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1 Overview

MSL (Message Specification Language) is a simple, textual, specification language that enables
a user to define the translation and validation functions used in message processing software
components. This document builds on the domain analysis and structure identified by Lewis
in his specification of the MTV domain [1], which in turn built upon work by the SEI on a
“Model Solution” to the MTV problem [2].

The basic components of an MTV solution are translation functions mapping among the
external representation (EXR), the internal representation (INR), and the user representation
(USR), together with a check function that may be applied to external or user messages.
To support the specification of the check functions, and to give a clear semantic delineation
to the scope of the possible translations, Lewis introduced a new representation, the logical
representation (LOG), which generalizes the INR.

These components can also be described by the following MSL semantic domains.

1. Semantic Entities (Logical Declarations)
e Logical Types (structure of logical expressions)
e Logical Values (meaning of logical expressions)

2. Semantic Actions (Translation Functions)
e The relationship between the EXR and LOG representations (explicit)
e The relationship between the LOG and USR representations (implicit)

3. Validity Checks (Logical Constraints)
o The set of syntactic constraints on the EXR and USR (implicit)
e The set of semantic constraints on the EXR and USR (explicit)

From these three components, the system generates an internal representation, together with
the necessary translation and validation functions.

In the logical declarations section, the user gives type definitions that implicitly define a
set of constructor functions and basic values that can be used in the construction of logical
expressions throughout the specification. The data types defined in the logical section must
include the logical representation of the message format, which is the basis for the generation
of the Internal representation data type.

The translation function definition section explicitly describes the translation from the
external format to the logical format (EXR to LOG). The atomic translation functions are
either specified by specific external-pattern, logical-value pairs or from a small set of built-
in functions. Translation functions are combined with structural combinators derived from
the basic message types. These include product, sum, array and list. The definition of local
functions is allowed to support reuse and structure the specification.

From these descriptions, three other translation functions are also derived

e The LOG to EXR function
e The LOG to USR function
e The USR to LOG function

The constraint declaration section defines functions from the logical representation to an
enumeration type of failure conditions.



2 Logical Declarations

The language for logical descriptions is a simple, lexically-scoped, strongly-typed, first-order
declarative language. The primitive types are integers, integer subranges, strings, and strings
of bounded length. Type constructors are provided for enumeration types, product types, sum
types, arrays of fixed dimension and (homogeneous) lists.

2.1 Logical Types

Types may be declared and bound to type identifiers. Type equality is structural and is only
defined in a type environment in which all free type identifiers can be resolved. Types are
declared with declarations of the form

typet =1

where 7 is a type identifier and ¢ is a type. The special type declaration that denotes the type
of the message as a whole takes the form

message_type 1 =1

There should be exactly one of these message_type declarations in each message specification.

The effect of a type declaration is to extend the type environment with the named type and
the expression environment and type assignments with all projection and injection functions
implicitly defined in ¢. All types are of one of the following forms.

1. Atomic types which are illustrated by the following table:

integer Unbounded integer type

integer(k) Integers between 0 and k, inclusive
integer(l..h) Integers between [ and h, inclusive.
string A string of unbounded length
string(k) A string with maximum length £.

There is a notion of type containment induced by the subrange types. For example, the
type integer(1..5) is a subset of integer.

2. Product types provide a record-like labeled product. The type

{ll :tl,...,lnltn}

defines a type and n projection functions, [y ...[l,, each mapping the product type to the
associated component type. Note that for the purposes of determining type equality, the
order of the typed projection functions inside a product does not matter. For example,

{ day : integer, month : integer, year : integer }
is equivalent to

{ month : integer, day : integer, year : integer }



3. Sum types provide a variant-record structure. The type
[ll :tl,...,ln . tn]

defines a type and n injection functions, [ ...[,, each mapping the associated component
type into the sum type. As with the product type constructor, the order of the labeled
injection functions within the sum type constructor is arbitrary.

[ true : one, false : one |

When the component type is one, as above, it may be omitted from the declaration. The
boolean example above could also be written as the enumeration type

[true, false]

4. Arrays are declared by a type followed by a dimension written inside brackets.

type IntArray = integer [8]

5. Lists are indicated by a type followed by a postfix *.

type IntList = integer *

2.2 Logical Values

The logical expression language is used to define logical constraints and to express simple
transformations on actions. Logical expressions may appear as part of an action or constraint
(see next sections), or may be bound to an identifier as follows.

1. val f = e where e is a logical expression (see below).

2. fun f (I1 : t1,...,0, 1 t,) = e where € is a logical expression (see below).

Function declarations must give the name of the function symbol being defined and the types
of all the formal parameters. Within declarations, values and functions may be declared locally
with a let binding. For example,

fun f(h:ty,.... 0L, t,) = let vala =¢e
fun f' (z1,...,2,) = ez
In e3

The result type of the declaration is inferred from the type of the expression defining the body.
All logical expressions must take one of the following forms.

1. Atomic expressions include expression identifiers (often called simply identifiers or vari-
ables), the “unit” value (), and string and integer constants. The types of identifiers
must be specified in the environment. The type of () is one, of a string constant of
length n is string(n), and of an integer constant k is integer(k---k). The sub-typing
relationship allows these constants to then match all types of which they are members.



Special Integer and String Values Base 10 integer constants may be expressed in the
standard fashion, and in other bases using the notation

base#Fnumber#

For example, the integer 5 may be represented either as 5 or in base 2 as 2#101#.

There are several special control characters available in msl represented by

carriage return  “\r”
newline “\n”
tab cc\tw

Note that there should be no embedded blanks in any string value, since blanks are used
as field delimiters in the inferred USR2LOG translation function.

Operators on Logical Expressions Expressions may be modified by unary operators
or combined using binary operators. For example, 100 16. The following is a list of valid
expression operators

+ Binary function on integers
- Binary function on integers
* Binary function on integers

div. Binary function on integers

mod Binary function on integers

~ Unary function on integers (for negative integer values)

and  Binary function on boolean expressions

or Binary function on boolean expressions

not  Unary function on boolean expressions

dim  Unary function from arrays to integers (returns array length)
Unary function from pairs of integers to integer lists
(returns bounds on index references, for example, 0..10)

. Logical values of product type may be constructed by a tuple of labeled values inside
product braces.

{ll = 617"'717% = en}
Two logical products are type equivalent as long as they each form a permutation of the
same sequence.

. Sum values are produced by a case statement. The case statement takes an expression in
a subtype and a list of “arms”. Each arm contains a label, an identifier, and an expres-
sion. The label must correspond with the label of the injection tag in the case statement.
The identifier is bound to the injected value when the expression is evaluated. All arms
must have compatible types, and the list of arms must be exhaustive.

case ¢ of [1(i1).e1---1,(iy) . €, end

. Logical arrays are constructed by a list of values inside angle brackets. Array elements
must be of compatible type.

(e1,...,€n)



5. Logical lists are constructed by a list of compatibly typed values inside brackets.

[lex, .- enl]
The special value [| |] denotes the empty list.

6. Bounded quantification of a logical list or array expression has the form

exists z in e; . e where z is an identifier, and ey a logical list
forall z in e . e €9 is any boolean expression with & occurring freely in it.

For example,

exists i in 0..dim(A)-1 . A[i] <A[i+1]

where ¢ is an index ranging over the elements of the list [|0,1,...,n — 1|], n is the length
of the array A,and 0 < ¢ <n—1

7. Application of a function to alist of arguments is achieved by writing an identifier followed
by the parenthesized list of actual arguments. All functions must be total.

flze,. .. z)

3 Translation Functions

The only explicitly defined translation function is from the EXR to LOG representation. This
function must declare an invertible map between the external representation and the logical
representation. The function declaration may be structured by declaring (reusable) component
functions.

As a reader of bit strings, the EXR to LOG translation function must take the appropriate
action when either a read success or failure occurs. A component function which successfully
reads a sequence of bits translates them and passes on the remainder of the unread sequence.
In the case of a read fail (in which the component function did not find a bit sequence of the
appropriate format) one of two actions occur.

1. If the component function is trying to read something of sum type, it must backtrack to
the beginning of its read and use the next component in the sum translation function to
re-read the bit sequence.

2. If function is not a sum constructor, then the failure of any component function causes
the entire function to fail. Note that if every component of a sum constructor fails then
it fails as well.

Read failures will propagate upward through enclosing constructors until either a sum trans-
lation function is encountered (in which case it can backtrack and re-read) or the top level
function is reached. If the top level EXR to LOG function fails, then the message is actually
invalid, and an appropriate error message must be generated.

It is assumed that all LOG representations are valid, and hence there is no corresponding
notion of failure in the inverse function (LOG to EXR).



3.1 External to Logical Translation Functions

The EXR to LOG translation functions (semantic actions) are defined by function declarations
of the form
EXRaction i :t =a

where 7 is a function identifier, ¢ is a type or previously defined type identifier, and a is an
action. There should be exactly one special message action in each message specification of the
form

EXRmessage action ¢ :t =«

All actions, are primitive or composite functions from bits to logical types, and fall into one of
the following categories.

1. Atomic built-in primitive bit string reader/writer functions

Bin2Int ¢+ Binary to integer translation function on binary strings of length ¢

Int ¢ Translates ¢ bytes of a binary string into an integer
Asc2Int ¢ Translates ¢ bytes into an ASCII string, then to an integer
Asc e Translate 7 bytes of a binary string into an ASCII string

VAsc s Translates a variable length binary string ending in s into an ASCII string

All of the above primitives which read integers may also be modified by special scaling
or offset functions over logical expressions of the form

Scale f f~!

where f denotes a function from integers to integers and f~! is the inverse of f. For
example,

fun Pennies_to_Dollars (n:integer(100..99999)) = n div 100

fun Dollars_to_Pennies (n:integer(1..999)) = n * 100

EXRaction Money : integer = Asc2Int 2 (Scale Dollars_to_Pennies Pennies_to_Dollars)
Note that the type bounds are required on the functions because fractions are not legal

logical values.

Because the EXR may contain delimiters and list separators between meaningful strings
of bits or contain meaningless bits within a meaningful byte of information, two special
primitives are required.

Skip ¢ Reads ¢ bits and returns nothing
Delim s Translates the bit representation of the string s and returns nothing

These primitives may not stand alone, and must be composed with other actions using
one of the three special action composition operators @ * ::. For example,

(Bin2Int 6) @ (Skip 2)



The action composition operators can only be used to combine actions when at least one
of the actions involved returns a Unit type. In addition, * and :: may only be used to
combine a list action with a unit action (see below).

If any of the primitives fail to find the correct bit format a read failure occurs. If the
primitive is a component of a structural combinator, then that combinator must deal
appropriately with the failure of one of its component functions (use one of the two
failure conventions described in the previous section).

. Composition with user defined atomic external-pattern logical-value pairs.
alv = e

where a is an EXRaction, v is a value of type string, integer, or unit and e is any logical
expression. These user defined primitives act as “guarded reads” which fail if a pattern
is not matched. For example,

EXRaction High_Confidence : [ High, Med, Low, None] = Asc 1 | “H” = High

This declares an action which reads a byte and translates it to a character. If the character
is an “H”, it returns the unit value High. If not, the action fails. As with the built-
in primitives, any enclosing combinator must also deal with the failure of one of its
components.

A composite action that is part of a composite sum action may optionally omit its result
value if that value is of unit type. See the structural sum combinator below for further
details.

. Structural combinators (product, sum, array, and list) over action declarations.

As with the primitives, any structural combinator can have a read fail. If the combinator
is itself a component of another combinator, then that combinator must follow one of the
failure conventions described in the previous section.

(a) Product action constructors define a sequence of actions.

{lyray,.... 01, ay}

For example,

EXRaction Julian_Date : {day:integer, hour:integer, minute:integer} =
{ year = (Bin2Int 9)@(Skip 2), day = (Bin2Int 6),
month = (Skip 2)@(Bin2Int 5)
} @(Delim “End”)
If any of the components of the product action constructor has a read failure, the
product also has a read failure.

(b) Sum action constructors define a selection, similar to a case statement, of the form

[l1:ay,... 0 ay]



Of the sequence of actions, only the leftmost successful action is returned from the
sum. In the special case that an element of a sum is an action that reads a unit
value, the label of the sum element will be preserved as the logical field value.

The following example describes one of each, first an action declaration which reads
in a bit string character and interprets it as a confidence level; next one that reads
a bit string and returns either a Confidence level of type one or, if that value not
found, an Altitude of type integer.

EXRaction Confidence : [ High, Med, Low, None | =

[ High: Asc 1| “H”,
Med : Asc 1| “M”,
Low : Asc 1| “L7”,
None : Asc 1 | “N”

I;

EXRmessage_action  Confoor_Alt : [ Conf : [ High, Med, Low, None |, Alt : integer | =
[ TrackConf : Confidence, Altitude : Asc2Int 5 |;

As noted above, in the Confidence sum it would have been equally correct to write,
for example, High : Asc 1 | “H” = High.

A sum has a read failure only if all of its component actions fail. As with the product
constructor, if a sum is itself a component function then the encompassing function
must handle the failure using the appropriate failure convention.

(¢) Array action constructors are of the form (a) For example,
( Asc2Int 1)

The failure conventions for arrays are identical to those of products.

(d) List action constructors are one of two forms, where a, a1, and ay are semantic
actions and s is a logical string value. The first form describes a possibly empty
list followed by delimiter s, and the second form is defines a non-empty list which
contains separators. Note that ¢y and ay must be of the same type.

a * (Delim s) for example (Int 1) * (Delim “END”)

a; @ (Delim s) :: az for example (Int 1) @ (Delim *,”) :: (Int 1)

A list constructor may fail either because a list element was not found, or because
a separator (first kind) or a delimiter (second kind) was not found.

3.2 Logical to User Translation Functions

The LOG to USR translation is inferred from the user-specified EXR to LOG translation
functions. Because it is assumed that all LOG representations are correct, there is no explicit
notion of failure for these functions. However, the inverse function (USR to LOG) can fail.
The results of a read fail for either a primitive function or structural action combinator are as
for the EXR to LOG functions.



4 Logical Constraints

Validity checks are defined in two ways. First, there are implicit syntactic constraints in the
external to logical and user to logical mappings. If a message can be converted into a logical
representation with these mappings then it is syntactically valid.

The second checking phase verifies that the message is semantically valid. Logical validity
constraints are specified explicitly as tests of logical assertions about semantic entities in the
logical expression language (described in Section 2).

Logical constraints have the general form
raise error if (m : mtype) e

where erroris a string, m is a variable, mtype is the type of a message, and e is a logical boolean
expression (possibly containing previously defined identifiers). For example, the sum actions
defined in the previous section could be constrained by the following

fun No_Confidence (conf:[ High, Med, Low, None]) = (conf = None);

raise  Contact_Error if (m : TC_or_Alt)
No_Confidence(TrackConf(m)) or (Altitude(m) < 1000);

5 Miscellaneous Semantic Issues

1. String values may not have any embedded white spaces.

2. Impact of scaling functions on action types. All type declarations refer to the logical
message representation. For example, in the specification the type of EXRmessage_action
is integer(1..999) — integer(1..9999), despite the type of the action Asc2Int.

fun fun Dollars_to_Pennies (n:integer(1..999)) = n * 100
fun Pennies_to_Dollars (n:integer(100..9999)) = n div 100

EXRaction Money : integer = Asc2Int 2 (Scale Dollars_to_Pennies Pennies_to_Dollars)

3. Ambiguous declarations. The type of an arm of a sum should never be a prefix of the
type of another arm in the same sum. For example, in the following examples, the first
arm will always succeed and the second will never be reached even if a read failure occurs
after the sum succeeds

EXRaction BogusSuml : sumtype = [ Arml : Int 3, Arm2 : (Int 2) @ (Delim ‘°.

EXRaction BogusSum2: sumtype = [ Armil : Asc 3, Arm2 : (Asc 2) @ (Delim °.
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A Example

(* Type Declarations *)

type date_type =
{ day : integer(1..7), month : integer(1l..12), year : integer(1980,1990) };

type president_type = [Reagan,Bush,Clinton,Unknown];
message_type mtyp = { President : president_type,
ElectionDate : date_type,

Cabinet : string [12],
Donations : integer * };

(* Logical Function Declarations *)

+

1900;
n - 1900;

fun AddC (n : integer(80..99)) =n
fun RemC (n : integer(1980..1999))

(% Action Declarations *)

EXRaction EDat : date_type =
{ day : Bin2Int 6, month : Bin2Int 4, year : Bin2Int 6};

EXRaction Year : integer = Asc2Int 2 Scale AddC RemC;

EXRaction Pres : president_type =
[Reagan: Year | 1984,
Bush : Year | 1988,
Clinton : Year | 1992,
Unknown: Skip 16 1;

EXRmessage_action M : mtyp =
{ President : Pres,
ElectionDate : EDat,
Cabinet : < VAsc ““[|’?’ >,
Donations : Int 4 * Delim "/" };

(* Constraint Declaration *)

raise NotElectionYr if (m:mtyp) (President(m)=Unknown);

11



B Concrete Syntax

In the grammar below, the following conventions will be used:

(- )T or _* indicates that _ may be repeated one or many times
( - )" or _* indicates that _ may be repeated zero or many times.

Anything enclosed by quotes is a literal, and anything in capital letters may be sub-
stituted by an appropriate member of the type specified. (For example, INTEGER
may be replaced by any value of type integer) Binary numbers are represented as

2#number#.

Message Spec == ( “type” ID “=” LType )T
“message_type” ID “=" LType
( “fun” ID “(77 (ID “:77 LType)-I— “)77 “:77 LEXP )*
( “Val” ID “_» LEXP )*
( “EXRaction” ID “:” LType “=" EXRact )"
“EXRmessage_action” ID “” LType “=" EXRact
(((raise77 ID “if” “(77 ID “:77 LType “)77 LEXP )*

LType = 1D
|5 Lype )"
| “Integer”
| “Integer” “(” INTEGER “..” INTEGER “)”
| “Integer” “(” INTEGER “)”
| “String”
| “String” “(” INTEGER )
(* Product *) |
(* Sum *) | “[ Labeled_Type™ |
(* Array *) | LType “[” INTEGER “]”
(* List *) | LType“*”

“{” Labeled _Type™ “}”

Labeled _Type == 1D
| ID “:” LType

LAtomVal .= INTEGER
| BINARY
| STRING
| UNIT

12



LExp

* Array *)

* UnOp *)
* Exists *)
* ForAll *)

UnOp

EXRact

* Sum *)

*w/ Unit *)

1D

| LAtomVal

| 44(77 LEXp 44)77

| 44{77 (ID 44:77 LEXP)—l— 44}77
| cc<77 LEXp+ cc>77

| LEXp 44[77 LEXp 44]77

| 44[77 LEXp+ cc]w

“case” ID “of” (LExp “.” LExp)t “end”
| p p

| LExp “(” LExp* “)”

| LExp BinOp LExp

| UnOp LExp

| “exists” ID “in” LExp “.” LExp
| “forall” ID “in” LExp “.” LExp

=|<| (1=
- * ] div| mod | .. | && | or

dim | not |

1D

| “( Bin2Int” INTEGER “)” Scale
| “( Int” INTEGER “)” Scale
| “( Asc2Int” INTEGER “)” Scale
| “( Asc” STRING «)”

| “( VAsc” STRING )

| “{” (ID “=” EXRact)t “}”
| “[” (ID “” EXRact)t “]”
| “<” EXRact “>"

| EXRact “*” EXRact

| EXRact “::” EXRact

| “( Skip” INTEGER ¢)”

| “( Delim” STRING «)”

| EXRact LAtomVal vert LExp
| EXRact “@” EXRact

( Scale” ID ID “)”

| €
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