assume that the theorem is true for any subterm f � of f �
Induction step We will prove the theorem for some term f �

	 let f � 	z�red�R
f�ci �� 	w�fi�w� z�g v�z�� Then the normalization algorithm will use
Rule ��� to construct a new reduction red�R
f�ci �� 	w��ig� since P ��G�f�e��

 is true�

N ��G�f�e��

 � N ��G�red�R
f�ci �� 	w�fi�w� e�g v�e��

� just�red�R
f�ci �� 	w��ig� � N ��v�e�

where

just��i� � N ��G�fi�E�ci�G���w� e�

 from ��	
� N ��Xi

 � �N ��E�ci�G��E�ci�G

���w�

 � �N ��K�T� �
�G� e

�� by hypothesis
� N ��Xi

 � �N ��E�ci�G �G���w

 � �N ��K�T� �
�G� e

�� by ���	 and ���	
� N ��Xi

 � ��just�E�ci� � N ��G �G��

 � just�w�� � �N ��K�T� �
�G� e

�� by ���	
� N ��Xi

 � �just�w� � �N ��K�T� �
�G� e

�� by ��	
� N ��	z�Xi�w� z�

 � N ��K�T� �
�G� e

Now we need to prove that N ��v�e�

 can be put into the form N ��X

 � �N ��K�T� �
�g� e

��
This is possible only when P ��G�f�e��

 is true� that is� when P ��v�e�

 is true�

	 Let f � 	z�Ck�v��z�� � � � � vm�z��� where Ck � s� �

 � sm�T is a constructor of T � We
have two cases for type S�

� S � T � then K�T� S
�g� � g and

N ��G�f�e��

 � N ��red�T
f�ci �� gig�Ck�v��e�� � � � � vm�e���

� N ��gi�E�ck�g��v��e�� � � � � vm�e���

 �by ��		
� N ��gi�K�T� s�
�g��v��e��� � � � �K�T� sn
�g��vm�e���

� N ��gi

 � �N ��K�T� s�
�g��v��e��

 �

 � N ��K�T� sn
�g��vm�e��

�
� N ��gi

 � ��N ��X�

 � N ��K�T� ��
�g��e�

� �

 � �N ��Xm

 � N ��K�T� �n
�g��e�

��

�by induction hypothesis	
� N ��gi � �X� �

Xn�

 � N ��K�T� �
�g��e�

��

� S � R�r�� � � � � rq�� then K�T� S
�g� � mapR���� where �i � K�T� ri
�g�� Then

N ��mapR����Ck�v��e�� � � � � vm�e���

� N ��Ck�K�T� r�
�mapR�����v��e��� � � � �K�T� rm
�mapR�����vm�e���

� N ��Ck�K�T� s�
�g��v��e��� � � � �K�T� sm
�g��vm�e���

� N ��Ck

 � �N ��K�T� s�
�g��v��e��

 �

 � N ��K�T� sn
�g��vm�e��

�
� N ��Ck

 � ��N ��X�

 � N ��K�T� ��
�g��e�

� �

 � �N ��Xm

 � N ��K�T� �n
�g��e�

��

�by induction hypothesis	
� N ��Ck � �X� �

Xn�

 � N ��K�T� �
�g��e�

 �

Theorem � �Correctness of the Normalization Algorithm�

�t���s � N ��t

� just�s� � M��t

 � �M��s

 �

Proof It is easy to prove that all rules except Rule ��� are meaning preserving� For Rule ���
we need to prove that

M��g�red�T
f�ci �� fig e�

 � � �M��red�T
f�ci �� �ig

 ���M��e

 ��

where for any i�
just��i� � N ��	x�g�fi�E�ci�g

��� x��

That is� according to the promotion theorem we need to prove that for any ��

M��N ��g�fi�x��

 � � M��N ���i�E�ci�g� x�

 �

We use Theorem � to normalize the left part of the premise of the promotion theorem �since
P ��g�fi�x��

 is true��

N ��g�fi�x��

 � N ��Xi

 � N ��K�T� �
�g� x

 from Theorem �
� N ��Xi

 � N ��E�ci�g� x

Therefore� if just��i� � N ��Xi

 then

M��N ��g�fi�x��

 � � M��N ��Xi

 � N ��E�ci�g� x

 � � M��N ���i�E�ci�g� x�

 �

which makes the promotion theorem valid� �

��

M��v

 � � ��v

M��Ci

 � � Ci

M��	x�e

 � � 	z�M��e

 ��z�x

M���e�� e��

 � � �M��e�

 ��M��e�

 ��

M��red�T
f�ci �� fig e

 � �

�����
����

caseM��e

 � of
� � �

j Ck�v� � M��fk�E�ck�red�T
f�ci �� fig� z�

 ��v�z

� � �

M��f e

 � � �M��f

 �� �M��e

 ��

Figure �� The Evaluation Algorithm

N ��g��

 � nothing ���

N ��v

 � just�v� ���

N ��Ci

 � just�Ci� ���

N ���e�� e��

 � N ��e�

 � N ��e�

 ���

N ��	x�e

 � just�	z�	x�z� � N ��e

 ���

N ��red�T
f�ci �� fig

 � just�	h�red�T
f�ci �� hig� � �N ��f�

 �

 � N ��fn

� ���

N ��g�h���x��

 � if g � h then just�x� else nothing �	�

N ��red�T
f�ci �� fig �Ci e�

 � N ��fi�E�ci�red�T
f�ci �� fig� e�

 ���

N ��g�red�T
f�ci �� fig e�

 �

�����
����

case N ��e

 � N ��h�

 �

 � N ��hn

where hi � 	x�g�fi�E�ci�g��� x�� of

just��x� ���� � � � � �n� � just�red�T
f�ci �� �ig x�
j nothing � N ��g

 � N ��red�T
f�ci �� fig e

���

N ���	v�e� t

 � N ��beta�v� e� t�

 ����

N ��f e

 � N ��f

 � N ��e

 ����

Figure �� The Normalization Algorithm

�	

P ��g��

 � false
P ��v

 � true
P ��Ci

 � true
P ���e�� e��

 � P ��e�

� P ��e�

P ��	x�e

 � P ��e

P ��red�T
f�ci �� fig

 � P ��fi

P ��g�h���x��

 � �g � h�
P ��red�T
f�ci �� fig �Ci e�

 � P ��fi�E�ci�red�T
f�ci �� fig� e�

P ��g�red�T
f�ci �� fig e�

 � P ��e

� P ��h�

 �

 � P ��hn

where hi � 	x�g�fi�E�ci�g
��� x��

P ���	v�e� t

 � P ��beta�v� e� t�

P ��f e

 � P ��f

� P ��e

Figure �� The Promotion Condition

��

