
Message Speci�cation Language �MSL��

A Domain Speci�c Design Language for
Message Translation and Validation

Revision� ���

Lisa Walton and James Hook

August ��� ����

Contents

� Overview �

� Logical Declarations �
��� Logical Types � 	
��� Logical Values �

� Translation Functions �
	�� External to Logical Translation Functions � � � � � � � � � � � � � � � � �

	�� Logical to User Translation Functions �

� Logical Constraints ��

� Miscellaneous Semantic Issues ��

A Example ��

B Concrete Syntax ��

C Index ��

�

� Overview

MSL �Message Speci�cation Language� is a simple� textual� speci�cation language that enables
a user to de�ne the translation and validation functions used in message processing software
components� This document builds on the domain analysis and structure identi�ed by Lewis
in his speci�cation of the MTV domain ���� which in turn built upon work by the SEI on a
	Model Solution
 to the MTV problem ����

The basic components of an MTV solution are translation functions mapping among the
external representation �EXR�� the internal representation �INR�� and the user representation

�USR�� together with a check function that may be applied to external or user messages�
To support the speci�cation of the check functions� and to give a clear semantic delineation
to the scope of the possible translations� Lewis introduced a new representation� the logical

representation �LOG�� which generalizes the INR�
These components can also be described by the following MSL semantic domains�

�� Semantic Entities �Logical Declarations�
� Logical Types �structure of logical expressions�
� Logical Values �meaning of logical expressions�

�� Semantic Actions �Translation Functions�
� The relationship between the EXR and LOG representations �explicit�
� The relationship between the LOG and USR representations �implicit�

�� Validity Checks �Logical Constraints�
� The set of syntactic constraints on the EXR and USR �implicit�
� The set of semantic constraints on the EXR and USR �explicit�

From these three components� the system generates an internal representation� together with
the necessary translation and validation functions�

In the logical declarations section� the user gives type de�nitions that implicitly de�ne a
set of constructor functions and basic values that can be used in the construction of logical
expressions throughout the speci�cation� The data types de�ned in the logical section must
include the logical representation of the message format� which is the basis for the generation
of the Internal representation data type�

The translation function de�nition section explicitly describes the translation from the
external format to the logical format �EXR to LOG�� The atomic translation functions are
either speci�ed by speci�c external
pattern� logical
value pairs or from a small set of built

in functions� Translation functions are combined with structural combinators derived from
the basic message types� These include product� sum� array and list� The de�nition of local
functions is allowed to support reuse and structure the speci�cation�

From these descriptions� three other translation functions are also derived

� The LOG to EXR function

� The LOG to USR function

� The USR to LOG function

The constraint declaration section de�nes functions from the logical representation to an
enumeration type of failure conditions�

�

� Logical Declarations

The language for logical descriptions is a simple� lexically
scoped� strongly
typed� �rst
order
declarative language� The primitive types are integers� integer subranges� strings� and strings
of bounded length� Type constructors are provided for enumeration types� product types� sum
types� arrays of �xed dimension and �homogeneous� lists�

��� Logical Types

Types may be declared and bound to type identi�ers� Type equality is structural and is only
de�ned in a type environment in which all free type identi�ers can be resolved� Types are
declared with declarations of the form

type i � t

where i is a type identi�er and t is a type� The special type declaration that denotes the type
of the message as a whole takes the form

message type i � t

There should be exactly one of these message type declarations in each message speci�cation�
The e�ect of a type declaration is to extend the type environment with the named type and

the expression environment and type assignments with all projection and injection functions
implicitly de�ned in t� All types are of one of the following forms�

�� Atomic types which are illustrated by the following table�

integer Unbounded integer type
integer�k� Integers between � and k� inclusive
integer�l��h� Integers between l and h� inclusive�
string A string of unbounded length
string�k� A string with maximum length k�

There is a notion of type containment induced by the subrange types� For example� the
type integer������ is a subset of integer�

�� Product types provide a record
like labeled product� The type

fl� � t�� � � � � ln � tng

de�nes a type and n projection functions� l� � � � ln� each mapping the product type to the
associated component type� Note that for the purposes of determining type equality� the
order of the typed projection functions inside a product does not matter� For example�

f day � integer� month � integer� year � integer g

is equivalent to

f month � integer� day � integer� year � integer g

�

�� Sum types provide a variant
record structure� The type

�l� � t�� � � � � ln � tn�

de�nes a type and n injection functions� l� � � � ln� each mapping the associated component
type into the sum type� As with the product type constructor� the order of the labeled
injection functions within the sum type constructor is arbitrary�

� true � one� false � one �

When the component type is one� as above� it may be omitted from the declaration� The
boolean example above could also be written as the enumeration type

�true� false�

�� Arrays are declared by a type followed by a dimension written inside brackets�

type IntArray � integer ���

�� Lists are indicated by a type followed by a post�x ��

type IntList � integer �

��� Logical Values

The logical expression language is used to de�ne logical constraints and to express simple
transformations on actions� Logical expressions may appear as part of an action or constraint
�see next sections�� or may be bound to an identi�er as follows�

�� val f � e where e is a logical expression �see below��

�� fun f �l� � t�� � � � � ln � tn� � e where e is a logical expression �see below��

Function declarations must give the name of the function symbol being de�ned and the types
of all the formal parameters� Within declarations� values and functions may be declared locally
with a let binding� For example�

fun f �l� � t�� � � � � ln � tn� � let val x � e�
fun f � �x�� � � � � xn� � e�

in e�

The result type of the declaration is inferred from the type of the expression de�ning the body�
All logical expressions must take one of the following forms�

�� Atomic expressions include expression identi�ers �often called simply identi�ers or vari

ables�� the 	unit
 value ��� and string and integer constants� The types of identi�ers
must be speci�ed in the environment� The type of �� is one� of a string constant of
length n is string�n�� and of an integer constant k is integer�k � � �k�� The sub
typing
relationship allows these constants to then match all types of which they are members�

�

Special Integer and String Values Base �� integer constants may be expressed in the
standard fashion� and in other bases using the notation

base�number�

For example� the integer � may be represented either as � or in base � as ���	���

There are several special control characters available in msl represented by

carriage return 	�r

newline 	�n

tab 	�t

Note that there should be no embedded blanks in any string value� since blanks are used
as �eld delimiters in the inferred USR�LOG translation function�

Operators on Logical Expressions Expressions may be modi�ed by unary operators
or combined using binary operators� For example� ������� The following is a list of valid
expression operators

� Binary function on integers

 Binary function on integers
� Binary function on integers
div Binary function on integers
mod Binary function on integers
� Unary function on integers �for negative integer values�
and Binary function on boolean expressions
or Binary function on boolean expressions
not Unary function on boolean expressions
dim Unary function from arrays to integers �returns array length�
�� Unary function from pairs of integers to integer lists

�returns bounds on index references� for example� ������

�� Logical values of product type may be constructed by a tuple of labeled values inside
product braces�

fl� � e�� � � � � ln � e
n
g

Two logical products are type equivalent as long as they each form a permutation of the
same sequence�

�� Sum values are produced by a case statement� The case statement takes an expression in
a subtype and a list of 	arms
� Each arm contains a label� an identi�er� and an expres

sion� The label must correspond with the label of the injection tag in the case statement�
The identi�er is bound to the injected value when the expression is evaluated� All arms
must have compatible types� and the list of arms must be exhaustive�

case e of l��i�� � e� � � � ln�in� � en end

�� Logical arrays are constructed by a list of values inside angle brackets� Array elements
must be of compatible type�

he�� � � � � eni

�

�� Logical lists are constructed by a list of compatibly typed values inside brackets�

�je�� � � � � enj�

The special value �j j� denotes the empty list�

�� Bounded quanti�cation of a logical list or array expression has the form

exists x in e� � e� where x is an identi�er� and e� a logical list
forall x in e� � e� e� is any boolean expression with x occurring freely in it�

For example�
exists i in ���dim�A�
� � A�i� �A�i���

where i is an index ranging over the elements of the list �j�� �� � � � � n� �j�� n is the length
of the array A� and � � i � n � �

�� Application of a function to a list of arguments is achieved by writing an identi�er followed
by the parenthesized list of actual arguments� All functions must be total�

f �x�� � � � � xn�

� Translation Functions

The only explicitly de�ned translation function is from the EXR to LOG representation� This
function must declare an invertible map between the external representation and the logical
representation� The function declaration may be structured by declaring �reusable� component
functions�

As a reader of bit strings� the EXR to LOG translation function must take the appropriate
action when either a read success or failure occurs� A component function which successfully
reads a sequence of bits translates them and passes on the remainder of the unread sequence�
In the case of a read fail �in which the component function did not �nd a bit sequence of the
appropriate format� one of two actions occur�

�� If the component function is trying to read something of sum type� it must backtrack to
the beginning of its read and use the next component in the sum translation function to
re
read the bit sequence�

�� If function is not a sum constructor� then the failure of any component function causes
the entire function to fail� Note that if every component of a sum constructor fails then
it fails as well�

Read failures will propagate upward through enclosing constructors until either a sum trans

lation function is encountered �in which case it can backtrack and re
read� or the top level
function is reached� If the top level EXR to LOG function fails� then the message is actually
invalid� and an appropriate error message must be generated�

It is assumed that all LOG representations are valid� and hence there is no corresponding
notion of failure in the inverse function �LOG to EXR��

�

��� External to Logical Translation Functions

The EXR to LOG translation functions �semantic actions� are de�ned by function declarations
of the form

EXRaction i � t � a

where i is a function identi�er� t is a type or previously de�ned type identi�er� and a is an
action� There should be exactly one special message action in each message speci�cation of the
form

EXRmessage action i � t � a

All actions� are primitive or composite functions from bits to logical types� and fall into one of
the following categories�

�� Atomic built
in primitive bit string reader�writer functions

Bin�Int i Binary to integer translation function on binary strings of length i

Int i Translates i bytes of a binary string into an integer
Asc�Int i Translates i bytes into an ASCII string� then to an integer
Asc i Translate i bytes of a binary string into an ASCII string
VAsc s Translates a variable length binary string ending in s into an ASCII string

All of the above primitives which read integers may also be modi�ed by special scaling
or o�set functions over logical expressions of the form

Scale f f��

where f denotes a function from integers to integers and f�� is the inverse of f � For
example�

fun Pennies to Dollars �n�integer������������� � n div ���
fun Dollars to Pennies �n�integer��������� � n � ���

EXRactionMoney � integer � Asc�Int � �Scale Dollars to Pennies Pennies to Dollars�

Note that the type bounds are required on the functions because fractions are not legal
logical values�

Because the EXR may contain delimiters and list separators between meaningful strings
of bits or contain meaningless bits within a meaningful byte of information� two special
primitives are required�

Skip i Reads i bits and returns nothing
Delim s Translates the bit representation of the string s and returns nothing

These primitives may not stand alone� and must be composed with other actions using
one of the three special action composition operators
 � ��� For example�

�Bin�Int �� � �Skip ��

�

The action composition operators can only be used to combine actions when at least one
of the actions involved returns a Unit type� In addition� � and �� may only be used to
combine a list action with a unit action �see below��

If any of the primitives fail to �nd the correct bit format a read failure occurs� If the
primitive is a component of a structural combinator� then that combinator must deal
appropriately with the failure of one of its component functions �use one of the two
failure conventions described in the previous section��

�� Composition with user de�ned atomic external
pattern logical
value pairs�

a j v � e

where a is an EXRaction� v is a value of type string� integer� or unit and e is any logical
expression� These user de�ned primitives act as 	guarded reads
 which fail if a pattern
is not matched� For example�

EXRaction High Con�dence � � High� Med� Low� None� � Asc � j 	H
 � High

This declares an action which reads a byte and translates it to a character� If the character
is an 	H
� it returns the unit value High� If not� the action fails� As with the built

in primitives� any enclosing combinator must also deal with the failure of one of its
components�

A composite action that is part of a composite sum action may optionally omit its result
value if that value is of unit type� See the structural sum combinator below for further
details�

�� Structural combinators �product� sum� array� and list� over action declarations�

As with the primitives� any structural combinator can have a read fail� If the combinator
is itself a component of another combinator� then that combinator must follow one of the
failure conventions described in the previous section�

�a� Product action constructors de�ne a sequence of actions�

fl� � a�� � � � � ln � ang

For example�

EXRaction Julian Date � fday�integer� hour�integer� minute�integerg �
f year � �Bin�Int ����Skip ��� day � �Bin�Int ���

month � �Skip ����Bin�Int ��
g ��Delim 	End
�

If any of the components of the product action constructor has a read failure� the
product also has a read failure�

�b� Sum action constructors de�ne a selection� similar to a case statement� of the form

�l� � a�� � � � � ln � an�

�

Of the sequence of actions� only the leftmost successful action is returned from the
sum� In the special case that an element of a sum is an action that reads a unit
value� the label of the sum element will be preserved as the logical �eld value�

The following example describes one of each� �rst an action declaration which reads
in a bit string character and interprets it as a con�dence level� next one that reads
a bit string and returns either a Con�dence level of type one or� if that value not
found� an Altitude of type integer�

EXRaction Con�dence � � High� Med� Low� None � �
� High � Asc � j 	H
�

Med � Asc � j 	M
�
Low � Asc � j 	L
�
None � Asc � j 	N

��
EXRmessage action Conf or Alt � � Conf � � High� Med� Low� None �� Alt � integer � �

� TrackConf � Con�dence� Altitude � Asc�Int � ��

As noted above� in the Con�dence sum it would have been equally correct to write�
for example� High � Asc � j 	H
 � High�

A sum has a read failure only if all of its component actions fail� As with the product
constructor� if a sum is itself a component function then the encompassing function
must handle the failure using the appropriate failure convention�

�c� Array action constructors are of the form hai For example�

h Asc�Int � i

The failure conventions for arrays are identical to those of products�

�d� List action constructors are one of two forms� where a� a�� and a� are semantic
actions and s is a logical string value� The �rst form describes a possibly empty
list followed by delimiter s� and the second form is de�nes a non
empty list which
contains separators� Note that a� and a� must be of the same type�

a � �Delim s� for example �Int �� � �Delim 	END
�

a� � �Delim s� �� a� for example �Int �� � �Delim 	�
� �� �Int ��

A list constructor may fail either because a list element was not found� or because
a separator ��rst kind� or a delimiter �second kind� was not found�

��� Logical to User Translation Functions

The LOG to USR translation is inferred from the user
speci�ed EXR to LOG translation
functions� Because it is assumed that all LOG representations are correct� there is no explicit
notion of failure for these functions� However� the inverse function �USR to LOG� can fail�
The results of a read fail for either a primitive function or structural action combinator are as
for the EXR to LOG functions�

�

� Logical Constraints

Validity checks are de�ned in two ways� First� there are implicit syntactic constraints in the
external to logical and user to logical mappings� If a message can be converted into a logical
representation with these mappings then it is syntactically valid�

The second checking phase veri�es that the message is semantically valid� Logical validity
constraints are speci�ed explicitly as tests of logical assertions about semantic entities in the
logical expression language �described in Section ���

Logical constraints have the general form

raise error if �m � mtype� e

where error is a string� m is a variable� mtype is the type of a message� and e is a logical boolean
expression �possibly containing previously de�ned identi�ers�� For example� the sum actions
de�ned in the previous section could be constrained by the following

fun No Con�dence �conf�� High� Med� Low� None�� � �conf � None��

raise Contact Error if �m � TC or Alt�
No Con�dence�TrackConf�m�� or �Altitude�m� � ������

� Miscellaneous Semantic Issues

�� String values may not have any embedded white spaces�

�� Impact of scaling functions on action types� All type declarations refer to the logical
message representation� For example� in the speci�cation the type of EXRmessage action
is integer��������� integer���������� despite the type of the action Asc�Int�

fun fun Dollars to Pennies �n�integer��������� � n � ���
fun Pennies to Dollars �n�integer������������ � n div ���

EXRactionMoney � integer � Asc�Int � �Scale Dollars to Pennies Pennies to Dollars�

�� Ambiguous declarations� The type of an arm of a sum should never be a pre�x of the
type of another arm in the same sum� For example� in the following examples� the �rst
arm will always succeed and the second will never be reached even if a read failure occurs
after the sum succeeds

EXRaction BogusSum� � sumtype 	
 Arm� � Int �� Arm
 � �Int
� � �Delim �������

EXRaction BogusSum
� sumtype 	
 Arm� � Asc �� Arm
 � �Asc
� � �Delim �������

��

A Example

�� Type Declarations ��

type date�type 	

� day � integer������� month � integer�����
�� year � integer����������� ��

type president�type 	
Reagan�Bush�Clinton�Unknown��

message�type mtyp 	 � President � president�type�

ElectionDate � date�type�

Cabinet � string
�
��

Donations � integer � ��

�� Logical Function Declarations ��

fun AddC �n � integer��������� 	 n � �����

fun RemC �n � integer������������� 	 n � �����

�� Action Declarations ��

EXRaction EDat � date�type 	

� day � Bin
Int �� month � Bin
Int �� year � Bin
Int ���

EXRaction Year � integer 	 Asc
Int
 Scale AddC RemC�

EXRaction Pres � president�type 	

Reagan� Year � �����

Bush � Year � �����

Clinton � Year � ���
�

Unknown� Skip �� ��

EXRmessage�action M � mtyp 	

� President � Pres�

ElectionDate � EDat�

Cabinet � � VAsc ����� �

Donations � Int � � Delim !"! ��

�� Constraint Declaration ��

raise NotElectionYr if �m�mtyp� �President�m�	Unknown��

��

B Concrete Syntax

In the grammar below� the following conventions will be used�

� �� or � indicates that may be repeated one or many times
� �� or � indicates that may be repeated zero or many times�

Anything enclosed by quotes is a literal� and anything in capital letters may be sub

stituted by an appropriate member of the type speci�ed� �For example� INTEGER
may be replaced by any value of type integer� Binary numbers are represented as
��number��

Message Spec ��� � 	type
 ID 	�
 LType ��

	message type
 ID 	�
 LType
� 	fun
 ID 	�
 �ID 	�
 LType�� 	�
 	�
 LExp ��

� 	val
 ID 	�
 LExp ��

� 	EXRaction
 ID 	�
 LType 	�
 EXRact ��

	EXRmessage action
 ID 	�
 LType 	�
 EXRact
�	raise
 ID 	if
 	�
 ID 	�
 LType 	�
 LExp ��

LType ��� ID
j 	�
 LType 	�

j 	Integer

j 	Integer
 	�
 INTEGER 	��
 INTEGER 	�

j 	Integer
 	�
 INTEGER 	�

j 	String

j 	String
 	�
 INTEGER 	�

�� Product �� j 	f
 Labeled Type� 	g

�� Sum �� j 	� Labeled Type� �
�� Array �� j LType 	�
 INTEGER 	�

�� List �� j LType	�

Labeled Type ��� ID
j ID 	�
 LType

LAtomVal ��� INTEGER
j BINARY
j STRING
j UNIT

��

LExp ��� ID
j LAtomVal
j 	�
 LExp 	�

�� Product �� j 	f
 �ID 	�
 LExp�� 	g

�� Array �� j 	�
 LExp� 	�

�� ArrayRf �� j LExp 	�
 LExp 	�

�� List �� j 	�
 LExp� 	�

�� Case �� j 	case
 ID 	of
 �LExp 	�
 LExp�� 	end

�� App �� j LExp 	�
 LExp� 	�

�� BinOp �� j LExp BinOp LExp
�� UnOp �� j UnOp LExp
�� Exists �� j 	exists
 ID 	in
 LExp 	�
 LExp
�� ForAll �� j 	forall
 ID 	in
 LExp 	�
 LExp

BinOp ��� � j h j � h j i j �i
j � j
 j � j div j mod j �� j �� j or

UnOp ��� dim j not j

EXRact ��� ID
�� Atomic �� j 	� Bin�Int
 INTEGER 	�
 Scale
�� Atomic �� j 	� Int
 INTEGER 	�
 Scale
�� Atomic �� j 	� Asc�Int
 INTEGER 	�
 Scale
�� Atomic �� j 	� Asc
 STRING 	�

�� Atomic �� j 	� VAsc
 STRING 	�

�� Product �� j 	f
 �ID 	�
 EXRact�� 	g

�� Sum �� j 	�
 �ID 	�
 EXRact�� 	�

�� Array �� j 	�
 EXRact 	�

�� List� �� j EXRact 	�
 EXRact
�� List� �� j EXRact 	��
 EXRact
�� Unit �� j 	� Skip
 INTEGER 	�

�� Unit �� j 	� Delim
 STRING 	�

�� NPMorphism�� j EXRact LAtomVal vert LExp
�� w� Unit �� j EXRact 	�
 EXRact

Scale ��� � Scale
 ID ID 	�

j �

��

C Index

Action � 	

primitive action See Primitive Actions

product �

sum ��

array ��

list ��

action composition �

ambiguous speci�cations �

bounded quanti�cation ��

EXR ��� �

EXRaction �

EXRmessage action �

Functions� ��

fun �

function application �

function declarations �

INR �

LOG �

let ��

logical constraints �

MTV �

operators �

USR ��

LOG�USR ��

Primitive Actions �

Asc �

Asc�Int �

Bin�Int �

Delim� �

Int �

Skip �

VAsc �

raise ��

read fail �

Scale �

scaling functions �

��

Type �

array type �

enumeration type �

integer �	

list type �

product type �	

string �	

message type � 	

Value� ��

array value �

binary integers �

integer ��

list value ��

product value �

string ��

sum value ��

unit �

val �

white space ��

��

References

��� Je�rey R� Lewis� A speci�cation for an MTV generator� Technical report�
Oregon Graduate Institute� September ���	� ���

	�

��� Charles Plinta� Kenneth Lee� and Michael Rissman� A model solution for C�I
message translation and validation� Technical report� Software Engineering In�
stitute� Carnegie Mellon University� December ����� CMU�SEI����TR��� ESD�
���TR��
�

��

