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Natural resource managers make decisions that affect numerous organizations, 

individuals, and the environment.  Such decisions are based on a broad range of 

information gleaned from a variety of reports such as Decision Notices, Environmental 

Analyses, and Environmental Impact Statements � as well as various specialist reports 

that provide detailed scientific findings and evaluation.  Many of these documents are 

authored by a multi-disciplinary team of experts who routinely use a wide range of 

terminology.  The documents often contain diverse content including text, maps, 

scientific data, and images.  This conglomeration of terminology and heterogeneous 

documents presents an interesting information retrieval challenge. 

Our primary objective is to design, construct, and evaluate a domain-specific 

digital library, called Metadata++, with a focus on natural resource managers.  The digital 

library emphasizes specialized terminology, including terms from a large number of well-

established, well-known classification schemes and terminologies used by multi-

disciplinary experts such as soil scientists, fish biologists, wildlife biologists, fire 

specialists, and hydrologists.  These specialists frequently use the same terms with often 

subtle (and occasionally significant) differences in meaning.  This dissertation presents a 

path-based thesaurus model that supports polyhierarchies, by distinguishing multiple 

occurrences of a term using the full path in the hierarchy, as well as the typical thesaurus 
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relationships of synonymy and association.   Instead of designating a single preferred 

term for each concept, multiple terms with the same path (that are used interchangeably) 

can be listed together, separated by commas.  All terms are path-based and provide the 

framework for the entire system � including browsing, indexing, interactive search 

expansion, and hierarchical search results.   

We describe a study that evaluates the Metadata++ library system and assesses 

how easily indexers and searchers understand the path-based representation of terms.  We 

describe multiple implementations and experiments that lead to a backend storage and 

retrieval mechanism optimized specifically for path-based metadata.  The user interface 

consists of a smart client application, combined with web services, that satisfies specific 

architectural design objectives.  We explain how Metadata++ integrates with a standard 

geographic information system to support both spatial and keyword-based information 

retrieval.  We conclude with a comparison to other thesaurus-based systems and a 

description of future work.  
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1 Introduction 

Suppose you are asked to decide whether or not to build a new campground next 

to a backcountry lake.  Or perhaps you must evaluate how a proposed timber harvest 

would affect the wildlife within a particular watershed.  These examples illustrate just a 

few of the many issues faced by natural resource managers as part of their daily 

responsibilities.  Natural resource management is fundamentally interdisciplinary, with 

almost every project involving disciplines such as soil, forestry, vegetation, climatology, 

hydrology, wildlife and fish biology, recreation, and range land.  In some areas, such as 

the Pacific Northwest of the United States, decisions often involve issues concerning 

cultural heritage, particularly for Native Americans.   

1.1 Why we need a Digital Library for Natural Resource Management 

Natural resource managers gather information necessary to make decisions about 

the environment from a wide spectrum of documents generated by various individuals for 

various purposes, including Watershed Assessments describing the health of a particular 

watershed, Environmental Impact Statements describing the short-term and long-term 

ramifications of a proposed action, and Decision Notices, including a complete account of 

the public appeal process.  Many of these documents focus on numerous topics about a 

particular location; an environmental impact statement is such a document, often 

hundreds of pages in length.  Other documents focus on a specific topic or issue � such as 

a wildlife survey for a particular location.  Such specialist reports are often referenced by 

the larger, multi-disciplinary documents.  The interdisciplinary collaboration typical in 

this domain is exemplified in a monitoring plan  [91] with ten different authors: four fish 

biologists, a supervisory biological scientist, a research aquatic biologist, a research 

forester, a biologist, an ecologist, and a hydrologist who are from five different agencies: 

National Marine Fisheries Service (United States Department of Commerce), Forest
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 Service (United States Department of Agriculture), Bureau of Land Management (United 

States Department of the Interior), Fish and Wildlife Service (USDI), the United States 

Geological Survey (USDI), and the United States Environmental Protection Agency.   

The conglomerate and heterogeneous nature of natural resource management 

produces a significant information management and retrieval challenge.  Each project or 

decision generates a variety of documents as mandated by law (including the National 

Environmental Policy Act).  Important information resides everywhere from bookshelves 

tucked away in an agency office, to a hard drive in someone�s workstation, to a simple 

website managed by just one of many organizations.  Such disparate information sources 

present a real problem for natural resource managers.  The challenge of finding relevant 

information affects a variety of information needs including such things as making 

important decisions with significant environmental impact, responding to Freedom of 

Information Act (FOIA) requests, or conducting scientific studies.  

One of the most popular �information retrieval� methods in natural resource 

management is to ask someone else who may have the information or know where to find 

it  [8].  Although common in other domains as well  [10], this word-of-mouth retrieval 

system does have drawbacks when it comes to scalability, predictability, scope, latency, 

and several other factors.  Our research focuses on building a digital library system in 

order to provide easy access to interdisciplinary information  [26] so users can more 

readily benefit from previous scientific findings and assessments.  We collaborated 

extensively with Region 6 of the USDA Forest Service as part of a National Science 

Foundation Digital Government project1.   

1.2 Why we need human indexing 

A long-standing debate in the field of digital libraries and information retrieval 

pits human indexing against machine indexing.  A common belief states that human 

indexing is high quality and expensive, whereas machine indexing is low quality and 

inexpensive.  Modern information retrieval techniques  [7] significantly increase the 

quality of machine indexing � while retaining the relatively low cost.  However, recent 

                                                 
1 This work is supported in part by the National Science Foundation, grant number EIA 9983518.  Any opinions, 

findings, conclusions, or recommendations expressed here are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation. 
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research suggests that both approaches are effective and have advantages  [5].  Many of 

the advantages of human indexing are particularly applicable in natural resource 

management. 

As is common with scientific data and reports  [74], natural resource management 

documents are often large and heterogeneous in nature.  For example, an Environmental 

Impact Statement (EIS) typically includes a variety of content such as text, maps, images, 

tables, and scientific data.  Such diverse content reduces the effectiveness of machine 

indexing � which is primarily focused on text.  While machine indexing algorithms may 

perform well on the textual parts of the document, the other parts would likely be skipped 

during indexing. 

Most natural resource documents are targeted for printed medium, so few are 

published in hypertext.  One of the most popular web search engines, Google, uses a page 

ranking algorithm based on hyperlinks  [13].  During automatic indexing, the Google 

indexing engine searches for hyperlinks within the text.  One of the contributing metrics 

when computing the page rank for a particular page is the relative importance of the page, 

which is measured by the number of other pages that link to that page and the relative 

importance of those referencing pages.  So the importance of page A increases if page B 

contains a hyperlink that points to page A � and the amount of increase relates to the 

importance of page B.  This hyperlink-based page ranking algorithm works very well for 

trillions of hyperlinked pages � but it would be less effective in a natural resource 

management library with only thousands of documents and few, if any, hyperlinks. 

 Many modern information retrieval algorithms utilize some form of statistical 

term occurrence to compute the rank of a document with respect to a particular query  [7].  

The statistical calculation is typically based on the number of times the search term 

appears in the document, the number of total words in the document, and the number of 

times the search term appears in the entire corpus of documents.  For example, a term that 

is relatively infrequent in the corpus, but relatively frequent in the document will increase 

the rank of the document.  A term that occurs frequently in the corpus or infrequently in 

the document will decrease rank of the document.  These statistical metrics work well 

with a large, diverse corpus of documents � but they are not as suitable for a domain-

specific digital library.  For example, most natural resource documents relate to a specific 
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geographic place � whether it is a forest, a watershed, a campground, timber land, or 

some other type of place.  The document usually contains the name of the location � 

typically on the title page or in the abstract � but the location name may appear relatively 

few times in the rest of the document (particularly for large documents).  The relatively 

low term frequency within the document can reduce the ranking � even though the 

location is an important keyword for the document. 

Statistical term occurrence is also used for document clustering  [7], where 

documents are automatically categorized into clusters based on similarities between the 

documents.  Many natural resource documents are mandated by law and have to follow a 

particular format.  For example, a Record of Decision documents the entire process of 

making an environmental decision.  Every Record of Decision must follow a specified 

format � including sections that describe the decision, alternatives (including action 

alternatives and no-action alternatives), compliance with regulation, and public 

involvement.  The �boiler plate� nature of these documents results in the same 

terminology occurring in every document.  A typical document clustering algorithm may 

cluster all of these documents together � even when the actual meaning (the useful 

information contained within the document) of the documents is diverse. 

A large number of existing natural resource management documents are not 

available in electronic form.  The time and resources required to digitize several hundred 

pages (including scanning, optical character recognition, and so forth) for a single 

document significantly exceed the time and resources required to manually index that 

document.  In this case, the indexer can create a short electronic abstract of the document 

(including title, author(s), physical location of the document, etc.) and then manually 

index the abstract as if it were the entire document. 

1.3 Why we need a thesaurus-based system 

As explained by Svenonius  [105], discussions regarding the necessity for 

controlled vocabularies in effective information retrieval began many years ago � long 

before the Internet or even the microchip.   Even though controlled vocabularies can be 

costly to build, they are built and used because they improve retrieval  [38].  Research 
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indicates that controlled vocabularies improve consistency in indexing and make 

indexing more predictable  [5]. 

 

The need for a controlled vocabulary, or thesaurus, is particularly evident in the 

interdisciplinary domain of natural resource management.  The terminology of interest in 

this application domain spans a number of subject areas, as shown in Figure  1-1.  Each 

subject area, or discourse2, includes one or more controlled vocabularies containing terms 

that describe the important concepts and ideas.  These terms are words, or more 

frequently phrases, routinely used by scientists, managers, and other experts during their 

work.  Most of the terms come from existing sources � published glossaries, 

terminologies, and taxonomies commonly used in natural resource management.  As part 

of our work, our team researched and evaluated existing sources to determine their 

                                                 
2 A discourse is defined as a way to talk about and understand experiences and concepts within the social world.  A 

discourse seeks to control and freeze one particular meaning and understanding of the world  [16]. 

Figure  1-1: Top-level discourses 
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suitability for use in our natural resource thesaurus  [107].  In other cases, a committee of 

experts organized or defined terms of interest, when published vocabularies were not 

available.  As an example, the Wetlands vocabulary (within the AQUATIC discourse) was 

compiled from multiple sources: United States Army Corps of Engineers Wetlands 

Classification System, the United States Fish and Wildlife Service (USDI) Wetlands 

Glossary, the National Wildlife Federation Wetlands Glossary, and the United States 

Forest Service (USDA) Wetlands Classification System.  Similarly, the Watershed 

Management vocabulary (also within the AQUATIC discourse) includes terms from: the 

United States Forest Service (USDA) manual for organization, StreamNet  [104], the 

United States Geological Survey water glossary, and the Natural Resources Conservation 

Service (USDA) water glossary.  Many of the discourses shown in Figure  1-1 contain 

several different controlled vocabularies.  For example, there are approximately a dozen 

vocabularies just for describing places.  These vocabularies include administrative places 

(USDA Forest Service, USDI Bureau of Land Management, etc.), political places (states, 

counties, etc.), and watersheds.  

A thesaurus helps to translate between keywords chosen by indexers and search 

terms used by searchers  [42].  For example a scientist may publish a report about typical 

habitat of Chamaecyparis lawsonian; and a manager may be looking for information 

about growing conditions for White Cedar.   Since these terms are defined as synonyms 

within the thesaurus, the manager can find the relevant document.  Relationships among 

terms can also lead searchers from one discourse to another  [21].  The manager may see 

that White Cedar is related to a particular soil type and follow that relationship to other 

relevant terms in the SOIL discourse, thereby finding more potentially relevant 

information.  Many studies  [7] show the benefits of thesaurus-based query expansion � 

and research  [38] also indicates that users prefer using a thesaurus during searching a 

large percentage of the time.   

1.4 Why we need to enhance the traditional thesaurus model 

Various thesaurus models  [1] support a variety of relationships that provide a rich 

framework for information retrieval.  A fundamental step in the NISO standard for 

thesaurus construction is defining inter-related concepts  [3].  Each concept represents a 

well-defined thing or idea � but can be identified by a number of labels or descriptors.  
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For each concept, one descriptor is identified as preferred while all others are designated 

as non-preferred descriptors.  For example, the concept might be a particular species of 

tree and the preferred descriptor, or term, to identify that concept might be the scientific 

name for that species.  Other common names for that species would be related to the 

scientific name and designated as non-preferred terms.  For example, Chamaecyparis 

lawsoniana might be a preferred term that is related to �White Cedar� (a non-preferred 

term).   

A fundamental goal of our natural resource digital library is to use existing 

terminology �as-is�: to take vocabularies as they currently exist and use them in a 

thesaurus-based retrieval system.  By preserving the terminology and structure of existing 

vocabularies, we maintain user familiarity and avoid the overhead of defining and 

organizing concepts.  By allowing terms to exist in multiple vocabularies, we enable 

differences in connotation distinguished by the hierarchical path to the term.  Building a 

digital library system based on this hierarchy of terminology from numerous controlled 

vocabularies provides a framework for efficient and intuitive interdisciplinary retrieval.   

1.5 Statement of Research  

We define a thesaurus-based conceptual model that uses path-based terms to 

retain existing terminology and accommodate the same term in different contexts.  Based 

on this model, we implemented a storage mechanism that provides efficient storage and 

retrieval of path-based metadata, combines both machine and human indexing, and 

supports concurrent maintenance of terminology.  Additionally, we built a digital library 

application that allows natural resource managers to effectively:  

•  Explore the hierarchy of terminology 

•  Find terms of interest and understand the context of those terms 

•  Index documents with path-based keywords 

•  Interactively search for documents with path-based search terms 

•  Comprehend search results within context of the hierarchy 

Chapter 2 explains how we enhanced the thesaurus model and built a natural 

resource management digital library called Metadata++.  We conducted a user study of 

the application, which is described in Chapter 3.  Chapter 4 formally defines the 
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conceptual model using set theory and first-order logic.  In Chapter 5 we explain our 

implementation of a path-based storage and retrieval mechanism and Chapter 6 discusses 

how we built the software application.  Chapter 7 describes how we integrated the path-

based hierarchy of terms with a geographic information system.  Chapter 8 summarizes 

related work, conclusions, and future work. 
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2 The Metadata++ Digital Library  

The Metadata++ Digital Library, designed specifically for natural resource 

management, is the result of years of research by many individuals from a variety of 

backgrounds. This chapter describes how the system assists users in accomplishing 

various tasks � such as browsing the hierarchy of controlled vocabularies, finding terms 

of interest, indexing documents with path-based keywords, and searching for documents 

using path-based search terms.  

2.1 Hierarchy of Controlled Vocabularies 

The framework of the Metadata++ digital library is a hierarchy containing 

multiple controlled vocabularies from a variety of discourses within the natural resource 

management domain.  In order to support different users from different disciplines using 

different discourses, Metadata++ stores and presents each discourse (and vocabulary) 

�as-is� (exactly as defined by the domain experts).  Thus each user may use the 

vocabularies most familiar to him or her and see the terms in the organization that he or 

she is familiar with.  This hierarchy of terms is a core functional component of the 

system, as well as the basis for the Metadata++ user interface. 

2.1.1 Path-based Terms 

In Metadata++, a term is always presented with its corresponding path in the 

hierarchy.  The user never encounters an individual term by itself � only as it occurs 

within the context of the hierarchy.  Path-based terms give more context than a simple list 

of keywords.  The user can infer, based on the term along with the path � the meaning or 

connotation intended for that particular term (without requiring a dictionary or glossary 

definition).  Each path contains a sequence of terms � beginning with the top-level 

discourse and ending with the term of interest.  Terms deeper in the hierarchy are 

typically more specific, while higher level terms are typically more generic.
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The relationship between each successive term in a path is analogous to the 

Narrower Term (NT) relationship as defined in a traditional thesaurus  [3].  The NISO 

standard for thesaurus construction  [3] also suggests the use of more specific hierarchical 

relationships � including the whole-part relationship (�central nervous system� is a part of 

the �nervous system�) and the instance relationship (�Cinderella� is an instance of �fairy 

tale�).   Controlled vocabularies in the natural resource domain use a wide variety of 

semantic meanings in the hierarchical relationships among terms. In some cases, the 

narrower term relationship represents taxonomic classification (as in the taxonomy of 

species).  In other cases, the narrower term relationship represents spatial containment (as 

in USGS hydrologic unit codes  [110]).  In fact, often a single path uses different types of 

relationships at different points in the path.  For example, consider the path 

PLACES\Administrative\National Forest System\National Forests\Pacific Northwest 

Region, Region 6\Wenatchee NF\Chelan RD.  The first relationship represents a specific 

type � Administrative as a type of PLACES.  The next term implies an instance 

relationship � the National Forest System is one instance of administrative places.  

Towards the end of the path (...\Wenatchee NF\Chelan RD), we see two different 

semantic meanings within the same relationship � Chelan RD (ranger district) is 

geographically contained within Wenatchee NF (national forest), and Chelan RD is also 

an organizational unit within Wenatchee NF.  As illustrated by the previous example, 

controlled vocabularies may contain a variety of semantic meanings for the hierarchical 

relationship.  Metadata++ does not enforce specific types of semantics on the hierarchical 

relationship, nor limit the types of semantics implied by the hierarchy.  Instead, terms 

(and paths) are arranged as appropriate based on the controlled vocabulary.   

2.1.1.1 Browse 

Bates  [9] describes the �docking� process that occurs when any user first 

approaches an information system.  She relates this process to people approaching a 

librarian and first asking a general question (as most people do), such as �Where are the 

books about math?�, when the real need is to find something more specific, such as books 

about linear equations.  This docking process allows the person to become familiar with 

the system (or the librarian) before proceeding with the actual search process.   



  11    

      

 

The Metadata++ application starts by presenting the user with the Browse 

window, as illustrated in Figure  2-1.  The Browse window allows the user to become 

familiar with the system � similar to starting a conversation with a librarian or browsing a 

card catalog.  Browsing the hierarchy is particularly useful for first-time users and casual 

users  [71] who may not be familiar with the content of the hierarchy.  Even experienced 

users receive benefit from browsing � especially when exploring vocabularies from 

unfamiliar subjects.  The user may expand or collapse a term using typical mouse 

functions (either clicking on the plus/minus icon or double-clicking on the term itself).   

Figure  2-1: Screenshot of Browse window 
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2.1.1.2 Find 

One advantage to a digital library (as opposed to a traditional card catalog) is the 

ability to search for individual words within subject headings  [9].  For example, suppose 

a user approaches the system interested in finding out about old growth forests.  The user 

may not have the time (or patience) to browse through the various controlled 

vocabularies in the hierarchy looking for terms referring to old growth.  Instead the user 

may use the Find window as illustrated in Figure  2-2. 

 

The Find window provides a quick and easy way to navigate the hierarchy by 

typing in words of interest.  The user simply clicks in the text box at the top of the 

window and types in what he or she is looking for, then either clicks the binoculars icon 

or presses the <ENTER> key on the keyboard.  The application will find all terms in the 

system matching the search string based on a wildcard match (e.g. when the term 

contains the search string).  As shown in Figure  2-2, the Find window displays matching 

terms with their corresponding paths in context of the hierarchy.  This hierarchical 

display of terms helps the user understand where the terms fit within the various 

controlled vocabularies.  If no matching terms exist, the Find window will simply inform 

Figure 2-2: Screenshot of Find window
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the user that no matches were found.  The Find window will remember all of the term 

searches during the session, so the user can select from previous term searches by 

clicking the down arrow and selecting from the list.  It is important to note that the Find 

window only searches the hierarchy of terms � it does not search for documents.   

The Find window displays the entire path of each matching term, but it does not 

display all of the siblings of each term.  For example, the term WILDLIFE\Wildlife 

Management\Management Activities\Forest Management\Habitat Management Activities 

has multiple child terms � but only ...\Maintaining mature-old growth is displayed in the 

Find window (in Figure  2-2) because it is the only child term that matches �old growth�.  

However, suppose the user wants to view other habitat management activities.  He or she 

could click on the Browse window and manually browse to the same location in the 

hierarchy; but the user may also double-click on the ...\Maintaining mature-old growth 

term in the Find window.  Double-clicking a term in the Find window will automatically 

browse to that same term in the Browse window � so the user can easily see all of the 

other habitat management activities.     

In addition to first-time or casual users, the Find window is convenient for 

experienced users who know the vocabularies very well.  For example, suppose a botanist 

is using the system to find information about a particular species of violet.  He or she may 

know exactly where the species resides in the vocabulary of taxonomic species � but 

browsing to that term may require several mouse clicks while expanding the various 

levels of the hierarchy.  Instead, the user can type the species name into the Find window, 

double-click on the term when it is found, and the system will automatically highlight 

that term in the Browse window � all with just a few key strokes and mouse clicks. 

2.1.2 Exploring terms 

Bates� design model  [9] suggests a series of possible actions that a user might 

initiate to find out more information about any specific term.  These actions include: 

•  Show me other words for the same subject (i.e., synonyms) 

•  Show me other related topics (i.e., related terms) 

•  Show me some book titles on this subject 
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Metadata++ supports these and similar actions while browsing the hierarchy.  

Clicking on any term in the hierarchy (in either the Browse window or the Find window) 

brings focus to that term.  The user can find out additional information about that term by 

right-clicking on the term and reviewing the popup context menu (as shown in Figure 

 2-3).  This section explains the information displayed in the context menu. 

 

2.1.2.1 Synonyms 

Most thesaurus-based systems support some form of synonymy [35,101] between 

concepts.   The NISO thesaurus standard  [3] uses the Use (U) and Used For (UF) 

relationships to relate the preferred term (which may be used during indexing) with non-

preferred terms (which may not be used during indexing).  WordNet  [37] uses synsets (a 

group of terms that describe the same concept).  Metadata++ also supports synonyms � a 

relationship between terms (including the entire path) whose meanings are regarded as 

the same, or nearly the same, in a wide range of contexts  [3].  For example a common 

name for a particular plant and the scientific name of the same species could be 

designated as synonyms.  The user can browse synonyms within the hierarchy � and can 

also automatically add synonyms to a search (as explained later in this chapter).  The 

natural resource domain presents several unique situations that merit something more 

than the traditional synonymy relationship.  This section explains these situations and 

describes how Metadata++ accommodates each using specialized relationships. 

