
Improving Programs which Recurse

over Multiple Inductive Structures�

OGI� Tech�report �������

Leonidas Fegaras Tim Sheard Tong Zhou

Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

����� N�W� Walker Road P�O� Box �����
Portland� OR �	���
����

ffegaras�sheard�tzhoug	cse
ogi
edu

Abstract

This paper considers generic recursion schemes for programs which recurse over multiple inductive
structures simultaneously� such as equality� zip and the nth element of a list function
 Such schemes
have been notably absent from previous work
 This paper de�nes a uniform mechanism for de�ning such
programs and shows that these programs satisfy generic theorems
 These theorems are the basis for
an automatic improvement algorithm
 This algorithm is an improvement over the algorithm presented
earlier �
�� because� in addition to inducting over multiple structures� it can be incorporated into any
algebraic language and is no longer restricted to a �safe� subset


� Introduction

In previous work ���� ��� we have shown how programming algebraically with generic recursion schemes pro�
vides a theory amenable to program calculation ��	�
 This theory provides a basis for automatic optimization
techniques which capture many well�known transformations
 Unfortunately� these recursion schemes may
induct over only one structure at a time� and thus cannot capture such common functions as structural
equality� zip� or the function that computes the nth element of a list


In this paper we generalize the generic reduction scheme to induct over any number of structures �not
necessarily of the same type� simultaneously
 We show that this induction scheme has a generic promotion
theorem� and that the theorem supports a normalization algorithm that automatically calculates a number
of previously unrelated improvements to programs� such as deforestation� loop fusion� and partial evaluation

This is an important step towards an automatic optimization phase in compilers of algebraic programs


Recursion is the Goto of functional programming
 Languages which allow arbitrary recursive programs
lack the structure necessary for automatic optimization
 Much recent research has focused on the design of
programming systems whose control structures are exclusively some generic recursion schemes �
� ��� ���
 We
call this programming style algebraic programming because of its reliance on algebras and combinators for
encoding control
 Notable absent from these works are generic recursion schemes for inducting over multiple
structures


The goal of this paper is to describe internal program representations for algebraic programs which
are amenable to completely automatic optimization and transformation methods� yet are expressive enough
to encode algorithms which induct over multiple structures simultaneously
 These program representations
are suitable for use in the back�end of a compiler for an algebraic programming language
 In this work we
do not consider user interfaces to algebraic programming languages� but rather demonstrate that algebraic

�Leonidas Fegaras is supported by the Advanced Research Projects Agency� ARPA order number ��� monitored by the
US Army Research Laboratory under contract DAAB�������C�Q	��
 Tim Sheard and Tong Zhou are supported in part by a
contract with Air Force Material Command �F���
�����C������


�



recursion schemes are a practical internal form for representing programs and describe a single automatic
mechanism for performing a wide range of optimizations over such programs


��� Motivation and Background

Consider for example the following inductive type equation that captures natural numbers�

nat � Zero j Succ of nat

The reduction over a nat k can be computed by rednat�fz� fs� k� where fz and fs are functions associated
with the value constructors Zero and Succ
 The combinator rednat�fz� fs� is de�ned as follows�

rednat�fz � fs� Zero � fz��
rednat�fz � fs� �Succ�n�� � fs�red

nat�fz � fs�n�

Functions fz and fs are called accumulating functions

For example�

x� y � rednat�����y� ��r��Succ�r��x

The variable r in ��r� is the partial result of the reduction� since it represents the value of the recursive call
rednat�fz � fs�n
 It is called an accumulative result variable


The reduction operator can be generalized for most inductively de�ned data type
 One such type is list�

list��� � Nil j Cons of �� list���

where � is a type variable
 The reduction for lists is very similar to the reduction for natural numbers�

redlist�fn� fc�Nil � fn��

redlist�fn� fc� �Cons�a� l�� � fc�a� red
list�fn� fc� l�

For example�
length�x� � redlist�����Zero� ��a� r��Succ�r��x

For each such inductive data type there is a generic theorem called the promotion theorem ��
� �	�
 For
lists this theorem takes the following form�

�n�� � g�fn���
�c�a� g�r�� � g�fc�a� r��

g�redlist�fn� fc�x� � redlist��n� �c�x

This states that the application of any unary function g to a reduction over a list x is another reduction over
the same list x whose accumulating functions �n and �c are related to the original accumulating functions fn
and fc by the two equations in the premise of the theorem
 The �rst equation calculates directly a solution
for �n in terms of g and fn
 The second equation� though� cannot be solved directly
 This equation must
be rearranged so that the term g�r� can be generalized to a variable in both sides of the equation
 That is�
the term g�fc�a� r�� must be transformed into a form T �g�r��� for some term T that depends on g�r� but
not on r
 Such work was previously reported in ���� �� �� �� where this transformation is achieved by the
generalization phase of the normalization algorithm


As an example� we will improve length�append�x� y��� where

length�x� � redlist�����Zero� ��a� r��Succ�r��x

append�x� y� � redlist�fn� fc�x where

�
fn � ����y
fc � ��a� r��Cons�a� r�

We need to �nd some redlist��n� �c�x � length�append�x� y��
 We apply the list promotion theorem with
g � length and redlist�fn� fc�x � append�x� y��

�� �n�� � g�fn��� � length�fn��� � length�y�

�� �c�a� length�r�� � g�fc�a� r�� � length�fc�a� r��
� length�Cons�a� r��
� Succ�length�r�� by the length de�nition

� �c�a� u� � Succ�u� where length�r� was generalized to u

�



Therefore� length�append�x� y�� is transformed into�

redlist�����length�y�� ��a� u��Cons�a� u��x

Note that length�append�x� y�� generates an intermediate data structure �a list�� since append�x� y� con�
structs a list which is consumed by length
 This data structure is not produced when this composition is
normalized into the reduction above


Even though the reduction scheme that inducts over one value �henceforth called a unary reduction� is
very powerful� there are still some important functions that cannot be captured by this mechanism
 One
class are binary functions such as structural equality
 For example� the structural equality over lists is de�ned
as follows�

listeq�Nil�Nil� � True
listeq�Nil�Cons�b� s�� � False
listeq�Cons�a� l��Nil� � False
listeq�Cons�a� l��Cons�b� s�� � �a � b� � listeq�l� s�

Function listeq cannot be expressed as a unary reduction since it needs to walk through the two input
lists simultaneously
 Instead we need a new recursion scheme F � redlist�list�fnn� fnc� fcn� fcc� de�ned as
follows��

F �Nil�Nil� � fnn���� ���
F �Nil�Cons�b� s�� � fnc���� �b� s��
F �Cons�a� l��Nil� � fcn��a� l�� ���
F �Cons�a� l��Cons�b� s�� � fcc�a� �b� F �l� s���

In that case we have�

listeq�x� y� � redlist�list������ ����True� ����� �b� s���False� ���a� l�� ����False�
��a� �b� r����a � b� � r� �x� y�

We call redlist�list a binary reduction because it inducts over two data structures simultaneously

This paper extends the theory of unary reductions to capture all reduction schemes that induct over

any number of data structures� which need not necessarily be of the same type
 We will present and prove
a very general promotion theorem that captures all types of compositions between these general reduction
schemes
 We will use this theorem as the basis of a very e�ective and e�cient normalization algorithm that
improves any safe program in our term language
 This algorithm eliminates intermediate data structures�
which might be generated when reductions are nested� passing intermediate results from one to another


This paper is organized as follows
 Section � reviews the de�nition of the unary reduction operator for
any inductively de�ned data type
 These combinators are then generalized in such a way that they can be
used for de�ning reductions that induct over multiple data types
 Section 
 presents two instances of the
promotion theorem� one is for promoting a unary function and the other for promoting a binary function

The promotion theorem in its most general form is presented in the Appendix
 Section 	 presents the
normalization algorithm


� Reductions

The type de�nitions considered in this paper are the inductive types de�ned by using recursive equations of
the form�

T ���� � � � � �p� � C� of t� j � � � j Cn of tn

where ��� � � � � �p denote type variables �abbreviated by the vector ��� the Ci are names of value constructor
functions� and each type ti is an inductive subcomponent of type T ���
 An inductive subcomponent of a
type T ��� has one of the following forms�

�i a type variable in the set ��� � � � � �p
T ��� the recursive reference to T ���
t� � t� a pair of two inductive subcomponents of T ���
S�t�� � � � � tq� where S is a previously de�ned inductive type constructor

and each ti is an inductive subcomponent of T ���

�The unintuitive �shape� of the domain of the accumulating functions will be explain later







For example� the following are inductive type de�nitions�

boolean � False j True
list��� � Nil j Cons of �� list���

tree��� �� � Tip of � j Node of � � tree��� �� � tree��� ��
bush��� � Leaf of � j Branch of list�bush����

De�nition � �The Functor E� For each value constructor C of type t�T ��� we associate a functor ET
c �

such that ET
c �f� � K�T ���� t��f�� The combinator K is de�ned by the following inductive equations�

K�T ���� �i��f� � id
K�T ���� T �����f� � f

K�T ���� t� � t���f� � K�T ���� t���f� � K�T ���� t���f�
K�T ���� S�t�� � � � � tq���f� � mapS�K�T ���� t���f�� � � � �K�T ���� tq��f��

where id is the identity function� the product of two functions g and h is de�ned by �g�h��x� y� � �g x� h y��
and mapS is a map over the inductive type S���� � � � � �q�� that is� it maps the parametric type S���� � � � � �q�
into the type S���� � � � � �q��

It is easy to prove that ET
c �id� � id and ET

c �f � g� � ET
c �f� � E

T
c �g�� where � is function composition �i
e


�f � g�x � f�g�x���
 That is� ET
c is a functor


For example�
ENil�f� � id � ������
ECons�f� � id� f � ��a� s���a� f�s��
ENode�f� � id� f � f � ��i� l� r���i� f�l�� f�r��
EBranch�f� � maplist�f� � ��l��maplist�f� l

De�nition � �Unary Reduction� The unary reduction operator over the type T is redT �f � and it is
de�ned by the following set of recursive equations� one for each value constructor C of T �

redT �f � �C � fc �ET
c �red

T �f ��

where variable f is the vector of all accumulating functions fc for each value constructor C of T �

For example� the tree reduction operator is de�ned as�

redtree�ft� fn� �Tip�a�� � ft�a�
redtree�ft� fn� �Node�b� l� r�� � fn�b� red

tree�ft� fn� l� red
tree�ft� fn� r�

The bush reduction operator is de�ned as�

redbush�fl� fb� �Leaf�a�� � fl�a�

redbush�fl� fb� �Branch�l�� � fb�maplist�redbush�fl� fb�� l�

The following are some examples of computations that use unary reduction operators�

append�x� y� � redlist�����y� ��a� r��Cons�a� r��x

length�x� � redlist�����Zero� ��a� r��Succ�r��x

reverse�x� � redlist�����Nil� ��a� r��append�r�Cons�a�Nil���x
x� y � rednat�����y� ��r��Succ�r��x

ifx then y else z � redboolean�����z� ����y�x
sum tree�x� � redtree���a��a� ��b�m� n��b�m � n�x

re�ect bush�x� � redbush���a��Leaf�a�� ��r��Branch�reverse�r���x

In order to generalize reduction to capture recursion schemas that traverse more than one data structure
simultaneously� we need to generalize the functor E


De�nition � �Generalized Product Type� A generalized product type � is either an inductive type T

or a pair �� � ��� where �� and �� are generalized product types�

	



We use the symbol T for inductive types and � for generalized product types


De�nition � �Generalized Constructor� The set of generalized constructors GC�� � of a generalized prod�
uct type � is de�ned inductively using list comprehensions�

GC�T � � �C j C is a value constructor of the inductive type T �
GC��� � ��� � � c� � c� j c� � GC����� c� � GC���� �

We will use the symbols C� C�� or C� for value constructors and the symbols c� c�� or c� for generalized
constructors


For example� the generalized constructors for � ��� � list����nat are� Nil�Zero� Nil�Succ� Cons�Zero�
and Cons� Succ
 The generalized constructors for � ��� � boolean� �list���� nat� are False� �Nil�Zero��
False� �Nil� Succ�� False� �Cons� Zero�� False� �Cons� Succ�� True� �Nil� Zero�� True� �Nil� Succ��
True � �Cons � Zero�� and True � �Cons � Succ�


De�nition 	 �Inductive Constructor� A generalized constructor c 	 GC�� � is inductive �denoted as
inductive�c�� if either c is the value constructor C of type t� T and type t �the domain of C� contains a
reference to T � or c � c� � c� and both c� and c� are inductive constructors�

That is� a generalized constructor c of � is not inductive if the domain of any of its constituent value
constructors C � t� T has no recursive reference to type T 
 For example� Cons � Succ is inductive while
Cons� Zero is not


The following combinators are de�ned in terms of the E functor and they are� in a way� generalizations
of E�

De�nition 
 �The Functor D�

D�
c �f� � id if 
inductive�c�

DT
c �f� � ET

c �f�
D�����
c��c� �f� � D��

c� �D
��
c� �f��

�
if inductive�c�

Note that D is a functor since it is a composition of functors


De�nition � �The Combinator E�

E�c �f� � id if 
inductive�c�

ETc �f� � ET
c �f�

E�����c��c� �f� � ��x� y��E��c� ��z�E
��
c� ��w�f�z� w�� y�x

�
if inductive�c�

For example�

DNil�Tip�f� � id � ����� i������ i�
ENil�Tip�f� � id � ����� i������ i�
DCons�Tip�f� � id � ���a� s�� i����a� s�� i�
ECons�Tip�f� � id � ���a� s�� i����a� s�� i�

DCons�Cons�f� � ��x� �y� r����x� �y� f�r���
ECons�Cons�f� � ���x� xs�� �y� ys����x� �y� f�xs� ys���
DCons�Succ�f� � ��x� r���x� f�r��
ECons�Succ�f� � ���x� xs�� n���x� f�xs� n��

DCons�Node�f� � ��a� �i� r�� r�����a� �i� f�r��� f�r����
ECons�Node�f� � ���a� s�� �i� l� r����a� �i� f�s� l�� f�s� r���
DNode�Node�f� � ��i� �j� r�� r��� �k� r�� r�����i� �j� f�r��� f�r���� �k� f�r��� f�r����
ENode�Node�f� � ���i� l� r�� �j�m� n����i� �j� f�l�m�� f�l� n��� �j� f�r�m�� f�r� n���

De�nition � �The CombinatorM�

M�
c �f� � id if 
inductive�c�

M�����
c��c� �f� � ��x� y��D��

c� ��z�D
��
c� ��w�f�z� w�� y�x if inductive�c�

�



Note that if �� and �� are the simple inductive types T� and T� respectively� then MT��T�
c��c�

�f� � ET��T�c��c�
�f�


Properties


D�
c �id� � id ���

D�
c �f � g� � D�

c �f� � D
�
c �g� ���

E�c �f � g� � D�
c �f� � E

�
c �g� �
�

E�����c��c�
�g � �f � h�� � M�����

c��c�
�g� � �E��c� �f� � E

��
c� �h�� �	�

Proof� Properties � and � are true because D is a functor �since it is a composition of functors�
 Property 

is true for a non�inductive c and for � � T 
 We assume that it is true for � � �� and � � �� �induction
hypothesis�
 Then for � � �� � �� and c � c� � c� we have�

D�
c �f� � E

�
c �g� � D�����

c��c� �f� � E
�����
c��c� �g�

� D��
c� �D

��
c� �f�� � ���x� y��E

��
c� ��z�E

��
c� ��w�g�z� w�� y�x� by De�nitions � and �

� ��x� y��D��
c�
�D��

c�
�f���E��c� ��z�E

��
c�
��w�g�z� w�� y�x�

� ��x� y��E��c� ��D
��
c�
�f� � ��z�E��c� ��w�g�z� w�� y��x� induction hypothesis

� ��x� y��E��c� ��z�D
��
c� �f��E

��
c� ��w�g�z� w�� y�x�

� ��x� y��E��c� ��z�E
��
c� ��f � ��w�g�z� w��� y�x� induction hypothesis

� ��x� y��E��c� ��z�E
��
c� ��w�f�g�z� w��� y�x

� E�����c��c� �f � g� by De�nition �
� E�c �f � g�

Property 	 can be proved as follows�

M�����
c��c� �g� � �E

��
c� �f� � E

��
c� �h��

� ���x� y��D��
c� ��z�D

��
c� ��w�g�z� w�� y�x� � �E

��
c� �f� � E

��
c� �h�� by De�nition �

� ��x� y��D��
c�
��z�D��

c�
��w�g�z� w�� �E��c� �h� y�� �E

��
c�
�f�x� by beta reduction

� ��x� y��D��
c� ��z�E

��
c� ��w�g�z� hw�� y� �E

��
c� �f�x� by Property 


� ��x� y��E��c� ��z�E
��
c� ��w�g�f z� hw�� y�x by Property 


� E�����c��c�
�g � �f � h�� by De�nition � �

We are now ready to de�ne the generalized reduction scheme�

De�nition � �Reduction�

�c 	 GC�� � � red� �f � � c � fc � E
�
c �red

� �f ��

For example� the following is the de�nition of the binary reduction�

redT��T��f � � �C� � C�� � fc��c� � E
T��T�
c��c�

�redT��T��f ��

where C� and C� are value constructors of T� and T�� respectively

For example� the binary reduction operator F � redlist�list�fnn� fnc� fcn� fcc� is de�ned as�

F �Nil�Nil� � fnn���� ���
F �Nil�Cons�b� s�� � fnc���� �b� s��
F �Cons�a� l��Nil� � fcn��a� l�� ���
F �Cons�a� l��Cons�b� s�� � fcc�a� �b� F �l� s���

The following are examples of binary reductions�

nateq�x� y� � rednat�nat������ ����True� ����� j��False� ��i� ����False� ��r��r� �x� y�

listeq�x� y� � redlist�list������ ����True� ����� �b� s���False� ���a� l�� ����False� ��a� �b� r���r� �a � b�� �x� y�

zip�x� y� � redlist�list������ ����Nil� ����� �b� s���Nil� ���a� l�� ����Nil� ��a� �b� r���Cons��a� b�� r�� �x� y�

�rstn�n� x� � rednat�list������ ����Nil� ����� �a� l���Nil� ��i� ����Nil� ��a� r��Cons�a� r�� �n� x�

nth�d��x� n� � redlist�nat������ ����d� ����� i��d� ���a� l�� ����a� ��a� r��r� �x� n�
x ��y � rednat�nat������ ����Zero� ����� j��Zero� ��i� ����Succ�i�� ��r��r� �x� y�

�



� Promotion Theorems

The general law which applies to all reductions is called the general promotion theorem
 In this section we
will present two special cases of the general promotion theorem� which are also the most common cases
 The
promotion theorem is presented and proved in its general form in the appendix
 These are the unary and
the binary promotion theorems �a unary function composed with one generalized reduction and a binary
function composed with two generalized reductions�


The �rst promotion theorem is for the case of composing a unary function g with any n�ary reduction


Theorem � �Unary Promotion Theorem�

�c 	 GC�� � � �c � D
�
c �g� � g � fc

g � red� �f � � red� ���

Proof� Let 	 � g � red� �f � and c 	 GC�� �
 Then

	 � c � g � red� �f � � c
� g � fc � E�c �red

� �f �� by De�nition �
� �c � D�

c �g� � E
�
c �red

� �f �� by premise
� �c � E�c �g � red

� �f �� by Property 

� �c � E�c �	�

Thus� by De�nition �� 	 is equal to red� ���
 �

If � is the simple inductive type T � then the unary promotion theorem is identical to the simple promotion
theorem for simple reductions� as it is described in ����


For example� the unary promotion theorem for the simple type T � bush��� is�

�l�a� � g�fl�a��
�b�maplist�g� s� � g�fb�s��

g�redbush�fl� fb�x� � redbush��l� �b�x

And the unary promotion theorem for the generalized type � � list���� list��� is�

�nn���� ��� � g�fnn���� ����
�nc���� �b� s�� � g�fnc���� �b� s���
�cn��a� l�� ��� � g�fcn��a� l�� ����
�cc�a� �b� g�r��� � g�fcc�a� �b� r���

g�redlist�list�fnn� fnc� fcn� fcc� �x� y�� � redlist�list��nn� �nc� �cn� �cc� �x� y�

The second promotion theorem is for the case of composing a binary function g with any two n�ary
reductions


Theorem � �Binary Promotion Theorem�

�c� 	 GC����� �c� 	 GC���� � �c��c� �M
�����
c��c�

�g� � g � �fc� � hc��

g � �red���f �� red���h�� � red����� ���

Proof� Let F � red���f �� H � red�� �h�� 	 � g � �F �H�� and c� and c� are generalized constructors in GC����
and GC����
 Then

	 � �c� � c�� � g � �F �H� � �c� � c��
� g � ��F � c��� �H � c���
� g � ��fc� � E

��
c� �F �� � �hc� � E

��
c� �H��� by De�nition �

� g � �fc� � hc�� � �E
��
c� �F �� E

��
c� �H��

� �c��c� �M
�����
c��c� �g� � �E

��
c� �F �� E

��
c� �H�� by premise

� �c��c� � E
�����
c��c�

�g � �F �H�� by Property 	
� �c��c� � E

�����
c��c� �	�

�



N ��INV�g��� � raise inverse illegal use of inverse
N ��v�� � v variable
N ��c�� � c construction
N ���t�� t���� � �N ��t����N ��t���� pair
N ���x�e�� � �x�N ��e�� abstraction
N ��red� �f�� � � � � fn��� � red� �N ��f���� � � � �N ��fn��� reduction
N ��red� �f � �c t��� � N ��fc�E�c �red

� �f �� t��� combinator reduction

N ��g�red� �f � t��� �

����
���

red� ��� �N ��t���
where �c 	 GC�� � �
�c � �x�N ��g�fc�D�

c �INV�g��x����
handle inverse � N ��g���N ��red� �f � t���

unary promotion

N ��g�red�� �f � t�� red
���h� t���� �

������
�����

red���������N ��t����N ��t����
where �c� 	 GC����� �c� 	 GC���� � binary promotion
�c��c� � ��E�����c��c� ����x�� x����

N ��g�fc��E
��
c� �INV�g��x��� hc��E

��
c� �INV�g��x�����

handle inverse � N ��g���N ��red�� �f � t����N ��red�� �h� t����

N ��g�INV�g�x��� � x unary elimination
N ��g�INV�g�x�� INV�g�x���� � ��x�� x�� 
 x� x� binary elimination
N ����v�e� t�� � N ��beta�v� e� t��� � reduction
N ��f e�� � N ��f ���N ��e��� application

Figure �� The Normalization Algorithm

Thus� by De�nition �� 	 is equal to red��������
 �

For example� for T� � list��� and T� � nat the binary promotion theorem is�

�nz���� ��� � g�fn��� hz���
�ns���� s� � g�fn��� hs�s��
�cz��a� r�� ��� � g�fc�a� r�� hz���
�cs�a� g�r� s�� � g�fc�a� r�� hs�s��

g�redlist�fn� fc� x� red
nat�hz� hs� y� � redlist�nat��nz� �ns� �cz� �cs� �x� y�

� The Normalization Algorithm

In this section we present our program optimization algorithm
 It uses the unary and binary promotion
theorems e�ectively to perform loop fusion
 This algorithm� called the normalization algorithm� is presented
in Figure �
 Term INV�g� denotes a special intermediate term that should not appear in the normalized
term
 To enforce this property� the �rst rule raises an exception if the normalization algorithm encounters
such a term
 Normally� INV�g� is cancelled by g in the elimination phases and no exception is raised
 If an
exception is raised� then it is caught by the undergoing promotion phases and no loop fusion is performed

Otherwise� the promotion theorem is used to fuse the two nested reductions into one
 Note that the binary
promotion phase constructs the lambda variables of the new accumulating function by using variable name
concatenation ��x�� x�� � x� x�
 Variables x in the unary promotion and x� and x� in the binary promotion
phase are new variable names


For example� the following is an instance of the unary promotion phase of the normalization algorithm�

N ��g�redlist�fn� fc�x��� � redlist��n� �c� �N ��x���

�



where
�n � ����N ��g�fn�����
�c � ��a� s��N ��g�fc�a� INV�g� s����

The following is an instance of the binary promotion phase of the normalization algorithm�

N ��g�redlist�fn� fc� x� red
nat�hz � hs� y��� � redlist�nat��nz� �ns� �cz� �cs� �N ��x���N ��y���

where
�nz � ����� ����N ��g�fn��� hz�����
�ns � ����� s��N ��g�fn��� hs�s����
�cz � ���a� r�� ����N ��g�fc�a� r�� hz�����
�cs � ��a� r s��N ��g�fc�a� INV�g� r�� hs�INV�g� s����

It is not easy to prove the correctness of the normalization algorithm
 In general� we need to de�ne
formally the meaning function that maps terms into values and prove that the normalization algorithm
always preserves meaning
 The only mechanisms we have to prove this are the promotion theorems
 We will
not present the detailed proof here
 Instead we will present a sketch of the proof
 The detailed correctness
proof for the normalization algorithm which includes only the simple promotion theorem can be found
elsewhere ����


Theorem � �Correctness of the Normalization Algorithm� The normalization algorithm always pre�
serves the meaning of a term�

Proof sketch� All the transformation rules of the normalization algorithm can be easily proved to preserve
the meaning of a term� except for the two promotion laws
 We consider the unary promotion phase �rst

There are two cases for the computation of the new accumulating functions �c� if any of the computations
N ��g�fc�D�

c �INV�g��x���� raises the inverse exception during the normalization process� then there will be
no fusion performed
 Otherwise� g is fused with INV�g� during the normalization process
 To see why
N ��g�fc�D

�
c �INV�g��x���� computes �c we use the unary promotion theorem�

�c 	 GC�� � � �c � D
�
c �g� � g � fc

� �c � D
�
c �g� � E

�
c �INV�g�� � g � fc � E

�
c �INV�g��

� �c � E�c �g � INV�g�� � g � fc � E�c �INV�g�� by Property �	�
� �c � g � fc � E�c �INV�g�� by unary elimination

where g � INV�g� was cancelled out in the unary elimination phase
 In order to prove that the binary
promotion phase of the normalization algorithm is correct� we use the binary promotion theorem
 Let
c� 	 GC���� and c� 	 GC����
 Then from the binary promotion theorem we have�

�c��c� �M
�����
c��c� �g� � g � �fc� � hc� �

� �c��c� �M
�����
c��c� �g� � �E

��
c� �INV�g�� � E

��
c� �INV�g��� � g � �fc� � hc�� � �E

��
c� �INV�g�� � E

��
c� �INV�g���

� �c��c� � E
�����
c��c�

�g � �INV�g� � INV�g��� � g � �fc� � hc�� � �E
��
c�
�INV�g�� � E��c� �INV�g���

� �c��c� � E
�����
c��c� ��� � g � �fc� � hc�� � �E

��
c� �INV�g�� � E

��
c� �INV�g��� �

��� Example of a Normalization by Unary Promotion

We will improve length�zip�x� y��� where�

length�x� � redlist�����Zero� ��a� r��Succ�r��x

zip�x� y� � redlist�list�fnn� fnc� fcn� fcc� �x� y� where

����
���

fnn � ����� ����Nil �u��
fnc � ����� �b� s���Nil �u��
fcn � ���a� l�� ����Nil �u
�
fcc � ��a� �b� r���Cons��a� b�� r� �u	�

From the unary promotion phase of the normalization algorithm�

N ��length�redlist�list�fnn� fnc� fcn� fcc� �x� y���� � redlist�list��nn� �nc� �cn� �cc� �x� y�

�



where�

�� �nn � ����length�fnn��� � ����length�Nil� � ����Zero

�� �nc � ����� �b� s���length�fnc���� �b� s��� � ����� �b� s���length�Nil� � ����� �b� s���Zero


� �cn � ���a� l�� ����length�fnn��a� l�� ���� � ���a� l�� ����length�Nil� � ���a� l�� ����Zero

	� �cc � ��a� �b� r���length�fcc�a� �b� INV�length��r����
� ��a� �b� r���length�Cons��a� b�� INV�length��r��� �by �u
��
� ��a� �b� r���Succ�length�INV�length��r��� �by combinator reduction�
� ��a� �b� r���Succ�r� �by unary elimination�

Therefore�

N ��length�zip�x� y���� � redlist�list�����Zero� ����� �b� s���Zero� ���a� l�� ����Zero� ��a� �b� r���Succ�r���x� y�

��� Example of a Normalization by Binary Promotion

We will normalize zip�map�f��x��map�g��y��� which is a binary reduction applied to two unary reductions�
where�

map�f��x� � redlist�����Nil� ��a� r��Cons�f a� r��x

The binary promotion part of the normalization algorithm applied to this case is�

N ��zip�redlist�����Nil� ��a� r��Cons�f a� r��x� redlist�����Nil� ��b� s��Cons�g b� s�� y���

� redlist�list��nn� �nc� �cn� �cc� �x� y�

From the binary promotion phase of the normalization algorithm we have�

�� �nn � ����� ����zip�Nil�Nil� � ����� ����Nil

�� �nc � ����� �b� s���zip�Nil�Cons�g b� s�� � ����� �b� s���Nil


� �cn � ���a� r�� ����zip�Cons�f a� r��Nil� � ���a� r�� ����Nil

	� �cc � ��a� �b� r s���zip�Cons�f a� INV�zip� r��Cons�g b� INV�zip� s��
� ��a� �b� r s���Cons��f a� g b�� zip�INV�zip� r� INV�zip� s��
� ��a� �b� r s���Cons��f a� g b�� r s�

Therefore� zip�map�f��x��map�g��y�� is normalized to

redlist�list������ ����Nil� ����� �b� s���Nil� ���a� r�� ����Nil� ��a� �b� r s���Cons��f a� g b�� r s���x� y�

� Related Work

To our knowledge no other work deals with generic recursion schemes over multiple structures
 For simple
inductions our work is closely related to Wadler�s work on listlessness and deforestation ���� �� ��� and to
Chin�s work on fusion ���
 Deforestation works on all �rst order treeless terms
 A treeless term is one which
is exactly analogous to a safe term� but is described in a much di�erent manner due to the lack of structure
imposed on such terms
 Chin generalizes Wadler�s techniques to all �rst order programs� not just treeless
ones� by recognizing and skipping over terms to which his techniques do not apply
 His work also applies
to higher order programs in general
 This is accomplished by a higher order removal phase� which �rst
removes some higher order functions from a program
 Those not removed are recognizable and are simply
skipped over in the improvement phase
 The application domain of our fusion algorithm is more restricted
than the domain of all these methods� but our algorithm is more e�ective since it is fully automated
 In ���
a new� simple� but very e�ective� automatic technique is presented for implementing deforestation in a
compiler
 This method requires that each list�producing functions is expressed as a build call and each
list�consuming functions is expressed as a foldr call
 The foldr operator is similar to our list reduction while

��



the build operator is a dual�like function of foldr �this technique is an automation of the HyloSplit theorem
of Meijer et al
 ��	��
 The technique simply fuses adjacent foldr�build pairs by eliminating them completely
��foldr f� � �buildg� � g � f�
 We believe that this method could be more e�ective if folds are promoted
downwards or builds are promoted upwards in a term until they fuse
 This can be achieved e�ectively by
applying promotion theorems


Our stereotyped recursion schemes as well as the promotion theorems are highly in�uenced by the
Squiggol school of program construction ��
� �	� ��� ��
 Their goal is to construct a calculus of programs
based on some well�behaved recursion schemes� in which their inductive laws� proved once and for all in their
generic form� can be instantiated and used for calculating program transformation as well as for proving
properties about programs without the need for discovering new laws or using explicit induction
 The
promotion theorems are examples of a large class of theorems that come for free
 We believe that our
notation� which is based on calculus of construction� is more intuitive to functional programmers than their
formalism �also called the Bird�Meertens Formalism�� which is based on category theory
 Even though their
work is more general than ours� we provide a fully automated system that use the promotion laws e�ectively


� Conclusion

The functional programming style has been criticized because of its waste of resources caused by the building
of intermediate data structures� unused closures� and garbage collection
 We believe that this is not caused
by the functional style per se� but by the use of unrestricted recursion which makes it di�cult to validate
the application of well known optimizations in unstructured programs


Recent language proposals to program with the explicit structure of generic recursion schemes are an
attempt to circumnavigate these problems
 This paper provides a �rst step towards automatic optimization
and compilation for such languages
 To our knowledge the algorithm presented here is the �rst algorithm �not
based upon a �xed set of patterns and datatypes� that automatically performs fusion without a memoization
phase� and which deals with multiple inductions


References

��� R
 Bird and O
 de Moor
 Solving Optimisation Problems with Catamorphisms
 In Mathematics of
Program Construction� pp 	����
 Springer�Verlag� June ����
 LNCS ���


��� W
 Chin
 Safe Fusion of Functional Expressions
 Proceedings of the ACM Symposium on Lisp and
Functional Programming� San Francisco� California� pp ������ June ����


�
� R
 Cockett and T
 Fukushima
 About Charity
 Technical report� Department of Computer Science� the
University of Calgary� Alberta� Canada� June ����
 Research Report No
 ���	�����


�	� J
 Darlington and R
 Burstall
 A System which Automatically Improves Programs
 Acta Informatica�
�����	����� ����


��� L
 Fegaras
 E�cient Optimization of Iterative Queries
 In Fourth International Workshop on Database
Programming Languages� Manhattan� New York City� August ���

 To appear


��� L
 Fegaras
 A Transformational Approach to Database System Implementation
 PhD thesis� Department
of Computer Science� University of Massachusetts� Amherst� February ���

 Also appeared as CMPSCI
Technical Report �����


��� L
 Fegaras� T
 Sheard� and D
 Stemple
 Uniform Traversal Combinators� De�nition� Use and Properties

In Proceedings of the ��th International Conference on Automated Deduction �CADE����� Saratoga
Springs� New York� pp �	�����
 Springer�Verlag� June ����
 LNCS ���


��� A
 Ferguson and P
 Wadler
 When will Deforestation Stop
 In Proceedings of ��

 Glasgow Workshop
on Functional Programming� Rothesay� Isle of Bute� pp 
����� August ����
 Also as research report
���R	 of Glasgow University


��



��� A
 Gill� J
 Launchbury� and S
 Peyton Jones
 A Short Cut to Deforestation
 Sixth Conference on
Functional Programming Languages and Computer Architecture� Copenhagen� Denmark� pp ��
��
��
June ���



���� T
 Hagino
 A Categorical Programming Language
 PhD thesis� University of Edinburgh� ����


���� R
 Kieburtz and J
 Lewis
 Algebraic Design Language �Preliminary De�nition�
 Technical Report
��	����� Oregon Graduate Institute� ���	


���� G
 Malcolm
 Data Structures and Program Transformation
 Science of Computer Programming� �	�����
���� ����


��
� G
 Malcolm
 Homomorphisms and Promotability
 InMathematics of Program Construction� pp 

��
	�

Springer�Verlag� June ����
 LNCS 
��


��	� E
 Meijer� M
 Fokkinga� and R
 Paterson
 Functional Programming with Bananas� Lenses� Envelopes
and Barbed Wire
 In Proceedings of the �th ACM Conference on Functional Programming Languages
and Computer Architecture� Cambridge� Massachusetts� pp ��	��		� August ����
 LNCS ��



���� T
 Sheard and L
 Fegaras
 A Fold for All Seasons
 Sixth Conference on Functional Programming
Languages and Computer Architecture� Copenhagen� Denmark� pp �

��	�� June ���



���� T
 Sheard and L
 Fegaras
 Optimizing Algebraic Programs
 Oregon Graduate Institute�
Technical report ��	���	 Submitted to PEPM��	
 A version of this paper is ftp�able from
cse�ogi�edu��pub�pacsoft�papers�OptAlgProg�ps


���� P
 Wadler
 Listlessness is Better than Laziness� Lazy Evaluation and Garbage Collection at Compile�
time
 In Proceedings of the ACM Symposium on Lisp and Functional Programming� Austin� Texas�
August ���	


���� P
 Wadler
 Deforestation� Transforming Programs to Eliminate Trees
 Proceedings of the �nd European
Symposium on Programming� Nancy� France� pp 
		�
��� March ����
 LNCS 
��


A The General Promotion Theorem

In this appendix we generalize the promotion theorem to capture any combination of n�ary reductions
 In

order to do that� we generalize the combinators E�c and M�
c as E

��� �

c and M
��� �

c �

E��Tc �f� � E�c �f�

E
�������

�

�
�� �

�

c��c� �f� � f�� � E
����

�

�

c� �f��� E
����

�

�

c� �f��

M
��T
c �f� � D�

c �f�

M
�������

�

�
�� �

�

c��c� �f� � ��x� y��M
����

�

�

c� ��z�M
����

�

�

c� ��w�f�z� w�� y�x

De�nition �� �General Reduction� A function f of type � � � � is a general reduction �denoted as
G��� �

� if it is derived from the following rules�

idT 	 GT�T where idT is the identity for type T
red� �f � 	 G��T if red� �f � is of type � � T

f� � f� 	 G
���������� �

�
�� �

�
� if f� 	 G���� �

� and f� 	 G���� �

�

For example� length� idnat is a general reduction from G�list�nat���nat�nat�
 We will present a promotion
theorem for any composition g � f � where g � � � � � and f 	 G��� �




Lemma � For any f 	 G��� �

� g � � � � �� and c 	 GC�� ��

E�c �g � f� � M
��� �

c �g� � E
��� �

c �f�

��



Proof� If � � � T and f � id or f � red� �f � we have E�c �g � f� � D�
c �g� � E

�
c �f�� which is true because of

Property 

 We assume the theorem is true for �� and ��
 For �f� � f�� 	 G���������� �

�
�� �

�
� and c � c� � c�

we have�

E�����c��c�
�g � �f� � f��� � ��x� y��E��c� ��z�E

��
c�
��w�g�f��z�� f��w��� y�x

� ��x� y��M
����

�

�

c� ��z�M
����

�

�

c� ��w�g�z� w�� �E
����

�

�

c� �f�� y�� �E
����

�

�

c� �f��x�

� ���x� y��M
����

�

�

c� ��z�M
����

�

�

c� ��w�g�z� w�� y�x� � �E
����

�

�

c� �f�� � E
����

�

�

c� �f���

� M
�������

�

�
�� �

�

c��c� �g� � E
�������

�

�
�� �

�

c��c� �f� � f�� �

The combinator Ic� for f 	 G
��� �

and c 	 GC�� �� is de�ned as follows�

Ic�id
T � � c

Ic�red
� �f �� � fc

Ic��c��f� � f�� � Ic��f��� Ic��f��

Note that the �rst equation may be derived from the second� since for any inductive type T we have
id � redT �f �� where fc � c for any value constructor c of T 


Lemma � For any f 	 G��� �

and c 	 GC�� ��

f � c � Ic�f� � E
��� �

c �f�

Proof� If � � � � � T and f � id then Ic�f� � E
��� �

c �f� � c �ET
c �f� � c � f � c
 For � � � T and f � red� �f �

we have Ic�f� � fc
 Then f � c � fc � E
�
c �f�� which is the de�nition of reduction
 We assume the theorem

is true for �� and ��
 For f � �f� � f�� 	 G
���������� �

�
�� �

�
� and c � c� � c� we have�

f � c � �f� � f�� � �c� � c��
� �f� � c��� �f� � c��

� �Ic��f�� � E
����

�

�

c� �f���� �Ic��f�� � E
����

�

�

c� �f���

� �Ic��f��� Ic��f��� � �E
����

�

�

c� �f��� E
����

�

�

c� �f���

� Ic�f� � E
��� �

c �f� �

Theorem � �General Promotion Theorem� Let f 	 G��� �

and g � � � � �� Then

�c 	 GC�� � � �c �M
��� �

c �g� � g � Ic�f�

g � f � red� ���

Proof� We will use Lemmas � and �
 Let 	 � g � f and c 	 GC�� �
 Then

	 � c � g � f � c

� g � Ic�f� � E
��� �

c �f� by Lemma �

� �c �M
��� �

c �g� � E
��� �

c �f� by premise
� �c � E

�
c �g � f� by Lemma �

� �c � E�c �	�

Thus� 	 is the reduction red� ���
 �
The following two rules extend the normalization algorithm� presented in Figure �� with a general

promotion phase
 Therefore� the unary and the binary promotion phases as well as the unary and binary
elimination phases of this algorithm can be replaced by the following rules�

N ��g�f�t���� �

����
���

red� ��� �N ��t���

where f 	 G��� �

� g � � � � �� and �c 	 GC�� � �
�c � ��E�c ���x��N ��g�Ic�f��EI

�
c �g�x����

handle inverse � N ��g���N ��f�t����

general promotion

N ��g�EI�c �g�x��� � ��x� general elimination

�




where EI�c �g� creates multiple copies of the function INV�g� into a product that has the same shape as c�

EI�c �g� � E�c �INV�g��
EI�����c��c�

�g� � EI��c��c��g� � EI
��
c��c�

�g�

For example� we will normalize nth�d��append�x� y�� n�� where�

nth�d��x� n� � redlist�nat������ ����d� ����� i��d� ���a� l�� ����a� ��a� r��r� �x� n�

We have f 	 G�list�nat���list�nat� and f � redlist�����y� ��a� r��Cons�a� r��� idnat

The general promotion part of the normalization algorithm applied to this case is�

N ��nth�d��redlist�����y� ��a� r��Cons�a� r��x� idnat�n���� � redlist�nat��nz� �ns� �cz� �cs� �x� n�

where
�� �nz � ����� ����nth�d��y�Zero�

�� �ns � ����� i��nth�d��y� Succ�i��


� �cz � ���a� r�� ����nth�d��Cons�a� r��Zero� � ���a� r�� ����a

	� �cs � ��a� r i��nth�d��Cons�a� INV�nth� r�� Succ�INV�nth� i��
� ��a� r i��nth�d��INV�nth� r� INV�nth� i� � ��a� r i��r i

�	


