Monads, Indexes and Transformations

Frangoise Bellegarde and James Hook*
Pacific Software Research Center
Oregon Graduate Institute of Science & Technology
PO Box 91000
Portland, Oregon 97291-1000

USA
{bellegar,hook}@cse.ogi.edu

October 29, 1993

Abstract

The specification and derivation of substitution for the de Bruijn representation of A-
terms is used to illustrate programming with a function-sequence monad. The resulting
program is improved by interactive program transformation methods into an efficient im-
plementation that uses primitive machine arithmetic. These transformations illustrate new
techniques that assist the discovery of the arithmetic structure of the solution.

Introduction

Substitution is one of many problems in computer science that, once understood in one context,
is understood in all contexts. Why, then, must a different substitution function be written for
every abstract syntax implemented? This paper shows how to define substitution once and use
the monadic structure of the definition to instantiate it on different abstract syntax structures.
It also shows how to interactively derive an efficient implementation of substitution from this
very abstract definition.

Formal methods that support reasoning about free algebras from first principles based on

their inductive structure are theoretically attractive because they have simple and expressive

*The authors are supported in part by a grant from the NSF (CCR-9101721) and by a contract with Air
Force Material Command (F19628-93-C-0069).

theories. However, in practice they often lead to inefficient algorithms because they fail to
exploit the “algebras” implemented in computer hardware. This paper examines this prob-
lem by giving a systematic program development and then describing a series of (potentially)
automatic program transformations that may be used to achieve an efficient implementation.

The particular program development style employed is based on the categorical notion of
a monad. This approach to specification has been advocated by Wadler[11] and is strongly
influenced by Moggi’s work on semantics[9]. The substitution algorithm for A-calculus terms
represented with de Bruijn indexes serves as the primary example. The development of the
algorithm is a refinement of an example in Hook, Kieburtz and Sheard[7]. It is noteworthy
because a non-standard category is used; the earlier work did not identify this category.

The algorithm is transformed into first-order equations using techniques implemented in
the partial evaluator Schism[6] and an implementation of Reynolds algorithm for defunction-
alization by Bell[2]. It is then refined to an equivalent first-order specification with techniques
implemented in the ASTRE program transformation system[3]. Finally the program is trans-
formed to introduce standard arithmetic and boolean operators, thus achieving an efficient

algorithm.

1 The Motivating Example: de Bruijn Representation

The de Bruijn representation of terms in the A-calculus avoids the problems of bound variable
names by using indexes to represent variables[4, 5]. The index assigned to an occurrence of a
variable is the number of A’s in the abstract syntax tree between the occurrence and the A that
binds the variable. For example, the term:

Au. (Av. wo(Aw. wow))(Az. zu) (1)

is represented:

A (A 10(A.210))(X.01) (2)

This representation is most easily visualized by looking at the tree representing the term, which
is given in Figure 1.

The de Bruijn representation has the advantage that a-congruent A-terms have identical
representations. There is also no need to calculate sets of free and bound variables when
performing substitution. Substitution is still not trivial, however, since indexes require adjust-
ment as terms are moved into different binding contexts. This paper develops and refines a
substitution algorithm for terms that use the de Bruijn representation.

Contracting the redex in (1) yields
Au. u(Az. zu)(Aw. u(Az. zu)w)

which is represented:

A 0(A01)(N.1(X.02)0) (3)

Figure 2 illustrates this term as a tree. Note that the term that replaced v occurs with two
distinct representations, A. 01 and A.02, and the indexes associated with the occurrences of u
within the scope of v in (2) are decremented in (3) because the A binding v was removed in the
contraction.

The index adjustments required are described by Abadi and others in terms of two simple
operations: lift and shift[1]. Fundamentally, a substitution is a map from indexes to terms.
Whenever a substitution enters a new binding context (i.e. a A), the substitution function
must be shifted to accommodate the new mapping of indexes to variables. For example, if 0
was mapped to Az.z (technically A0 in de Bruijn form) outside the lambda, then inside the
lambda 1 must be mapped to Az. z.

The second operation, lift, adjusts the indexes representing non-local variables, such as u in

the example above. Every time a new binding context is entered, the value of the substitution

\ A
| 8
T .
T Y~
| Il
~ ™ &
—— >

Figure 1: Tree representation of Figure 2: Representation of the
Au. (Av. wo(Aw. wow))(Az. zu). contracted term.

function on every point in the domain must be lifted.

In the algorithm developed below an indexed family of functions is defined that gives the
appropriately “lifted and shifted” substitution function for each binding context. Continuing
the example from above, to do the f-reduction the initial substitution, og, must map all
references to the index 0 to A.01 while decrementing all references to global variables, i.e.
000 = A\.01 and og(n + 1) = n. Note that both right hand sides are terms, not simply
integers!. In the second context op must be shifted and all terms in the image of og must be
lifted. This gives 610 =0, 611 = A.02 and 61(n+2) = (n+ 1). In this case, these are the only
substitutions needed, but in general any number may be required. The key to this development
is to calculate this sequence of functions and then use a generic recursion scheme, such as that
provided by the map function, that has been specialized to select the function from the family
appropriate to the context.

The shifting transformation is easily captured by the approximate recurrence: 0,410 = 0

!The coercion of numbers to terms implicit here will become explicit in the programs developed below.

and o;41(n 4+ 1) = o;n. To make it exact it is necessary to lift o;n. This is done by another

sequence of functions:

fon = n+1

f10 = 0
filn4+1) = n+2

f20 = 0

2l =1

fo(ln4+2) = n+3

Observe that in the example a single application of f; to the body of o11 accounts for A.0 1
being lifted to A.02. In general the f; are generated by f;410 =0 and fi1(n+1) = (fin) + 1.
So, assuming a map that applies a family of functions, the family of substitution functions,
(00,01,...), is given by the initial substitution, og, and the recurrence:
oi+10 = 0
oiri(n+1) = map (fo, f1,...) (oin)

Given the sequence of functions, (og,01,...), mapping indexes to terms, the map function
for sequences can be used to apply the sequence of substitution functions. This, however,
results in terms of terms, since every variable has replaced its index by a term. This is not
a problem, however, because the Term type constructor developed below is designed to be a

monad; monads have a polymorphic function, mult, which performs the requisite flattening.

2 Monads

A monadis a concept from category theory that has been used to provide structure to semantics[9]
and to specifications[11]. In the computer science setting a monad is defined by a parametric

data type constructor, 7', and three polymorphic functions:

map : (a—pB)—Ta—Tp

unit : a— Ta
mult © TTa— Ta

The map function is required to satisfy:

map id, = dry
map (fog) = map fomapyg

The polymorphic functions unit and mult must satisfy:

mult, o unitr, = idr,
mult, o (map unit,) = idr,
mult, o multy, = mult, o (map mult,)

A simple example of a monad is list. For lists, map is the familiar mapcar function of Lisp,
unit is the function that produces a singleton list, and mult is the concatenate function that
flattens a list of lists into a single list. Other examples of monads are given by Wadler[11].

Several categorical concepts are implicit above. The functional programming category
has types as objects and (computable) functions as arrows. (Values are viewed as constant
functions—arrows from the one element type.) The requirements on map specify that the type
constructor T and the map function together define a functor. The polymorphic types of unit
and mult implicitly require them to be natural transformations. The three laws given for them
are the monad laws.

Monads have been used to structure specifications (and semantics) because it is often pos-
sible to characterize interesting facets of a specification as a monad. Algorithms to exploit the
particular facet may frequently be expressed in terms of the map, unit and mult functions with
no explicit details of the type constructors. Finally, the many facets are brought together by

composing the type constructors.

3 The Term Monad

3.1 Naive terms

Term structures and substitution are natural candidates for the application of monads. In this
section monads are illustrated by terms without binding structure. In the next section the full
substitution algorithm for de Bruijn terms is given in a monadic setting.

Consider the very simple term data type:

datatype Term/(a) = Var(a)
| App(Term/(a) x Term/(a))

It is easily verified that Term’ is a monad. The map, unit and multiplier are easily calculated
from the definition with the techniques of Hook, Kieburtz and Sheard[7]. Taking the viewpoint
that a substitution is a function from variables to terms, it is natural to associate the type
a — Term/(3) with a substitution function. It is then meaningful to apply the map function
of the monad to a substitution, which yields a Term/(Term/(3)).

This intermediate “term-term” is the least intuitive aspect of the example. Essentially a
term over type a has been converted to a term-term over 8 by replacing the a-values with
[3-terms, but not the Var constructors that had been applied to them. The multiplier function,
which has the type Term/(Term/(a)) — Term/(«), is exactly what is needed to clean up this
situation. In this case it removes the residual applications of the Var constructor in the term-
term.

In summary, if ¢ is an appropriately typed substitution function, the action of the substi-
tution on the simple term type above is given by:

mult o map o

This use of the multiplier and the map together to obtain a function of type T'(a) — T() from

a function f of type a — T(f3) is called Kleisli star or the natural extension of f. Monads can

be defined in terms of Kleisli star, map and unit.

3.2 Terms with binding

The development in Section 1 suggests that the specification of the substitution operation
will be straightforward in a monadic data type with an appropriate map. The following type

declaration extends the naive type above with A-abstraction:

= Var(a)

| Abs(Term(a))

| App(Term(a) + Term(a))

datatype Term(a)

As above, it is possible to automatically generate map, mult and unit functions for this type
realizing a monadic structure. Unfortunately, the map function obtained with those techniques
does not work with families of functions.

To accommodate the function sequences a new category, FUNSEQ, is used. The objects are
data types, as before, but the morphisms are sequences of functions (formally Hom(A, B) =
(BA)W). Identities are constant sequences of identities from the underlying category; composi-
tion is pointwise, i.e. (fi)icw © (¢i)icw = (fi © ¢i)icw-

The map function for Term exploits the new structure by shifting the series of functions

whenever it enters a new context. Its definition is given as a functional program:

map (fo, f1,...) (Varz) = Var((fo, f1,...) @)
map (fo, f1,...) (Abst) = Abs(map (f1, fa,...) 1)
map (vaflv"') (App(tvt/)) = App(map (vaflv"')tvmap (vaflv"')t/)

It is easily verified that (Term, map) satisfy the categorical definition of a functor.

Looking at these definitions, it is clear how to insert an ordinary function or value into the
category, and it is straightforward to insert the families of functions needed for the example by
giving the initial element of the sequence and the functional that generates all others. However,
it is also necessary to define the mapping that pulls a computation from FUNSEQ back into

the category of functional programs. This is accomplished by taking the first element of the

function sequence. Thus, one way to realize the map function of FUNSEQ in a functional

programming setting is with the map_with_policy function introduced in Hook, Kieburtz and

Sheard[7]:
map_with_policy 7 f (Var z) = Var(fx)
map_with_policy 7 f (Abst) = Abs(map_with_policy Z (Z f) 1)
map_with_policy 7 f (App(t,t')) = App(map_with_policy 7 f1,

map_with_policy 7 f t')
In this encoding Z is the functional that generates the sequence and f is the seed value. That
is,
(map (f, Zf, Zf,...))o = map_with_policy 7 f

Note the projection of the first element from the family of functions on the left hand side
indicated by the subscript 0.

The name map_with_policy refers to the notion of policy function introduced by Kieburtz[8,
7]. It refers to a type-specific function, such as Z above, that is embedded into the program
for a general polymorphic operator to produce a specialized, monomorphic operator using a
similar control scheme.

The unit and mult functions automatically generated for Term can be lifted to FUNSEQ.

Their definitions are:

unit = Var

mult (Var x) = =z

mult (Abs t) = Abs(multt)

mult (App(t,t')) = App(mult t, multt')

Simple induction proofs show that they satisfy the monad laws.
With these definitions in place the complete definition of substitution is given in Figure 3.
Note that the algorithm makes no explicit mention of the data constructors. It only uses the

information about the type implicit in the definition of map_with_policy, unit and mult.

fun apply_substitution og M =
let funsuccz =z +1
fun lift f
= An.ifn = OthenOelsel + f(n —1)
fun shift o
= An.if n = 0 then unit 0
else map_with_policy lift succ(o(n — 1))
in mult(map_with_policy shift oo M)
end

Figure 3: Substitution function

3.3 An alternate formulation of terms

An anonymous referee suggested we consider the following alternate definition of the term data

type:
datatype Sum(a) = Local
| Global(o)
and Term(a) = Var(a)
| Abs(Term(Sum(w)))
|

App(Term(a) * Term(a))
In this formulation the identify function Az.x is encoded Abs(Var(Local)) and would have type

Term(a). The K combinator, Az. Ay. z, is encoded Abs(Abs(Var(Global(Local)))). Essentially,
instead of using the integer data type to encode the indexes, the recursive structure of Term,
together with the Sum data type, give an encoding of the natural numbers in which Local is
zero and Global is the successor function.

This data type is outside the scope of those considered in our earlier work on generating
monadic functions because it is not a “sum-of-products” or “polynomial” data type. The occur-
rence of a Term(Sum(a)) in the definition of Term(a) violates the sum-of-products condition.

It is possible to define a monad based on this construction, and in that monad the Kleisli

10

star appears to yield the correct substitution function. Unfortunately, the functions defining
the map and mult functions for this monad are not typable in Standard ML, which is the
primary implementation language used in this investigation. As above, the problems stem
from the occurrence of Term(Sum(a)).

The typing problem is illustrated by the natural definition of map for this data type:

fun mapSum f Local = Local
| mapSum f (Globalz) = Global (f x)

fun map f (Varz) = Var(f z)
| map f (Absz) = Abs(map (mapSum f) z)
| map f (App(z,y)) = App(map [z, map [y);

Consider the occurrence of map on the right hand side of the Abs case. If f has type a — [then
this occurrence of map has type (Sum(a) — Sum(B3)) — Term(Sum(a)) — Term(Sum(f3)).
The whole right-hand-side then has type Term(/3), thus the occurrence of map on the left hand
side of the definition has type (a —) — Term(a) — Term([).

The type generalization rule in Standard ML only allows function definitions that, at the
top level, can be typed with a fixed but arbitrary monotype to be generalized to a polytype.
Consequently, the type system does not allow the map definition since the occurrences in the
definition cannot be viewed as instances of the same monotype, even though both occurrences
are instances of the same polytype. The same issues arise in type checking the multiplier.

In addition to these technological problems with this, arguably more elegant, alternate data

type, we did not find a systematic method to discover and verify the monadic structure.

4 Transformation to a First-Order Set of Equations

To obtain a practical algorithm, the substitution function apply_substitution in Figure 3 must
be made more efficient. This section shows how this transformation can be done automatically.

Program transformation systems operate on systems of first-order equations. To apply them

11

to the algorithm of substitution the higher-order facets must be translated into first-order
structures. A partial evaluation system is used to accomplish this.

The software allowing a complete automatic transformation is not yet written. The trans-
formations below have been performed with the Schism partial evaluator [6], the program called
Firstify [2] which performs the Reynolds Algorithm [10] and the Astre program transformation

system [3], which are not yet integrated and do not use the same language.

4.1 Transformation of the map_with_policy Operator

The first step is to rewrite the program using the map_with_policy operator for the type Term(a)
as a system of first-order functions. A partial evaluator can be used to specialize higher-
order functions decreasing their order level. For example, consider the particular function
op in the example in Section 1, and the call apply_substitution o¢. A partial evaluator pro-
duces a program that does not contain apply_substitution in its full generality; it specializes
the definition of apply_substitution for the particular constant og. This specialization, called
apply_substitution_og, does not have a function as an argument, so it is first-order.
Unfortunately, this technique is insufficient for processing calls of map_with_policy, which is
called twice in the program in Figure 3. The specialization of map_with_policy for a particular

policy function K and seed function gg gives the following function Mwp_g:

Muwp_g (g, Var(n)) = Var(g(n))
Muwp_g (g, Abs(l)) = Abs(Muwpg(K g,1))
Muwp_g (g, App(t,t')) = App(Mwp_g(g,t), Mwp-g(g,t'))

The function Mwp_g has a function as an argument. But if it is specialized for a particular
function go, the partial evaluator has to specialize the internal call Mwp_g(K g,t); it loops on
this attempt. Fortunately, the partial evaluator is able to detect this circumstance, allowing
it to select another technique. The alternative technique translates the higher-order functions

into a system of first-order functions. This standard encoding, which is due to Reynolds [10],

12

is implemented in a program called Firstify [2]. Let us outline below how it works with the

map_with_policy operator.

1. The first step constructs a data type that encodes how the higher-order arguments are
manipulated and applied. In this case the functions to be encoded are gy and K ¢. For
the constant function, gg, a constant C'is introduced as a summand in the data type Funec.
The argument K g cannot be encoded by a simple constant value because it contains g
as a free variable. Since ¢ is a higher-order parameter, it will already be represented by
a value of type Func. Hence the new constructor, F', representing the application of K,

must have type Func — Fune. This gives the data type Func, defined
datatype Func = C'| F(Func).

The introduction of this type is a rediscovery of the sequence of functions gg,¢1,...
because it encodes each function in the family. The function gq is encoded by C, and the

function gs, for example, is encoded by F(F(F(C))), which is written F?.

2. The functions appearing as actual arguments are replaced by their encodings. The argu-
ment functions do not exist anymore—they are replaced by first-order data. In the call
Muwp_g(go, M), go is no longer a function but a first-order value, [go], of type Func. The

definition of Mwp_g leads to the new function Mwp_g':

Muwp_g'([g], Var(n)) = Var([g](n))
Muwp_g'([g], Abs(t)) Abs(Mwp_g'(F([g]),1))
Muwp_g'([g], App(t,t)) = App(Muwp_g'([g],t), Mwp_g'([g].1"))

But since [g]| is not a function, the application [g]|(n) is nonsense.

3. To make sense of the applications of functional parameters in the original programs
“application” functions are introduced. Specifically the function apply_g, defined below,
decodes applications of the form [¢](n).

apply_g(C,n) = go(n)

13

apply-g(F([g]),n) = (K An.apply-g([g],n))(n). (4)

Note that apply_g is a first-order function because its argument, [¢], is an element of
the type Func. The definition of the policy function K is unfolded to get a first-order

expression of apply_g(F(]g]),n). The definition of Mwp_¢g’ can be completed into:

Muwp_g'([g], Var(n)) = Var(apply-g([g],n))
Muwp_g'([g], Abs(t)) = Abs(Mwp_g'(F([g]),1))
Muwp_g'([g], App(t,t")) = App(Muwp_g'([g]t), Mwp_g'([g],1'))

This encoding is done with respect to a specific call of map_with_policy Z go M. In the
program in Figure 3 there are two such calls. The new functions corresponding to Mwp_g and

apply_g constitute a first-order program equivalent to the functions generated by map_with_policy.

4.2 Application to apply_substitution

Using the preceding techniques, the function apply_substitution is successfully transformed
into the first-order program in Figure 4. For a given substitution o , partial evaluation of
an instance apply_substitution og specializes the function apply_substitution into a function
apply_substitution_og. The data type Subst and the data type Fseq are introduced using the
program Firstify which implements above techniques for the encodings of lift and shift.

datatype Subst = S0 datatype F'seq = SUCC
| SUBST(Subst) | FSEQ(Fseq)

These two data types are isomorphic to the data type Nat? which is implemented effi-
ciently in the hardware. However, the specialized function Mwp_oc does not exploit the ef-
ficient implementation since it uses the (essentially unary) representation of the data type

instead. Thus, the function apply_c must peel off all of the data constructors each time Mwp_o

*The constructors for the data type Nat are 0 and s, i.e. datatype Nat = 0] s(Nat).

14

fun apply_substitution_oo(M) =
let fun apply_f(SUCC,n) = s(n)
| apply_f(FSEQ(f),n) = ifn =0then0
else s(apply_f(f,n — 1))

fun Mwp_f(f, Var(n)) = Var(apply_f(f,n))

| Mup_f(f, Abs(1)) = Abs(Mup_f(FSEQ(f),1))

| Mup_f(f, App(t, 1)) = App(Muwp_f(f,1), Mwp_f(f,1'))
fun apply_o(S0,n) = og(n)

| apply-oc(SUBST(co),n)= ifn = 0 then unit(0)
else Muwp_f(SUCC, (apply-c(o,n —1)))
fun Mwp_o(o, Var(n)) = Var(apply-o(o,n))
| Mwp_o(o, Abs(t)) = Abs(Mwp_o(SUBST(0),1))
| Mwp_a(a, App(t,t')) = App(Mwp_o(a,t), Mup.o(a,t’))
in mult(Mwp_o(50,M))

end

Figure 4: First-order Program

is applied to Var(n). For example, after three levels of abstraction, os is represented by
SUBST(SUBST(SUBST(50))). (The same is also true of the function Mwp_f.) To eliminate
this inefficiency, which was present in the calling behavior of the original algorithm, the data
types Subst and Fseq must be changed to the uniform data type Nat. This transformation can
be performed automatically by Astre. Ultimately the explicit use of Nat will facilitate the use

of primitive arithmetic in the program.

5 Simple Transformations

The following two simple transformations are performed automatically by Astre after introduc-
ing new function symbols. The first one introduces indexes to count the level of abstractions.
The second replaces the composition of Mwp with the function mult by a single function. The

order of these transformations does not matter; they can be done simultaneously.

15

For technical reasons recursive definitions of the form

g(n)= ifn = 0thene; else e,

are manipulated more effectively by Astre in the equivalent form:

9(0) =ei[0/n]
g(s(n))=es[s(n)/n]

The notation e[e’/x] denotes the substitution of expression ¢’ for x in e. This restriction of
the form of equations ensures the termination of the rewriting used by Astre to unfold the

definition of g¢.

5.1 Introduction of Indexes

The isomorphism between the automatically generated type Subst and the natural numbers is

made explicit by introducing the function iso_o : Nat — Subst:

fun iso_o(s(i)) = SUBST(iso_o(i))
| iso_o(0) = 50

The functions apply.c and Mwp_o are replaced by the new functions o(¢,n) (for o;(n)) and
Muwp_o', respectively. These functions satisfy o(i,n) = apply-c(iso_o(i),n)and Mwp_o'(i,n) =
Muwp_o(iso_o(i),n). Using these new equations, the Astre system implements the data type
Subst using the data type Nat. New functions to implement the data type Fseq using Nat are
also provided to the Astre system which then gives the program in Figure 5. The program in
Figure 5 does not improve the performance of the program in Figure 4. However, its explicit

use of numbers is key to the improvements presented in the next section.

5.2 Composition Step

The transformation continues with a simple (automatic) step that replaces the composition of

mult with Mwp_o' by a single function.® This is accomplished automatically by the introduction

® Ewp is a mnemonic for extension with policy.

16

fun apply_substitution_oo(M) =
let fun f(0,n) = s(n)
| 75(),0) — 0
Fsnsn) = s(fGm)
fun Mwp_f'(i, Var(n)) = Var(f(i,n)
| Mup_f/(i, Abs(t)) = Abs(Mup-f'(s(i),)
| Mwp_f'(i, App(t,t')) = App(Muwp_f'(i,t), Mwp_f'(i, 1))

fun o(0,n) = oo(n)
|o(s(i),n) = unit(0)
o(s(ins(n)) = Mup.f/(0,0(i,n))

fun Mwp_o'(¢, Var(n)) = Var(o(i,n))
| Mwp_o'(i, Abs(t)) = (
| Mwp_o'(i, App(t,1')) =
in mult(Mwp-c'(0, M))
end

Figure 5: Program with indexes

of a function symbol, Fwp, which is equated to the composition of mult with Mwp_c’, i.e.,
Ewp(0, M) = mult(Mwp-c'(0, M)). Astre gives a program which uses neither mult, nor Mwp_o’

that includes the following definition of Fwp:

fun Ewp(i, Var(n)) = o(i,n)
| Bwp(i, Abs(t)) = Abs(Fwp(s(i),1))
| Bwp(i, App(t, 1)) = App(Euwp(i,t), Bwp(i, ')

The main body of the function is then replaced by Fwp(0, M). The functions mult and Mwp_o’,

which have become useless, are removed. Since the Mwp_o’ has now been eliminated, Mwp_f’

is renamed Mwp to simplify the nomenclature below.

6 Transformation of the Sequence of the ¢ Functions

The transformations in this section exploit the arithmetic arguments introduced above to im-
prove the expensive and redundant recursive calculations in ¢ and Fwp. Indeed, the transfor-

mation aims at discovering conditionals and subtraction from a constructor-based definition of

17

fun apply_substitution_oo(M) =

let fun f(0,n) = s(n)
| F(s(0),0) =0
Fsliys(n)) = s(f(im)
fun Mwp(i, Var(n)) = Var(f(i,n))
| Mwp(i, Abs(t)) = Abs(Muwp(s(i),t))
| Muwp(i, App(t,t')) = App(Muwp(i,t), Mwp(i,t'))
fun o(0,n) = og(n)
| o(s(7),n) = unit(0)
o(s(i)s(n)) = Mup(0,a(i,n)
fun Ewp(i, Var(n)) = o(i,n)
| Bupli, Abs(t) = Abs(Eup(s(i),)
| Bwp(i, App(t,t')) = App(Ewp(i,t), Ewp(i, 1))
in PFuwp(0, M)

Figure 6: Composed Program

a binary arithmetic symbol.

The function o(i,n) of the transformed program is a rediscovery of the series of functions
oi(n) of Section 1. To further refine this program, a specific instance of apply_substitution o
must be specified. In what follows, the substitution function og, needed for the contraction
described in Section 1, is used to illustrate the specialization. Recall that op replaces variables
of index 0 with the term A.0 1, which is represented by Abs(App(Var(0), Var(1))). Thus,
o0(0) = Abs(App(Var(0), Var(1))) and o¢(s(n)) = unit(n). Unfolding these equations yields a

complete constructor-based definition of o(i,n):

v

n)) = wa(O o(i,n)) (5)

Since the equational program is complete with respect to Nat *x Nat, the computation of any

18

instance of ¢(7,n) results in a ground constructor term. For example, (4, 2) yields:
o(s(s(s(s(0)))),
Muwp(0, 0(s(s(s(0))

Muwp(0, Mwp(0, o(s(s(0

s(s(- (6)
):5(0))) — (7)
)):0))) == Var(s(s(0)))

Rewrites (6) and (7) are unfoldings by equation (5). Computation of any instance of o(i,n) by
naturals can begin with unfoldings using (5) until a subterm, o(u,v), in which u and/or v are

equal to 0 is obtained.

This suggests a target program of the form:

o(t,n)=1if7 > n then e, elseif i = n then e; else e3

where €1, €5, and e3 are expressions. The transformation will be beneficial if these expressions
are efficient. This step introduces a form of function definition by a conditional (instead of
structural induction) that violates the technical restriction on programs used to assure termi-
nation of rewriting as required by the Astre system. Presently, Astre does not perform this
part of the transformation. Moreover, the transformation does not directly generate the con-
ditional; instead it generates the complete definition: o(s(i) 4+ k, k) = uy, o(k, k) = ug and
o(k,s(n)+ k) = us. This definition, which is no longer constructor-based, is translated directly

into a conditional following the pattern above.

6.1 First Transformation Step

The general strategy of the two transformation steps that follow is to discover arithmetic
operations implicit in the recursion structure of programs. The goal of the first transformation
step is to find the conditional and subtraction from a constructor-based definition of a binary
arithmetic symbol which is a simultaneous iterator like . Such functions follow the following

general pattern for simultaneous iterators:

G(0,0) = ¢

19

The first step in this process is a definition that makes the iteration structure of functions
explicit. A function G computes G(6,2) as p(p(G(4,0))) = ©*(h(3)). In the same way, it
computes G(3,7) as ¢>(k(3)), and G(4,4) as p*(¢). The results are the same with a function
G following the conditional pattern:

G(i,n) = ifi > nthen ¢"(h(i — n — 1)) else if i = n then " (1) else ' (k(n — i — 1))

The number k of applications of the function ¢ denoted by ¢* is made explicit by an index k

in the following definition:

Definition 1 Let & be a variable of type «, let y; be a term of type 8; for each ¢ = 1,---,n,
and let ¢ be a function of type 1+ ---* a* ---x 3, — a. The function ¢ of type Nat * (51 *
ek ak -k B,) — o is defined by:

@(S(k)v(yh...7$7...7yn)) = @(yh...7¢(k7(y17...7$7...7yn))7...7yn)
95(07(3/17"'7$7"‘73/n))

Proposition 1

X

S‘a(kv(ylv"'79‘9(3/17'"73/7"'73/71)7"'73/7%)):S‘Q(ylv"'7¢(k7(y17'"73/7"'73/71))7"'73/71)

Proof: By induction on k. O

An immediate consequence of Definition 1is ¢(1,2) = ¢(x), where @ : 81 % -k a x -+ 3.
Having made the iteration structure of functions explicit, the next theorem helps program
transformations exploit that structure. To simplify the exposition, consider the case in which
¢ :a — a. In this case ¢ : Natxa — a and $(k,n) = p*(z), where ©* denotes k applications of
¢. Suppose now that f : Nat+ Nat — a satisfies the equation: f(s(i),s(n)) = ¢(f(i,n)); then

F(4,7) = ©*(f(0,3)) = @(4, f(0,3)). More generally, f(i+ k,n+ k) = ¢(k, f(i,n)). In fact, if

20

F: Natx Nat — a then F'is a simultaneous iterator if and only if @(k, F(z,y)) = F(a+k,y+k),

which is the result expressed by Theorem 1.

Theorem 1 Assume f of type Nat™ — «, let y; be a term of type 3; for eachi=1,---,n, and

let ¢ be a function of type By % ---x a* -+ -x 3, — a. The following are equivalent:
1. f(8($1),"',8($n)) = S‘Q(ylv'"7f($17"'7$n)7"'7ym)

2. S‘a(kv(ylv'"7f(x17"'7$n)7"'7yn)):f(xl—l'kv"'vwn‘l'k)

Proof: That I implies 2is obvious by instantiating k& to 1. The converse is proved

by induction on k. O

To apply this theorem to (5), let MwpO(z) be Mwp(0,2) and introduce the equation:

Muwp0(k,o(i,n))) = o(i + k,n+ k)

This gives the equational definition of o(i,n):

o(s(i) + k. k) = MwpO(k, unit(0))
ok, k) = Mwp0(k, Abs(App(Var(0), Var(1))))
ok, s(n) + k) = Mwp0(k, unit(n))

This definition can be rewritten in the conditional form described at the beginning of the section

with

e1 = MwpO(n, unit(0))
3 = Mwp0(i, Abs(App(Var(0), Var(1))))
e3 = M/@O(i, unit(n — 1 — 1))

6.2 Second Transformation Step

The second transformation step transforms the expressions ey, e5 and es. The definition of

M/@O of type Term — Term, obtained by Definition 1, refers to the (inefficient) function

21

Muwp0. To get an efficient program an alternative (but equivalent) definition of M/w\pO that
does not refer to Mwp0 must be generated. Theorem 2 addresses this issue.

To introduce Theorem 2, consider the function upto. Informally, upto(i,n) = [i,i+1,---,n].
The function upto satisfies upto(s(i),s(n)) = map s upto(i,n). Let map_s be the specialization

of the definition of map by s:

map-s [] =]
map_s (z ::as) = s(x) 2 (map_s xs)

The operators [] and :: are the constructors of the data type List(a). By Theorem 1,

JE—

(map_s) (k,upto(i,n)) = (map_s)* (upto(i,n)) = upto(i + k,n + k)

Theorem 2 will yield the following recursive definition of (map_s)*, (that is of miap_s); it does

not refer to map_s.

(map-s)* [| =]
(map_s)* (z 2 xs) = s"(x) =2 ((map_s)* xs)

Note, in this definition (map_s)k is the function being defined. It is to be regarded atomically;

map_s is neither defined nor referred to.

Theorem 2 Let y; be a term of type 3; for each ¢ = 1,---,n, let © be a function of type

Grx---kax---% 3, = a, and let C be a constructor of type a. The following are equivalent:
1. S‘Q(ylv o '7C($17 o '7$n)7 o 73/71) = C(S‘Ql(xl)v o 7@0n($n))
2. Q«AQ(]C, (3/17 ©e '7C($17 ©e '7$n)7 ©e 73/71)) = C(@(k,$1), ©e 79/97\%(kvxn))

Proof: That I implies 2is obvious by instantiating k& to 1. The converse is proved

by induction on k. O

22

If Cis a constructor of arity zero, Theorem 2 degenerates to the two equations

99(3/17“‘707“‘73/71) =C
S‘a(kv(ylv"'vcv"'vyn)) =C
To apply this result to M/@O, recall that Mwp0O(x) = Mwp(0, z) and that:

Muwp(t, Var(n)) = Var(f(i,n))
Muwp(i, Abs(t)) = Abs(Mwp(s(i),1))
Muwp(i, App(t, 1)) = App(Muwp(i,t), Mwp(i,1')).

Introduction of the specializations fo(z) = f(0,2), and Mwpl(z) = Mwp(1l,z) allows the
application of Theorem 2, producing:

MuwpO(k, Var(n)) = Var(fo(k,n))
M/ui)O(k,Abs(t)) = Abs(Mivgl(k,t)) -
Muwp0O(k, App(s,t)) = App(MwpO(k, s), MwpO(k,t)).

It is easy to show that % = § because f(0,z) = s(«), and that §(k,a) = a + k by induction on
k. Therefore Muwp0(k, Var(n)) = Var(fo(k,n)), which is equivalent to Var(3(k,n)), which can
be rewritten Var(n 4 k). Although this appears to have progressed, it is incomplete because
M/@J is still defined in terms of Mwpl. Attempts to define M/@J by this method, however,
will require the function M/w?),?; this would continue forever. Fortunately, there is another way
in which Theorem 1 may be applied to (5), yielding the equation mp(k, (0,0(i,n)))=o(i +
k,n+ k). Applying the same transformation as above produces another conditional definition
of o(i,n) with e; = unit(n), e; = Muwp(i, (0, Abs(App(Var(0), Var(1))))) and es = unit(n —1).
Application of Theorem 2 produces a recursive definition of mp that does not refer to Mwp:

sz(k,(ar(n))) = Var(f(k.(i,n))) (8)
Mup(k, (i, Abs(1))) = AbS(wa(k (s(2),1)))
t

Muwp(k, (i, App(s, 1)) = App(Mup(k, (i,), Mup(k, (i,1)))

The transformation is not yet finished. Equation (8) remains to be improved by finding a

recursive definition of f that does not refer to the function f.

23

6.3 Transformation of [

Recall the equations for f:

f(0,n) = s(n) (9)
J(s(0),0) = 0 (10)
[(s(i),s(n)) = s(f(2,n)) (11)
Applying Theorem 2 to (11) yields:
Flko (s(3), s(n))) = s(f(k, (i, n))). (12)

This suggests attempting a conditional definition for f. Using equations (9), (10), (11), Theo-

rem 2, Theorem 1, and Definition 1 produces:

f%(m%@»:s@%mn_sm+k) (13)
fA(kv(S(l)vo)) =0 (14)
f(k.(0,0)) =k (15)

Applying Theorem 1 to (12) gives: f(k,(i + p,n + p)) = 3(p, [(k,(i,n))) = f(k,(i;n)) + p.

This equational definition is equivalent to the program:

f(k,(i,n))=1if ¢ > nthennelseifi = nthenn + kelse n + k.

The program simplifies to: f(k, (i,n)) = if i > n then n else n + k. By unfolding f and by a
well known property of the conditional, equation (8) becomes:

mp(k, (7, Var(n))) = ifi > n then Var(n)else Var(n + k)

Including the transformed form of ¢, which comes from above, produces the program in Figure 7

which does not perform redundant computations for o; and f;. The transformation involved

24

fun apply_substitution_oo(M) =
let fun wa(,(¢, Var(n))) = ifi¢ > nthen Var(n)else Var(n + k)
| Wuplk, (i, Abs(1)) = Abs(Hup(k, (s(1), 1))
| Mup(k, (i, App(t,1'))) = App(Muwp(k, (i,1)), Mup(k, (i,1')))
funo(i,n) = if¢ > nthen unit(n)
else if : = n then
Mup(i, (0, Abs(App(Var(0), Var(1)))))

else unit(n — 1)

fun Fwp(i, Var(n)) = o(i,n)
| Bup(i, Abs(t)) = Abs(Eup(s(i).)
| Bwp(i, App(t,t')) = App(Fwp(i,t), Bwp(i, 1))
in Fwp(0,M))

end

Figure 7: Final result

in this section has been done manually. However the transformation process is systematic and
involves equational reasoning using Theorem 1 and Theorem 2. It shows implicitly how to
automatically transform a constructor-based definition of a simultaneous iterator function of

type Nat* Nat — Nat into a more efficient conditional form.

7 Directions

The paper has presented a clearly motivated and correct specification for a subtle representation
of A-terms, the implementation of which has, in the second authors experience, been prone to
“off by one” errors. It has taken this abstract algorithm, with its extensive use of higher-order
concepts, reduced it to a first-order program, introduced index arithmetic and produced an
efficient algorithm that exploits computer arithmetic.

This development illustrates several new techniques. First, it makes the monadic structure
in the development of the algorithm explicit by showing that it is a monad in FUNSEQ. It

supports this structure with new program transformation techniques that allow the implicit

25

use of arithmetic to be “rediscovered” formally. Finally, it demonstrates the feasibility of
integrating tools for monadic programming and specification, which tend to be higher-order,

with relatively standard program transformation technology, which is strictly first-order.

7.1 Technology

Currently our technology is a tower of Babel. Automatic support for monadic programming,
including automatic program generation, exists in CRML, a Standard ML derivative developed
by Sheard. The partial evaluator, Schism, uses its own (typed) dialect of Scheme as its object
language. The program Firstify, which implements Reynolds’ Algorithm, is written in CRML.
Astre, Bellegarde’s program transformation system, is written in CAML. It uses a very simple
first-order language as its object language. Moreover, a new tool is required to achieve the
translation of constructor-based binary simultaneous iterators into conditionals.

In this environment, claims that the development is automatable mean that we have au-
tomated the process “piecewise”, translating between the formalisms in a nearly mechanical
fashion. However translators interfacing these tools are currently being implemented. It is, of
course, our vision that one day these tools will all work in concert, allowing a development to

proceed from specification to efficient realization with human intervention only when necessary.

7.2 Reuse

Although this paper has focused on the A-calculus, the specification can be applied to virtually
any abstract syntax with a regular binding structure provided its type can be expressed as a
monad and the appropriate definition of map_with_policy can be given. For example, adding
boolean constants and a conditional has no effect on the definition of substitution and only
changes map_with_policy by defining it to apply f recursively on the components of the con-

ditional without applying Z. Adding let is also trivial; again, no changes need to be made to

26

the specification of substitution—only to map_with_policy. In this case, map_with_policy must
apply Z to f when it enters the component in which the bound variable has been introduced.
This ability to reuse specifications is one of the strongest arguments for the adoption of monads
as a tool to structure program development.

But what about the transformations? Can we reuse program improvements? Here we
have less experience, however the decisions that are required to improve programs for the
different scenarios outlined above are substantially the same. It appears that a transformation
system that records its development may be able to replay the development and obtain similar

improvements.

References

[1] M. Abadi, L. Cardelli, P.L.. Curien, and J.J. Levy. Explicit substitutions. Technical

Report 54, Digital Equipment Corporation, 1990. A version also appeared in POPL 1990.

[2] Jeffrey M. Bell. An implementation of Reynold’s defunctionalization method for a modern
functional language, November 1993. Forthcoming Master’s thesis from the Computer

Science and Engineering Department at the Oregon Graduate Institute.

[3] Francoise Bellegarde. Program transformation and rewriting. In Proceedings of the fourth
conference on Rewriting Techniques and Applications, volume 488 of Lecture Notes in

Computer Science, pages 226-239, Berlin, 1991. Springer-Verlag.

[4] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. Indagaciones
Mathematische, 34:381-392, 1972. Also appeared in the Proceedings of the Koninklijke

Nederlandse Akademie van Wetenschappen, Amsterdam, series A, 75(5).

27

[5] N. G. de Bruijn. Lambda calculus with namefree formulas involving symbols that represent
reference transforming mappings. In Proceedings of the Koninklijke Nederlandse Akaemie

van Wetenschappen, pages 348-356, Amsterdam, series A, volume 81(3), September 1978.

[6] Charles Consel. The Schism Manual, version 2.0. Technical report, Department of Com-

puter Science and Engineering, Oregon Graduate Institute, 1992.

[7] James Hook, Richard Kieburtz, and Tim Sheard. Generating programs by reflection. Tech-
nical Report 92-015, Department of Computer Science and Engineering, Oregon Graduate

Institute, July 1992.

[8] Richard B. Kieburtz. A generic specification of prettyprinters. Technical Report CSE-
91-020, Department of Computer Science and Engineering, Oregon Graduate Institute,

1991.

[9] Eugenio Moggi. Notions of computations and monads. Information and Computation,

93(1):55-92, July 1991.

[10] John C. Reynolds. Definitional interpreters for higher-order programming languages. In

ACM National Conference, pages 717-740. ACM, 1972.

[11] Philip Wadler. The essence of functional programming. In Conference Record of the Nine-
teenth Annual ACM Symposium on Principles of Programming Languages. ACM Press,

January 1992.

28