2.1.2.1.1 Multiple Occurrences 
Natural languages, particularly the English language, are filled with ambiguous 

words.  These ambiguities include words that sound the same (homonyms) and words 

that look the same (homographs) but have entirely different meanings.  For example, the 

word �crane� can mean a bird or a machine designed for lifting large objects.  In this case 

Figure  2-3: Screenshot of right-click context menu 
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�crane� is both a homonym and a homograph.  The NISO thesaurus standard recommends 

distinguishing such ambiguities using parenthetical qualifiers  [3]: �crane (bird)� and 

�crane (lifting equipment)�.  A similar situation occurs when the same term (or concept) 

logically belongs under two different broader concepts.  For example, a piano is both a 

string instrument and a percussion instrument � but it is still a piano.  The thesaurus 

standard accommodates this situation using polyhierarchies � where a single concept has 

more than one broader concept. 

 

In natural resource management terms frequently exist in multiple controlled 

vocabularies.  For example, aquatic biologists and fish biologists work with similar ideas 

and concepts � but these ideas and concepts are organized and related differently.  

Because vocabularies are not combined into a single ontology, as in some ontology-based 

systems [23,103], we allow the same term to appear in various places in the hierarchy.  

Figure  2-4 illustrates a few of the many multiple occurrences of the term Riparian (which 

means on or near the banks of a body of water).  Multiple occurrences of a term may 

appear anywhere in the hierarchy.  For example, one occurrence of a particular term may 

be several levels deep in the hierarchy and have no narrower terms, while another 

occurrence of the same term may be near the top of the hierarchy and have many 

narrower terms. 

When the same term exists multiple times within the same (or similar) 

discourse(s), it may be describing the same general concept with slightly different 

connotations.  For example, Figure  2-4 illustrates the term Riparian as a child term for 

both Watershed Management (referring to how the riparian area affects the encompassing 

Figure 2-4: Multiple Occurrences
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watershed) and Wetlands (referring to a particular type of wetland that is not permanently 

inundated but is close to surface water).  The following two excerpts from actual 

documents illustrate the differences between these subtly different connotations.  In the 

first document  [91], we read (pages 46-47, emphasis added):  

  Maintain and restore water quality necessary to support healthy riparian, aquatic, and wetland 

ecosystems. Water quality must remain within the range that maintains the biological, physical, and chemical 

integrity of the system and benefits survival, growth, reproduction, and migration of individuals composing 

aquatic and riparian communities. � 

Maintain and restore the species composition and structural diversity of plant communities in 

riparian areas and wetlands to provide adequate summer and winter thermal regulation, nutrient filtering, 

appropriate rates of surface erosion, bank erosion, and channel migration and to supply amounts and 

distributions of coarse woody debris sufficient to sustain physical complexity and stability. 

This document refers to riparian wetlands � and what issues need to be monitored 

in order to maintain the health of these areas � so the appropriate keyword for this 

document is AQUATIC\Wetlands\Riparian.  In the second document  [81], we read (page 

69, emphasis added): 

Design and implement watershed analysis: to determine watershed status, resilience and 

capabilities; examine fish ecological relationships; establish watershed-specific boundaries for Riparian 

Habitat Conservation Areas and Riparian Management Objectives; and identify watershed restoration and 

monitoring objectives, strategies, and priorities. 

This document describes a management plan for particular watersheds � including 

riparian management objectives � so the appropriate keyword for this document is 

AQUATIC\Watershed Management\Riparian.  As illustrated by these documents, these 

two different occurrences of Riparian are similar, but distinct.  Each connotation is 

necessary and important � as specific keywords for these (and other) documents and to 

support the information needs of natural resource managers. 

Multiple occurrences of a term are also used to represent homographs.  For 

example, the term dolphin is a marine mammal found within the WILDLIFE discourse 

and is also a term used to describe a submerged piling within Aquatic Habitat Elements.  

These terms are not subtly different connotations of the same concept; they are entirely 

different meanings for the same word.  In this case, the path associated with these two 

occurrences of the term easily distinguishes the intended meaning (the second path is 

shown in Figure  2-5).  
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Multiple occurrences in Metadata++ unify the issues addressed by parenthetical 

qualifiers and polyhierarchies � by letting the path distinguish the various connotations 

(or distinct meanings) of the term.  Regardless of the number of times a term appears 

within the hierarchy � and regardless of whether the various occurrences represent 

slightly different connotations or entirely different meanings � the user can easily select 

one (or more) occurrences.  For example, a user interested in riparian areas relating only 

to watershed management can select AQUATIC\Watershed Management\Riparian (and 

not any of the other occurrences of Riparian shown in Figure  2-4).  A different user, 

beginning a watershed analysis, might use information about all aspects of Riparian, for a 

particular location.  The user can select any one of the occurrences, then simply right-

click (as described later in this chapter) and automatically add all of the other multiple 

occurrences � finding all documents related to Riparian. 

2.1.2.1.2 Polyterms 
Unlike a traditional thesaurus, Metadata++ also supports polyterms.  A polyterm 

exists when two or more terms are interchangeable and have the same parent (i.e. broader 

term).  Even a specialist within that discourse would not need to distinguish between the 

individual terms within a polyterm � because they all have similar meanings and 

connotations within that vocabulary.  A polyterm may also describe a class or collection 

of items that is named by a list of its elements.  Figure  2-5 illustrates a polyterm within 

the Wildlife Habitat vocabulary.  As child terms of ...\Anthropogenic – Related Habitat 

Elements, the terms mooring pile, dolphin, and buoy all describe inanimate, partially (or 

completely) submerged objects.  This collection of similar objects does not have a name 

so it is represented by a list of its elements (a polyterm).    

 

Another example of polyterms is a term combined with its own abbreviation or 

acronym (i.e. lexical variants  [3]).  For example, the terms United States Department of 

Agriculture and USDA are used interchangeably � so these terms are combined into a 

Figure  2-5: Example of Polyterm 



  18    

      

single polyterm (United States Department of Agriculture, USDA).  A typical thesaurus 

would require that one term be designated as the preferred term, and the UF (Use For) 

relationship would relate the preferred term to all of the non-preferred terms.  In this case, 

only the preferred term could be used anywhere else in the system, such as during 

document indexing or searching.   

Different users may prefer different terms; some users may even be unfamiliar 

with various terms (or even entire controlled vocabularies).  So instead of forcing the 

users to agree on a single preferred term, Metadata++ combines all of the interchangeable 

terms into a polyterm.  In addition, terms that constitute a polyterm still function as 

individual terms elsewhere in the system � such as a multiple occurrence.  For example, 

the term dolphin is part of the polyterm described above � but it also occurs within the 

vocabulary describing marine mammals.   

 

2.1.2.1.3 Non-transitive synonyms 
Unlike traditional notions of synonymy, synonymy within Metadata++ is not 

transitive.  Situations occur in natural resource management where transitive synonymy is 

not valid.  For example, consider the vocabularies illustrated in Figure  2-6.  Figure  2-6.a 

is an excerpt of a vocabulary of common names for conifers.  Figure  2-6.b is an excerpt 

of a vocabulary of scientific names of conifers.  In practice, there is not an exact one-to-

(a) Common 

(b) Scientific 

Figure  2-6: Excerpts from two vocabularies about conifers 
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one mapping between common names and scientific names.  The term White Cedar refers 

to the species Chamaecyparis lawsoniana � so these terms would be designated as 

synonyms in Metadata++.  However, White Cedar also refers to the species Thuja 

occidentalis � so those two terms would also be designated as synonyms.  In this case 

Chamaecyparis lawsoniana is synonymous with White Cedar and White Cedar is 

synonymous with Thuja occidentalis � but Chamaecyparis lawsoniana is not 

synonymous with Thuja occidentalis.  (They are completely different species belonging 

to different genera.) 

A lack of transitivity among synonyms is a unique and powerful feature of 

Metadata++.  Consider a natural resource manager searching for documents about White 

Cedar.  Since White Cedar is synonymous with both Chamaecyparis lawsoniana and 

Thuja occidentalis, documents may be found that are about either (or both) species.  

However, consider a botanist searching for documents about Thuja occidentalis.  

Metadata++ would find documents specifically related to that species and documents 

related to the more general term White Cedar.  The search would not, however, 

automatically find documents related specifically to Chamaecyparis lawsoniana � 

because the synonym relationship is not transitive in Metadata++. 

2.1.2.2 Related Terms 

Metadata++ also supports general relationships between terms that are not 

synonymous, but that have some association or correlation within the application domain.  

The NISO thesaurus standard  [3] describes an associative relationship as a �relationship 

[that] covers associations between descriptors that are neither equivalent nor hierarchical, 

yet the terms are semantically or conceptually associated to such an extent that the link 

between them should be made explicit in the thesaurus� and goes on to say that 

�whenever one term is used, the other should always be implied. � Moreover, one of the 

terms is often a necessary component in any explanation or definition of the other.�  

Metadata++ more broadly defines associative relationships to capture any arbitrary 

correlation between terms specified by the user.  For example, a relationship may be used 

to relate Wenatchee National Forest and Western Hemlock because Western Hemlock 

trees are found in the Wenatchee National Forest. 
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Relating terms is a powerful tool for capturing domain knowledge within the 

hierarchy.  Each term can participate in multiple relationships; so Western Hemlock may 

also be associated with AIR\climate\classification\Koeppen\Koppen Climate Classes\Dry 

climates\arid and SOIL\soil classification\Orders, Sub-Orders and Great Groups\Alfisols 

� to indicate that these trees typically grow in the specified climate and soil type.  

Associative relationships are used to represent any functional or observational correlation 

between terms, and, like synonymy, association is not transitive.  Because of the generic 

nature of associative relationships, Metadata++ does not implicitly traverse these 

relationships when executing a search.  Instead, related terms are displayed so that the 

user may easily extend or refine a particular search. 

 

When right-clicking on a term to show additional context information, the first 

menu item on the popup menu is called �Multiple Occurrences, Synonyms, and Related 

Terms� (as show in Figure  2-7).  Moving the mouse over this menu item will display a 

popup tree containing all of the multiple occurrences, synonyms, and related terms 

(distinguished by color) for the current term.  The popup tree displays all of these terms 

using their full paths � in context of the hierarchy.  Clicking on any of these terms will 

automatically locate that term in the Browse window � providing a quick and easy way to 

navigate the knowledge contained within the various relationships among terms. 

Figure  2-7: Cropped screenshot of Related Terms 



  21    

      

 

2.1.2.3 Documents 

Research indicates the human indexing and machine indexing are each effective 

in certain situations and complement each other [6,38].  Metadata++ combines the 

advantages of both types of indexing.  For any term in the hierarchy, the user may easily 

view explicitly referenced documents (as shown in Figure  2-8) and implicitly referenced 

documents (as shown in Figure  2-9).  Clicking on a document in either list will open a 

separate window containing the metadata for that document � including path-based 

keywords and summary information (as described in Section  2.2.2).  �Explicitly 

Referenced Documents� are those documents for which a human indexer explicitly 

selected that term as a keyword (regardless of whether or not the document actually 

contains the term).   

�Implicitly Referenced Documents� are those documents that actually contain the 

term based on a full-text index within Microsoft Index Server (as described in Section 

 5.2.4).  When finding implicitly referenced documents for a particular term, Metadata++ 

queries Index Server for the exact text of the term regardless of the path.  Since the path 

is ignored, the list of implicitly referenced documents would be the same for multiple 

occurrences of the same term.  Terms consisting of multiple words are treated as a 

phrase, so only documents containing the exact phrase are returned.  For example, the 

implicitly referenced documents for the term AQUATIC\Watershed Management are all 

those documents that contain the phrase �watershed management� (uppercase versus 

lowercase is ignored).  In this example, a document containing the individual words 

�watershed� and �management�, but not the exact phrase �watershed management�, would 

not be included in the list of implicitly referenced documents.  The order of the implicitly 

referenced documents is determined by an unpublished ranking algorithm within Index 

Figure  2-8: Cropped screenshot of Explicitly Referenced Documents 
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Server that uses word density and inflection.  Metadata++ uses each term within a 

polyterm separately when finding implicitly referenced documents (e.g. searching for the 

term within the content of the document).  So a document containing the term mooring 

pile would be implicitly referenced by the polyterm above � even if it did not contain 

dolphin or buoy (see Figure  2-5). 

 

2.2 Indexing 

A long-standing issue in information retrieval is the comparison of human 

indexing with machine indexing.  Human indexing is expensive and time consuming.  

Some individuals within natural resource management abide an unwritten rule: if it takes 

longer than 15 minutes to provide metadata for a document, it will not be done.  Despite 

the lower costs of machine indexing, the higher quality of human indexing still has 

advantages [5,6].  Mai  [69] suggests a domain-centered approach to indexing instead of 

the common document-centered approach to indexing.  A domain-centered indexer 

considers how the document relates to the collective domain knowledge � instead of just 

the content of the document itself.  Nielsen  [86] shows the benefits of using a thesaurus 

to support human indexing.   

In Metadata++, document metadata consists of two types: summary information 

and keywords.  Users view document metadata as shown in Figure  2-10.  Clicking on the 

Figure  2-9: Cropped screenshot of Implicitly Referenced Documents 
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URL will open the actual document in a separate window � so the user may review the 

document content.  This section explains how Metadata++ simplifies the process of 

providing high-quality human indexing. 

 

 

 

 

Figure  2-10: Cropped screenshot of document metadata 

Figure  2-11: Screenshot of document upload 
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2.2.1 Submitting Documents 

Authors (or indexers) must login to the system before submitting new documents 

to the system.  The Upload window (as shown in Figure  2-11) allows two types of 

document submission.  If the document already exists at a publicly available URL, the 

author may type (or paste) in that URL.  Upon submission, Metadata++ will make an 

HTTP request for the document and store a local copy of the document (for full-text 

indexing) on the Metadata++ server.  The external URL is retained � so whenever a user 

views that metadata for that document (path-based keywords and summary information), 

he or she will see the original URL (as submitted).  Metadata++ assumes that the external 

document will not change and does not automatically synchronize the local copy of the 

document with the external document after initial submittal.  If the document does not 

already exist at a public URL, the author may browse to the file on his or her computer 

and upload it.  Metadata++ stores the file on the server and gives it a URL.  If a particular 

document is not available in electronic format, the indexer may create an electronic 

abstract for that document and submit the abstract as any other document.   

2.2.2 Summary Information 

Metadata++ stores each document as a separate file on the server.  The summary 

information for each document includes the following: title, author(s), date of 

publication, and abstract (not visible in Figure  2-10).    The summary information resides 

in the document properties  [75] of each file as defined by the Object Linking and 

Embedding (OLE) standard produced by Microsoft Corporation.  OLE does support 

custom document properties, so the summary information could be extended to include 

attributes from other metadata standards such as Dublin Core  [30]. 

The preferred method for providing summary information is for the author(s) to 

add the information to the file before publishing the document.  Both Microsoft Word® 

and Adobe Acrobat® provide a mechanism to set the summary properties of a document.  

In Microsoft Word®, document properties may be set by choosing �Properties� from the 

�File� menu.  In Adobe Acrobat®, document properties may be set by clicking the �File� 

menu, then choosing �General� from the �Document Info� submenu.  Summary properties 

can also be provided in HTML using the appropriate <META> tags.  If the summary 

information already exists when the author or indexer submits the document to 
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Metadata++, the system will automatically recognize and display this information.  If the 

author(s) did not include the summary information when the document was published, 

this information may be added or modified after the document has been submitted to 

Metadata++ � either the document metadata window (as shown in Figure  2-10) or by 

updating the file directly on the server.  

2.2.3 Keywords 

Consistent with the rest of the Metadata++ application, document keywords are 

hierarchical (as opposed to a flat list of terms).  A document keyword is a term (including 

path) that the indexer selects from the hierarchy during indexing and attaches to the 

document.  The indexer attaches keywords by selecting any term in the hierarchy and 

dragging the term onto the document metadata window.  Any term in the hierarchy may 

be used as a keyword, regardless of where it appears and whether or not it has narrower 

terms.  The indexer may drag terms from either the Browse window or the Find window.  

Using the hierarchy of vocabularies as the framework for indexing supports domain-

centered indexing  [69].  The indexer can review the document and the domain � and 

select keywords that relate the document to all relevant aspects of the domain.  Three of 

the top-level discourses, DOCUMENT TYPES, PLACES, and PROJECTS are very 

important to nearly all documents in natural resource management.  Because of their 

importance, these three terms are shown in bold in the keyword hierarchy � as a reminder 

to indexers that they need to select at least one term from each of these discourses.  This 

feature is a convenience built into the software application but is not formally part of the 

Metadata++ model (see Section  4.1.3). After adding the desired keywords, the indexer 

must click the Save button to save the changes. 

One of the drawbacks of human indexing is the time (and corresponding cost) 

required to provide a complete and thorough set of keywords for a document.  

Metadata++ simplifies this process by enabling the indexer to more easily find relevant, 

related terms during indexing.  The indexer may right-click on any existing keyword to 

see a popup context menu that displays all of the multiple occurrences, synonyms, and 

related terms (as illustrated in Figure  2-7).  If any of those terms are relevant to the 

document, the indexer may click on the relevant term within the popup tree.  That term 

(and corresponding path) will automatically be added as a keyword.  For example, 
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suppose you are indexing a document that discusses contamination caused by a chemical 

spill.  You select the AIR\air quality term as a keyword because it relates to the 

document.  You then right-click on that keyword and see the popup tree of related terms 

� including AQUATIC\Water\Water Quality.  The document also discusses the 

contamination of the water supply � so you click on AQUATIC\Water\Water Quality and 

that term is automatically added as keyword for the document.  This mechanism exploits 

the relationships defined in the hierarchy to simplify the process of providing thorough 

metadata. 

2.3 Searching 

The main goal of any library, including digital libraries, is to warehouse and 

organize information and make it more accessible to users.  Accessibility of information 

is based on how easily users can search for, and find, relevant information.  Nielsen  [86] 

reports that users wanted and needed a thesaurus � primarily for query formulation.  

Bates  [9] suggests two different thesauri � one thesaurus for indexers and a different 

thesaurus for searchers.  Metadata++ uses the same hierarchy for both tasks, providing 

consistency between tasks.  This section describes how Metadata++ supports searchers in 

exploratory searches to find documents of interest. 

2.3.1 Interactive query expression/expansion 

Bates  [9] makes some interesting observations in regards to searching and the 

nature of information systems.  She states that it is impossible to accurately predict what 

specific aspects of a topic a search will pursue and which specific terms the searcher will 

use.  She continues with this suggestion: 

 �[We should] stop trying to design systems that will target the desired 
information through perfect pinpoint match on the one best term; rather, 
design systems to encompass the answer by displaying and making it easy 
to explore a variety of descriptive terms.  Show searchers a wide range of 
descriptive terms and thereby implicitly educate them on the need to 
produce variety.� ( [9], pg. 361) 
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Metadata++ adheres to this philosophy.  Instead of trying to guess what the user 

intended, our system makes it easy and intuitive for the user to interactively expand the 

search with a variety of terms.  Instead of typing in free-text search terms, searchers must 

select path-based terms from the hierarchy; but the user may type any search string into 

the Find window to find possible path-based terms that may then be added to the search.  

Similar to selecting terms as keywords during indexing, searchers may drag any term 

from the Browse window or the Find window and drop it on the Search window.  

Dropping the term on the Search window will automatically show the results for that 

term, which include both explicitly referenced documents (in green) and implicitly 

referenced documents (in blue).  Figure  2-12 shows the Search window after dropping the 

AIR\air quality term into the search.  Research [52,86] shows that selecting search terms 

from a controlled vocabulary is useful for expressing searches and improves search 

consistency.  

Figure  2-12: Cropped screenshot of Search window 
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Additional research shows [9,20,35] that thesaurus-based search expansion is 

effective at improving search results.  Various automatic thesaurus-based expansion 

algorithms exist, but further research [20,56,63] suggests that interactive user-driven 

query expansion can be more effective and preferable when compared to automated 

query expansion.  Metadata++ supports the user in interactively expanding the search.  

After right-clicking on any search term in the Search window, the searcher will see a 

popup context menu (illustrated in Figure  2-13).  The first item in this menu will display 

a popup tree containing the multiple occurrences, synonyms, and related terms for the 

selected term (as shown in Figure  2-7).  This popup tree provides suggested terms that 

may be of interest to the searcher based on their relationship to the current search term.  If 

desired, the searcher may click on any term in popup tree and that term will automatically 

be added to the search. 

The second item in the context menu shown in Figure  2-13 provides a convenient 

way for adding all multiple occurrences of a term.  The user could manually click on each 

multiple occurrence as displayed in the popup tree � but if the searcher just wants to 

quickly add all multiple occurrences, he or she can do so by selecting the �Add All 

Occurrences� item on the context menu.  For example, suppose the searcher added 

AQUATIC\Aquatic Biology\Riparian as a search term.  If desired, the searcher could 

right-click and choose the second menu item to easily add all other occurrences of the 

term Riparian (as shown in Figure  2-4).  The third menu item works in a similar fashion; 

it provides a quick and easy way to expand a search to include all narrower terms of the 

current search term.  In addition to adding search terms, the user may easily remove an 

unwanted search term by simply deleting it from the Search window (click on the term in 

the hierarchy and press the <DELETE> key).  Using the hierarchy of terms and intuitive 

Figure  2-13: Cropped screenshot showing the context 

menu for Search term
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user-interface features, Metadata++ makes it easy for searchers to interactively expand 

searches to explore a variety of related documents. 

2.3.2 Search Result 

Metadata++ uses the hierarchy of path-based terms to display the actual search 

result (as show in Figure  2-12).  Petrelli et al.  [90] determined that users expect to see a 

ranked list of documents and anything else is considered annoying.  However other 

research [9,31,73] indicates that showing search results in context of the subject hierarchy 

increases user satisfaction.  By showing the search results in context of the hierarchy, the 

searcher can infer the relevance of any particular document by seeing where that 

document appears in the search results.  For example, suppose the searcher added all of 

the descendant terms of a particular search term.  Documents related to the immediate 

child terms may be considered more relevant than documents related to other descendant 

terms that are several generations below the original search term.  A document related to 

more than one search term (and thus appearing in more than one place in the search 

result) might have a greater degree of relevance.  Viewing the documents in context of 

the hierarchy gives a clearer picture of why and how any particular document relates to 

the search � as opposed to a ranked list where the user does not necessarily understand 

why or how documents are ranked. 

In addition to the hierarchical search result, the user may also choose to view a 

simple list of documents.  This list (as illustrated in Figure  2-14) shows the same set of 

documents that appear in the hierarchical view sorted by count (the number of times the 

document appears in the hierarchical view).  For example, Figure  2-14 shows the 

document list for a search containing two search terms: AIR\air quality and AIR\Weather.   

Two of the documents (the first two in the list) are implicitly related to both terms.  In the 

hierarchical view, these documents appear twice � once under each term.  In the list view, 

these documents appear only once, but with a count of 2.   
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The list of documents can easily be sorted by count or title simply by clicking on 

the corresponding column header.  If desired, the searcher may also filter the list.  For 

example, to see documents that appear at least twice in the list, the searcher would simply 

filter the list for rows where count is greater than or equal to 2.  As with the Document-

View Pattern in software architecture, the hierarchical view and the list view are views of 

the same search result.  For example, if the searcher clicks on any document in the 

hierarchical view, that same document is automatically selected in the list view (as shown 

Figure  2-14) and vice versa. 

Figure  2-14: Screenshot of Search result document list 
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In addition, the searcher may choose to delete terms (and associated documents) 

from the search result.  For example, suppose the searcher adds all descendants for a 

particular search term.  After reviewing the result, the searcher may decide that only 

some of the descendants apply to the search topic.  He or she may click on the 

inapplicable terms in the hierarchical view and press the <DELETE> key on the 

keyboard.  That term (and all of its descendant terms and documents) will be deleted 

from the search result.  The searcher can add (or remove) search terms at any time during 

the search process � providing an interactive and exploratory experience that helps the 

searcher find relevant information. 

2.3.3 Advanced Options 

Most information retrieval systems provide the ability to filter search results 

based on document summary information  [9], such as title, author, and date.  As 

illustrated in Figure  2-12, the user may use the advanced options to pre-filter the search 

results.  For example, suppose a searcher is only interested in documents authored by 

Timothy Tolle.  The searcher would type �Tolle� in the Author box before adding search 

terms to the search.  When the system displays the search results, only those documents 

where Tolle is an author (i.e., where �Tolle� is contained in the author property) will be 

displayed.  

As described in Section  2.1.2.3, Metadata++ combines the advantages of human-

indexing (explicit keywords) and machine indexing (implicit keywords).  The default 

search result will include all explicitly referenced documents for each search term (shown 

in green in Figure  2-12) and will include no more than fifteen implicitly referenced 

documents (show in blue in Figure  2-12) for each search term.  Figure  2-12 shows that 

only one explicitly referenced document exists for Air\air quality.  The remaining 

documents are implicitly referenced (meaning the documents actually contain the phrase 

�air quality�).  These options are configurable � so the user may choose to ignore 

implicitly referenced documents altogether (by changing 15 to 0) or to ignore explicitly 

referenced documents (by changing �All� to �None� using the drop-down list).   

2.3.4 Compound Search 

A search task within natural resource management typically involves more than 

one concept  [8].  For example, a natural resource manager may be trying to ascertain the 
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overall water quality within a particular region.  This task would comprise two different 

search concepts: water quality and the region of interest.  Users may perform compound 

searches in Metadata++ by interactively expanding each individual search concept (as 

described in the previous section) then combining the results of each concept into a 

compound search.   

Figure  2-15 illustrates the results of a simple compound search involving AIR\air 

quality and AIR\Weather.  We produced this screenshot by first creating a Search window 

and adding only the AIR\air quality term.  Next, we created a second Search window and 

added the term AIR\Weather.  We could have further refined each search concept by 

adding (or deleting) additional search terms.  Finally, we intersected the two Search 

windows, which produced the visible tab shown in Figure  2-15, labeled �air quality & 

weather�.   

 

When doing an intersection, Metadata++ combines the hierarchical structure from 

both existing Search windows � then removes all documents that do not appear in both 

concepts.  As shown in Figure  2-15, only those documents that were in both original 

Search windows (the first two tabs) appear in the compound Search window (the third 

tab).  The current Metadata++ application only supports intersection � but the 

Metadata++ conceptual model supports two additional compound operators (as defined in 

Section  4.2.4): 

Figure  2-15: Cropped screenshot of a compound search 
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•  Union: include all path-based terms and documents from both searches 

•  Difference: include all path-based terms from the first search, but remove all 

documents that appear in the second search  

2.4 Summary 

The Metadata++ Digital Library is based on a hierarchy of path-based terms 

found in numerous controlled vocabularies commonly used within natural resource 

management.  The user may peruse vocabularies by browsing the hierarchy of terms or 

by typing the desired word(s) into the Find window.  Additional information for each 

term, available by right-clicking the term, includes: multiple occurrences, synonyms, 

related terms, explicitly referenced documents, and implicitly referenced documents.  The 

user may select any number of path-based terms during indexing or searching by 

dragging the desired term onto the appropriate window.  Both indexing and searching 

retain the full path of the selected term, so the user will always see terms within the 

context of the hierarchy.  The hierarchy of path-based terms provides an intuitive 

framework for both indexing and searching. 
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3 User Study and Evaluation of Metadata++  

This chapter describes a user study and evaluation of the Metadata++ digital 

library system conducted as part of our research.   Section  3.1, outlines the objectives of 

our study and is followed by a detailed description of the study in Section  3.2.  Section 

 3.3 summarizes the results and observations.  The chapter concludes with a review of 

other digital library evaluations in Section  3.4.  

3.1 Objectives 

Marchionini  [71] states that evaluating a digital library is like judging the success 

of a marriage � �[much] depends on how successful the partners are as individuals as 

well as the emergent conditions made possible by the union.�  A digital library is 

essentially the union of a library (content) and a digital information retrieval system, 

where �success for an individual partner is typically necessary but not sufficient to ensure 

success for the marriage�  [71].  So how, then, does one effectively evaluate a digital 

library?  While no universal set of criteria or methods exist for digital library evaluation, 

significant research has been done in this area.  Saracevic  [92] explains that evaluation 

criteria should be divided into three categories: library criteria, information retrieval 

criteria, and human-computer interaction (HCI) criteria.  Library criteria include such 

things as the quality, quantity, and scope of the content � similar to measuring the 

holdings of a physical library.  Information retrieval criteria focus on relevance issues � 

such as precision and recall.  HCI criteria focus on the user interface, including such 

things as usability, functionality, navigation, browsing, etc.  An effective evaluation must 

begin by clearly defining which criteria will (and will not) be evaluated and the metrics to 

be used for each criterion. 

Buttenfield  [15] points out that, from the users� perspective, the user interface of a 

digital library is the system.  If the user does not succeed at using the application, then the
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contents of the library are inaccessible � regardless of the value or quality of those 

contents (and the relevance achieved by the information retrieval techniques).  Landauer 

 [64] claims that usability (ease of operation) and usefulness (serving the intended 

purpose) are important aspects of any human-computer interface.  He also explains that 

usability and usefulness are closely related and hard to evaluate separately.  Based on the 

scope of our user study, we selected two evaluation criteria that would help us: (1) 

determine the overall usability of the system based on the level of user interaction and 

number of errors, and (2) evaluate the path-based representation of terms � particularly 

multiple occurrences.   Our objectives did not include evaluating the content of the 

system (vocabularies and documents) or measuring the retrieval performance (precision 

and recall).  The results of our evaluation are explained in Section  3.3 

3.2 Description of User Study 

Our research team member from the USDA Forest Service took the lead on 

defining four tasks based on realistic information needs and existing documents in natural 

resource management  [12].  He also worked closely with a library scientist to prepare the 

test system to ensure that sufficient vocabularies and documents (with keywords) existed 

to allow completion of the tasks.  Summarized in Table  3-1, these tasks included two 

searching tasks and two indexing tasks that simulate real world information needs that the 

participants might encounter during daily activities.    

Table  3-1: Summary of User Tasks 

Search 1 You are the Planning Team leader of the Cle Elum Ranger District charged with updating the 
existing (upper) Yakima River Watershed Analysis. You want to provide your interdisciplinary 
team (IDT) with a list of relevant documents. In the first WA, watershed restoration projects 
were identified as the priority task needed. Your line officer feels it is time to tackle the next 
priority of projects. She assigned a forester, recreation specialist, watershed restoration 
specialist, wildlife biologist, aquatic specialist, zone transportation planner and archaeologist 
to the IDT and a public affairs officer to work with the team leader.  Find documents that are 
most likely to help members of your interdisciplinary team.  

Search 2 You are a fish biologist charged with developing an aquatic monitoring and evaluation 
program for the Cle Elum Ranger district. You are responsible for tying together your 
monitoring data with that of the regional Ecosystem Office�s monitoring effort, the Wenatchee 
NF�s Forest Plan effort and any research, inventory and monitoring questions of the 
Snoqualmie Pass Adaptive Management Area, as well as project monitoring needs and 
activities and needs identified through watershed analyses. District monitoring goals come 
from these sources, though the scale of evaluation is for the ranger district itself.  Find relevant 
material to help you develop such a program for the Cle Elum ranger District.  

Index 1 Title = Big Bend Notice of Intent 
Abstract = The Forest Service, USDA,  will prepare an environmental impact statement (EIS) 
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to analyze and disclose the environmental impacts of a site-specific proposal to issue a permit 
and authorize use of an existing road and construction of additional road across National Forest 
System (NFS) lands located in the Little Creek Drainage.  The action is proposed in response 
to an application seeking legal access to approximately 885 acres of non-Federal land located 
within the Forest Boundary on the Cle Elum Ranger District.  The proposed action is located 
approximately 8 miles south of Cle Elum, Washington.  The purpose of the EIS will be to 
develop and evaluate a range of alternatives including a no action Alternative, and possible 
additional alternatives to respond to issues identified during the scoping process.  The 
proposed project will be in compliance with the direction in the Wenatchee National Forest 
Land and Resource Management Plan (March 1990) which provides the overall guidance for 
management of the area.  The agency invites written comments on the scope of this project.  In 
addition, the agency gives notice of this analysis so that interested and affected people are 
aware of how they may participate and contribute to the final decision. The major issues that 
have been identified to date include the following:  water quality; Late Successional Reserves; 
habitat for spotted owl, peregrine falcon and the gray wolf; cumulative effects of both the road 
access and the management of the private land and Forest Service. 

Index 2 Title = MCOA Restoration Environmental Analysis 
Abstract = It is proposed that a mining site previously used in accordance with the Mining 
Claim Occupancy Act (MCOA) be restored to forest conditions.  The proposed action would 
restore the site towards a forest setting by burning approximately 30 handpiles, scarifying two 
structure pads and the network of natural surfaced roads, seeding scarified areas and removing 
the PacifiCorp power poles.  The proposed action affects BLM lands in the Middle Applegate 
watershed. 

As recommended by Borlund  [12], we prepared for the user study by doing a pilot 

test.  The pilot test participant was a computer science PhD Candidate, as well as an M.D.  

She had significant knowledge and experience with information retrieval systems, 

including thesaurus-based systems such as UMLS  [83], but she was not an expert in 

natural resource management.  Using a laptop computer without an external mouse 

hindered the participant during the test but she was able to complete the test and provide 

feedback about possible improvements.  In addition to the pilot test, the system was 

reviewed by team members (including a natural resource manager, a library scientist, and 

a computer scientist) and modified according to their feedback. 

In preparation for the user study, we selected two different USDA Forest Service 

offices that expressed interest and willingness to participate.  Each office had a primary 

contact person who assisted us in coordinating the tests, including soliciting their 

colleagues to find people interested in participating.  Each office coordinator designated 

four participants (including himself or herself) for a total of eight participants (four at 

each office).  The participants come from a variety of backgrounds but all work within 

natural resource management on a daily basis [12,15].  Based on demographic 

questionnaires, Table  3-2 summarizes the daily responsibilities of each of the eight 

participants along with the type of tasks they completed during the user study and the 
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number of years of experience with the Forest Service (a combined total of 152 years of 

Forest Service experience!). 

Table  3-2: Summary of Test Participants 

Task Forest Service Responsibilities 

Years of 

Experience 

Searching Editing, document syntheses, report writing, cultural resources 20 

Searching Wildlife research/studies, GIS 7 

Searching 
Manage budget, guide scope of work, maintain relations 

with other organizations, watershed counsels 
18 

Searching Data steward, data analysis, data quality 15 

Indexing Soil science research specialist 7 

Indexing 
Planning, Special Use Administration, 

NEPA document reviews, minerals administration 
28 

Indexing 

Manage and coordinate NEPA, Appeals, Litigation & FOIA (Review 

documents, provide advice, develop administrative records in the event of the 

litigation, convey policy & direction to the field) 

28 

Indexing Forest planning, hydropower re-licensing 29 

 

At each office, we introduced the users to the Metadata++ system in a training 

seminar the day prior to the actual user tests.  All but one of the participants attended the 

training session.  We began the training session with a group presentation that 

emphasized the objectives of the user study, and well as what the participants could 

expect during the study.  We showed them a demonstration of the system, followed by a 

question and answer session.  We then gave each user the opportunity to use the system 

and become familiar with the software.  Before the conclusion of the training session, 

each user filled out a demographic questionnaire regarding educational background, 

professional experience, and indexing and searching skills.  At the end of the session, we 

asked each user to choose a preferred role for the study: either an indexer or a searcher.  

Each user who expressed a preference between roles participated according to his or her 

preference.  The other users (who did not express a preference) where designated such 

that we had two indexers and two searchers at each of the two offices. 



  38      

      

We conducted each test session in a conference room containing the test 

participant, a moderator (the author of this dissertation), and three observers.  Each 

observer was a member of the research team with a different expertise (natural resource 

management, library science, and computer science).  The same moderator and observers 

participated in all of the user study sessions.    

Ideally, we would have conducted each session in the participant�s own 

workspace � but doing so was logistically impractical.  The coordinator at each office 

arranged for a computer in the conference room for testing purposes.  At both locations, 

we discovered technical problems with running the application on the office computer � 

including missing or out-dated operating system components.  We decided to use a laptop 

that we had prepared before-hand as a backup plan.  The laptop belongs to a team 

member from Denmark so the keyboard and operating system were set up for Danish 

users.  Several comments from test participants referred to the differences in the keyboard 

(compared to the keyboards they were familiar with).   

Each of the eight users participated in a two hour session during which he or she 

completed either two search tasks or two indexing tasks (as described above).  Each 

session began with a review of the system and an introduction to the tasks for that 

session.  Each of the four indexers received a hard-copy of the two documents to be 

indexed (one at a time) and was then asked to review the document and select the 

concepts they felt were important for that particular document.  They then used the 

Metadata++ system to select the keywords that best represented the concepts they had 

outlined for that document.  Each of the four searchers was given the same two search 

tasks (one at a time).  They received a written explanation of the task and were asked to 

review the task and outline the concepts they felt were important for that particular search 

task.  They then used the Metadata++ system to select the terms that best represented the 

concepts they had outlined for the search task.   

Each participant wore a microphone headset, and we instructed each participant to 

�think aloud� throughout the entire session [49,71].  Speaking one�s thoughts is quite 

unnatural � and the participants occasionally became quiet [15,56,71].  The moderator 

frequently reminded users to vocalize what they were thinking and why they were doing 

each action.  The remarks were recorded and later transcribed for further analysis.  In 
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addition to the audio recordings, each of the three observers made detailed written notes 

through each session.  In addition to written observations and verbal remarks, the 

application automatically logged each user action  [15].  Upon completion of both tasks, 

each user participated in a follow-up interview  [71].  During the interview, we asked 

specific questions regarding their use of the system, and they were invited to make 

additional comments. 

3.3 Test Results and Observations 

During the user tests, we gathered data in three ways: application log files, audio 

recording, and observers� written notes.  We later transcribed the audio files � and 

compiled the log files, transcribed audio, and observations into a single chronological 

transcription of each user test.  This compilation required timestamp adjustments to 

account for the differences between system clocks on the observer laptops, the test 

laptop, and the transcribed audio.  An excerpt of the compiled transcription is show in 

Table  3-3.  Combining data from a variety of methods gave us a clear understanding of 

what transpired  [15].  We used these transcriptions for further analysis, both quantitative 

and qualitative. 

Table  3-3: Excerpt of Compiled Transcription 

LOG 10:36:33 AM GetImplicitDocumentsAdvanced    [Biological reference points] 

LOIS 10:36:35 AM chooses gap analysis 

AUDIO 10:36:37 AM looking for something that refers to monitoring; gap analysis; especially for 
fisheries monitoring. 

TIM 10:36:42 AM Then, moved to something that referred to monitoring within aquatic 
monitoring: gap analysis, and fisheries monitoring. And looked at monitor � 

LOIS 10:36:45 AM looking for monitoring type things 

 

3.3.1 Usability 

The first objective of our user study was to evaluate system usability � meaning 

the users� level of understanding, interaction, and ease of use.  Though usability is largely 

subjective, we defined both qualitative and quantitative metrics for measuring usability.  

Qualitatively, we relied on user comments and feedback throughout the test and follow-

up interviews.  Our quantitative measure of usability consists of two parts: (1) the amount 

of interaction (based on application logs); and (2) the number of errors encountered by 
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the user.  When counting the number of errors, we included both application errors (bugs, 

crashes, etc.) and incidents where the system differed from user expectations.  We also 

counted the number of times users requested additional features in the application.   

Table  3-4: Summary of Interactive Action 

Action Indexers Searches Total 

Expand Term (Browsing Hierarchy) 98 83 181 

Find Term 119 36 155 

Get All Descendants 0 8 8 

Right-click (Browse Explicit Documents) 20 180 200 

Right-click (Browse Implicit Documents) 20 172 192 

Right-click (Browse Related Terms) 20 36 56 

Total 277 515 792 

 

Table  3-5: Summary of Errors & Requests 

Type Number

Application Errors 6

Incidents 15

Feature Requests 22

 

Table  3-4 summarizes the exploratory interactions based on data from the 

application logs.  Each of the actions listed in the table corresponds to an interaction 

described in Chapter  2.  Indexers averaged approximately 70 interactions, while searchers 

averaged approximately 130 interactions.  The overall average was 50 interactions per 

user per task.  These numbers illustrate that users did frequently interact with the system 

while performing the information tasks.  Table  3-5 summarizes the number of errors and 

feature requests.  The errors included things such as scroll bars not working and other 

issues with the application.  Incidents occurred when users thought something should 

happen a certain way, but the application did not respond according to their expectations.  

For example, one user expected to delete a search term by right-clicking (because right-

clicking to delete is common in many computer applications).  Another user was color 
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blind, so he could not distinguish between green (explicitly referenced) and blue 

(implicitly referenced) documents.  Several users requested additional features, such as 

saving search results for later use and canceling a Find Term request.  Overall, the 

quantitative measurements show a high level of user interaction and a low number of 

errors encountered by users.  Usability of the system can be qualitatively described with 

comments from users including: 

�[I] like synonyms and like [the] tree showing context. [I] like right-clicking.� 

�[I] likes the hierarchy but [I�m] not lost without it as [I am] used to not having it.� 

�I do like how [the search result] defines the term rather than a Google search which just comes up 

with a bunch of documents. Lot easier and better to sort through.� 

�I like the hierarchical system.  It works.� 

�Expand up and down is good. Management is different than specialists who want the detail, like 

an individual species.� 

�[Multiple Occurrences] helped me think about it in various ways.  It was easy to understand.� 

Our study indicates that users were able to understand the system and interact 

with it effectively.  Several comments were made regarding content of the hierarchy � 

particularly terms that users expected to find somewhere in the hierarchy but did not.  

Overall, we believe the system is usable and effectively assists the user in their 

information tasks. 

3.3.2 Multiple Occurrences 

In addition to usability, we also evaluated how well the user understood and used 

multiple occurrences (see Section  2.1.2.1.1).  Qualitatively, we reviewed user comments 

and feedback given during the user tests and follow-up interviews.  Our quantitative 

metric includes: (1) how often the user encountered multiple occurrences, and (2) how 

the user handled each multiple occurrence.  

During the various tasks, participants encountered a total of 657 unique terms 

with multiple occurrences.  The majority of these terms (78%) had exactly 2 occurrences, 

but several terms had 3 or more occurrences.  The maximum number of occurrences for a 

single term was 27.  The distribution of terms and the number of occurrences is illustrated 

in Table  3-6. 
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Table  3-6: Multiple Occurrences Encountered During the User Study 

Number of 

occurrences 

Distinct  
terms 

 

% 

2 513 78.0 

3 88 13.3 

4 24 3.6 

5 11 1.7 

7 7 1.1 

6 4 0.6 

8 2 0.3 

11 2 0.3 

14 2 0.3 

9 1 0.2 

10 1 0.2 

15 1 0.2 

27 1 0.2 

Total 657 100 

 

When presented with multiple occurrences, participants knowingly selected the 

paths that were most appropriate for the particular task.  In some cases, they selected a 

path, then later removed the path and selected a different occurrence of the same term � 

one that more accurately described the concept that they wanted to express.  Most often 

the different participants selected the same path to describe a concept, but in a few 

instances they selected different paths for the same concept.  User comments regarding 

multiple occurrences include: 

�Multiple occurrences may be confusing, but they point to new viewpoints� 

�The top term defines the meaning � visual reference� 

�[It�s] important to be able to distinguish between jargons� 

�People might interpret the organization [of multiple occurrences] differently. Not all will agree in the 
organization� 

The findings indicate that participants easily understood the differences between 

multiple occurrences of the same term based on the hierarchical path for each occurrence.  

The different perspectives and connotations of terms in Metadata++ were consistent with 

their domain knowledge � and the distinctions were considered to be important and 
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meaningful.  Although the participants occasionally disagreed on the organization of 

multiple occurrences, they understood and accepted the differences.  The participants also 

emphasized that multiple occurrences should represent clearly distinct connotations of the 

term.  In several cases the multiple occurrences of terms inspired the searchers to try out 

a variety of search terms for each searching task  [9].  Participants expressed how multiple 

occurrences illustrate viewpoints they had not previously considered � and provided ways 

to restrict or expand the search.   

3.4 Related Work 

As digital libraries become more prevalent, research regarding digital library 

evaluation is becoming more prolific.  Various studies have been reported with different 

goals in mind, ranging from log-based analysis of search behavior  [69] to holistic system 

design [15,71].  This section describes some other digital library evaluations and 

compares them to the Metadata++ user study. 

The Perseus Digital Library (PDL) project  [71] began in 1987 and is still a well-

known online resource for education within the humanities.  The original project proposal 

included an ongoing evaluation component targeted at evaluating the digital library with 

a specific emphasis on measuring the library�s affect on learning.  During its lifetime, the 

PDL has utilized a range of technologies.  It began as a HyperCard system distributed on 

compact disc, and later moved to the World Wide Web.  The evaluation component of 

the PDL project evolved along with the library itself.  During many years of evaluation, 

researchers used a variety of methods � including in-class observations, interviews with 

educators, participant observations, think alouds, transactions logs, and online surveys.  

The ongoing evaluation led to important conclusions about the PDL and its affect on 

learning; but also brought valuable knowledge and experience about digital library 

evaluation methodology.  Our user study has a significantly smaller scope than the PDL 

evaluation (a few days compared to more than a dozen years!), but we used several of the 

same methods and found them to be useful.    

The Alexandria Digital Library (ADL), a collaborative project involving the 

University of California at Santa Barbara and the University of Colorado at Boulder, 

extends traditional topic-based queries by combining spatial and temporal queries. 
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Buttenfield  [15] explains how evaluation is an important component of the entire system 

life cycle.  They performed a number of user evaluations at various stages of system 

design and deployment.  These evaluations involved methods similar to those used in our 

user study � including videotape (we used audio), automated logs, and exit surveys.  

Buttenfield states the importance of using multiple methods and combined data gathered 

from each method.  For example, combining audio or video from talk alouds with 

automated transaction logs allows you to compare what the users say they are doing with 

what they are actually doing.  This comparison often reveals users� misconceptions of the 

application.  Buttenfield describes another benefit of using convergent methods: 

comparing data from multiple methods lets you not only evaluate the digital library, but 

also evaluate the methods themselves.  When findings from one method confirm and 

substantiate findings from a different method, it builds confidence in the methods 

themselves.  We noticed similar findings during our study.  Combining observers� notes, 

audio transcriptions, and application logs reinforced our understanding an interpretation 

of what transpired during each user test. 

NewsLink is a manually indexed full-text database containing newspaper articles 

published since 1994 by a well-known Scandinavian newspaper.  Blomgren et al.  [10] 

report a study that focused on both the system perspective and the user perspective.  Their 

study included 20 participants who were all journalists employed by the newspaper.  The 

researchers used demographic questionnaires, search-analysis protocols, post-search 

interviews, and web surveys to collect data.  Blomgren et al. noticed a discrepancy 

between system-oriented results (including precision) and user-oriented results (including 

satisfaction).  Multiple users reported high satisfaction, even when the system reported 

poor precision.  Many users considered only the first document on the list as relevant � 

even when multiple documents were found.  The general consensus among users was that 

�the overall most important information sources are oral sources and the Internet,� and 

they only used NewsLink weekly (on average).  Our study had smaller scope and focused 

on usability.  We used similar evaluation methods and found high satisfaction among 

users. 

Nielsen  [86] reports a study focused on testing a semi-automatic word-association 

mechanism for thesaurus construction.  Rather than an evaluation of the entire digital 
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library, this study evaluated the thesaurus generated by the word-association method in 

comparison to an existing thesaurus constructed in a traditional manner.  Participants 

included twenty randomly selected researchers from the Research & Development 

department of a large pharmaceutical company.  These participants regularly use the 

control thesaurus as part of a digital library that contains drug-related information.  

During the test, participants completed three realistic search jobs using the same user 

interface as they typically use � only with the experimental thesaurus.  Data collection 

methods included questionnaires, observation, logging, and post-search interviews.  The 

study found only slight differences in satisfaction between the word-association thesaurus 

and the control thesaurus.  In both cases, users reported a need for the thesaurus during 

searching.  Our study focused on the overall usability of the application, and the features 

of the thesaurus, whereas this study focused on the content of one thesaurus in 

comparison to another.  Both studies used similar data collection methods � and both 

studies found that users like having a thesaurus to assist in query expansion.   

3.5 Summary 

We designed and conducted a user study to evaluate the usability of the 

Metadata++ Digital Library and determine how well users comprehend path-based terms.  

Users consisted of eight USDA Forest Service employees (four from each of two 

different offices).  Each user completed either two indexing tasks or two searching tasks.  

A moderator and three observers conducted each user study session and gathered data 

using automated logging, transcribed audio recording, and written observer notes.  The 

data show a high level of user interaction as well as a strong comprehension of path-

based terms for indexing and searching.  Overall, users gave a very positive response to 

the system and its usability within the natural resource management domain.   
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4 The Metadata++ Model 

This chapter formally describes and defines the Metadata++ conceptual model (as 

described informally in the description of the Metadata++ application in Chapter  2).  In 

Section  4.1, we discuss alternative model features that we considered during the course of 

our research, but excluded from the current Metadata++ conceptual model.  Section  4.2 

defines the current conceptual model using set theory and first-order logic.  In Section 

 4.3, we compare the Metadata++ model to other formal thesaurus models. 

4.1 Alternative Features 

Over the course of our research, we discussed and implemented several features 

that are not included in the current conceptual model.  This section describes these 

alternative features and explains why we exclude them from the current model. 

4.1.1 Properties vs. Terms 

During the early days of our project, we conceptualized terms, documents, and 

properties all as first-class objects  [111].  The associations and relationships in this model 

connected properties, terms, and documents to express metadata.  Associations were 

triples that related documents with properties and terms as illustrated in Figure  4-1.  For 

example, the document in the bottom right was authored by Parley Pratt � so an 

association (solid line) exists between the document, the AUTHOR property, and the 

term �Parley Pratt�.  The document in the bottom left was edited by Parley Pratt, so a 

different association exists between that document, the EDITOR property, and the same 

term (�Parley Pratt�).  An association could also be defined between terms � as illustrated 

by the �Willamette National Forest� term associated with the �McKenzie Ranger District� 

term by the SPATIAL CONTAINMENT property (because the ranger district is spatially 

contained within the national forest). 
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Figure  4-1 uses dashed lines to represent relationships, which are directed edges 

between properties.  For example, the AUTHOR property and the EDITOR property are 

both more specific instances of the CREATOR property � so the CREATOR property has 

outgoing (i.e., more specific) relationships to both EDITOR and AUTHOR.  The top-

level property is KEYWORD � of which all other properties are more specific 

descendants.  For example, the KEYWORD property is the parent of more specific 

properties including STUDY OF and LOCATION.  Any arbitrary number of properties 

could be introduced into the system using the hierarchical relationship among properties.  

Properties generalized typical metadata such as Dublin Core  [30] and provided a uniform 

way to associate terms with other terms and to associate terms with documents.  Over 

time, we discovered that this model was too complex for practical users.  It was tedious 

and unintuitive for users to select both properties and terms � because the term typically 

implied the property.  For example, McKenzie Ranger District is a place, so selecting 

�McKenzie Ranger District� as a keyword for a document implies that the document is 

relevant to that location (explicitly selecting the LOCATION property is unnecessary).  

Parley Pratt 
AUTHOR 

Willamette 

National Forest 

LOCATION 

Douglas Fir 

KEYWORD

Figure  4-1: Associated terms and related properties 

[Associations = solid line; Relationships = dashed line] 

McKenzie 

Ranger District 

EDITOR 

CREATOR 

STUDY OF 

CONTAINS 
SPECIES 

SPATIAL 
CONT. 
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We eventually unified properties and terms into a single hierarchy (as defined by the 

current Metadata++ model).  

4.1.2 User Perspectives 

We explored the possibility of allowing individual users the ability to construct 

their own individual hierarchies out of the same set of shared terms.  Each hierarchy, or 

perspective, could be entirely different from others.  Perspectives allowed users to 

organize a subset of terminology for their own use.   For example, Figure  4-2 illustrates 

four different user perspectives.  Parts (a) and (b) both consist of location terms 

(geographic place names) arranged in different hierarchies.  User 2 divided the location 

hierarchy into two branches, Authorizing Agency and Proposing Agency.  This 

distinction implied a particular meaning for a selected term � depending on which branch 

it was selected from (similar to explicit properties as explained the previous section).  

Parts (c) and (d) both show similar terms about air conditions, but the climatologist 

arranged the terms one way and the forester arranged the terms a different way.   

Perspectives allowed users to browse the terms in whatever way was convenient 

and intuitive to them � without being affected by how other users might choose to browse 

the same set of terms.  When creating their own perspective, each user (or type of user) 

would select terms from the same set of terms.  The terms existed independently of the 

perspective(s) in which they were found � so one term had the same meaning in every 

instance.  For example, parts (c) and (d) of Figure  4-2 both contain the term �smoke�.  

Regardless of where the term �smoke� appeared in each hierarchy, it was still the same 

term (i.e. �smoke� is �smoke�, regardless of how or where it is used).   

Documents were attached directly to terms � independent of perspectives.  So 

when the climatologist attached a document to the term �smoke� (because �smoke� is a 

keyword for the document), that same document would automatically appear beneath 

�smoke� in the forester perspective as well (even though the perspective contains �smoke� 

in a different location in the hierarchy). 
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Upon further investigation, we learned that users were not necessarily interested 

in creating their own personal perspectives � however they were interested in using their 

own subject-matter controlled vocabularies �as-is�.  As described in Chapter 1, each 

group of users has their own way of describing things.  Climatologists describe things 

differently than foresters.  By combining all of the controlled vocabularies into a single 

hierarchical structure, we accommodated the users� needs.  We also discovered that 

�smoke� is not necessarily �smoke� � that is to say that the same term within different 

(c) Climatologist Perspective
(d) Forester Perspective 

(a) Location Perspective (User 1)

(b) Location perspective (User 2)

Figure 4-2: User Perspectives
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vocabularies may have different connotations.  For this reason, we invented multiple 

occurrences (as described in Section  2.1.2.1.1).   

4.1.3 Templates 

Many document managements and digital libraries include templates for creating 

document metadata.  We explored various ways of integrating templates with the 

hierarchy of terms.  Although the Metadata++ application does prompt the author (or 

indexer) to select terms from �required� vocabularies (see Section  2.2.3), this feature is 

not fully defined and is not included in the formal conceptual model for Metadata++.  

4.2 Formalization of Model 

This section defines the current Metadata++ conceptual model using set theory 

and first order logic (with recursion).  The sets, axioms, and functions defined in this 

section work together to express a precise conceptualization of Metadata++. 

4.2.1 Sets 

The sets defined in this section constitute the fundamental domains with the 

Metadata++ formalization.   

T = finite set of terms 

D = finite set of documents 

The elements of set T are terms � words or phrases found in the various controlled 

vocabularies from the application domain.  An element in set T is just the term � it has no 

path or context.  The set D contains documents, and each document (regardless of file 

type, layout, format, etc.) has its own metadata including a collection of explicit 

keywords.  The sets T and D, by themselves, provide no structure, organization, 

metadata, or association of terms or documents; they are simply sets of terms and 

documents that exist within the system. 

N = finite set of nodes 

E = { (x,y) | x ∈  N ∧  y ∈  N ∧  x ≠ y }  
E ⊆  N × N 

M = { (x,y) | x ∈  N ∧  y ∈  (T ∪  D)}  

M ⊆  N × (T ∪  D)  
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The hierarchical structure of controlled vocabularies is defined by a directed 

acyclic graph of nodes, where each node maps to either one (or more) term(s) or a 

document.  N is a set of nodes � and E is a set of directed edges (ordered pairs of distinct 

nodes).  The set M defines a mapping � where each element is an ordered pair consisting 

of a node paired with either a term or a document.  Mapping nodes to terms defines the 

path (or context) for the term within the hierarchy.  For example, consider the small 

example illustrated in Figure  4-3 showing the path Air\air quality. 

T = {‘Air’, ‘air quality’} 

N = {n1, n2} 

E = {(n1, n2)} 

M = {(n1, ‘Air’),  (n2, ‘air quality’)} 

Figure  4-3: Example of Formalization 

Mapping nodes to terms also allows for terms to appear in more than one place in 

the hierarchy (multiple occurrences) and allows for a single node to map to multiple 

terms (polyterms).  Mapping nodes to documents allows the creation of explicit keywords 

(during indexing) by creating an edge from the term node (the node mapped to the term 

selected as a keyword for the document) to the document node (a node mapped to the 

document).  For example, suppose an indexer selects a particular path-based term as a 

keyword for a document.  The system would first create a new node and establish a 

mapping from the new node to the document.  The system would then determine the node 

that maps to that particular path-based term, and create an edge from that node to the 

newly created node (which maps to the document). 

The set S and the set R both contain ordered pairs of distinct nodes � representing 

synonymy and association (i.e., related terms), respectively.  It is important to note that 

both sets use nodes, not terms, because terms by themselves cannot be related; only nodes 

within the hierarchy can be related. 

S = { (x,y) | x ∈  N ∧  y ∈  N ∧  x ≠ y } 
S ⊆  N × N 

R = { (x,y) | x ∈  N ∧  y ∈  N ∧  x ≠ y } 
R ⊆  N × N 
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4.2.2 Predicates 

This section defines predicates that are used in axioms and functions defined in 

the following sections.  The first seven predicates defined in this section are only for 

syntactical convenience and correspond to the sets defined in the previous section.  For 

example, Predicate  4-1 is true if and only if x ∈  T.   

Predicate  4-1: x is a term 

T(x) ≡ x ∈  T   

Predicate  4-2: x is a document 

D(x) ≡ x ∈  D 

Predicate  4-3: x is a node 

N(x) ≡ x ∈  N 

Predicate  4-4: Edge exists from node x to node y 

E(x,y) ≡ (x,y) ∈  E 

Predicate  4-5: Node x is mapped to y 

M(x,y) ≡ (x,y) ∈  M 

Predicate  4-6: Node y is synonym of node x 

S(x,y) ≡ (x,y) ∈  S 

Predicate  4-7: Node y is related to node x 

R(x,y) ≡ (x,y) ∈  R 

Predicate  4-8: Node x is an ancestor of node y 

A(x,y) ≡ E(x,y) ∨  (∃ z E(x,z) ∧  A(z,y)) 

Predicate  4-8 is true if and only if node x is an ancestor of node y � meaning that, 

starting at node x, directed edges exist that will lead to node y.  This predicate is 

important in the axioms defined in the next section � specifically for preventing cycles 

within the graph.  
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Predicate  4-9: TermMatch 

TermMatch(s,t): s is a string, t ∈  T 

true: if the text of term t contains string s; 

 false: otherwise; 

Predicate  4-10: DocumentMatch 

DocumentMatch(t,d): t ∈  T, d ∈  D 

true: if the text of term t is found in the 

content of document d; 

false: otherwise; 

Metadata++ uses the TermMatch predicate when finding terms that match a 

specified search string and Metadata++ uses the DocumentMatch predicate to 

determine if the text of a particular document contains a specific term.  

DocumentMatch provides a full-text search of the document and might be 

implemented using any full-text indexing engine.  (We used Microsoft® Index Server as 

explained in Chapter 5.)  Both TermMatch and DocumentMatch use just the term 

itself without regard to nodes or paths. 

4.2.3 Axioms 

The axioms defined in this section limit how the elements in each set relate to one 

another.  The axiom definitions use predicates defined in the previous section. 

Axiom  4-1: Terms, Documents, and Nodes are disjoint 

(T ∩ D = ∅ ) ∧  (T ∩ N = ∅ ) ∧  (N ∩ D = ∅ ) 

The first axiom specifies that the sets of terms, documents, and nodes are all 

disjoint.  A term cannot also be a document, nor can a document be a term.  A node 

cannot be a term or a document. 

Axiom  4-2: All nodes have an edge 

∀ x N(x) → ∃ y E(x,y) ∨  E(y,x) 

Axiom  4-3: All nodes have at most one incoming edge 

∀ x∀ y∀ z E(x,y) ∧  E(z,y) → x = z 
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Axiom  4-4: No node is an ancestor of itself 

∀ x∀ y A(x,y) → x ≠ y 

Metadata++ restricts the directed graph (defined by the nodes in set N and the 

edges in set E) to be a forest (i.e., hierarchy).  Axiom  4-2 specifies that every node must 

participate in at least one edge.  This axiom prevents nodes that are disconnected from the 

rest of the graph.  Axiom  4-3 states that a node can have at most one incoming edge � a 

node cannot have more than one parent node.  Forcing nodes to have at most one 

incoming edge does not completely eliminate the possibility of cycles.  If every node had 

exactly one incoming edge and exactly one outgoing edge, the graph would be cyclic.  

Axiom  4-4 eliminates cycles by preventing any node from being an ancestor of itself.  

These axioms work together to properly define the hierarchy within Metadata++. 

Axiom  4-5: All nodes have at least one mapping 

∀ x N(x) → ∃ z M(x,z) 

Axiom  4-6: All terms have at least one mapping 

∀ x T(x) → ∃ z M(z,x) 

These axioms place necessary restrictions on the mapping between nodes and 

terms.  Axiom  4-5 requires that every node must have at least one mapping and Axiom 

 4-6 requires that every term must have at least one mapping. 

Axiom  4-7: Nodes mapped to documents may not have outgoing edges 

∀ x∀ y D(x) ∧  M(y,x) → (∀ z ¬E(y,z))  

Axiom  4-8: Nodes mapped to documents must have an incoming edge 

∀ x∀ y D(x) ∧  M(y,x) → (∃ z E(z,y)) 

Axiom  4-9: A node mapped to a document may map only to that document 

∀ n∀ x∀ y D(x) ∧  M(n,x) ∧  M(n,y) → x = y 

These axioms place additional restrictions on nodes that map to documents.  

Specifically, a node mapped to a document must be a leaf (Axiom  4-7) and must have a 

parent (Axiom  4-8).  Axiom  4-9 states that a node mapped to a document maps only to 

that document; that node cannot also map to other documents or terms.  Axiom  4-9 also 

states that, when a single node is mapped to two different elements, both of those 
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elements must be terms.  This axiom supports polyterms (i.e., �mooring pile, dolphin, 

buoy�) � where multiple terms are all mapped to the same node.  It is important to note 

that multiple nodes may map to the same term (multiple occurrences) and multiple nodes 

may map to the same document (i.e., multiple keywords for the same document). 

Axiom  4-10: Only terms may be synonymous  

∀ x∀ y S(x,y) →  
((∃ z M(x,z) ∧  T(z)) ∧  (∃ w M(y,w) ∧  T(w))) 

Axiom  4-11: Only terms may be related 

∀ x∀ y R(x,y) →  
((∃ z M(x,z) ∧  T(z)) ∧  (∃ w M(y,w) ∧  T(w))) 

Axiom  4-10 and Axiom  4-11 state that only nodes mapped to terms (not nodes 

mapped to documents) can be synonymous or related.  As explained in Section  2.1.2, 

synonyms and related terms are not assumed to be symmetric or transitive. 

4.2.4 Functions 

This section formally defines the functions in the Metadata++ model using set 

theory, recursive first-order logic, and the predicates defined in Section  4.2.2.  These 

functions are logically divided into groups: browsing functions (for exploring the 

hierarchy), metadata functions (for obtaining metadata about individual documents), and 

searching functions (for executing document searches). 

4.2.4.1 Browsing Functions 

Several functions work together to provide the browsing functionality within 

Metadata++.  These functions are defined as follows: 

Function  4-1: GetRoots: ∅∅∅∅  → Powerset(N) 

GetRoots() = { m | ∄n E(n,m) } 

Function  4-2: GetChildNodes: N → Powerset(N) 

GetChildNodes(n) = { m | E(n,m) } 

Function  4-3: FindTerms: string → Powerset(N) 

FindTerms(s) =  

{ n | ∃ t M(n,t) ∧  T(t) ∧  TermMatch(s,t) } 
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Function  4-4: NodeTerms: N → Powerset(T) 

NodeTerms(n) = { t | M(n,t) ∧  T(t) } 

The GetRoots function returns all top-level nodes (i.e., nodes without parents).   

The GetChildNodes function returns a set containing the child nodes of the specified 

node.  The FindTerms function finds all nodes which map to terms that match a 

specified string.  This function helps the user to find terms that may be of interest by 

typing a word or phrase and searching for terms that contain that word or phrase instead 

of manually browsing the hierarchy and looking for matching terms.  As described in 

Section  5.1.1, the FindTerms function must execute efficiently because its scope 

includes the entire set of terms (and their associated nodes) in the hierarchy.  The 

NodeTerms function finds all terms that map to a particular node.  This function is 

especially important when working with polyterms; the application can determine which 

term(s) map to the current node in the hierarchy using NodeTerms.   

Function  4-5: MultipleOccurrences: N → Powerset(N) 

MultipleOccurrences(n) =  

{ m | (∃ t M(n,t) ∧  M(m,t) ∧  T(t)) ∧  m ≠ n } 

Function  4-6: GetRelatedNodes: N → Powerset(N) 

GetRelatedNodes(n) =  

{ m | m ∈  MultipleOccurrences(n) ∨  

       S(n,m) ∨  R(n,m)} 

The MultipleOccurrences function returns a set of nodes that map to the 

same term as the specified node.  The application uses this function when the user wants 

to see all locations of the same term within the hierarchy.  It is important to note that a 

multiple occurrence of a term might also be a polyterm. For example, consider the term 

dolphin as explained in Section  2.1.2.1.2).  Two different nodes map to the term dolphin, 

one under Habitat Elements and one under Mammals, and the first occurrence of dolphin 

is also a polyterm (mooring pile, dolphin, buoy).  The GetRelatedNodes function 

returns a set of nodes that are in some way related to the specified term � either a multiple 

occurrence, a synonym, or a related term.  While browsing the hierarchy, the user may 

choose to see all of the terms related to the current term.  Metadata++ uses the 
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GetRelatedNodes function to determine which nodes (and terms) should be 

displayed to the user. 

4.2.4.2 Metadata Functions 

The functions defined in this section provide functionality for obtaining document 

metadata � showing how documents are related to terms in the hierarchy. 

Function  4-7: GetExplicitDocuments: N → Powerset(D) 

GetExplicitDocuments(n) =  

{ d | ∃ m E(n,m) ∧  M(m,d) ∧  D(d) }  

Function  4-8: GetImplicitDocuments: N → Powerset(D) 

GetImplicitDocuments(n) =  

{ d | ∃ t M(n,t) ∧  D(d) ∧  DocumentMatch(t,d) 

      ∧  d ∉  GetExplicitDocuments(n) } 

During browsing and searching, Metadata++ shows the user a list of documents 

that are either implicitly related or explicitly related to the current term.  When an author 

or librarian selects a term as a keyword for a document, the system creates a new node 

(that maps to the document) and a new edge between the node of the current term and the 

new document node. The GetExplicitDocuments function will return documents 

that are mapped to by child nodes of the specified node (the node mapped to the current 

term).  The set returned by GetExplicitDocuments is unordered � so the order in 

which the application lists the explicit documents has no significance. 

The GetImplicitDocuments function shows a list of documents that contain 

the term.  The GetImplicitDocuments function will only return documents that are 

not explicitly related to the term.  So if the document is explicitly related to the current 

term, then it will not be listed as an implicit document � regardless of whether or not the 

document contains the term.  The GetImplicitDocuments function properly 

handles polyterms; it will return documents that contain any of the terms that map to the 

current node.  The formal definition of GetImplicitDocuments does not imply any 

specific order to the documents returned by the function.  However, in practice, the 
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application returns the implicit documents in order of ascending rank as determined by 

the full-text document indexing engine. 

Function  4-9: GetDocumentKeywords: D → Powerset(N) 

GetDocumentKeywords(d) = { n | ∃ m M(m,d) ∧  E(n,m) } 

In contrast to the GetExplicitDocuments function (which returns one or 

more documents explicitly related to the current term), the GetDocumentKeywords 

function returns all nodes explicitly related to the specified document.  Each node 

returned by this function maps to term(s) that represent document keywords, i.e., terms 

selected by an author or librarian during indexing.   

4.2.4.3 Search Functions 

In addition to browsing and metadata function, the Metadata++ model includes 

various functions for executing searches.  Searches are specified by the user selecting one 

or more search terms from the hierarchy � not by entering a free-text query.  The 

functions defined in this section accept or return sets of nodes.  The implemented system 

represents nodes as paths, so a set of nodes returned by these functions is represented as a 

set of paths which are displayed within context of the hierarchy.  

Function  4-10: GetDescendants: N → Powerset(N) 

GetDescendants(n) = { m | A(n,m)} 

When a search result is displayed to the user, he or she may (optionally) expand 

the search by including all narrower terms.  The GetDescendants function uses 

recursion to find all nodes that are descendants of the specified node.  If the user chooses 

to add all descendants to a specified search term, the system uses this function to find all 

of the nodes (mapped to terms) that are descendents of the specified node.  As described 

in Section  5.1.2, the GetDescendants function must work efficiently because it may 

be searching an arbitrarily large branch of the hierarchy.   

Function  4-11: DocNodes: Powerset(N) → Powerset(N) 

DocNodes(X) = { n |  ∃ w n ∈  X ∧  M(n,w) ∧  D(w) } 

Function  4-12: DocSet: Powerset(N) → Powerset(D) 

DocSet(X) = { w | ∃ n n ∈  X ∧  M(n,w) ∧  D(w) } 
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The DocNodes function will return only those nodes (from the input set) that 

map to documents.  When the user is searching for documents within the hierarchy, it is 

useful to remove those terms that are not related to any documents.  This function is 

particularly useful in dense areas of the hierarchy � where a particular node might have 

hundreds or thousands of child nodes, but relatively few of those child nodes are 

explicitly related to documents.  In addition to viewing documents within context of the 

hierarchy, the user may also choose to view a simple list of documents.  The DocSet 

function will take a set of nodes and return a set of documents mapped to by nodes in the 

input set.   

Most systems support compound searches by allowing the use of Boolean 

operators to combine searches.  Metadata++ also supports Boolean operators, with some 

differences compared to traditional set-based Boolean operators  [7].  All of the functions 

defined in this section are binary operations � they take two separate sets of nodes as 

input and produce a set of nodes. 

Function  4-13: Union: Powerset(N) × Powerset(N) → Powerset(N) 

Union(X,Y) = { n | n ∈  X ∨  n ∈  Y }  

This function is the simplest operator for doing compound searches � it is simply 

the union of two trees.  Any node that is in either (or both) of the input trees is also in the 

output tree.  If the user wants to search for �term_x or term_y� then they will see the 

results of both searches combined into one hierarchy. 

Function  4-14: Intersection: Powerset(N) × Powerset(N) → Powerset(N) 

Intersection(X,Y) =  

{ n | (n ∈  X ∨  n ∈  Y) ∧  ∃ z M(n,z) ∧   

      (T(z) ∨  (z ∈  DocSet(X) ∧  z ∈  DocSet(Y)))}  

When a user searches for �term_x and term_y�, Metadata++ needs to do more 

than just intersect the set of nodes.  Instead, the system will use the Intersect 

function to return both sets (as with the Union function), but only with the nodes that 

map to documents that are mapped to by one (or more) node(s) in both input sets.  If a 

document was found in the search result of �term_x� and the same document was also 

found in the search result of �term_y�, then that document will still appear in place as 
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related to term_x and it will also still appear, in place, as related to term_y.  This function 

allows the user to retain the context of the search while removing those documents that 

are not related to both search terms.   

Function  4-15: Difference: Powerset(N) × Powerset(N) → Powerset(N) 

Difference(X,Y) =  

{ n | n ∈  X ∧  ∃ z M(n,z) ∧   

(z ∈  DocSet(X) ∧  z ∉  DocSet(Y)) } 

The Difference function will retain only those documents (along with 

associated terms) that are in the first tree, but are not in the second tree.  The structure of 

the first tree remains the same � except all documents found in the second tree are 

removed. 

4.2.4.4 Display Functions 

Function  4-16: GetPath: N → List(N) 

GetPath(n) = { x1,x2,...,xk | x1 ∈  GetRoots() ∧  

         (∀ i,1 ≤ i ≤ k-1, E(xi,xi+1) ∧  n = xk )}  

 The GetPath function returns the full path (as an ordered list of nodes) for any 

node in the hierarchy.   

Most of the functions defined previously utilize sets of nodes either as input, as 

output, or as both input and output.  These sets of nodes contain arbitrary nodes from the 

set N; for example, they might be selected by the user during indexing or searching, or 

they might be returned by the FindTerms function.  These sets of nodes contain only 

those nodes pertinent to the particular situation.  For example, the FindTerms function 

may return a set containing two nodes, one that is three levels down in one vocabulary, 

and another that is four levels down in a different vocabulary.  Before displaying this set 

of two nodes, Metadata++ first computes the proper prefix with respect to the original 

hierarchy.  Because the original hierarchy is a forest (as defined by graph theory), every 

node has a unique simple path from a root node.  The proper prefix includes each 

specified node, along with all nodes in the corresponding unique simple path leading to 

each specified node.  Computing and displaying the proper prefix of any set of nodes 
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provides a consistent and meaningful visualization for the user.  The proper prefix is 

faithful to the original hierarchy and consistently retains the structure of each controlled 

vocabulary.  Whether finding terms, browsing term relationships, selecting keywords 

during indexing, interactively expressing searches, or viewing search results, the user is 

always �living in the hierarchy�.   

Function  4-17: GetProperPrefix: Powerset(N) → (Powerset(N),Powerset(E)) 

GetProperPrefix(Nx) = ( NF, EF ) where 

  NF = { m | m ∈  Nx ∨  (∃ z A(m,z) ∧  z ∈  Nx)} 

  EF = { x,y | x ∈  NF ∧  y ∈  NF ∧  E(x,y) } 

 The GetProperPrefix function returns the minimal set of nodes and edges 

that represent the proper prefix of the input nodes with respect to the original hierarchy.  

The set NF contains all of the input nodes, as well as all of the ancestors of the input 

nodes.  The set EF contains all of the edges that touch any two nodes within the set NF.  

Like the original sets N and E, the sets NF and EF jointly define a forest.  Axiom  4-2, 

Axiom  4-3, and Axiom  4-4 restrict the original hierarchy (defined by the sets N and E) to 

a forest by enforcing that all nodes have at least one edge and no more than one incoming 

edge, and preventing any node from being an ancestor of itself.  As defined by graph 

theory, any sub-graph of a forest is also a forest.  Thus the output of 

GetProperPrefix is guaranteed to also be a forest. 

In order for (NF, EF) to be a proper prefix of (N, E), all root nodes in (NF, EF) 

must also be root nodes in (N, E).  By definition, the set NF includes all of the input 

nodes, as well as all ancestors of each input node.  Every node in set N is either a root or 

has an ancestor that is a root.  Therefore, NF includes all of the root nodes from the set N 

that are either input nodes themselves, or the ancestor of one or more input nodes.  Since 

the set EF contains no edges that do not exist in E, a node cannot be a root in (N, E) but a 

non-root in (NF, EF).  Given that all roots in (NF, EF) are also roots in (N, E), it follows 

that the rooted paths (paths starting at a root node and following zero or more edges) in 

(NF, EF) are also rooted paths in (N, E), since by definition NF ⊆  N and EF ⊆  E. 
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4.3 Related Work 

Many knowledge-based information retrieval systems use either thesauri or 

ontologies for knowledge organization.  This section compares the Metadata++ 

conceptual model to thesaurus-based models and ontology-based models. 

4.3.1 Thesaurus Models 

Research spanning four decades focuses on the definition and review of thesaurus 

models in information retrieval [35,101].  Many modern systems adhere to the NISO 

standard for thesaurus construction  [3].  These systems typically define their conceptual 

model in terms of RDF  [119].  Authors at the World Wide Web Consortium reviewed 

 [77] the thesaurus-based conceptual models  [77] of several different systems 

[21,18,41,43,72,107].  This section will compare the Metadata++ to the same criteria 

used by Miles and Matthews  [77] � to provide an overall review of how Metadata++ 

compares to the other systems described in that review. 

Metadata++ uses a �concept-based� approach � where nodes in the set N 

correspond to concepts.  A node in Metadata++ is defined only by its path, there is no 

explicit definition.  In the �concept-based� approach, relations exist between concepts, 

and concepts are labeled by terms.  The alternative is a �term-based� approach � where 

terms are the only entities and participate in relationships directly.  A �term-based� 

approach would prevent important features, such as multiple occurrences (where multiple 

nodes map to the same term).   

Some systems [18,107] allow the classification of terms according to top-level 

facets or categories � such as �object�, �people�, �properties�, and so forth.  The 

Metadata++ model does not have any predefined categories for the classification of 

terms.  However, the metadata expert may create whatever nodes are necessary to 

properly organize the various controlled vocabularies within the hierarchy.  For example, 

in the natural resource domain, we created approximately twenty eight top-level nodes 

that correspond to the different subject areas  [107].  Additional top-level nodes (similar to 

facets) can be created as necessary, and each of these nodes contains one or more 

controlled vocabularies. 
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The NISO thesaurus standard  [3] defines a fixed list of relationships � including 

BT (broader term) and NT (narrower term).  In addition to BT and NT, the standard 

further specifies more specific types of hierarchical relationships, such as BTP/NTP 

(broader/narrower term partitive) which indicate part-whole relationships.  For example, 

the term �central nervous system� would be related to the term �nervous system� using the 

BTP relationship � because the central nervous system is one part of the whole nervous 

system.  In Metadata++, the edges in the set E represent all of the standard NT (narrower 

term) relationships (NT, NTP, NTI, �).  Metadata++ does not have any specific 

semantics when establishing narrower term relationships � other than representing the 

terms �as-is� in the controlled vocabularies. 

Of the systems compared by Miles and Matthews  [77], only a few support multi-

lingual thesauri.  Multi-lingual functionality is outside the scope of our project and is not 

currently accommodated by the Metadata++ model.  However, Metadata++ does support 

inter-thesaurus mapping � where each of the source controlled vocabularies is considered 

a thesaurus and relationships may exist between nodes that map to terms in different 

vocabularies.  So each language could have a thesaurus represented as a separate 

vocabulary in Metadata++.  All but one of the systems compared by Miles and Matthews 

 [77] use RDF to formally define the model.  Metadata++ uses set theory and first order 

logic to formally define the conceptual model. 

Polyhierarchies, as defined by the thesaurus standard, occur when a single 

concept is logically related to two (or more) different broader concepts.  For example, 

�piano� is both a �stringed instrument� and a �percussion instrument� � so it would be a 

child of both terms.  In this case, it is still the same concept; but it is related to multiple 

broader concepts.  When two different concepts have the same label (i.e., homonyms), 

the thesaurus standard recommends using parenthetical qualifiers.  For example, the 

standard might suggest using the terms �Riparian (aquatic biology)� and �Riparian 

(watershed management)�.  Metadata++ unifies polyhierarchies and parenthetical 

qualifiers by using the entire path to distinguish between the different meanings or 

connotations of the same term (see Section  2.1.2.1.1).   
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4.3.2 Ontology Models 

Some systems use class-based structures or ontologies to store and utilize 

knowledge.  Using an ontology definition language, such as OWL  [121], supports the 

definition of specific constraints on the conceptual model � such as forcing each concept 

to have exactly one preferred term  [77].  This section compares Metadata++ to several 

ontology-based systems. 

Staab et al.  [103] present semantic community web portals based on the 

Ontobroker  [23] system.  Their approach focuses on a single ontology that represents the 

shared knowledge of the community.  Concepts are explicitly represented in the ontology 

and documents are related to concepts.  The ontology is defined in F-Logic  [64].  The 

query capabilities of the semantic portal include predefined queries, an ontology browser, 

and explicit F-Logic queries.  Instead of mapping labels to pre-defined concepts, 

Metadata++ represents existing controlled vocabularies �as-is�.  The nodes and edges in 

Metadata++ imply no specific semantic meaning � other than to represent the hierarchical 

structure of the controlled vocabulary.  Metadata++ emphasizes path-based terms, where 

the entire path is used to distinguish connotation instead of a single concept. 

Ambite et al.  [2] use an ontology-based approach in the Digital Government 

Research Center (DGRC) Energy Data Collection (EDC) project.  Multiple domains are 

accommodated by mapping each domain to an existing reference ontology � as opposed 

to mapping directly between domains.  Metadata++ accommodates controlled 

vocabularies from different sub-domains by integrating all vocabularies into the same 

hierarchy.  Multiple occurrences (the same term in different locations) are implicitly 

related by the system � so an explicit relationship is unnecessary.  Domain experts may 

create relationships between any nodes in the hierarchy � which eliminates the need to 

create and maintain a reference ontology.   

Weinstein  [117] uses an ontology focused on bibliographic concepts to generate 

and search metadata from Machine Readable Cataloging (MARC) records.  These 

records contain bibliographic information � often redundant in similar works.  For 

example, if Parley Pratt wrote many books, the string value �Parley Pratt� in each record 

would be redundant.  By making the values explicit, redundancy is eliminated.  

Bibliographic relations become explicit and can be utilized in intelligent searches.  
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Weinstein�s approach uses a predefined ontology designed specifically for bibliographic 

data.  The concepts are related with a predefined set of relationships with specific 

semantic meaning.  Metadata++ is similar to Weinstein�s approach in that keywords 

(terms associated with documents) are represented explicitly, which eliminates 

redundancy and improves performance when viewing documents while browsing the 

hierarchy.  Although the current Metadata++ system is targeted towards the natural 

resource domain, the model could be applied to other domains. 

Motta et al.  [79] take a holistic approach to document enrichment based on an 

ontology.  They focus on carefully defining the ontology to meet the needs of the users.  

Instead of annotating documents with metadata, they try to populate the ontology with 

documents.  While it is important to represent controlled vocabularies �as-is�, 

Metadata++ does not require that the hierarchy be static.  Instead of focusing on 

designing the ontology completely and correctly the first time, Metadata++ allows terms 

to be created and related as you go along.  When a new term is created and added to the 

hierarchy, it can be related to existing terms � reducing the need to re-create metadata for 

existing documents in reference to the new term. 

The Simple HTML Ontological Extensions (SHOE) project  [48] allows users to 

annotate web pages with metadata based on one or more ontologies.  The project includes 

an editor that facilitates annotating exist web pages.  SHOE uses metadata that is stored 

within web pages.  The metadata is read by a crawling agent and used to answer queries.  

Because SHOE is an extension to HTML, it is focused primarily on HTML documents.  

Metadata++ makes no stipulations about what type of documents can be used in the 

system.  The relationships between documents and terms (i.e. keywords) are stored 

explicitly outside of the document itself. 

Chung et al.  [21] apply sophisticated statistical algorithms to infer relationships 

between terms automatically extracted from an existing domain.  Their focus is 

implementing the algorithms to efficiently process very large domains.  Metadata++ is 

not designed to automatically infer relationships between terms.  Instead, Metadata++ 

represents existing controlled vocabularies �as-is� � preserving the exact structure of the 

vocabulary as defined by the domain.  Admittedly, our approach focuses on vocabularies 
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within a particular domain (e.g. natural resource management) and may not be applicable 

for a generic web-based search engine. 

4.4 Summary 

This chapter describes alternative model features that we considered during the 

early stages of our research and formally defines the current Metadata++ model using set 

theory and recursive first-order logic.  The formalization consists of sets, predicates, 

axioms, and functions that define the hierarchy as a forest as described in graph theory.  

The formalization prescribes an exact definition of the functionality of the Metadata++ 

model and provides a formal specification for any implementation. 
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5 Building an efficient path-based storage and retrieval system 

A key component of the Metadata++ digital library system is an efficient path-

based storage and retrieval mechanism that supports the functions formalized in the 

previous chapter.  This chapter describes four different approaches that we implemented 

and evaluated during the course of our research  [113].  Clearly defined functional 

requirements enabled us to select the implementation method that 

most efficiently supports the Metadata++ application.  For 

simplicity, the illustrations and explanations in this chapter will 

use a small portion of the Metadata++ term hierarchy as illustrated 

in Figure  5-1. 

5.1 Functional Requirements 

The overall objectives for the path-based storage and 

retrieval system within Metadata++ are scalability and �real time� 

interaction as perceived by the user.  The system is expected to 

support many thousands (105) of terms, and thousands (104) of documents (a moderate 

requirement when compared to the 109 documents indexed by modern web search 

engines).  When the user interacts with the system, he or she expects to receive a timely 

response (within a couple of seconds).  Lengthy delays make the system difficult to use 

and users quickly lose interest.  This section describes the three challenges in building a 

responsive system based on a large hierarchy of path-based data. 

5.1.1 FindTerms 

The system uses the FindTerms function (Function  4-3) to find one or more 

terms given a specified string value.  Instead of manually browsing the entire hierarchy to 

find the desired term, the user may type in a string � such as �Ozone�.  The FindTerms

Places 

   USFS 

   BLM 

Forestry 

   Agriculture 

   Botany 

   Silviculture 

Air 

   Air quality 

      Air pollution 

      Ozone 

Figure  5-1: 
Example Hierarchy 
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function will return all terms that contain the specified string.  The FindTerms function 

must efficiently complete two potentially time-consuming tasks: (a) traverse the entire set 

of nodes, and (b) perform a regular-expression-based string comparison for each node.  

Because this function must traverse the entire set of nodes (unlike most of the functions 

defined in Section  4.2.4), its performance is directly related to the number of nodes � and 

its execution time is a key component in the overall efficiency of the system.    

5.1.2 GetDescendants 

While searching for documents, the user may choose to expand a search by 

automatically including all documents related to any descendant of the current search 

term.  For example, a search for Mammals might include documents related to beavers 

because the term Beavers is a descendant of the term Mammals.  The 

GetDescendants function (Function  4-10) finds all of the descendants of a given 

term.  This function may potentially traverse a large number of nodes � depending on the 

starting node and the breadth and width of the hierarchy.  An efficient implementation of 

the GetDescendants function is essential to the overall efficiency of the system. 

5.1.3 Concurrent Modifications 

In addition to efficiently implementing the functions described above, the system 

must also support concurrent modifications.  These modifications are write operations 

that include: 

•  authors or librarians adding new documents to the system 

•  authors or librarians creating metadata (including explicit keywords) for documents 

•  librarians managing the hierarchy of vocabularies (including adding and removing 

terms) 

Because of the distributed nature of the application, two (or more) users may 

attempt modifications concurrently.  For example, a botanist may be adding new species 

to the vegetation taxonomy at the same time that a wildlife biologist may be adding new 

species of fish.  As with a relational database, the system must correctly, and 

responsively, receive and store all modifications. 



  69          

        

5.2 Multiple Implementations 

This section explains four different approaches for implementing a path-based 

hierarchy that supports the functional requirements explained in the previous section.  

The implementations described here include various combinations of relational database 

tables, XML, and file system technology.  The following section (Section  5.3) outlines 

the performance for each alternative. 

5.2.1 Parent-Child Binary Relation 

The simplest approach uses a relational database table that represents a binary 

relationship between nodes � one row in the table for each parent-child relationship.  This 

approach (illustrated in Figure  5-2) is similar to the edge relation described by Deutsch et 

al.  [28] and Florescu and Kossmann  [39].  It is important to note that this approach (as 

well as the next two approaches) actually uses nodes that map to a separate table of 

terms.  The figure shows the actual text of the term (instead of the node identifier) to 

improve readability.   

This approach is functional, but fails in terms of scalability and performance.  

Because each parent-child relationship is a separate row in the table, executing the 

GetDescendants function (e.g., to do a search or display the hierarchy to the user) 

requires an additional query for each level of the hierarchy (or a recursive query if 

supported by the relational database system).  

Even with relatively few terms (e.g., 102 

terms), the performance of the 

GetDescendants function is noticeably 

slow.  The FindTerms function also 

performs slowly.  It does not take long to 

find the matching terms (exact match or 

wildcard) � the majority of the time is spent 

finding the ancestors in order to return the 

precise location in the hierarchy.  For 

example, suppose the user searched for the 

string �ozone�.  An index lookup and string 

CHILD PARENT

Evaporation Weather

Air pressure Weather

Weather Air

Ozone Air quality

Air pollution Air quality

Air quality Air

Silviculture Forestry

Botany Forestry

Agriculture Forestry

BLM Places

USFS Places

Figure 5-2: Parent-Child Binary Relation
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comparison would quickly find the row containing the term Ozone; but three successive 

queries (or a single recursive query) would be required to compute the full path (Air\Air 

quality\Ozone). 

Despite poor query performance, adding or deleting leaf nodes is very efficient � 

simply add rows or delete rows from the relation.  For example, if we wanted to add Acid 

Rain as a child of Air quality, we would simply add a new row to the table with the 

corresponding values.  Modifying internal (non-leaf) nodes requires more time to 

correctly process the affected sub-trees.  For example, deleting the branch rooted at Air 

quality would require recursive queries that delete multiple rows.  The underlying 

database management system supports concurrent updates to the hierarchy. 

5.2.2 Breadth-first Path Relation 

Our second implementation also uses a relational database, but includes a more 

novel approach for storing the hierarchy (similar to Dietz�s numbering scheme  [60]).  

Instead of storing the hierarchy as a set of parent-child relationships, a structure is used 

Air\Weather\Evaporation 14 

Air\Weather\Air pressure 13 

Air\Air quality\Ozone 12 

Air\Air quality\Air pollution 11 

Air\Weather 10 

Air\Air quality 9 

Forestry\Silviculture 8 

Forestry\Botany 7 

Forestry\Agriculture 6 

Places\BLM 5 

Places\USFS 4 

Air 3 

Forestry 2 

Places 1 

PATHID

Figure  5-3: Breadth-first Path Relation



  71          

        

based on the breadth-first ordering of the tree.  Each node of the tree is stored � in 

breadth-first order � with its full path in the hierarchy (as illustrated in Figure  5-3).  (As 

noted previously, the path is actually stored using term identifiers, but the figure shows 

the term text for improved readability).  The hierarchy can be constructed using a single 

SQL query (�select PATH from HIERARCHY order by ID�)  The results of the query 

will return each path in the tree in breadth-first order � so the user interface can easily 

construct the appropriate tree structure based on the paths returned.   

This approach offers a great improvement over the previous approach when 

executing the GetDescendants function.  The nodes in the GetDescendants can 

be determined by matching the prefix of each path � and the structure of 

GetDescendants can be created by re-building the tree in breadth-first order.  This 

implementation requires only a single SQL query � instead of several SQL queries or 

expensive joins.  For example, suppose we want to get all descendants of the term Air.  

This task could be done using the following SQL: select PATH from HIERARCHY 

where PATH like �Air\%� order by ID.  The query will return just the paths that are 

rooted at the term Air � and they will be returned in breadth-first order for that sub-tree.  

The FindTerms function is also efficient � doing a string comparison on the path.  

Because the relation stores the full path, the FindTerms function does not need to issue 

additional recursive queries to determine the path (as with the Parent-Child approach).   

As the number of terms increases (e.g., 103 terms), modifications to the hierarchy 

take unreasonable amounts of time.  Whenever a new term or vocabulary is added to the 

hierarchy � or an existing term is moved to a new location � the entire hierarchy must be 

saved because the breadth-first traversal order may change.  For example, suppose we 

want to add a new Fire Management vocabulary underneath the Forestry term (between 

Botany and Silviculture).  A new row would need to be inserted (as shown in Figure  5-3) 

between row 7 and row 8.  In order to preserve the breadth-first traversal order, all rows 

after row 7 would need to be modified � by updating the ID with the new breadth-first 

order of each row.  This process requires computing the breadth-first order and full path 

for each node � and updating all of the corresponding rows in the table (which also 

triggers index maintenance).  With a large number of terms, this process takes several 

minutes to complete � an obvious failure in performance.   
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This solution does not easily support concurrent modifications because arbitrarily 

large portions of the hierarchy must be updated after computing the breadth-first order.  

Since the bread-first order is computed within the application then updated to the 

database, modifications cannot be concurrent (or they may overwrite each other during 

the update process).  Deleting existing terms is significantly faster (and reduces 

concurrency problems) � because removing rows does not invalidate the breadth-first 

ordering (so paths do not need to be re-ordered).  When a node is deleted from the 

hierarchy � it simply requires deleting the appropriate row(s) from the table.   

5.2.3 XML BLOB 

The structure of XML provides an ideal representation for the hierarchy of terms.  

Our third approach for managing the hierarchy in Metadata++ uses a single XML 

document to represent the hierarchy.  The XML document is stored as text in a relational 

database binary large object (BLOB) field.  This approach is illustrated in Figure  5-4.  

(As with the previous approaches, the XML in the figure shows the text of the terms, but 

the actual implementation uses term identifiers).  Other data (synonyms, associations, 

document metadata) are also stored in relational tables.  Metadata++ uses the XML to 

build (and save) the hierarchy in main memory data structures and uses the relational 

tables (and SQL) to query the related information.   

Because the hierarchy is in XML, it is easy to execute both the 

GetDescendants and FindTerms functions using XPath (an XML query language) 

1

XMLID <HIERARCHY> 
  <NODE TERM="Places"> 
    <NODE TERM="USFS" /> 
    <NODE TERM="BLM" /> 
  </NODE> 
  <NODE TERM="Forestry"> 
    <NODE TERM="Agriculture" /> 
    <NODE TERM="Botany" /> 
    <NODE TERM="Silviculture" /> 
  </NODE> 
  <NODE TERM="Air"> 
    <NODE TERM="Air quality"> 
      <NODE TERM="Air pollution" /> 
      <NODE TERM="Ozone" /> 
    </NODE> 
    <NODE TERM="Weather"> 
      <NODE TERM="Air pressure" /> 
      <NODE TERM="Evaporation" /> 
    </NODE> 
  </NODE> 
</HIERARCHY> 

Figure  5-4: XML BLOB 
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executing against the XML in main memory.  One drawback of this approach is that the 

entire XML document must be retrieved from the database and parsed into main memory.  

This process adds significant initial processing overhead.  Additionally, this solution does 

not support modifications from concurrent users.  Suppose one user is adding terms to 

one portion of the hierarchy, while a second user is adding terms to a different portion of 

the hierarchy.  Because the entire XML string is treated as a single value � and the 

updates to that string are serialized by the relational database system � only the latest 

modifications are retained in the database. 

5.2.4 NTFS and Microsoft® Index Server 

Allowing concurrent access to a native XML database would be a suitable 

solution � assuming the database provided efficient execution of all of the necessary 

functions and supported modifications from multiple users.  At the time of this research, 

some native XML databases were described in publications [54,115], but few were 

actually available for use.  We found none that included all of the important features 

found in mature relational databases (such as concurrency).  In order to achieve the 

concurrency needed to support multiple users and obtain the necessary performance 

requirements, we implemented a simple solution based on the file system (Microsoft 

NTFS®) and Microsoft® Index Server  [77].  Microsoft Index Server is a highly scalable 

full-text indexing engine included as part of the Microsoft Windows Server® 2003 

operating system.  The indexing engine runs as a background process and can be 

configured to watch specific directories and automatically index new (or modified) 

documents within those directories.  The indexing engine can index directory names (in 

addition to documents) and can be optimized based on typical queries.  The server 

administrator can adjust the priority of the indexing engine process based on the desired 

response time and resource consumption compared to other processes running on the 

server. 
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The hierarchy is stored and modified as folders in the file system as illustrated in 

Figure  5-5.  It should be noted that there is no concept of term identifier in this 

implementation � the folder names are the actual terms.  The file system is naturally 

hierarchical � and already has familiar tools for creating, editing, and deleting folders.  It 

should be noted that scalability limitations with user interface tools � such as Windows 

Explorer® � are not necessarily limitations of the file system itself.  For example, 

Windows Explorer® became unresponsive when trying to browse a directory that had 

approximately one thousand immediate sub-directories.  However, the same directory 

caused no problems during browsing with other tools � such as the DOS prompt or 

through code. 

 Figure  5-6: Screenshot of Microsoft Windows® Explorer showing shortcuts 

Figure  5-5: NTFS/IS 
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In addition to storing terms as directories in the file system, we also use file 

system features for implementing other features of the model.  Relationships among 

terms are represented as shortcuts (i.e., *.lnk files) that point from within one directory to 

the related directory.  For example, suppose that Air\Air quality is related to 

AQUATIC\Water\Water Quality.  The �.\Air\Air quality� folder would contain a shortcut 

(Water Quality.lnk, as shown in Figure  5-6) that points to the �.\AQUATIC\Water\Water 

Quality� folder.  Shortcuts are also used to represent document keywords (i.e., nodes that 

map to documents as described in Section  4.2).  Suppose that Air\Air quality is a keyword 

for the document �Air Quality and Assessment.doc� (a Microsoft® Word document).  The 

�.\Air\Air quality� folder would contain a shortcut (air_quality_and_assessment.doc.lnk, 

as shown in Figure  5-6) that points to the corresponding document file.  

The NTFS file system also provides the concurrency necessary to allow multiple 

users to modify the hierarchy simultaneously.  Different users can work in different parts 

of the hierarchy and all of the changes will persist without conflict.  For example, a 

botanist may be adding new species to the vegetation taxonomy at the same time that a 

wildlife biologist may be adding new species of fish.  Since each user is working in a 

different location in the directory structure, the changes do not conflict with each other 

and the modifications are successful.  However, if both users try to modify the same 

directory, the file system will prevent the simultaneous changes.  The first user will have 

to complete the modification � after which the second user will be permitted to make the 

modification.  Preventing simultaneous modifications of the same directory is necessary � 

and expected � to maintain a consistency and prevent corruption in the file system. 

  The GetDescendants function looks at the directory structure to find all 

descendant terms.  This function was originally implemented using the Microsoft 

Windows® SDK to recursively open each directory and browse its sub-directories.  

Explicitly browsing each directory � even through code � becomes noticeably slow for 

large hierarchies (such as the taxonomy of species and other large vocabularies).  In order 

to improve performance, we configured Microsoft® Index Server to catalog all of the file 

system folders defined in the hierarchy.  The index is searchable by folder name � 

providing support for the FindTerms function (both exact match and wildcard).  

Microsoft Index Server provides an efficient query interface for finding folders within the 
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hierarchy � as well as searching for shortcuts (to find related terms and document 

keywords).  Microsoft Index Server also provides full-text indexing of all documents in 

Metadata++, thus enabling the identification of implicit documents, as described above. 

 

5.3 Performance Results 

We implemented each approach described in the previous section on an IBM 

xSeries 220 eServer® containing a single Intel Pentium III® (1.0 GHz) processor, 896 MB 

of RAM, and IBM ServeRAID® storage.  The server is running Microsoft Windows 

Server® 2003 Standard Edition and Microsoft® SQL Server 2000 Enterprise Edition.  The 

fourth solution uses Microsoft Index Server (included in the Microsoft Windows Server 

2003 operating system).  We conducted the experiments using code written and compiled 

with the Microsoft .NET Framework.  The hierarchy consisted of numerous controlled 

vocabularies provided by various application domain experts � with a combined total of 

more than 70,000 terms.  Table  5-1 summarizes the depth (number of levels) and width 

(number of children per node) of the hierarchy. 

 

0.2829 0.01180.00010.36730.66420.3712NTFS/IS 

0.3767 0.04700.00400.75010.66030.4220XmlBlob 

0.5017 0.26570.21500.44930.93760.6407Path 

1.0884 0.26180.00400.35562.42592.3947ParentChild 

Avg Q5Q4Q3Q2Q1

Table  5-2: Average GetDescendants Execution Times (in seconds) for 5 queries 

*19.59896Width 

6.414Depth 

Avg Max 

*does not include leaf nodes 

Table  5-1: Hierarchy Statistics
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For each approach, we implemented and evaluated both the GetDescendants 

and FindTerms functions.  We executed each function four times for each of five 

different queries (with inputs and outputs varying in size and complexity) and averaged 

the execution times.  Table  5-2 shows the results of the GetDescendants function for 

five different queries (averaged for four executions of each of the five queries).  Figure 

 5-7 compares the maximum, minimum, and average GetDescendants execution 

times for each approach.  The ParentChild approach is relatively slow because of the 

numerous queries needed to find all descendants.  XmlBlob has a high maximum because 

of the time it takes to initially parse the XML document into main memory.  Both Path 

and NTFS/IS have relatively low maximum and average times.   

Table  5-3 illustrates the four different queries that were used to evaluate the 

FindTerms function, and how many terms were found in each mode.  Table  5-4 shows 

the results of the FindTerms function.  We executed each query in both modes (exact 

match and wildcard) and averaged the results.  The wildcard mode (any term containing 

the string) always found more terms � because the exact matches also count as wildcard 

matches.  Figure  5-8 compares the maximum, minimum, and average execution times for 

each approach.  The NTFS/IS approach is an order of magnitude faster (both maximum 

and average) because Index Server maintains an index of all of the directory names. 

Table  5-3: Number of Terms Found for Each of Four FindTerms Queries 

 Alpine Clackamas Douglas Fir Soil 

Exact Match 3 4 0 5 

Wildcard Match 292 8 2 266 

Figure  5-7: GetDescendants Max-Avg-Min Comparison 
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As described in the previous section, each approach performed differently with 

regards to concurrent updates.  The Parent-Child approach efficiently handled updates at 

the leaf level (adding or deleting leaf nodes), but not when modifying entire sub-trees.  

The Path approach efficiently handles deletes � by simply deleting the appropriate rows 

in the table � but additions require saving the entire hierarchy.  The XML is easily 

modifiable while in-memory, but does not support concurrent updates (and requires 

serialization with each modification).  The NTFS/IS approach has the best overall 

performance (and is used in the current implementation).  The file system natively 

supports concurrent updates to different parts of the directory structure, and Index Server 

watched for changes in the hierarchy and efficiently updated its index for each 

modification. 

Table  5-4: Average FindTerms Execution Times (in seconds) 

(average of exact match and wildcard searches for each of 4 queries) 

 Alpine Clackamas Douglas Fir Soil Avg 

ParentChild 88.4766 2.9297 0.7110 50.4219 35.6348 

Path 16.7266 0.4454 0.2579 13.5782 7.7520 

XmlBlob 54.0625 1.9688 0.5079 44.1016 25.1602 

NTFS/IS 0.6250 1.7344 0.5625 0.5623 0.8711 
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Figure  5-8: FindTerms Max-Avg-Min Comparison 
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5.4 Related Work 

The natural choice for representing a hierarchy is XML.  Recent languages such 

as XQuery and XPath make it easy and efficient to query hierarchical data stored in 

XML.  However, the large and dynamic nature of the Metadata++ hierarchy is not 

adequately supported by current XML tools.  A full-featured XML database would be an 

ideal solution, but the work in this area [54,115] has yet to produce a native XML 

database with all of the necessary features � including indexing, querying, and 

concurrency. 

An alternative to building a native XML database is to map the XML to relations.  

The first two implementations described in this chapter (Parent-Child and Breadth-first 

Path) are attempts at mapping XML-like data into a relational database.  The Parent-

Child relation is similar to the edge relation described in work on XML representation 

[28,39].  The edge relation is a generic binary relation used to store node containment 

within the XML structure.  For example, if element A contains element B, then a 

corresponding row is created in the edge relation.  LegoDB  [10] takes a novel approach 

to mapping XML into relations by doing a cost-based evaluation of different relational 

representations.  The cost is computed based on the expected structure of the XML (as 

defined by a schema or DTD).  Because the hierarchy in Metadata++ is a simple tree of 

arbitrary width and depth, the LegoDB algorithm would also result in a simple edge-

based relation.  Metadata++ requires functionality (e.g., GetDescendants and 

FindTerms) that is not efficiently supported by this type of representation.   

Our Path approach is similar to XML indexing techniques described Kaushik et 

al.  [60].  This technique works well for static data, but updates are more difficult.  The 

authors propose leaving gaps in the ordering to handle updates.  For example, when 

initially computing the breadth-first traversal index for each node, we could use a sparse 

sequence of integers (instead of sequential).  Perhaps we would number the first row as 

10, the second row as 20, the third row as 30, and so on.  Using a sparse sequence 

initially would still maintain functionality (order would still be preserved).  When 

additions occurred later on, the new nodes could be assigned unused indices that would 

preserve breadth-first order and eliminate the need to re-calculate the entire breadth-first 

index.  Similarly, real numbers could be used as indices (instead of integers).  A new 
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index value would be assigned as the value halfway between the successor and the 

predecessor.  The entire breadth-first index would only need to be re-calculated when the 

new value exceeds the available precision.  We did not perform any experiments based 

on these approaches, but they may or may not be suitable for frequent and arbitrary 

updates.      

The Lightweight Directory Access Protocol (LDAP) defines basic directory 

services for a hierarchically structured set of directories  [50,64].  LDAP allows a single 

conceptual directory hierarchy to be stored in multiple, distributed locations.  The 

Metadata++ hierarchy differs from the directory abstraction supported by LDAP in that 

Metadata++ terms (in the hierarchy) consist only of the word or phrase that makes up the 

term (the name of the directory); there is no type structure for terms and, in particular, 

there is no need to have attributes for terms.  Thus Metadata++ uses a much simpler 

structure for the term hierarchy with a rather narrow focus on the GetDescendants 

and FindTerms functions. 

5.5 Summary 

The Metadata++ Digital Library requires an efficient path-based storage and 

retrieval mechanism.  We implemented and evaluated four different mechanisms: simple 

parent-child relation, breadth-first path relation, XML stored in a relational table, and the 

Microsoft Windows® NTFS file system along with Microsoft® Index Server (NTFS/IS).  

We evaluated each approach against three criteria: support for concurrent modifications, 

efficient execution of FindTerms, and efficient execution of GetDescendants.  The 

last approach (NTFS/IS) provided the best overall performance with support for 

concurrent modifications and is used in the current Metadata++ implementation. 
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6 Designing the Software Architecture for Metadata++ 

One of the key components of the Metadata++ digital library system is the 

software application with which the user interacts with the system.  Throughout the 

course of our research, we developed several iterations of the application � each time 

trying to improve the architecture with regard to the known objectives � also known as 

software quality attributes.  Section  6.1 explains the architectural objectives for the 

Metadata++ application and Section  6.2 describes four different implementations we 

evaluated in trying to meet the objectives. 

6.1 Architectural Objectives 

Any software architecture is difficult to evaluate without a clear understanding of 

the desired quality attributes of the application.  In collaboration with the USDA Forest 

Service, we defined a set of quality attributes that helped guide the design and 

implementation of Metadata++.  These attributes are described in the following sections. 

6.1.1 Accessibility 

Users of the system will reside at various locations � including ranger stations, 

research laboratories, and regional offices.  All of these users need to share information, 

so the system must be �online�; it must be accessible from different physical locations via 

the Internet or a wide area network.  Many of the locations have some form of broadband 

Internet connection, while others (such as ranger stations) may be limited to dialup 

connections.  All users will have access to a desktop computer running a Microsoft 

Windows® operating system.  The hardware configuration (processor speed, RAM, disk 

space, etc.) of the average machine is typical of a computer originally purchased within 

the past few years. 
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6.1.2 Availability 

Availability is important, but not mission critical.  Users will use the system to 

retrieve information for various purposes (management decisions, FOIA requests, etc.).  

The majority of these requests will be during �normal business hours�.  Periodic system 

failure or offline maintenance is acceptable, assuming that the mean time to repair is 

reasonable (so as not to significantly disrupt the user�s tasks). 

6.1.3 Performance 

As with availability, system performance is important but not critical.  The system 

does not need to have hard real time performance guarantees.  The desired performance is 

such that the user perceives no significant delays while interacting with the system during 

various user tasks.  As long as the user perceives a �real time� response � i.e., the system 

responds immediately to a requested action � the system performance is adequate. 

6.1.4 Multi-user scalability 

Because the system will catalog a controlled collection of domain-specific 

documents (as opposed to the entire Internet), the number of users is proportionately 

limited.  It is expected that only users within the domain (i.e., natural resource 

management) � and perhaps some interested public citizens � will make use of the 

system.  The total number of users is on the order of 102 � significantly less than the 

millions of users served by modern web search engines.  This objective affects not only 

the support of a sufficient number of concurrent users, but also the application 

maintenance and distribution for those users. 

6.1.5 Usability 

The system must be usable by people with minimal computer skills.  It must be 

easy to use and not require extensive training.  Our USDA Forest Service research 

partners explained the 15-minute rule: if providing metadata for a document takes more 

than fifteen minutes, it usually will not be provided.  The system must simplify tasks for 

the user � and require minimal time investment for maximum benefit. 

6.2 Thin-Client versus Thick-Client 

One of the first decisions a software architect must make when building a user-

oriented application is the technology for constructing the user interface.  In software 
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development jargon, this issue is intimately tied to the decision to use a thin-client versus 

a thick-client, or equivalently, �web versus windows�.  The web (HTTP, HTML, 

scripting, etc.) is a popular platform for building scalable and accessible applications.  

Deployment of a web application is simple and efficient; the updated files are copied to 

the web server, and subsequent client sessions automatically use the updated version of 

the application.  Users access a web application with a familiar, browser-based interface 

� often referred to as a thin-client.  These benefits, however, do not come without a price.  

Web browsers are limited in the user interface functionality they provide.  Some 

functionality can by achieved through advanced web development techniques (DHTML, 

client-side scripting, etc.), but this functionality can require significant development 

effort � and often reduces portability (different browsers expect different script syntax, 

etc.).  Performance implications exist because of the potentially large number of �round 

trips� to the server in order to accommodate the simplicity of the client. 

An alternative to a web application is a thick-client application that employs a 

rich graphical user interface.  Such an application is written and developed using some 

development tool (such as Microsoft Visual Basic® or Java®) and then compiled into an 

executable file.  The executable file and supporting libraries are deployed to the client 

machine.  This type of application provides rich user interface functionality and rapid 

development.  The deployment, however, is more difficult (each revision of the 

application requires a subsequent deployment of the new executable to each user�s 

workstation).   

The objectives described in Section  6.1 significantly impact this architectural 

decision.  The accessibility requirement suggests a web application � making it easily 

accessible from any machine with a web browser and an Internet connection.  The 

usability requirement suggests a windows application � providing a rich user interface 

that makes user tasks easy and intuitive.  The following sections describe four different 

implementations of the Metadata++ application � with varying levels of success at 

satisfying the architectural objectives.  These implementations also correspond to the four 

different storage mechanisms described in Section  5.2. 
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6.2.1 HTML/ASP Thin Client 

Our first implementation was a traditional thin-client application based on 

Microsoft® Active Server Pages (ASP).  Active Server Pages are scripts that are executed 

on the server in response to an HTTP request.  These server-side scripts, hosted within 

Microsoft Internet Information Server (IIS) contain logic for obtaining data from 

Microsoft SQL Server 2000 and constructing a hierarchical display of terms using 

HTML.  Client-side Javascript enables the user to select a search term by clicking on the 

text of the term within the hierarchy.  Search results are displayed in a separate browser 

window using an HTML table.  In this implementation, the server is completely stateless 

� i.e., no session or user information is retained on the server between requests. 

Because of its thin-client architecture, this application sufficiently satisfies the 

accessibility, availability, and multi-user scalability objectives (limited only by the web 

server itself).  The performance of this application is noticeably poor � due in part to the 

back-end storage mechanism described in Section  5.2.1 and also due to the numerous 

round-trips to the server (particularly while exploring the hierarchy).  The biggest 

drawback to this implementation is lack of usability.  Most of the user tasks (including 

exploring the hierarchy and expressing searches) are clunky and not intuitive.  For 

example, browsing the hierarchy required double-clicking the node of interest � instead 

of the traditional expand and collapse icons in a typical tree-based user interface.  

Expressing a search involved clicking on the text of a term in the hierarchy, upon which a 

Javascript function would automatically copy the text of that term into a text box on the 

page.  The user then clicked the �Search� button to actually perform the search.   

6.2.2 VB.NET Thick Client 

In an effort to improve usability, we developed a second implementation using the 

thick-client architecture.  We built this application using Microsoft Visual Basic.NET® 

and Windows Forms (the graphical user interface components within Microsoft .NET 

Framework).  The application makes a direct TCP/IP connection (on port 1433) to 

Microsoft® SQL Server 2000 (which is running on a server) to retrieve the hierarchy and 

search for documents.  The application stores all session information on the workstation 

(the server is stateless).  The user interface provides familiar methods of interaction � 

including expanding and collapsing nodes (while exploring the hierarchy) and dragging 



  85          

         

and dropping terms (when expressing searches).  Expanding and collapsing nodes could 

have been improved in the previous HTML/ASP application, but dragging and dropping 

terms is very difficult (and error prone) within a thin-client application.   

As is typical with a thick-client application, the increased usability comes along 

with decreased accessibility and multi-user scalability.  A user cannot simply open a web 

browser and browse to a URL to run the application.  Instead, he or she must first obtain 

and install the application on his or her own machine.  This increases the cost and 

complexity of maintaining the application for multiple users because each user needs to 

be upgraded with new software updates. 

Another drawback with this architecture, also related to accessibility, is firewall 

restriction on the TCP/IP database connection.  The application will not run if a firewall 

is blocking communication on port 1433.  A firewall is typically not a problem within a 

local area network (LAN) � but is quite often a problem within a wide area network 

(WAN) or over the Internet.  One of our beta testers worked in a ranger district office that 

used a dialup connection for Internet access.  Because of this connection, they were 

outside the agency firewall and could not communicate on port 1433.  The limited 

bandwidth made VPN access unreasonable.  A firewall is definitely a problem when 

trying to provide the application to public citizens (when the database resides within the 

agency firewall). 

6.2.3 ASP.NET Portal Thin Client 

As described in the previous section, the lack of accessibility caused by the 

firewall restriction is a significant issue.  So our third implementation used a thin-client 

approach based on Microsoft® ASP.NET.  We started with the ASP.NET Portal Starter 

Kit that is available for free public download  [4] and added functionality using web 

controls produced by Infragistics  [53].  This application (illustrated in Figure  6-1) uses 

the NTFS/IS back-end storage mechanism (as described in Section  5.2.4).  In this 

implementation, the server is not completely stateless � minimal session information 

(including user authentication) is retained on the server between requests. 

As with the first implementation (Section  6.2.1), this application sufficiently 

satisfies the accessibility, availability, and multi-user scalability objectives (limited only 

by the web server itself).  The performance is also much better � mainly due to the 



  86          

         

improved back-end storage mechanism.  However, even with improved performance on 

the back-end, the thin-client architecture limits the performance in a couple of ways.  The 

most significant issue is related to the client-server interaction of a web application.  Each 

time the user interacts with the application, such as expanding a node in the hierarchy, the 

web browser contacts the server (over HTTP) and requests a new page.  The server then 

constructs the new HTML page and sends it back to the web browser where it is parsed 

and displayed to the user.  These page-based interactions, because of the delay associated 

with the round-trip to the server, are quite inefficient within the Metadata++ application.  

For example, suppose the user is browsing several levels deep within the hierarchy.  The 

new page returned when the user expands a node must include the child nodes of the 

expanded node � but it must also include all of the other nodes that were already 

expanded.  So even though expanding a single node may only add a few nodes to the 

visible hierarchical display, the entire display must be created, transmitted, parsed, and 

displayed with each interaction.   The second performance issue relates to the content of 

the page itself, because HTML combines content and formatting.  The formatting 

elements significantly increase the number of bytes that must be sent from the server to 

the client with each interaction. 

The usability of this application is better than that of the first thin-client 

application � but it is still limited by the nature of the web browser.  Exploring the 

hierarchy is intuitive � by expanding and collapsing nodes using the �plus� and �minus� 

symbols.  This application also supports the �Find Term� functionality using a popup 

window.  The user may type in a search string, then click �Find� and the popup window 

will display all of the terms that match the string.  The user may then click on a term and 

have it automatically added to the search.  Despite the improved usability, the application 

does not support other desired interactions � such as drag-and-drop for selecting terms 

and right-clicking for additional contextual information about a specific term.  Each term 

has an extra �information� node (as shown by the blue �i� icon in Figure  6-1).  The user 

must expand this node to view explicitly referenced documents, implicitly referenced 

documents, and all related terms.  This extra node is cumbersome and non-intuitive, 

especially for beginners. 
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6.2.4 VB.NET Smart Client 

Our final (and current) implementation of the Metadata++ application combines 

both thin-client and thick-client advantages using the smart client  [100] technology made 

possible by the Microsoft® .NET Framework.  We built this application (illustrated in 

Figure  6-2) using Microsoft Visual Basic.NET® and Windows Forms (including user 

interface components produce by Infragistics  [53]).  But we also included all of the 

deployment and accessibility advantages of a web application using techniques described 

by Glenwright  [45] and Sells  [97].  The application uses .NET Web Services  [116] (as 

Figure  6-1: Screenshot of ASP.NET Thin Client 
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described in Table  6-1) to communicate with the NTFS/IS back-end storage system 

(described in Section  5.2.4) on the server. 

Table  6-1: Description of Metadata++ Web Service Methods 

Method Description 
FindTerms Returns all path-based terms that match the specified search string 
GetChildTerms Gets the child terms of the specified path-based term 
GetDescendants Gets all descendants (i.e., narrower terms) of the specified path-based 

term 
GetDocumentKeywords Returns the explicit keywords (structured as XML) for the specified 

document 
GetDocumentProperties Returns the summary information (URL, Title, Author, �) for the 

specified document 
GetDocuments Returns a list of all documents in the library 
GetExplicitDocuments Returns the explicitly referenced documents for the specified path-

based term 
GetExplicitDocumentsAdvanced Returns the explicitly referenced documents for the specified path-

based term that satisfy criteria based on summary information (Title, 
Author, �) 

GetImplicitDocuments Returns the implicitly referenced documents for the specified term 
(regardless of path) 

GetImplicitDocumentsAdvanced Returns the implicitly referenced documents for the specified term 
(regardless of path) that satisfy criteria based on summary information 
(Title, Author, �) 

GetRelatedTerms Returns path-based terms (structured as XML) that are related to the 
specified path-based term (including multiple occurrences, synonyms, 
and related terms) 

RegisterDocument Uploads and registers a document from the user�s local machine 
RegisterUrl Registers the document found at the specified URL (and downloads a 

copy of the document to the server) 
SetDocumentProperties Updates the summary information (URL, Title, Author, �) for the 

specified document 
UpdateDocumentKeywords Updates the explicit keywords (specified in XML) for the specified 

document 

 

The thick-client features of this application (including drag-and-drop, right-click, 

etc.) make it easy to use and intuitive.  Unlike a traditional thick-client application, this 

application also satisfies the accessibility, availability, and multi-user scalability 

objectives.  The application is easily deployed (by visiting a URL) and automatically 

updates itself.  The application consists of a small wrapper executable and several library 

files (*.dll).  The main functionality resides in the library files; the executable only 

contains logic for automatically updating the application.  Whenever the user executes 
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the application, the executable will contact the server and ask if any new library files 

exist.  If any files are newer on the server, they are automatically downloaded to the 

client machine.  The number (and size) of updated files, as well as the connection 

bandwidth, determine how long it takes to complete the auto-update process.  On a 

typical LAN connection, an auto-update would usually take less than one minute (often 

much less than a minute).  After the auto-update is complete, the executable will load the 

library files and the user may begin using the application.  In this way, the application is 

always current without requiring maintenance upgrades on each machine.  The auto-

update process and the web services communicate over the standard HTTP port (port 80) 

� which eliminates the problems caused by firewalls blocking the database connection.   

 

 Figure  6-2: Screenshot of VB.NET Smart Client 
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This application also resolves the performance issues described in Section  6.2.3.  

Because the application is running as a standalone application on the client machine, it 

maintains its own process state (server is stateless) � which eliminates the need to 

transmit the entire hierarchy with each transaction.  For example, when a user expands a 

node, the server only needs to send the children of that node � the rest of the hierarchy is 

already on the client.  The client receives the new nodes (from the web service) and adds 

them to the hierarchical display.  Additionally, the web service only returns content � it 

does not return formatting information.  The formatting is controlled entirely by the client 

application � which significantly reduces the number of bytes transmitted from the server 

to the client.   

6.3 Summary 

Designing and implementing the software architecture for the Metadata++ 

application involved articulation of architectural objectives and multiple implementations 

to try and satisfy those objectives.  Table  6-2 summarizes each implementation with 

regard to the objectives.  Using a smart-client architecture allows Metadata++ to 

adequately satisfy each of the architectural objectives.  However, a smart-client 

architecture may not be preferred in other applications with different objectives.  For 

example, a graphically intensive application intended for a small number of users might 

use a thick-client architecture; whereas a simple application intended for a large number 

of users might use a thin-client architecture.  

Table  6-2: Summary of Architectures with Regard to Objectives 

 Accessibility Availability Performance Multi-user 
Scalability 

Usability 

HTML/ASP 
Thin-Client Good Good Poor Good Poor 

VB.NET 
Thick-Client Poor Good Good Poor Good 

ASP.NET 
Thin-Client Good Good Moderate Good Moderate 

VB.NET 
Smart-Client Good Good Good Good Good 
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7 Integrating with GIS 

Effective natural resource management requires thorough knowledge of the 

physical location of the resources being managed.  Most of the documents within 

Metadata++ relate to one or more geographic areas, e.g., indicating the place where a 

study was done or where a proposed project will take place.  Locations are typically 

described using standard place names, such as administrative organizations (including 

national forests and ranger districts) or watersheds (such as the Hydrologic Unit Codes 

defined by the U.S. Geologic Survey [96,110]).  Most users in the natural resource 

management community are quite familiar with geographic information systems (GIS) 

that display geographic information as a map.  Geographic information systems support 

typical map functionality � including zoom, pan, and point or polygon selection.  These 

systems also support other spatial datasets � such as rainfall, temperature, soil types, and 

so forth � and provide the ability to query these datasets to find areas of interest. 

Metadata++ represents each set of place names as a controlled vocabulary and 

designates spatial containment using path-based terms within the hierarchy.  For 

example, the Cle Elum Ranger District is a child term of Wenatchee National Forest 

because it is geographically within the forest.  Metadata++ currently contains 

approximately a dozen such location vocabularies that are in common use in natural 

resource management.     

While searching or indexing, the user frequently selects terms from both spatial 

and non-spatial vocabularies � which presents both challenges and opportunities.  We 

want the benefit of the rich metadata structure and search capability of Metadata++ plus 

the benefits of spatial reasoning of a standard geographic information system.  Our 

approach [98,112] uses Metadata++ and a standard GIS system running independently, 

with communication between both systems.  Existing GIS datasets (produced by
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specialists within the natural resource community) contain place names and are used to 

generate controlled vocabularies in Metadata++.  The user may use the standard GIS 

system to browse and search various GIS datasets and, at any time, select a region of 

interest (in the GIS system) and send the corresponding location(s) to Metadata++ for 

inclusion in a document search.  Additionally, when Metadata++ has a set of documents 

in a search result, the documents that are associated with locations can be sent to the GIS 

system for display on a map.  Metadata++ may also ask the GIS system to compute 

broader and narrower terms (i.e., containing and contained places) and synonyms (i.e., 

significantly overlapping places) for any location term.   

7.1 Integrated Architecture 

This section explains our architecture for integrating Metadata++ and GIS to build 

a digital geo-library.  The architecture enhances retrieval of geographic information (i.e., 

documents associated with one or more locations) by exploiting functionality of both 

systems, and communicating information between the two systems, as shown in Figure 

 7-1.  Steps 1-5 (above the dashed line in Figure  7-1) occur during the initial setup phase.  

Steps 6-8 (below the dashed line in Figure  7-1) occur while the application is in use � and 

may happen in any order or at any time based on user interaction. 

 
XML XML G-PREP

Metadata++ 

GIS 
Data 

GIS
(e.g. ArcMAP©) 
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1. (Non-spatial) CVs are prepared in XML
2. GIS datasets are processed by G-PREP 
3. Location CVs are prepared in XML 
4. Place ID attribute added to GIS datasets 
5. XML CV files are loaded into Metadata++ 
6. User-selected locations are passed to Metadata++ 
7. Metadata++ asks GIS to compute synonyms 
8. Metadata++ passes documents (with locations) to GIS for display 

 
Figure  7-1: Metadata++ Geo-library Architecture 
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7.1.1 Vocabulary Extraction 

The first step in integrating Metadata++ with GIS is extracting controlled 

vocabularies of place names from GIS datasets.  Geographical places are often naturally 

hierarchical based on spatial containment.  Larger places, such as states or national 

forests, contain smaller places, such as counties or ranger districts, respectively.  In GIS 

datasets, this hierarchy is represented implicitly by the fact that some spatial footprints 

are contained within others.  For example, the polygon representing the State of Oregon 

geometrically contains the polygons that represent the counties within Oregon.  A process 

called G-PREP implements vocabulary extraction by taking GIS datasets and generating 

hierarchical controlled vocabularies of place names expressed in XML (shown in Figure 

 7-1, Steps 2 & 3, and illustrated in Figure  7-2).  The controlled vocabularies are then 

loaded (along with non-spatial vocabularies from other sources) into Metadata++.   

 

While implementing G-PREP, we encountered a number of problems.  GIS 

datasets are usually separated into layers (also called themes) based on similar feature 

type.  For example, USDA Forest Service ranger districts are contained in one layer and 

national forests are contained in a separate layer.  Because of this separation of layers, G-

PREP cannot generate the complete hierarchy within the context of a single layer.  

Instead, the G-PREP needs to know which layers correspond to which levels in the 

hierarchy.  With the datasets available to us, we could not easily automate this process.  

We had to manually specify the proper hierarchical order for processing layers � which 

limits the scalability of G-PREP. 

The nature of geographic footprints presents another, more significant, obstacle to 

vocabulary extraction.  A person might imagine a layer consisting of precise, disjoint 

polygons � such as political county boundaries.  However, many geographic places 

Figure 7-2: Vocabulary Extraction
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cannot be represented by a simple polygon.  For example, a national forest may consist of 

many, non-contiguous regions of varying shapes and sizes � resulting in a complex 

geographic footprint.  All of these polygons must be mapped to one conceptual place 

name (i.e., the name of the national forest).  G-PREP implements this mapping by 

generating a conceptual place identifier � a globally unique identifier (GUID) � and 

adding the identifier as a new attribute for each polygon in the dataset.  This place 

identifier attribute is added to the original GIS dataset (as shown in Figure  7-1, Step 4) 

and included in the XML hierarchy that is loaded into Metadata++.  When the XML is 

loaded into Metadata++, the place identifier is stored with each path-based term.  In the 

NTFS/IS implementation described in Section  5.2.4, the place identifier is stored as a 

filename within the directory that represents the corresponding term.  Index Server is then 

used to lookup the path-based term for any place identifier � thus serving as an implicit 

gazetteer that connects spatial footprints with path-based textual place names.  Because 

the place identifier is a separate attribute in the GIS dataset, updates to the dataset (such 

as refined footprints) have little or no effect on the identifiers.   

The place identifier generated by G-PREP is also used to disambiguate place 

names.  For example, the State of Oregon contains twenty six places that are all officially 

named �Salmon Creek� � three of which are not even creeks!  A simple keyword search 

for �Salmon Creek� would likely yield many irrelevant documents.  Using a place 

identifier in both the GIS and Metadata++ allows the user to precisely select a location of 

interest � whether from a map or from a controlled vocabulary. 

Another significant problem arises because various footprints are generated at 

different times, using different instruments, for different purposes � and quite often have 

different precision and accuracy.  Because of complex and imprecise footprints, 

calculating spatial containment is non-trivial.  For example, the footprint of a ranger 

district may slightly extend beyond the footprint of the national forest � even though the 

ranger district is under the administrative jurisdiction of (and contained within) the 

national forest.  G-PREP uses heuristics to handle these calculations but occasionally 

requires user interaction. 

Representing places as terms in Metadata++ supports the use of unofficial place 

names � places that are commonly referred to but do not have an official geographic 
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footprint.  Searching for unofficial places names is defined as a necessary feature for 

digital geo-libraries  [82].  For example, most people in the State of Washington know 

about Snoqualmie Pass � many people could take you there without any difficulty.  

However, Snoqualmie Pass does not have an official geographic footprint � and may not 

even appear on some maps.  By representing Snoqualmie Pass as a term in Metadata++, 

the user may still use it for document retrieval � even though it may or may not appear in 

a GIS dataset.  Furthermore, if an unofficial place does have a footprint, we can easily 

assign a place identifier � as with official places � and include the place name in a 

controlled vocabulary within Metadata++. 

7.1.2 Place Selection 

During indexing or searching, the user may select places within the GIS and 

communicate those selections to Metadata++ (as shown in Figure  7-1, Step 6 and 

illustrated in Figure  7-3).  Place selection may be as simple as pointing to a region on the 

map and clicking the mouse to select the polygon.  However, one advantage of using the 

GIS is the ability to do more advanced spatial analysis.  For example, the user may issue 

a query to find all counties with geographic area less than two million acres.  The GIS 

will answer this query by automatically selecting those regions within the active dataset 

that satisfy the specified query, and the selected locations can then be transmitted to 

Metadata++.  In addition to maps, the user may choose to use other types of GIS data to 

assist in finding relevant regions � such as a dataset of annual precipitation to find those 

counties that receive more than one hundred inches of rain per year.  The GIS will answer 

this query by intersecting the qualifying regions of the annual rainfall dataset with the 

map of counties.  This query could be combined with the previous example to find all 

counties with area less than two million acres that receive over one hundred inches of 

rain annually.   
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After using GIS functionality to select the desired place, the place identifier is 

sent to Metadata++, which finds the corresponding path-based place name.  Selecting a 

place in GIS is equivalent to selecting the corresponding place name in the Metadata++ 

hierarchy.  The selected place may be used for any Metadata++ function � such as 

document search or metadata attachment.  Users have the flexibility of using either 

Metadata++ or the GIS � or a combination of both systems � for selecting places.  

Because all terms are presented to the users in Metadata++, they can easily mix 

geographic terms (e.g. place names) with any other (non-geographic) terms. 

Our work includes three different implementations of G-MAP � the tool that 

integrates GIS with Metadata++.  The first implementation of G-MAP uses an 

embeddable map component from ESRI® called MapObjects  [33].  This implementation 

is a standalone application that displays GIS datasets (shapefiles  [34]) and provides 

simple map manipulation functionality (zoom, pan, point selection).  This 

implementation limited the user to simple map manipulation � it did not support 

advanced GIS functionality such as spatial attribute queries (e.g., find all regions with 

more than 20 inches of annual rainfall).   

In order to support advanced GIS functionality, we built a second implementation 

using ArcMAP® (a popular GIS application produced by ESRI).  This implementation 

adds a new button to the existing toolbar within ArcMAP, which is a familiar tool that 

many natural resource managers use on a daily basis.  The managers may use all of the 

functionality in ArcMAP to analyze any geographic datasets (including shapefiles).  At 

any point in that process, the user may select one or more locations (within a dataset that 

has been pre-processed by G-PREP), using any of the selection mechanisms in ArcMAP, 

and click the button to send the selections to Metadata++. 

Places 
 Watersheds 
 Political 
  Washington 
  Oregon 
   Clackamas County 
   Columbia County 
   Deschutes County 

Metadata++ GIS 

Figure  7-3: Place Selection 
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Our extension to ArcMAP worked well with the thick-client implementation of 

Metadata++, but it did not integrate with the thin-client implementation of Metadata++ 

(as described in Section  6.2.3).  Our third implementation of G-MAP (illustrated in 

Figure  7-4) is a thin-client application that uses scalable vector graphics (SVG)  [120] and 

Javascript to integrate with the thin-client Metadata++ application.  As shown in Figure 

 7-4, the user selected the State of Oregon on the map and the corresponding term in the 

hierarchy is automatically selected.  The illustration also shows the various types of maps 

that are available to the user while browsing the data spatially.  

In this implementation, the G-PREP process produces not only a hierarchy of 

place names, but also a corresponding SVG representation of the GIS dataset (including 

place identifiers).  The SVG is rendered in the browser window � where the user can turn 

Figure  7-4: Screenshot of SVG implementation of G-MAP 
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different maps on and off using the right-click context menu.  When the user selects a 

place on the map, a Javascript function sends the place identifier to the Metadata++ 

window � which will contact the server to determine the path-based term associated with 

that place identifier and select the corresponding term in the hierarchy.  

7.1.3 Synonym Discovery 

Metadata++ users may choose to use synonyms for query expansion during 

document retrieval.  For non-geographic controlled vocabularies � such as wildlife 

species or climate terms � synonymous terms are represented explicitly in Metadata++.  

For geographic controlled vocabularies of place names, Metadata++ uses the GIS to find 

synonyms (as shown in Figure  7-1, Step 7).  We could explicitly represent synonymous 

places in Metadata++, but we chose not to do so for two reasons.  First, a large number of 

synonyms exist among places.  Every place within every location vocabulary may be 

considered a synonym with one or more places in many other location vocabularies.  For 

example, the land within Clackamas County is also within the Lower Willamette River 

basin.  All of the land in the State of Oregon belongs to some county and also belongs to 

some watershed and may also be part of a ranger district � resulting in a large number of 

possible synonyms.  

The second, more significant, reason is the ambiguous semantics of spatial 

synonymy.  If the spatial footprints of two different places exactly coincide, then those 

places would likely be defined as synonyms.  However, that rarely � if ever � occurs in 

real geography.  Clackamas County and the Lower Willamette River Basin are in the 

same geographic place, but their spatial footprints do not coincide.  Some points within 

Clackamas County are not within the Lower Willamette River basin and vice versa.  This 

type of situation makes it difficult to explicitly represent spatial synonyms as related 

terms in Metadata++. 

Spatial synonyms are determined in the GIS by computing a percentage of 

overlap between the selected polygon and other polygons in different spatial datasets 

(i.e., vocabularies) based on a user-specified threshold.  Because the GIS computes 

synonyms (instead of representing them explicitly in Metadata++), the user may 

dynamically adjust the threshold to achieve the desired results.  In addition to percentage 

of overlap, the user may also wish to include other GIS computations (such as adjacency 
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or proximity) while discovering synonyms.  These computations are performed on a 

default set of GIS datasets � or on one or more specific datasets chosen by the user. 

 

Figure  7-5 shows an example of synonym discovery within the GIS.  The user 

selects Lower Willamette River from the Watershed controlled vocabulary.  Metadata++ 

then sends that selection to the GIS.  Using the established threshold, the GIS determines 

which place(s) in other vocabularies (such as political regions) overlap with the selected 

region.  In the example, the GIS determines that the Lower Willamette River basin is a 

spatial synonym of Clackamas County (because of overlap), and returns that place to 

Metadata++.  In addition to finding synonyms for places selected in Metadata++, 

synonym discovery may be combined with place selection.  If a user selects an area on a 

map, the GIS can compute the spatial synonyms and send all of the corresponding places 

(the selected place and its synonyms) to Metadata++ for processing. 

 

7.1.4 Document Display 

Because many natural resource documents are attached to one or more place 

names, it is useful to display the documents on a map (as shown in Figure  7-1, Step 6 and 

illustrated in Figure  7-6).  When such a document is part of a query result, Metadata++ 

can send the appropriate place name(s) to the GIS.  The GIS will then display the 

Metadata++ 
   North Santiam River
   Lower Willamette River 
   Yamhill River 
- Political 
 + Washington 
 -  Oregon 
    Clackamas County 
    Columbia County 

GIS 

Figure  7-5: Synonym Discovery 

Metadata++ 
Clackamas County
  Recreation Report 

GIS 

Figure  7-6: Document Display 
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documents on the appropriate map.  For example, consider a document about hazardous 

tree removal in Clackamas County.  Perhaps the user searched for documents about tree 

removal in the State of Oregon.  Metadata++ would show the document in the context of 

the hierarchy and would notify the GIS that the document was attached to Clackamas 

County.  The GIS would then locate the polygon corresponding to Clackamas County and 

display an icon representing the document in or near the polygon.  Clicking on the icon 

will display the corresponding document in Metadata++. 

7.2 Related Work 

Geographic information retrieval (GIR) focuses on document retrieval based on 

geographic references within documents.  Each document can be uniquely classified as 

georeferenced, georeferenceable, or non-georeferenceable.  Georeferenced documents 

(such as a digital map) contain explicit reference to geography in the form of a spatial 

footprint (coordinate, polygon, etc.).  Georeferenceable documents (such as an 

Environmental Impact Statement) do not contain an explicit spatial footprint, but do 

contain implicit reference to geography in the form of one or more textual place names.  

Non-georeferenceable documents (such as a scientific report describing the feeding 

process of spotted owls) are not related � implicitly nor explicitly � to any geographic 

location.  Each type of document must be considered in a GIR system. 

Some GIR systems use only spatial queries for document retrieval.  Spatial 

queries execute over geographic footprints � so georeferenced documents are easily 

retrieved.  However, before a georeferenceable document can be considered in a spatial 

search, the system must somehow associate a footprint with the document  [118] � at 

which point it becomes georeferenced.  Automatically associating footprints with 

georeferenceable documents is non-trivial.  Georeferenceable documents contain place 

names � but place names are often ambiguous.  For example, a document about the first 

president of the United States may be mistakenly associated with the town of George in 

the State of Washington (which is a real town).  Similarly, the city of Portland exists in 

Oregon and Maine.  A related problem is the use of alternate or informal names for 

places.  For example, an older or more informal document may refer to Boston, 

Massachusetts as �Beantown� or Portland, Oregon as �Stumptown�.  Metadata++ 

searches for documents within the context of the term hierarchy � not in context of the 
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spatial footprints of documents.  Our architecture uses the GIS to execute spatial queries 

to extract vocabularies of place names and discover spatial synonyms, but document 

retrieval occurs in Metadata++ (which does not require that documents be associated with 

spatial footprints). 

The Federal Geographic Data Committee (FGDC)  [36] is an inter-agency 

organization that defined a metadata standard for geographic data.  The FGDC standard 

focuses on geo-referenced information, particularly scientific data, with an emphasis on 

the spatial attributes of the data.  FGDC extensions add content-related attributes, but 

only some enforce specific controlled vocabularies.  Metadata++ puts equal emphasis on 

spatial and non-spatial keywords, because all keywords are path-based terms in the 

hierarchy.  Neither FGDC nor Metadata++ would prevent a document or dataset from 

having metadata in both systems. 

The ADEPT  [55] Digital Library Architecture, part of the Alexandria project at 

the University of California, Santa Barbara, provides support for geographic information 

retrieval using search buckets.  A search bucket is an abstract metadata category with 

defined search semantics.  Collections may provide metadata for items (e.g., documents) 

using various buckets.  For example, the �Geographic location� bucket contains 

coordinates describing a document�s spatial footprint and supports three spatial search 

operators: contains, overlaps, and is-contained-in.  The �Assigned term� bucket contains 

subject-related terms from controlled vocabularies and supports three text-based search 

operators: contains-all-words, contains-any-words, and contains-phrase.  The ADEPT 

architecture searches multiple heterogeneous collections by specifying queries using the 

various bucket search operators.  By treating place names as terms in controlled 

vocabularies, Metadata++ uses a single, unified search operation that exploits 

hierarchical relationships and synonyms.  Synonyms discovered by the GIS are handled 

uniformly with synonyms explicitly represented in Metadata++.   

Recent GIR research [40,58,59] relies on ontologies to facilitate information 

retrieval.  SPIRIT  [59] attempts to address proximity relationships as well as alternate 

and informal place names by developing a geographical ontology that �models both the 

vocabulary and the spatial structure of places�.  OASIS  [40] represents places as explicit 

objects in an ontology with specific attributes (latitude, longitude, standard name) and 
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relationships (meets, overlap, partOf) to other place objects.  These relationships are used 

to explicitly represent and query spatial relationships between places.  Instead of building 

an explicit ontology, Metadata++ focuses on faithfully representing the controlled 

vocabularies (both spatial and non-spatial) that are commonly used in the application 

domain.  The hierarchy among place names in Metadata++ is similar to the partOf 

relationship, but Metadata++ relies on the GIS to discover spatial synonyms instead of 

representing those relationships (e.g., meets, overlap) explicitly. 

Our work is similar in spirit and proposes a similar architecture to that of 

GeoVSM  [46].  The authors argue convincingly that GIR systems must support two kinds 

of description (keyword as well as spatial) as well as two kinds of search, although they 

assume that both sides of the system are providing search capability over the same set of 

documents.  They also recommend that the user interface available in a GIR system 

include two different user interfaces for the two components because they correspond to 

distinct ways of representing and organizing information.  Our architecture follows the 

same philosophy, with a separate interface for Metadata++ and the (standard) GIS 

system.  Key differences in our work compared to GeoVSM are that: (1) our system 

explicitly accommodates non-georeferenceable documents; (2) our GIS component is a 

standard GIS system that is used to browse various kinds of maps and layers and to select 

locations (but is not explicitly used to search for documents); (3) our document system, 

Metadata++, does not use a spatial metaphor to display non-spatial keywords, rather we 

provide a hierarchical display of terms; and (4) because of the explicit use in this domain 

of controlled vocabularies to describe places, we are able to easily combine place names 

with any other (non-spatial) terms in our description and search of documents in 

Metadata++. 

G-Portal  [67] is a map-based digital library architecture for georeferenced 

resources.  Like Metadata++, G-Portal provides a map-based interface and a 

classification interface (to support non-georeferenceable documents).  The authors 

emphasize synchronization between the interfaces � documents selected in one interface 

will be automatically selected in the other interface.  Our work differs from G-Portal in 

the primary purpose of the map-based interface.  In Metadata++, the map-based interface 

(i.e., the GIS) is not used to specify searches for documents.  Rather, it is intended to 
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search for geographic places so that the place names can be combined with non-

geographic search terms in Metadata++ � as well as displaying georeferenceable 

documents from search results. 

7.3 Summary 

Geography is an important part of natural resource management � and users 

within the natural resource community commonly use geographic information systems 

(GIS).  Combining the spatial functionality of a standard geographic information system 

(such as selecting places on a map) with Metadata++ produces a powerful and intuitive 

geographic information retrieval system.  Our approach includes pre-processing existing 

GIS datasets to extract vocabularies of hierarchical place names.  We encountered several 

difficulties while implementing vocabulary extraction � including imprecise spatial 

footprints and the organization of places across different datasets � that required manual 

review and intervention.  Following vocabulary extraction, communication between 

Metadata++ and the GIS supports place selection, synonym discovery, and document 

display.  We implemented place selection three separate ways, including an ArcMAP 

extension and a web-based SVG implementation. 
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8 Related Work, Future Work, and Conclusions 

The previous chapters describe various aspects of the Metadata++ digital library 

system.  This chapter compares Metadata++ to other similar systems and presents our 

conclusions.  The final section discusses further research related to Metadata++.  

8.1 Comparison of Metadata++ with Similar Systems 

Our research extends into several different areas of related work.  Related work 

specific to a particular area is discussed within the appropriate chapter above.  This 

section provides a system-level comparison of Metadata++ to other thesaurus-based 

applications.  

8.1.1 WordNet 

WordNet  [37] is a popular linguistic thesaurus designed for natural language 

processing.  WordNet includes synsets � a set of words that are interchangeable in some 

context.  Synsets are quite similar to polyterms in Metadata++ � although the intention is 

somewhat different.  In WordNet, synsets contain different spellings and inflections of 

the same (or similar) words.  Metadata++ uses polyterms to combine terms that describe 

the same thing within one context, but also may exist as individual terms in different 

contexts.  The hierarchical relationships in WordNet are of specific types, including 

holonym (includes), meronym (is part of), hypernym (broader), and hyponym (narrower).  

In Metadata++, hierarchical relationships are more general � and are used to organize the 

terms as they exist in the domain terminology. 

8.1.2 Library of Congress Subject Headings (LCSH) 

The Library of Congress Subject Headings is a popular classification scheme in 

library science.  LCSH defines a set of rules for creating, organizing, and using subject 

headings  [19].  These rules include the USE relationship (and the reciprocal USED FOR
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relationship) to relate unauthorized or non-preferred term with the corresponding valid 

subject heading.  In Metadata++, any term in the system may be used for indexing and 

searching � all terms are first-class.  Both LCSH and Metadata++ support polyhierarchies 

� though Metadata++ is more general in allowing any multiple occurrence of the same 

term.  LCSH includes multiple-concept main headers (e.g., Electricity in art) that � 

unlike Metadata++ polyterms � combine unrelated subject headings for a particular 

purpose.  If appropriate for a particular controlled vocabulary, Metadata++ could 

represent the same concept using a path-based term: Art\Electricity. 

As described by Bates  [9], the LCSH uses the rule of specific entry � meaning 

that each book should be classified under the heading that is most specific to the scope 

and content of the book.  The subject headings were then alphabetized to produce a list of 

subject headings with corresponding books.  Because the books were associated with a 

single subject heading with a certain scope, it was difficult for users to find material other 

than for the exact scope they were seeking.  For example, a searcher looking for 

�Cognition� would not find books about �Memory� (which is one aspect of cognition), 

because the books about memory were related to the �Memory� subject heading.  Most 

modern systems, including Metadata++, resolve this issue using some form of thesaurus-

based query expansion.  

8.1.3 Medical Subject Headings (MeSH) 

The MeSH [83,84] system uses generic hierarchical relationships like those in 

Metadata++.  As described in  [83], the MeSH hierarchical structure was designed to 

reflect a view of the literature for a user � without being confined to specific types of 

hierarchical relationships.  The Metadata++ hierarchical structure was designed to reflect 

the discourses of the various domains.  Both MeSH and Metadata++ support 

polyhierarchies � though MeSH defines polyhierarchies as the same concept within 

multiple categories (e.g. Nose within Sense Organs versus Nose within Face).  MeSH 

does differentiate between �entry terms� and �preferred terms�, whereas Metadata++ gives 

each term equal status � without any notion for preferred term. 

8.1.4 Art and Architecture Thesaurus (AAT) 

Compiled and maintained by the Getty Research Institute  [43], the AAT thesaurus 

follows the NISO thesaurus guidelines  [3] for thesaurus construction.  The AAT currently 
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contains approximately 34,000 concepts described by 128,000 different terms.  The terms 

in the AAT may be used to describe such things as art, architecture, and culture.  The 

AAT puts into practice most of the features of a standard thesaurus � including concepts, 

preferred terms, facets, and polyhierarchies.  Besides differences in the application 

domain, Metadata++ differs from the standard thesaurus model as explained in Chapter  2.   

8.1.5 AGROVOC 

AGROVOC  [41], developed and maintained by the Food and Agriculture 

Organization within the United Nations, serves users around the world � particularly 

within agricultural information retrieval systems.  Though not specifically based on the 

thesaurus standard, AGROVOC is a multi-lingual system that includes many of the 

features of a typical thesaurus � including concepts, descriptors, broader and narrower 

terms, and scope notes  [102].  AGROVOC also includes many relationships types, 

referred to as linktypes, that are very specific to agriculture.  These linktypes include 

relationships such as pest of, grows in, and beneficial for.  More relationships, such as is 

caused by, are under consideration.  Due to some specific implementation issues, 

AGROVOC has been limited to a maximum term length of 35 characters  [89].  The 

AGROVOC thesaurus may be downloaded in a variety of formats, including Microsoft® 

Access, MySQL®, and tagged text.  Work is underway to establish an ontology for 

AGROVOC in both OWL  [121] and SKOS  [77].  Metadata++ and AGROVOC have 

some overlap in application domain � but are quite different in scope and structure. 

8.1.6 Logic and Language Links (LoLaLi) 

LoLaLi [16,68] is an ongoing project a the University of Amsterdam supported by 

Elsevier Science.  The goal of the project is to provide electronic access to scientific 

handbooks with a particular focus on the scientific literature about logic, language, and 

linguistics.  LoLaLi uses a thesaurus structure very similar to WordNet � including 

synsets.  The hierarchical relationships in LoLaLi are specific to the application domain � 

including is a, part of, technical notion, and mathematical result.  A concept is a subtopic 

of another concept if exactly one of those relationships applies.  Metadata++ uses a 

generic hierarchical relationship that implies various semantics depending on the location 

in the hierarchy (see Section  2.1.1). 
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8.1.7 Lundbeck Thesaurus 

Nielsen  [85] describes the Lundbeck pharmaceutical thesaurus designed for 

corporate information retrieval tasks.  The Lundbeck thesaurus focuses on 

pharmaceutical concepts and implements several relationship types specific to this 

industry.  These relationship types include equivalence relationships specific for 

acronyms (ACR), chemical numbers (GN), and trade marks (TM).  The thesaurus 

contains entries for specific drugs along with relationships to other drugs, chemicals, etc.  

The specific issues in the pharmaceutical industry warrant these types of specific 

relationships � so the more general Metadata++ thesaurus model may not apply in this 

industry. 

8.2 Future Work 

Building the Metadata++ Digital Library generated several interesting ideas that 

would be interesting to pursue.  This section describes different areas of future work that 

stem from our research thus far and our implementation of the Metadata++ Digital 

Library. 

8.2.1 Exploit path-based terms during automated index 

The cost of human indexing is well-known in the information retrieval literature 

[5,6].  One obvious area of future search is the development of automated (or semi-

automated) tools for indexing.  We do not believe that an automated indexing system 

could adequately replace the human indexer, particularly within natural resource 

management.  However, a high-quality automated system could provide valuable 

assistance to the human indexer and expedite the indexing process.  In an earlier version 

of the system, we built an automated indexing system that would compare documents to 

the terms in Metadata++ and suggest possible keywords to the indexer  [114].  This 

process presents some interesting research problems.  Our implemented system 

performed quite poorly, even on relatively small documents.  During processing, the 

system would iterate through every term in the hierarchy and then search for that term in 

the document.  With approximately one hundred thousand terms, this process took a long 

time (several minutes or more) and took much longer on large documents.   

We considered a couple of optimizations that would be interesting to pursue.  One 

would be to iterate through the words in the document and look for each word in the 
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hierarchy.  We would expect this approach to improve performance because the average 

document has far fewer words than there are terms in the hierarchy.  This process would 

be non-trivial, however, because the terms in the hierarchy are rarely a single word � 

most often they are phrases.  We would need to parse the document content into words, 

then search for each word in the hierarchy.  Upon finding matching terms, we would then 

need to compare the entire term to the word (and its neighboring words) in the document 

to see if there is a match. 

Another optimization would be to semi-automate the process by letting the user 

initiate the process for specific portions of the hierarchy.  For example, while indexing a 

particular document, the indexer may ask the system to suggest possible PLACE 

keywords.  The system would then suggest only terms that are descendants of PLACE 

(that occur in the document).  This domain-specific indexing  [69] would improve the 

performance by reducing the number of terms processed at any one time. 

Regardless of performance, our implemented system did not benefit from the 

structure of the hierarchy � it simply iterated through the individual terms in the 

hierarchy.  If the term only occurs once in the hierarchy, then it would be easy to suggest 

that path as the appropriate keyword.  However, when a term has multiple occurrences, 

we would like to review the path of each occurrence and determine which of the path(s) 

is most related to the document and suggest the most relevant path(s).  For example, 

consider the document excerpts in Section  2.1.2.1.1.  We would like to determine, based 

only on document content and the hierarchy, which of the multiple occurrences is most 

relevant for the document.  

8.2.2 Digital �workspace� 

Most information retrieval systems focus primarily on finding information � but 

stop when the information is found.  Recent research [61,90] focuses on extending the 

digital library into a digital workspace.  At a physical library, patrons often find various 

books and then sit down at a desk or table to sort through, organize, and understand the 

information they found.  This second step in the information seeking process is just as 

important, if not more important, then just finding the books.    During the user study of 

Metadata++, we heard several comments from users indicating the need for a digital 

�workspace�.  They wanted to be able to save searches for their own future use and to 
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share with others.  They also wanted to be able to select documents and �cache them in a 

separate window� so they could continue their current search and go back later to read 

the documents.  In addition to saving documents in the workspace, users wanted to be 

able to explicitly eliminate particular documents from the search result.  For example, 

one searcher saw a document in the search result that he knew was not relevant to his 

search.  He wanted to hide that document and prevent it from showing up in his search 

results.  Buchanan et al.  [14] and another one of our projects  [24] describe systems that 

allow the user to visually group and organize information.  It would be interesting to take 

the current Metadata++ digital library application and add digital �workspace� 

functionality. 

 

8.2.3 Spatial Metaphor 

As described in Chapter  7, most natural resource managers are very familiar with 

geographic information systems � and most people in general are familiar with maps.  If 

given a map of their country, most people could quickly point to the approximate location 

Figure  8-1: Controlled Vocabulary displayed spatially 
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of their home, birthplace, etc.  We explored the possibility of using a map to display 

controlled vocabularies (as shown in Figure  8-1).  In this example, narrower terms are 

spatially contained within broader terms.  This approach might make it easier for users to 

browse large hierarchies and quickly find terms of interested.  Other similar approaches 

exist and it would be interesting to pursue something like this for Metadata++.  

8.2.4 Extend to other application domains 

The current Metadata++ system focuses on natural resource management.  

However, we believe many of the same principles may be useful in other application 

domains � especially domains with well-known controlled vocabularies.  We plan to 

extend Metadata++ to the health care domain in a new project in collaboration with the 

Danish Healthcare Ministry.  This domain is particularly interesting because medicine 

and health-related topics have a large amount of well-established, domain-specific 

terminology.  This project allows us to evaluate whether our path-based representation 

works in a new domain.  The Danish Healthcare Ministry is building a health information 

portal intended for clinicians, practitioners, and the public.  Our research thus far has 

focused on domain experts (natural resource managers).  It will be interesting to discover 

if non-experts (e.g., public citizens) also benefit from path-based terminology. 

8.3 Conclusions 

Several specific aspects of natural resource management present interesting 

challenges with regard to information retrieval.  We worked closely with Region 6 of the 

USDA Forest Service (as well as other agencies) to understand the specific information 

management needs.  Our research team included several individuals with a wide range of 

expertise including computer science, natural resource management, environmental 

science, marketing and information sharing, and library science.  Several years of 

collaboration helped us learn more about the specific needs of natural resource 

management � and become familiar with their nomenclature and information processes.  

The success of our research is largely attributed to the diversity and extensive 

collaboration of our research team.   

As a team, we discovered intricate and interesting relationships within natural 

resource controlled vocabularies such as multiple occurrences, non-transitive synonyms, 

and polyterms.  We gathered and evaluated several controlled vocabularies that span a 
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large range of natural resource topics.  We built a domain-specific digital library system 

that uses path-based metadata to represent these vocabularies �as-is� and to utilize the 

intricate relationships among terms.  Path-based terms allow the user to easily understand 

terms without explicit definitions or scope notes.  The Metadata++ software application 

uses relationships among terms to support user-driven, interactive query expansion.   

In addition to understanding controlled vocabularies, we worked together to 

define architectural objectives for the application.  These objectives established a metric 

that we used to evaluate the backend storage and retrieval mechanism and the user 

interface.  We implemented a path-based storage and retrieval mechanism using four 

different approaches.  After three different implementations utilizing a relational 

database, we learned that a relational database is not necessarily the best tool for 

managing path-based data.  Our performance evaluation (and user feedback) showed that 

using the file system, and Microsoft® Index Server, more adequately satisfies all of the 

architectural objectives.   

 We also implemented the user interface several times.  After attempting two 

different thin-client applications and a thick-client application, we determined that the 

best architecture for this particular application is a smart-client.  Our smart-client 

implementation combines a highly-interactive user interface with the deployment benefits 

of a web application.  The client application uses web services to communicate with the 

server.  Overall, the smart-client application satisfied all of the architectural objectives. 

Our user study shows that the application is intuitive and usable, and we received 

considerable positive feedback about the functionality.  Several users expressed their 

desire to see Metadata++ deployed for actual use within the USDA Forest Service.  

However, budget cuts and other administrative factors have prevented the deployment as 

of yet.  We hope that these factors may, at some point, be overcome so the application 

may be put into actual use to benefit natural resource managers.  
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