
Monads� Indexes and Transformations

Fran�coise Bellegarde and James Hook�

Paci�c Software Research Center
Oregon Graduate Institute of Science � Technology

PO Box �����
Portland� Oregon �	
�������

USA
fbellegar�hookg�cse�ogi�edu

October
�� ����

Abstract

The speci�cation and derivation of substitution for the de Bruijn representation of ��

terms is used to illustrate programming with a function�sequence monad� The resulting

program is improved by interactive program transformation methods into an e�cient im�

plementation that uses primitive machine arithmetic� These transformations illustrate new

techniques that assist the discovery of the arithmetic structure of the solution�

Introduction

Substitution is one of many problems in computer science that� once understood in one context�

is understood in all contexts� Why� then� must a di�erent substitution function be written for

every abstract syntax implemented� This paper shows how to de�ne substitution once and use

the monadic structure of the de�nition to instantiate it on di�erent abstract syntax structures�

It also shows how to interactively derive an e�cient implementation of substitution from this

very abstract de�nition�

Formal methods that support reasoning about free algebras from �rst principles based on

their inductive structure are theoretically attractive because they have simple and expressive

�The authors are supported in part by a grant from the NSF �CCR��������	 and by a contract with Air
Force Material Command �F��
������C���
�	

�

theories� However� in practice they often lead to ine�cient algorithms because they fail to

exploit the 	algebras
 implemented in computer hardware� This paper examines this prob�

lem by giving a systematic program development and then describing a series of �potentially

automatic program transformations that may be used to achieve an e�cient implementation�

The particular program development style employed is based on the categorical notion of

a monad� This approach to speci�cation has been advocated by Wadler���� and is strongly

in�uenced by Moggi�s work on semantics���� The substitution algorithm for ��calculus terms

represented with de Bruijn indexes serves as the primary example� The development of the

algorithm is a re�nement of an example in Hook� Kieburtz and Sheard���� It is noteworthy

because a non�standard category is used� the earlier work did not identify this category�

The algorithm is transformed into �rst�order equations using techniques implemented in

the partial evaluator Schism��� and an implementation of Reynolds algorithm for defunction�

alization by Bell���� It is then re�ned to an equivalent �rst�order speci�cation with techniques

implemented in the ASTRE program transformation system���� Finally the program is trans�

formed to introduce standard arithmetic and boolean operators� thus achieving an e�cient

algorithm�

� The Motivating Example� de Bruijn Representation

The de Bruijn representation of terms in the ��calculus avoids the problems of bound variable

names by using indexes to represent variables��� ��� The index assigned to an occurrence of a

variable is the number of ��s in the abstract syntax tree between the occurrence and the � that

binds the variable� For example� the term�

�u� ��v�uv��w�uvw

��z� zu
 ��

�

is represented�
�� ��� � ���� � � �

��� � �
 ��

This representation is most easily visualized by looking at the tree representing the term� which

is given in Figure ��

The de Bruijn representation has the advantage that ��congruent ��terms have identical

representations� There is also no need to calculate sets of free and bound variables when

performing substitution� Substitution is still not trivial� however� since indexes require adjust�

ment as terms are moved into di�erent binding contexts� This paper develops and re�nes a

substitution algorithm for terms that use the de Bruijn representation�

Contracting the redex in ��
 yields

�u� u��z� zu
��w�u��z� zu
w

which is represented�
�� � ��� � �
 ��� � ��� � �
 �
 ��

Figure � illustrates this term as a tree� Note that the term that replaced v occurs with two

distinct representations� �� � � and �� � �� and the indexes associated with the occurrences of u

within the scope of v in ��
 are decremented in ��
 because the � binding v was removed in the

contraction�

The index adjustments required are described by Abadi and others in terms of two simple

operations� lift and shift���� Fundamentally� a substitution is a map from indexes to terms�

Whenever a substitution enters a new binding context �i�e� a �
� the substitution function

must be shifted to accommodate the new mapping of indexes to variables� For example� if �

was mapped to �x� x �technically �� in de Bruijn form
 outside the lambda� then inside the

lambda � must be mapped to �x� x�

The second operation� lift� adjusts the indexes representing non�local variables� such as u in

the example above� Every time a new binding context is entered� the value of the substitution

�

XX��

�
�

X
X

�
�

XX

XX�� XX��

��
hhhhh

�

�

�

�

�

�

�

� �

� �

Figure �� Tree representation of
�u� ��v� uv��w� uvw

��z� zu
�

P
P

�
�

�
�

P
P

P
P

�
�

�
�

P
P

X
X

X
X

�
�

�����

�

� �

��

�

�

�

�

�

�

Figure �� Representation of the
contracted term�

function on every point in the domain must be lifted�

In the algorithm developed below an indexed family of functions is de�ned that gives the

appropriately 	lifted and shifted
 substitution function for each binding context� Continuing

the example from above� to do the ��reduction the initial substitution� ��� must map all

references to the index � to �� � � while decrementing all references to global variables� i�e�

��� � �� � � and ���n � �
 � n� Note that both right hand sides are terms� not simply

integers�� In the second context �� must be shifted and all terms in the image of �� must be

lifted� This gives ��� � �� ��� � �� �� and ���n��
 � �n��
� In this case� these are the only

substitutions needed� but in general any number may be required� The key to this development

is to calculate this sequence of functions and then use a generic recursion scheme� such as that

provided by the map function� that has been specialized to select the function from the family

appropriate to the context�

The shifting transformation is easily captured by the approximate recurrence� �i��� � �

�The coercion of numbers to terms implicit here will become explicit in the programs developed below

�

and �i���n � �
 � �in� To make it exact it is necessary to lift �in� This is done by another

sequence of functions�

f�n � n � �

f�� � �

f��n� �
 � n � �

f�� � �

f�� � �

f��n� �
 � n � �

Observe that in the example a single application of f� to the body of ��� accounts for �� � �

being lifted to �� � �� In general the fi are generated by fi��� � � and fi���n� �
 � �fin
 � ��

So� assuming a map that applies a family of functions� the family of substitution functions�

���� ��� � � �
� is given by the initial substitution� ��� and the recurrence�

�i��� � �

�i���n� �
 � map �f�� f�� � � �
 ��in

Given the sequence of functions� ���� ��� � � �
� mapping indexes to terms� the map function

for sequences can be used to apply the sequence of substitution functions� This� however�

results in terms of terms� since every variable has replaced its index by a term� This is not

a problem� however� because the Term type constructor developed below is designed to be a

monad� monads have a polymorphic function� mult � which performs the requisite �attening�

� Monads

Amonad is a concept from category theory that has been used to provide structure to semantics���

and to speci�cations����� In the computer science setting a monad is de�ned by a parametric

data type constructor� T � and three polymorphic functions�

map � ��� �
 � T� � T�

�

unit � � � T�

mult � TT�� T�

The map function is required to satisfy�

map id� � idT�

map �f � g
 � map f �map g

The polymorphic functions unit and mult must satisfy�

mult� � unitT� � idT�

mult� � �map unit�
 � idT�

mult� �multT� � mult� � �map mult�

A simple example of a monad is list� For lists� map is the familiar mapcar function of Lisp�

unit is the function that produces a singleton list� and mult is the concatenate function that

�attens a list of lists into a single list� Other examples of monads are given by Wadler�����

Several categorical concepts are implicit above� The functional programming category

has types as objects and �computable
 functions as arrows� �Values are viewed as constant

functions�arrows from the one element type�
 The requirements on map specify that the type

constructor T and the map function together de�ne a functor� The polymorphic types of unit

and mult implicitly require them to be natural transformations� The three laws given for them

are the monad laws�

Monads have been used to structure speci�cations �and semantics
 because it is often pos�

sible to characterize interesting facets of a speci�cation as a monad� Algorithms to exploit the

particular facet may frequently be expressed in terms of the map � unit and mult functions with

no explicit details of the type constructors� Finally� the many facets are brought together by

composing the type constructors�

�

� The Term Monad

��� Naive terms

Term structures and substitution are natural candidates for the application of monads� In this

section monads are illustrated by terms without binding structure� In the next section the full

substitution algorithm for de Bruijn terms is given in a monadic setting�

Consider the very simple term data type�

datatype Term���
 � Var��

j App�Term���
 � Term���

It is easily veri�ed that Term� is a monad� The map� unit and multiplier are easily calculated

from the de�nition with the techniques of Hook� Kieburtz and Sheard���� Taking the viewpoint

that a substitution is a function from variables to terms� it is natural to associate the type

� � Term���
 with a substitution function� It is then meaningful to apply the map function

of the monad to a substitution� which yields a Term��Term���

�

This intermediate 	term�term
 is the least intuitive aspect of the example� Essentially a

term over type � has been converted to a term�term over � by replacing the ��values with

��terms� but not the Var constructors that had been applied to them� The multiplier function�

which has the type Term��Term���

 � Term���
� is exactly what is needed to clean up this

situation� In this case it removes the residual applications of the Var constructor in the term�

term�

In summary� if � is an appropriately typed substitution function� the action of the substi�

tution on the simple term type above is given by�

mult �map �

This use of the multiplier and the map together to obtain a function of type T ��
 � T ��
 from

a function f of type � � T ��
 is called Kleisli star or the natural extension of f � Monads can

�

be de�ned in terms of Kleisli star� map and unit�

��� Terms with binding

The development in Section � suggests that the speci�cation of the substitution operation

will be straightforward in a monadic data type with an appropriate map � The following type

declaration extends the naive type above with ��abstraction�

datatype Term��
 � Var��

j Abs�Term��

j App�Term��
 �Term��

As above� it is possible to automatically generate map� mult and unit functions for this type

realizing a monadic structure� Unfortunately� the map function obtained with those techniques

does not work with families of functions�

To accommodate the function sequences a new category� FunSeq� is used� The objects are

data types� as before� but the morphisms are sequences of functions �formally Hom�A�B
 �

�BA

�

� Identities are constant sequences of identities from the underlying category� composi�

tion is pointwise� i�e� �fi
i�� � �gi
i�� � �fi � gi
i���

The map function for Term exploits the new structure by shifting the series of functions

whenever it enters a new context� Its de�nition is given as a functional program�

map �f�� f�� � � �
 �Var x
 � Var��f�� f�� � � �
 x

map �f�� f�� � � �
 �Abs t
 � Abs�map �f�� f�� � � �
 t

map �f�� f�� � � �
 �App�t� t�

 � App�map �f�� f�� � � �
 t�map �f�� f�� � � �
 t�

It is easily veri�ed that �Term�map
 satisfy the categorical de�nition of a functor�

Looking at these de�nitions� it is clear how to insert an ordinary function or value into the

category� and it is straightforward to insert the families of functions needed for the example by

giving the initial element of the sequence and the functional that generates all others� However�

it is also necessary to de�ne the mapping that pulls a computation from FunSeq back into

the category of functional programs� This is accomplished by taking the �rst element of the

�

function sequence� Thus� one way to realize the map function of FunSeq in a functional

programming setting is with the map with policy function introduced in Hook� Kieburtz and

Sheard����

map with policy Z f �Var x
 � Var�fx

map with policy Z f �Abs t
 � Abs�map with policy Z �Zf
 t

map with policy Z f �App�t� t�

 � App�map with policy Z f t�

map with policy Z f t�

In this encoding Z is the functional that generates the sequence and f is the seed value� That

is�
�map �f� Zf� Z�f� � � �

� � map with policy Z f

Note the projection of the �rst element from the family of functions on the left hand side

indicated by the subscript ��

The name map with policy refers to the notion of policy function introduced by Kieburtz���

��� It refers to a type�speci�c function� such as Z above� that is embedded into the program

for a general polymorphic operator to produce a specialized� monomorphic operator using a

similar control scheme�

The unit and mult functions automatically generated for Term can be lifted to FunSeq�

Their de�nitions are�

unit � Var

mult �Var x
 � x

mult �Abs t
 � Abs�mult t

mult �App�t� t�

 � App�mult t�mult t�

Simple induction proofs show that they satisfy the monad laws�

With these de�nitions in place the complete de�nition of substitution is given in Figure ��

Note that the algorithm makes no explicit mention of the data constructors� It only uses the

information about the type implicit in the de�nition of map with policy � unit and mult �

�

fun apply substitution �� M �
let fun succ x � x � �

fun lift f
� �n� if n � � then � else � � f�n � �

fun shift �
� �n� if n � � then unit �

elsemap with policy lift succ ���n� �

in mult�map with policy shift ��M

end

Figure �� Substitution function

��� An alternate formulation of terms

An anonymous referee suggested we consider the following alternate de�nition of the term data

type�
datatype Sum��
 � Local

j Global��

and Term��
 � Var��

j Abs�Term�Sum��

j App�Term��
 � Term��

In this formulation the identify function �x� x is encoded Abs�Var�Local

 and would have type

Term��
� The K combinator� �x��y� x� is encoded Abs�Abs�Var�Global�Local

� Essentially�

instead of using the integer data type to encode the indexes� the recursive structure of Term�

together with the Sum data type� give an encoding of the natural numbers in which Local is

zero and Global is the successor function�

This data type is outside the scope of those considered in our earlier work on generating

monadic functions because it is not a 	sum�of�products
 or 	polynomial
 data type� The occur�

rence of a Term�Sum��

 in the de�nition of Term��
 violates the sum�of�products condition�

It is possible to de�ne a monad based on this construction� and in that monad the Kleisli

��

star appears to yield the correct substitution function� Unfortunately� the functions de�ning

the map and mult functions for this monad are not typable in Standard ML� which is the

primary implementation language used in this investigation� As above� the problems stem

from the occurrence of Term�Sum��

�

The typing problem is illustrated by the natural de�nition of map for this data type�

fun mapSum f Local � Local

j mapSum f �Global x
 � Global �f x

fun map f �Var x
 � Var �f x

j map f �Abs x
 � Abs�map �mapSum f
 x

j map f �App �x� y

 � App�map f x�map f y
�

Consider the occurrence ofmap on the right hand side of the Abs case� If f has type � � � then

this occurrence of map has type �Sum��
 � Sum��

 � Term�Sum��

 � Term�Sum��

�

The whole right�hand�side then has type Term��
� thus the occurrence of map on the left hand

side of the de�nition has type ��� �
 � Term��
 � Term��
�

The type generalization rule in Standard ML only allows function de�nitions that� at the

top level� can be typed with a �xed but arbitrary monotype to be generalized to a polytype�

Consequently� the type system does not allow the map de�nition since the occurrences in the

de�nition cannot be viewed as instances of the same monotype� even though both occurrences

are instances of the same polytype� The same issues arise in type checking the multiplier�

In addition to these technological problems with this� arguably more elegant� alternate data

type� we did not �nd a systematic method to discover and verify the monadic structure�

� Transformation to a First�Order Set of Equations

To obtain a practical algorithm� the substitution function apply substitution in Figure � must

be made more e�cient� This section shows how this transformation can be done automatically�

Program transformation systems operate on systems of �rst�order equations� To apply them

��

to the algorithm of substitution the higher�order facets must be translated into �rst�order

structures� A partial evaluation system is used to accomplish this�

The software allowing a complete automatic transformation is not yet written� The trans�

formations below have been performed with the Schism partial evaluator ���� the program called

Firstify ��� which performs the Reynolds Algorithm ���� and the Astre program transformation

system ���� which are not yet integrated and do not use the same language�

��� Transformation of the map with policy Operator

The �rst step is to rewrite the program using themap with policy operator for the type Term��

as a system of �rst�order functions� A partial evaluator can be used to specialize higher�

order functions decreasing their order level� For example� consider the particular function

�� in the example in Section �� and the call apply substitution ��� A partial evaluator pro�

duces a program that does not contain apply substitution in its full generality� it specializes

the de�nition of apply substitution for the particular constant ��� This specialization� called

apply substitution ��� does not have a function as an argument� so it is �rst�order�

Unfortunately� this technique is insu�cient for processing calls of map with policy � which is

called twice in the program in Figure �� The specialization of map with policy for a particular

policy function K and seed function g� gives the following function Mwp g�

Mwp g �g�Var�n

 � Var�g�n

Mwp g �g�Abs�t

 � Abs�Mwp g�K g� t

Mwp g �g�App�t� t�

 � App�Mwp g�g� t
�Mwp g�g� t�

The function Mwp g has a function as an argument� But if it is specialized for a particular

function g�� the partial evaluator has to specialize the internal call Mwp g�K g� t
� it loops on

this attempt� Fortunately� the partial evaluator is able to detect this circumstance� allowing

it to select another technique� The alternative technique translates the higher�order functions

into a system of �rst�order functions� This standard encoding� which is due to Reynolds �����

��

is implemented in a program called Firstify ���� Let us outline below how it works with the

map with policy operator�

�� The �rst step constructs a data type that encodes how the higher�order arguments are

manipulated and applied� In this case the functions to be encoded are g� and K g� For

the constant function� g�� a constant C is introduced as a summand in the data type Func�

The argument K g cannot be encoded by a simple constant value because it contains g

as a free variable� Since g is a higher�order parameter� it will already be represented by

a value of type Func� Hence the new constructor� F � representing the application of K�

must have type Func� Func� This gives the data type Func� de�ned

datatype Func � C j F�Func
�

The introduction of this type is a rediscovery of the sequence of functions g�� g�� � � �

because it encodes each function in the family� The function g� is encoded by C� and the

function g�� for example� is encoded by F �F �F �C

� which is written F ��

�� The functions appearing as actual arguments are replaced by their encodings� The argu�

ment functions do not exist anymore�they are replaced by �rst�order data� In the call

Mwp g�g��M
� g� is no longer a function but a �rst�order value� dg�e� of type Func� The

de�nition of Mwp g leads to the new function Mwp g��

Mwp g��dge�Var�n

 � Var�dge�n

Mwp g��dge�Abs�t

 � Abs�Mwp g��F �dge
� t

Mwp g��dge�App�t� t�

 � App�Mwp g��dge� t
�Mwp g��dge� t�

But since dge is not a function� the application dge�n
 is nonsense�

�� To make sense of the applications of functional parameters in the original programs

	application
 functions are introduced� Speci�cally the function apply g� de�ned below�

decodes applications of the form dge�n
�

apply g�C� n
 � g��n

��

apply g�F �dge
� n
 � �K �n� apply g�dge� n

�n
� ��

Note that apply g is a �rst�order function because its argument� dge� is an element of

the type Func� The de�nition of the policy function K is unfolded to get a �rst�order

expression of apply g�F �dge
� n
� The de�nition of Mwp g� can be completed into�

Mwp g��dge�Var�n

 � Var�apply g�dge� n

Mwp g��dge�Abs�t

 � Abs�Mwp g��F �dge
� t

Mwp g��dge�App�t� t�

 � App�Mwp g��dge t
�Mwp g��dge� t�

This encoding is done with respect to a speci�c call of map with policy Z g� M � In the

program in Figure � there are two such calls� The new functions corresponding to Mwp g and

apply g constitute a �rst�order program equivalent to the functions generated bymap with policy �

��� Application to apply substitution

Using the preceding techniques� the function apply substitution is successfully transformed

into the �rst�order program in Figure �� For a given substitution �� � partial evaluation of

an instance apply substitution �� specializes the function apply substitution into a function

apply substitution ��� The data type Subst and the data type Fseq are introduced using the

program Firstify which implements above techniques for the encodings of lift and shift�

datatype Subst � S�

j SUBST�Subst

datatype Fseq � SUCC

j FSEQ�Fseq

These two data types are isomorphic to the data type Nat� which is implemented e��

ciently in the hardware� However� the specialized function Mwp � does not exploit the ef�

�cient implementation since it uses the �essentially unary
 representation of the data type

instead� Thus� the function apply � must peel o� all of the data constructors each time Mwp �

�The constructors for the data type Nat are � and s� i
e
 datatype Nat � � j s�Nat	

��

fun apply substitution ���M
 �
let fun apply f�SUCC� n
 � s�n

j apply f�FSEQ�f
� n
 � if n � � then �
else s�apply f�f� n� �

funMwp f�f�Var�n

 � Var�apply f�f� n

jMwp f�f�Abs�t

 � Abs�Mwp f�FSEQ�f
� t

jMwp f�f�App�t� t�

 � App�Mwp f�f� t
�Mwp f�f� t�

fun apply ��S�� n
 � ���n

j apply ��SUBST��
� n
 � if n � � then unit��

elseMwp f�SUCC� �apply ���� n� �

funMwp ����Var�n

 � Var�apply ���� n

jMwp ����Abs�t

 � Abs�Mwp ��SUBST��
� t

jMwp ����App�t� t�

 � App�Mwp ���� t
�Mwp ���� t�

in mult�Mwp ��S��M

end

Figure �� First�order Program

is applied to Var�n
� For example� after three levels of abstraction� �� is represented by

SUBST�SUBST�SUBST�S�

� �The same is also true of the function Mwp f �
 To eliminate

this ine�ciency� which was present in the calling behavior of the original algorithm� the data

types Subst and Fseq must be changed to the uniform data type Nat� This transformation can

be performed automatically by Astre� Ultimately the explicit use of Nat will facilitate the use

of primitive arithmetic in the program�

� Simple Transformations

The following two simple transformations are performed automatically by Astre after introduc�

ing new function symbols� The �rst one introduces indexes to count the level of abstractions�

The second replaces the composition of Mwp with the function mult by a single function� The

order of these transformations does not matter� they can be done simultaneously�

��

For technical reasons recursive de�nitions of the form

g�n
 � if n � � then e� else e�

are manipulated more e�ectively by Astre in the equivalent form�

g��
 �e����n�
g�s�n

�e��s�n
�n�

The notation e�e��x� denotes the substitution of expression e� for x in e� This restriction of

the form of equations ensures the termination of the rewriting used by Astre to unfold the

de�nition of g�

��� Introduction of Indexes

The isomorphism between the automatically generated type Subst and the natural numbers is

made explicit by introducing the function iso � � Nat � Subst�

fun iso ��s�i

 � SUBST�iso ��i

j iso ���
 � S�

The functions apply � and Mwp � are replaced by the new functions ��i� n
 �for �i�n

 and

Mwp ��� respectively� These functions satisfy ��i� n
 � apply ��iso ��i
� n
 and Mwp ���i� n
 �

Mwp ��iso ��i
� n
� Using these new equations� the Astre system implements the data type

Subst using the data type Nat� New functions to implement the data type Fseq using Nat are

also provided to the Astre system which then gives the program in Figure �� The program in

Figure � does not improve the performance of the program in Figure �� However� its explicit

use of numbers is key to the improvements presented in the next section�

��� Composition Step

The transformation continues with a simple �automatic
 step that replaces the composition of

mult withMwp �� by a single function�� This is accomplished automatically by the introduction

�Ewp is a mnemonic for extension with policy

��

fun apply substitution ���M
 �
let fun f��� n
 � s�n

j f�s�i
� �
 � �
j f�s�i
� s�n

 � s�f�i� n

funMwp f ��i�Var�n

 � Var�f�i� n

jMwp f ��i�Abs�t

 � Abs�Mwp f ��s�i
� t

jMwp f ��i�App�t� t�

 � App�Mwp f ��i� t
�Mwp f ��i� t�

fun ���� n
 � ���n

j ��s�i
� n
 � unit��

j ��s�i
� s�n

 � Mwp f ���� ��i� n

funMwp ���i�Var�n

 � Var���i� n

jMwp ���i�Abs�t

 � Abs�Mwp ���s�i
� t

jMwp ���i�App�t� t�

 � App�Mwp ���i� t
�Mwp ���i� t�

in mult�Mwp �����M

end

Figure �� Program with indexes

of a function symbol� Ewp� which is equated to the composition of mult with Mwp ��� i�e��

Ewp���M
 � mult�Mwp �����M

� Astre gives a program which uses neither mult � norMwp ��

that includes the following de�nition of Ewp�

fun Ewp�i�Var�n

 � ��i� n

j Ewp�i�Abs�t

 � Abs�Ewp�s�i
� t

j Ewp�i�App�t� t�

 � App�Ewp�i� t
�Ewp�i� t�

The main body of the function is then replaced by Ewp���M
� The functions mult and Mwp ���

which have become useless� are removed� Since the Mwp �� has now been eliminated� Mwp f �

is renamed Mwp to simplify the nomenclature below�

	 Transformation of the Sequence of the � Functions

The transformations in this section exploit the arithmetic arguments introduced above to im�

prove the expensive and redundant recursive calculations in � and Ewp� Indeed� the transfor�

mation aims at discovering conditionals and subtraction from a constructor�based de�nition of

��

fun apply substitution ���M
 �
let fun f��� n
 � s�n

j f�s�i
� �
 � �
j f�s�i
� s�n

 � s�f�i� n

funMwp�i�Var�n

 � Var�f�i� n

jMwp�i�Abs�t

 � Abs�Mwp�s�i
� t

jMwp�i�App�t� t�

 � App�Mwp�i� t
�Mwp�i� t�

fun ���� n
 � ���n

j ��s�i
� n
 � unit��

j ��s�i
� s�n

 � Mwp��� ��i� n

fun Ewp�i�Var�n

 � ��i� n

j Ewp�i�Abs�t

 � Abs�Ewp�s�i
� t

j Ewp�i�App�t� t�

 � App�Ewp�i� t
�Ewp�i� t�

in Ewp���M

end

Figure �� Composed Program

a binary arithmetic symbol�

The function ��i� n
 of the transformed program is a rediscovery of the series of functions

�i�n
 of Section �� To further re�ne this program� a speci�c instance of apply substitution ��

must be speci�ed� In what follows� the substitution function ��� needed for the contraction

described in Section �� is used to illustrate the specialization� Recall that �� replaces variables

of index � with the term �� � �� which is represented by Abs�App�Var��
�Var��

� Thus�

����
 � Abs�App�Var��
�Var��

 and ���s�n

 � unit�n
� Unfolding these equations yields a

complete constructor�based de�nition of ��i� n
�

���� �
 � Abs�App�Var��
�Var��

���� s�n

 � unit�n

��s�i
� �
 � unit��

��s�i
� s�n

 � Mwp��� ��i� n

 ��

Since the equational program is complete with respect to Nat � Nat� the computation of any

��

instance of ��i� n
 results in a ground constructor term� For example� ���� �
 yields�

��s�s�s�s��

� s�s��

 � ��

Mwp��� ��s�s�s��

� s��

 � ��

Mwp���Mwp��� ��s�s��

� �

 �� V ar�s�s��

Rewrites ��
 and ��
 are unfoldings by equation ��
� Computation of any instance of ��i� n
 by

naturals can begin with unfoldings using ��
 until a subterm� ��u� v
� in which u and�or v are

equal to � is obtained�

This suggests a target program of the form�

��i� n
 � if i � n then e� else if i � n then e� else e�

where e�� e�� and e� are expressions� The transformation will be bene�cial if these expressions

are e�cient� This step introduces a form of function de�nition by a conditional �instead of

structural induction
 that violates the technical restriction on programs used to assure termi�

nation of rewriting as required by the Astre system� Presently� Astre does not perform this

part of the transformation� Moreover� the transformation does not directly generate the con�

ditional� instead it generates the complete de�nition� ��s�i
 � k� k
 � u�� ��k� k
 � u� and

��k� s�n
�k
 � u�� This de�nition� which is no longer constructor�based� is translated directly

into a conditional following the pattern above�

��� First Transformation Step

The general strategy of the two transformation steps that follow is to discover arithmetic

operations implicit in the recursion structure of programs� The goal of the �rst transformation

step is to �nd the conditional and subtraction from a constructor�based de�nition of a binary

arithmetic symbol which is a simultaneous iterator like �� Such functions follow the following

general pattern for simultaneous iterators�

G��� �
 � t

��

G�s�i
� �
 � h�i

G��� s�n

 � k�n

G�s�i
� s�n

 � 	�G�i� n

The �rst step in this process is a de�nition that makes the iteration structure of functions

explicit� A function G computes G��� �
 as 	�	�G��� �

 � 	��h��

� In the same way� it

computes G��� �
 as 	��k��

� and G��� �
 as 	��t
� The results are the same with a function

G following the conditional pattern�

G�i� n
 � if i � n then 	n�h�i� n � �

 else if i � n then 	n�t
 else 	i�k�n� i� �

The number k of applications of the function 	 denoted by 	k is made explicit by an index k

in the following de�nition�

De�nition � Let x be a variable of type �� let yi be a term of type �i for each i � �� � � � � n�

and let 	 be a function of type �� � � � � � � � � � � � �n � �� The function 	 of type Nat � ��� �

� � � � � � � � � � �n
 � � is de�ned by�

 	�s�k
� �y�� � � � � x� � � � � yn

 � 	�y�� � � � � 	�k� �y�� � � � � x� � � � � yn

� � � � � yn

 	��� �y�� � � � � x� � � � � yn

 � x

Proposition �

 	�k� �y�� � � � � 	�y�� � � � � y� � � � � yn
� � � � � yn

 � 	�y�� � � � � 	�k� �y�� � � � � y� � � � � yn

� � � � � yn

Proof� By induction on k� �

An immediate consequence of De�nition � is 	��� x
 � 	�x
� where x � �� � � � � � � � � � � � �n�

Having made the iteration structure of functions explicit� the next theorem helps program

transformations exploit that structure� To simplify the exposition� consider the case in which

	 � �� �� In this case 	 � Nat�� � � and 	�k� n
 � 	k�x
� where 	k denotes k applications of

	� Suppose now that f � Nat � Nat � � satis�es the equation� f�s�i
� s�n

 � 	�f�i� n

� then

f��� �
 � 	��f��� �

 � 	��� f��� �

� More generally� f�i� k� n� k
 � 	�k� f�i� n

� In fact� if

��

F � Nat�Nat� � then F is a simultaneous iterator if and only if 	�k� F �x� y

 � F �x�k� y�k
�

which is the result expressed by Theorem ��

Theorem � Assume f of type Natn � �� let yi be a term of type �i for each i � �� � � � � n� and

let 	 be a function of type �� � � � � � � � � � � � �n � �� The following are equivalent�

�� f�s�x�
� � � � � s�xn

 � 	�y�� � � � � f�x�� � � � � xn
� � � � � ym

�� 	�k� �y�� � � � � f�x�� � � � � xn
� � � � � yn

 � f�x� � k� � � � � xn � k

Proof� That � implies � is obvious by instantiating k to �� The converse is proved

by induction on k� �

To apply this theorem to ��
� let Mwp��x
 be Mwp��� x
 and introduce the equation�

dMwp��k� ��i� n

 � ��i� k� n� k

This gives the equational de�nition of ��i� n
�

��s�i
 � k� k
 � dMwp��k� unit��

��k� k
 � dMwp��k�Abs�App�Var��
�Var��

��k� s�n
 � k
 � dMwp��k� unit�n

This de�nition can be rewritten in the conditional form described at the beginning of the section

with

e� � dMwp��n� unit��

e� � dMwp��i�Abs�App�Var��
�Var��

e� � dMwp��i� unit�n� i� �

��� Second Transformation Step

The second transformation step transforms the expressions e�� e� and e�� The de�nition of

dMwp� of type Term � Term� obtained by De�nition �� refers to the �ine�cient
 function

��

Mwp�� To get an e�cient program an alternative �but equivalent
 de�nition of dMwp� that

does not refer to Mwp� must be generated� Theorem � addresses this issue�

To introduce Theorem �� consider the function upto� Informally� upto�i� n
 � �i� i��� � � � � n��

The function upto satis�es upto�s�i
� s�n

 � map s upto�i� n
� Let map s be the specialization

of the de�nition of map by s�

map s �� � ��

map s �x �� xs
 � s�x
 �� �map s xs

The operators �� and �� are the constructors of the data type List��
� By Theorem ��

d�map s
 �k� upto�i� n

 � �map s
k �upto�i� n

 � upto�i� k� n� k

Theorem � will yield the following recursive de�nition of �map s
k� �that is of dmap s
� it does

not refer to map s�

�map s
k �� � ��

�map s
k �x �� xs
 � sk�x
 �� ��map s
k xs

Note� in this de�nition �map s
k is the function being de�ned� It is to be regarded atomically�

map s is neither de�ned nor referred to�

Theorem � Let yi be a term of type �i for each i � �� � � � � n� let 	 be a function of type

�� � � � � � � � � � � � �n � �� and let C be a constructor of type �� The following are equivalent�

�� 	�y�� � � � � C�x�� � � � � xn
� � � � � yn
 � C�	��x�
� � � � � 	n�xn

�� 	�k� �y�� � � � � C�x�� � � � � xn
� � � � � yn

 � C�c	��k� x�
� � � � � c	n�k� xn

Proof� That � implies � is obvious by instantiating k to �� The converse is proved

by induction on k� �

��

If C is a constructor of arity zero� Theorem � degenerates to the two equations

	�y�� � � � � C� � � � � yn
 � C

 	�k� �y�� � � � � C� � � � � yn

 � C

To apply this result to dMwp�� recall that Mwp��x
 � Mwp��� x
 and that�

Mwp�i�Var�n

 � Var�f�i� n

Mwp�i�Abs�t

 � Abs�Mwp�s�i
� t

Mwp�i�App�t� t�

 � App�Mwp�i� t
�Mwp�i� t�

�

Introduction of the specializations f��x
 � f��� x
� and Mwp��x
 � Mwp��� x
 allows the

application of Theorem �� producing�

dMwp��k�Var�n

 � Var�cf��k� n

dMwp��k�Abs�t

 � Abs� dMwp��k� t

dMwp��k�App�s� t

 � App� dMwp��k� s
� dMwp��k� t

�

It is easy to show that cf� � s because f��� x
 � s�x
� and that s�k� a
 � a� k by induction on

k� Therefore dMwp��k�Var�n

 � Var�cf��k� n

� which is equivalent to Var� s�k� n

� which can

be rewritten Var�n � k
� Although this appears to have progressed� it is incomplete because

dMwp� is still de�ned in terms of Mwp�� Attempts to de�ne dMwp� by this method� however�

will require the function dMwp� � this would continue forever� Fortunately� there is another way

in which Theorem � may be applied to ��
� yielding the equation dMwp�k� ��� ��i� n

 � ��i�

k� n� k
� Applying the same transformation as above produces another conditional de�nition

of ��i� n
 with e� � unit�n
� e� � dMwp�i� ���Abs�App�Var��
�Var��

 and e� � unit�n� �
�

Application of Theorem � produces a recursive de�nition of dMwp that does not refer to Mwp�

dMwp�k� �i�Var�n

 � Var� bf�k� �i� n

 ��

dMwp�k� �i�Abs�t

 � Abs� dMwp�k� �s�i
� t

dMwp�k� �i�App�s� t

 � App� dMwp�k� �i� s

� dMwp�k� �i� t

The transformation is not yet �nished� Equation ��
 remains to be improved by �nding a

recursive de�nition of bf that does not refer to the function f �

��

��� Transformation of bf

Recall the equations for f �

f��� n
 � s�n
 ��

f�s�i
� �
 � � ���

f�s�i
� s�n

 � s�f�i� n

 ���

Applying Theorem � to ���
 yields�

 f�k� �s�i
� s�n

 � s� f�k� �i� n

� ���

This suggests attempting a conditional de�nition for f � Using equations ��
� ���
� ���
� Theo�

rem �� Theorem �� and De�nition � produces�

 f�k� ��� s�n

 � s� s�k� n

 � s�n � k
 ���

 f�k� �s�i
� �

 � � ���

 f�k� ��� �

 � k ���

Applying Theorem � to ���
 gives� f�k� �i � p� n � p

 � s�p� f�k� �i� n

 � f�k� �i� n

 � p�

Applying that to equations ���
� ���
� ���
 produces

 f�k� �s�i
 � p� p

 � p

 f�k� �p� s�n
 � p

 � n � � � k � p

 f�k� �p� p

 � k � p

This equational de�nition is equivalent to the program�

 f�k� �i� n

 � if i � n then n else if i � n then n� k else n � k�

The program simpli�es to� f�k� �i� n

 � if i � n then n else n� k� By unfolding f and by a

well known property of the conditional� equation ��
 becomes�

dMwp�k� �i�Var�n

 � if i � n thenVar�n
 else Var�n� k

Including the transformed form of �� which comes from above� produces the program in Figure �

which does not perform redundant computations for �i and fi� The transformation involved

��

fun apply substitution ���M
 �

let fun dMwp�k� �i�Var�n

 � if i � n then Var�n
 elseVar�n� k

j dMwp�k� �i�Abs�t

 � Abs� dMwp�k� �s�i
� t

j dMwp�k� �i�App�t� t�

 � App� dMwp�k� �i� t

� dMwp�k� �i� t�

fun ��i� n
 � if i � n then unit�n

else if i � n then
dMwp�i� ���Abs�App�Var��
�Var��

else unit�n� �

fun Ewp�i�Var�n

 � ��i� n

j Ewp�i�Abs�t

 � Abs�Ewp�s�i
� t

j Ewp�i�App�t� t�

 � App�Ewp�i� t
�Ewp�i� t�

in Ewp���M

end

Figure �� Final result

in this section has been done manually� However the transformation process is systematic and

involves equational reasoning using Theorem � and Theorem �� It shows implicitly how to

automatically transform a constructor�based de�nition of a simultaneous iterator function of

type Nat �Nat � Nat into a more e�cient conditional form�

 Directions

The paper has presented a clearly motivated and correct speci�cation for a subtle representation

of ��terms� the implementation of which has� in the second authors experience� been prone to

	o� by one
 errors� It has taken this abstract algorithm� with its extensive use of higher�order

concepts� reduced it to a �rst�order program� introduced index arithmetic and produced an

e�cient algorithm that exploits computer arithmetic�

This development illustrates several new techniques� First� it makes the monadic structure

in the development of the algorithm explicit by showing that it is a monad in FunSeq� It

supports this structure with new program transformation techniques that allow the implicit

��

use of arithmetic to be 	rediscovered
 formally� Finally� it demonstrates the feasibility of

integrating tools for monadic programming and speci�cation� which tend to be higher�order�

with relatively standard program transformation technology� which is strictly �rst�order�

��� Technology

Currently our technology is a tower of Babel� Automatic support for monadic programming�

including automatic program generation� exists in CRML� a Standard ML derivative developed

by Sheard� The partial evaluator� Schism� uses its own �typed
 dialect of Scheme as its object

language� The program Firstify� which implements Reynolds� Algorithm� is written in CRML�

Astre� Bellegarde�s program transformation system� is written in CAML� It uses a very simple

�rst�order language as its object language� Moreover� a new tool is required to achieve the

translation of constructor�based binary simultaneous iterators into conditionals�

In this environment� claims that the development is automatable mean that we have au�

tomated the process 	piecewise
� translating between the formalisms in a nearly mechanical

fashion� However translators interfacing these tools are currently being implemented� It is� of

course� our vision that one day these tools will all work in concert� allowing a development to

proceed from speci�cation to e�cient realization with human intervention only when necessary�

��� Reuse

Although this paper has focused on the ��calculus� the speci�cation can be applied to virtually

any abstract syntax with a regular binding structure provided its type can be expressed as a

monad and the appropriate de�nition of map with policy can be given� For example� adding

boolean constants and a conditional has no e�ect on the de�nition of substitution and only

changes map with policy by de�ning it to apply f recursively on the components of the con�

ditional without applying Z� Adding let is also trivial� again� no changes need to be made to

��

the speci�cation of substitution�only to map with policy � In this case� map with policy must

apply Z to f when it enters the component in which the bound variable has been introduced�

This ability to reuse speci�cations is one of the strongest arguments for the adoption of monads

as a tool to structure program development�

But what about the transformations� Can we reuse program improvements� Here we

have less experience� however the decisions that are required to improve programs for the

di�erent scenarios outlined above are substantially the same� It appears that a transformation

system that records its development may be able to replay the development and obtain similar

improvements�

References

��� M� Abadi� L� Cardelli� P�L� Curien� and J�J� Levy� Explicit substitutions� Technical

Report ��� Digital Equipment Corporation� ����� A version also appeared in POPL �����

��� Je�rey M� Bell� An implementation of Reynold�s defunctionalization method for a modern

functional language� November ����� Forthcoming Master�s thesis from the Computer

Science and Engineering Department at the Oregon Graduate Institute�

��� Fran!coise Bellegarde� Program transformation and rewriting� In Proceedings of the fourth

conference on Rewriting Techniques and Applications� volume ��� of Lecture Notes in

Computer Science� pages ���"���� Berlin� ����� Springer�Verlag�

��� N� G� de Bruijn� Lambda calculus notation with nameless dummies� a tool for auto�

matic formula manipulation� with application to the Church�Rosser theorem� Indagaciones

Mathematische� ������"���� ����� Also appeared in the Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen� Amsterdam� series A� ����
�

��

��� N� G� de Bruijn� Lambda calculus with namefree formulas involving symbols that represent

reference transforming mappings� In Proceedings of the Koninklijke Nederlandse Akaemie

van Wetenschappen� pages ���"���� Amsterdam� series A� volume ����
� September �����

��� Charles Consel� The Schism Manual� version ���� Technical report� Department of Com�

puter Science and Engineering� Oregon Graduate Institute� �����

��� James Hook� Richard Kieburtz� and Tim Sheard� Generating programs by re�ection� Tech�

nical Report ������� Department of Computer Science and Engineering� Oregon Graduate

Institute� July �����

��� Richard B� Kieburtz� A generic speci�cation of prettyprinters� Technical Report CSE�

������� Department of Computer Science and Engineering� Oregon Graduate Institute�

�����

��� Eugenio Moggi� Notions of computations and monads� Information and Computation�

����
���"��� July �����

���� John C� Reynolds� De�nitional interpreters for higher�order programming languages� In

ACM National Conference� pages ���"���� ACM� �����

���� Philip Wadler� The essence of functional programming� In Conference Record of the Nine	

teenth Annual ACM Symposium on Principles of Programming Languages� ACM Press�

January �����

��

