Automatic Transformations by Rewriting
Techniques *.

Francoise Bellegarde

Oregon Graduate Institute of Science & Technology
PO Box 91000 Portland, Oregon
bellegar@cse.ogi.edu

Abstract. The paper shows how term rewriting techniques can be used
to automatically transform first-order functional programs by both de-
forestation (eliminating useless intermediate data structures) and tupling
(eliminating parallel traversals of identical data structures). Its novelty
is that it includes these strategies for program improvement in a trans-
formation system which uses completion procedures to automatically
control a unfold/fold methodology. This means that eurekas for these
strategies are automatically discovered and that they are processed by a
completion procedure. The completion procedure is automatically con-
strained for orienting pairs into rules and for producing critical pairs. An
interesting result is that the process preserves termination of the original
set of rules, which is not guaranteed in general by a unfold/fold method.

Introduction

As it has often been said, functional programs are constructed using only func-
tions as pieces. Data structures such as lists and trees are the glue to hold
them together. Although this compositional style of programming is attractive,
it comes at the expense of efficiency. Compositions produce many intermedi-
ate data structures when computed in an eager (call-by-value) evaluation. One
way to circumvent this problem is to perform deforestation on programs as ad-
vocated by Wadler [17]. Several approaches for eliminating useless intermedi-
ate data structures have been proposed. First came the algorithm proposed by
Wadler [17] which performs automatic deforestation on a restricted class of terms
called treeless terms. Later, Chin’s remarkable work on fusion [7] applies to a
wider class of e-treeless terms and to higher-order programs in general. More re-
cently, promotion theorems have been utilized to normalize programs [16]. This
technique is applicable to a class of potentially normalizable terms. Also an au-
tomatic way to implement deforestation inside the Haskell’s compiler has been
shown in [11].

Deforestation algorithms do not recognize that an expression contains two or
more functions that consume the same data structure. Such functions create a

* The work reported here is supported by the contract with Air Force Material Com-
mand (F1928-R-0032)

2 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

“parallel” traversal of a data structure. These functions can be put together in
a tuple as a single function that traverses the data structure only once. This is
another way of transforming programs according to the tupling lemma [10].

General purpose program transformation systems are based on a unfold/fold
method [6]. Deforestation and tupling are particular instances of this strategy. In
the Focus system [14], folding and unfolding are seen as rewritings. It has been
pointed out in [9] that an unfold/fold strategy can be controlled by a completion
procedure. Following this idea, the transformation system Astre [3, 4] is based
on completion procedures. Astre takes into account of inductive laws provided
by the user during the completion process. All these systems are interactive.

The paper shows how deforestation and tupling are automatable using com-
pletion. These strategies are implemented inside the system Astre. The programs
are presented as a set of first-order equations. The system limits the number of
critical pairs that are produced by the completion procedure. But because its
purpose is to be general, it still generates excessive critical pairs for deforestation
and tupling strategies. The paper presents a way to restrict the overlaps between
left-hand sides of rules so that the completion procedure computes exactly the
pairs that are needed. For automating the process, not only the production of
critical pairs needs to be limited but the orientation of the critical pairs into rules
has to be automated. Moreover, automatization demands that the combinations
of function candidates for deforestation and the tuples for parallel traversal re-
movals are also discovered algorithmically and used to build what is called a
“eureka rule” in the unfold/fold method. Automating the process means that
the system itself produces the eureka rules. The discovery of a eureka rule repre-
sents one transformation step, accomplished by a completion procedure, which
is guaranteed to never fail and to always terminate. We give sufficient conditions
that guarantee the correctness of the transformation step, e.g. that a transfor-
mation step does not transform a terminating program into a non-terminating
one. The system processes one eureka after the other, combining transformation
steps until no more deforestation and parallel traversal removals can be done.
Sufficient conditions guarantee the termination of the process.

1 Application of Completion to Unfold/Fold Strategies

Basic Notations

Let F be a set of function symbols and V' be a set of variables, T(F, V) is
the set of terms with symbols in 7 and variables in V. V(¢) is the set of all the
variables occurring in ¢. A position or occurrence within a term ¢ is represented
as a finite sequence w of positive integers describing the path from the root of ¢
to the root of the subterm at that position, denoted by t|,. The position of the
root of a term ¢ is ¢. The notation ¢ = u[s] emphasizes that the term ¢ contains
s as subterm in the context u. G(t) is the set of the positions of all the function
symbols in ¢. A term s is less than ¢ for the subsumption ordering if and only
if ¢ i1s an instance of s. We write s C ¢ if a subterm of ¢ is an instance of s. A
term ¢ is said to be linear if no variable occurs more than once in .

Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 3

A rewrite rule is an ordered pair of terms, written as [— r, where V(r) C
V(). A rule | — ris left-linearif | is linear, it is right-linear if v is linear and, it
is variable preserving if V(I) = V(r). A rewrite system is a set of rewrite rules.
The rewriting relation is denoted as — g with its transitive closure denoted as
—>1‘|;L and its reflexive and transitive closure denoted as —%. The rewrite system
R s termanating if and only if there is no infinite sequence of terms ¢1,%2, ...,
such that t; —g ts —g ... The R-normal form of a term ¢ is a term ¢ |g
such that ¢ —% ¢ | g and there is no u such that ¢ |g—g u. Some particular!
well-founded orderings < allow to prove termination of a rewrite system R by
proving only that [> r for each rule I — r in R. One of them is the recursive
path ordering [8] which is based on a precedence (well-founded quasi-ordering)
of symbols.

A rewrite system is overlapping if there exists an overlap between left-hand
sides of two rules ¢ — d and | — r, i.e. if there exists a position w in G({) such
that |, and g are unifiable with the most general unifier o. A critical pair is the
identity o({[w — o(d)]) = o(r) where tfw — u] denotes the replacement in ¢ of
the subterm at position w by wu.

An orthogonal system is a left linear and non-overlapping rewrite system.
A system is constructor-based if all proper subterms of its left-hand sides have
only free constructor symbols and variables. The roots of left-hand sides are
defined symbols. C' and D denote respectively the set of constructors and the set
of defined symbols. R; is the set of all the rules | — r of a constructor-based
rewrite system R where the root of [1s f. A rewrite system 1s confluent if and only
if the relation —* verifies the diamond property. Confluence ensures the unicity
of the normal form while termination ensures its existence. A non-overlapping
and terminating rewrite system is confluent. A completion procedure aims at
discovering critical pairs in a terminating rewrite system R to check whether the
two sides of the pair rewrite to the same term. Otherwise, it adds the critical pairs
to R, orienting them in such a way as to preserve the termination property. If the
procedure does not fail and terminates, it returns a confluent and terminating
system equivalent to R.

Completion Procedure and Unfold/Fold Method

The unfold/fold method [6] consists of 6 rules, namely Definition, Instaniia-
tion, Unfolding, Folding, Abstraction, and Law, that allow new identities to be
introduced that are equational consequences of existing identities. Dershowitz [9]
has shown how the combination of Instantiation and Folding is enabled by critical
pair generation. Unfolding and Law are simplifications by rewriting. Definition
is the introduction of an eureka rule. Abstraction is used for a tupling tactic.

Deforestation

Consider a naive example of a single deforestation of one term: length(zQy)
where

o lengih() =0 PP
tength = Jength(x = xs) — S(length(xs)) O (2 as)Qy — xn (2sQy)

! These well-founded orderings are fully invariant reduction orderings (see [8]).

4 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

S is the successor function. The list z is traversed once to append it to y and
once more to count the length of the result. A eureka rule length(zQy) — h(z,y)
is introduced. It overlaps with rules of Rg yielding two critical pairs:

length(y) = h([],y)
length(x :: (xsQy)) = h(x :: zs,y)

The last pair simplifies by the second rule in Ricngep into S(length(xsQy)) =
h(z 2 xs,y). Now h is defined by:

h(ll, y) = length(y)
h(z :: xs,y) = S(length(xsQy)) = S(h(zs,y))

which makes only one traversal of x to compute the result. For this very simple
example, no law is necessary. But suppose the eureka rule is length(rev(z)) —
h(z) where one rule of R,., is: rev(z :: xs) — rev(xs)@[z], we need the rule
(Law) length(x@y) — length(x)+length(y) to simplify the left-hand side of the
pair length(rev(zs@[xz])) = h(x :: xs) according to the following derivation:

length(rev(zs)@[xz]) — length(rev(zs)) + length([z]) — h(zs) + length([z])
—* S(h(xs)) vyielding a Ry, rule h(x :: xs) — S(h(xs))
Tupling Tactic

Consider another naive example, Ave(z) — sum(z)/length(z) where
[

sum([]) — 0 length([]) —0

Rsum : sum(z 2 xs) — x + sum(xs) Riengtn : length(x :: #s) — S(length(xs))

The list x is traversed twice “in parallel” to compute the average. In this case,
we introduce the rules:

sum(xz) — fst(h(z)) A pair(z oy
FEureka : length(x) — snd(h(z)) Comp : {:;Eﬁpali(;yg) oy
pair(fst(h(z)), snd(h(x))) — h(x) ’

By rewriting the left-hand side with the two first eureka rules, we get: Ave(z) —
fst(h(z))/snd(h(x)) which can be computed with a single traversal of # by shar-
ing the common computation of h(x). The two first eurekas rules overlap respec-
tively with rules of Rgyum and Riengen yielding the pairs:

0 = fst(h(]])) 0 = snd(h([]))
z + sum(xs) = fst(h(x = ws)) S(length(xs)) = snd(h(x :: xs))

which can be turned into rules from right to left:

Jst(h([]) —0(1) snd(h([])) —0
fst(h(z :: xs)) — @ + sum(xs) (2) snd(h(x :: 2s)) — S(length(xs))

Afterwards, these rules overlap with the third eureka yielding Rj rules:
h([]) — pair(0,0), h(x :: xs) — pair(z + fst(h(xs)), S(snd(h(xs))))

Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 5

These last two rules reduce the left-hand sides of Rules 1 and 2. The Comp rules
further reduce these left-hand sides so that they become identical to the right-
hand sides. Then the rules can be deleted. It is worthwhile to notice that this
tactic can be applied to transform a function that computes the n? fibonacci
number k in time proportional to k itself into a function that computes the same
number in only n steps. This example has been used in [15] showing how a com-
pletion procedure produces useless explosion of critical pairs when controlling
an unfold/fold transformation. Our way of implementing the tupling tactic al-
ways generates exactly the needed critical pairs. The completion, used for each
transformation step, always terminates. Moreover, an algorithm for automatic
deforestation and tupling must recognize terms candidates for such tactics.

2 Eureka Rules Discovery

A term is normalized for the above two transformation strategies if its computa-
tion traverses each data structure exactly once. It is useful to define the traversal
argument positions of a defined symbol f:

Definition1 (traversal argument positions). A symbol f traverses a data
structure at traversal argument positions 7,7 € (1,...,n), if there exists a
rule f(tei,tea, ... ten) — 7 in Ry such that te; € V

For example, the symbol @ defined by
[@a =« (x = 2s) @y = ¢ == (xs Qy)

traverses a data structure List with constructors [],:: at argument position 1.
The spine positions indicate where traversals of data structures are located in a
term.

Definition 2 (spine positions). A position w in a term ¢ is a spine position
if
— either w is ¢, or

— w = u.i where u is a spine position, the root f of t|, € D and i is a traversal
argument position of f.

The spine positions of (z @ y) @ z are ¢,1,1.1 but the spine positions of
r @ (y @ z)are ¢, 1.

Definition 3. The deforestation depth of a term ¢ is the length of the largest
spine position in t.

The above terms have deforestation depths respectively equal to 2 and 1. Spine
positions allow to control deforestation. For example a term f(x)@Qy is a defor-
estation candidate because f(x) occurs at a spine position. But the term z@ f(y)
is not a deforestation candidate because f(y) does not occur at a spine position.
In particular, @ does not traverse the result of f(y) in the latest term. For

revonto([l,u) = wu revonto(x :: xs,u) = revonto(xs,x :: u)

6 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

the term revonto(f(z),y) is a deforestation candidate but revonto(x, f(y)) is
not a deforestation candidate. This motivates us to define a candidate as:

Definition4 (deforestation candidate). A term s, of deforestation depth
greater than 1, is a deforestation candidate for a term ¢ in R-normal form for
a constructor-based, non-overlapping, and terminating rewrite system R if and
only if s 1s linear, and s C ¢.

The additional constraint that s does not contain a given symbol f is required
for building a eureka rule. For example, in the recursive rule

concall(x :: xs) = all(x) @ concall(xs)

the deforestation candidate all(z) @ u does not contain the recursive symbol
concall. Given a depth n, we prefer a deforestation candidate which i1s a minimal
element for the subsumption ordering. For example the term

t = flatten(x)@map_sqr(rev(y))

is a deforestation candidate of depth 2 as well as s; = flatten(z)@Qu C ¢ and
sz = map_sqr(rev(y)) C t. But ¢ is an instance of s1. 51 and sy are the best
deforestation candidates of depth 2.

Definition5 (best deforestation candidate). For a given a depth n, a best
deforestation candidate for the term ¢ is a minimal element for the subsump-
tion ordering among deforestation candidates of depth n for ¢.

A best deforestation candidate of greatest depth is used to build a deforestation
eureka:

Definition6 (deforestation eureka). Suppose s is a best deforestation can-
didate for the left-hand side r of a rule { — r € R¢. Assume s is constrained to
contain no occurrence of f and to be of maximal deforestation depth. Given
l—r, a deforestation eureka of R is a rule s — h(xy,22,...,2,) where
{x1,22,..., 20} = V(s). The eureca symbol & is a new symbol, i.e. h does
not occur in R.

Given the rule f(xz,y) — flatten(x)@map_sqr(rev(y)), flatten(x)Qy — h(z,y)
and map_sqr(rev(y)) — h'(y) are deforestation eurekas. Notice how we can
determine that 1 is the unique traversal argument position of A. Two subterms
that traverse the same data structure are used to construct tupling eurekas:

Definition7 (tupling eureka). Assume that one of the right-hand sides of the
rules of R; has a subterm k(uq,us, ..., u,). Suppose there exists two distinct,
non-variable terms, both ¢ T(C,V) u; and u; which have the same variables
at the spine positions and which are both linear for these variables, then the
tupling eureka of R, is constituted by the rules:

u, — fst(h(x1, 22, ..., 2,)) (1) uy — snd(h(x1,x2,...,2,)) (2)

pair(fst(h(zy, a2, ..., xn)), snd(h(z1, 22, ..., 2p))) = h(x1,22,...,2,) (3)

Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 7

where h is a eureka symbol, and uj and u'j are renamings of u; and u;, respec-
tively. These renamings preserve the variables at the spine positions and make
distinct all the variables located at the non-spine positions. Also fst, snd, and
pair are reserved symbols (e.g. & DU ('), with rewrite rules:

fst(pair(x,y)) — snd(pair(z,y)) — vy,
and {z1,2a,...,2p} = V(ui) UV (uf).

It is required that «; and u’ not be variables because a rule such as # — g(#)
cannot belong to a rewrite system. Otherwise z — g(z) — g(g(x)) — ...
Automatic discovery of eurekas is based on the above definitions.

3 Critical Pairs and Orientation

For clarity, we consider only the case of deforestation. Nevertheless, all that fol-
lows can be extended to tupling. The following theorem justifies the orientation
of the deforestation eureka.

Theorem 1. Let R be a non-overlapping, constructor-based, and terminating
rewrite system and g — d a deforestation eureka of Ry. The system RU{g — d}
15 termanating.

Proof: First, the system E = {g — d} is terminating. For proof,
it 1s sufficient to take a recursive path ordering where all the symbols
occurring in ¢ have a greater precedence than the eureka symbol h.
Second, the system F quasi-commutes over R. Indeed, if a rewriting by
R follows a rewriting by £, we have

t=ulo(g)] =5 ulo(d)] —=r t'

The rewriting by R cannot occur at the occurrence of the eureka symbol
h in d. Therefore 1t occurs either in the context u or it rewrites one of the
subterms o(z;). In the first case, t' is obviously obtained by rewriting
first by R and then by E. In the second case, the same can be done
because z; occurs only once in the linear term ¢. Since R and E are

terminating and F quasi-commutes over R, RU F is terminating [1, 12].
O

As a consequence, right-hand sides of the rules of R can be normalized by F,
yielding a terminating rewrite system we call Ry 4. Overlaps between a
deforestation eureka g — d and R at the spine positions of g produce critical pairs
that substitute terms of T(C, V) into the variables that are located under the
eureka symbol. Two kinds of critical pairs are produced. Consider an example:

fle ias) — (x4) 2 f(xs) (1)
g(z i ws) — (v +x) g(xs) (2)
zip(w xs,y v ys) — (x,y) == zip(es, ys)

8 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

with the deforestation eureka: zip(f(x), g(y)) — h(x,y). From rule 1 we get the
critical pair:
P:zip((w 4+) = fles), g(y)) = h(x x5, y)
If we orient P from left to right, then i1t overlaps with rule 2 yielding a pair:
Q :zip((w 4+) == flws), (y*y) :g(ys)) = h(x s,y 1 ys)
The pair ¢ normalizes into a rule of Rp. The pair P is said to be uncovered

and 1s oriented from left to right to enable overlap with rule 2. The pair @ is
covered and oriented from right to left as part of Rj.

Definition2 (eureka critical pairs). Let R be a constructor-based system.
Consider a rule e : g — h(tcy,tea, ..., tey), where h is a eureka symbol and
te; € T(C,V), i€ (1,...,n)% A eureka critical pair is one between e and a
rule { — r of R built from an overlap at a spine position w of the term g. More
precisely, there exists a unifier ¢ with range T(C,V), such that o(g|n) = o({)
yielding the critical pair:

o(glw —o(r)]) = h(o(ter), o(tea), ..., o(ten))

Definition3. A eureka critical pair Q:g = h(tcy, tca, ..., tey), in R-normal form
is covered if and only if either

1. for every traversal argument position ¢ of h, tc; € V, or
2. there exists no overlap between R and Q.

Condition (1) alone is insufficient. For example the pair [| = A([],y) is covered
even if 2 is a traversal argument position for h. Indeed, h([],y) — [] belongs to
Ry. Uncovered eureka critical pairs, or UCP pairs, are directed pairs from left
to right (towards the eureka symbol). Directed pairs in UC'P are not used for
rewriting. However, only their left-hand sides are overlapped with R. Left-hand
sides of UC'P pairs are normalized by Rj.q. Covered eurcka critical pairs, or
RCP rules, are directed from right to left (from the eureka symbol). Right-hand
sides of RC'P rules are normalized by R;,q U I where E is the deforestation
eurcka. Afterwards they becomes rules of Rj. RCP rules are combined with
Rjo1a. This process is described by the set of transition rules in Section 4.

At this point, we must ensure that combining RC P rules with R .4 preserves
the termination of the rewrite system. Still, the termination of R is not enough
to ensure the termination of Ry, U RCP. It is well-known that the unfold /fold
method preserves only partial correctness [13]. However, if the system R is left-
linear the following theorem ensures termination of the system R;,;4URj. Linear
patterns is a usual requirement in functional programming, therefore this is not
such a strong requirement.

Theorem4. Assume R is an orthogonal, constructor-based, and terminating
rewrite system. Let T = E~1 be the converse of the deforestation eureka of
eurcka symbol h. Consider also the rewrite system Ry, t.e. R normalized by
E. The rewrite system Rioq U Ry ts terminating.

The reader can find the proof of Theorem 4 in appendix.

2 ¢ is either a deforestation eureka, or an uncovered critical pair.

Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 9

4 Transition rules for automatic partial completion

From now on, we simply use eureka as a shorthand for deforestation eureka
or tupling eureka. The deforestation and tupling process is described here by a
set of transition rules. A transition rule, transforms a tuple (R,E,UCP,RCP,L)
where R is a set of constructor-based rules, F is a set of rules containing a single
eureka. UCP is a set of uncovered critical pairs, RCP is the set of covered critical
pairs whose right-hand sides have not been normalized yet, L is an optional set
of laws that can be used to simplify RCP. ECP denotes the set of eureka critical
pairs between £ UUCP and R.

Eureka

R0O,0,0,L = R E,0,0,L ifFE isa eurcka for R

Critical Pair

R,E,UCP,RCP,L— R, E,UCPUFECP,RCP,L. i{fECP #1
UCP-Unfolding

R E,UCPU{g=d},RCP,L—= R, E,UCPU{¢ =d},RCP,L
if g—rg

R-Folding

RU{l—r},E,UCP,RCP,L—= RU{l— v} E,UCP,RCP,L
if r—gr

Covered Pair

R E,UCPU{9g=d},RCP,L = R, E,UCP,RCPU{d— g¢},L
of g =d s covered

RCP-Unfold/Fold
R,E,UCP,RCPU{p—q},L— R, EF,UCP,RCPU{p—4q'},L
if ¢ —rue@L) ¢

Rule_for_h

R, E,UCP,RCPU{l—r},L = RU{l—7r},E,UCP,RCP, L
if risin RUFE(UL)-normal form

Flush

R,E,UCP,RCP,L— R,0,UCP,RCP,L if ECP=10

For processing a tupling eureka, we must add the simplification of a left-hand
side of a rule of R and the deletion of a pair of identical terms borrowed from
transition rules of a standard completion procedure. In this case, we must also
compute the overlaps between the left-hand sides of rules of a tupling eureka.
The above transition rules, except Eureka, can be implemented by using a
completion procedure. This completion is guaranteed to terminate. However,
the entire process is not guaranteed to terminate because it could generate in-
finitely many eurekas. Assuming supplementary conditions on R, discussed later
in the paper, we can derive an algorithm which always terminates and moreover
achieves deforestation and parallel traversal removals.

Propositionl. Starting with an orthogonal, terminating, and constructor-based
rewrite system R, and using the above transition rules repeatly until none is appli-
cable results either in a constructor-based and terminating system R' equivalent
to R, or else it generates infinitely new eurekas.

10 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

Note that the proposition does not claim that the final result 1s free of useless
data structures. This is achieved only when we can guarantee that Rj is fused
for every deforestation eureka where h i1s the eureka symbol.

4.1 Fusability

Consider a best deforestation candidate a(b(x)) yielding the deforestation eureka
E :a(b(x)) — h(x). According to a nomenclature invented by Chin, let us call
the bottom symbol b a producer, and a a consumer. By overlapping £ with rules
B :b(te) — r of Ry, we get UCP pairs of the form a(r) = h(te). If b occurs in
r at a position w i.e. if B is a recursive rule, all the symbols located above
w in r are symbols produced by g. The fusion can be achieved if during the
normalization of a(r) by R(UL), all the produced symbols are consumed by a,
creating a subterm a(b(r|y)) which rewrites into A(r|y).

Definition2. A symbol k& € F is produced by f if and only if k£ occurs at
position u < w in a recursive rule [— r € Ry where w is a position of f in r.

Definition 3. In a best deforestation candidate, every symbol b € D at position
different from ¢ is a producer. Every symbol a which has a producer b as
argument is a consumer. A producer which is not also a consumer is a bottom
producer.

Definition4. Let s be a best deforestation candidate of depth 2, left-hand side
of the deforestation eureka F. Let b be a bottom producer in s, and B be a
recursive rule of Ry. Let a be a consumer of b. The Ry rule H : [— r, built from
an overlap of B and F, is fused for a if and only if, either a does not occur in
r, or else @ occurs at a position w in r; In this case, if b occurs also in r at a
position & > w, a symbol k occurring at position 3, a > [> w, must not be a
symbol produced by b.

This means simply that the consumer a has “passed through” the symbols pro-
duced by the producer b to form redexes for the deforestation eureka. The above
definition can be extended to best deforestation candidates of depth greater than
2. A directly fusable consumer a is guaranteed to “pass through” all the symbols
produced by a directly fusable producer b argument of a.

Definition5. A symbol b is a directly fusable producer if and only if

1. every symbol k produced by b € C', and

2. every symbol f € D occurring in R as argument of a produced symbol &
(i.e. f can become later a producer symbol for a best candidate in Ry) is a
directly fusable producer.

Definition6. A symbol a is a directly fusable consumer at traversal ar-
gument position i if and only if for every rule [—r in R,

L.l €eCorll; =clxr,22,...,2,) where ce C, 2, € V,i=1,...,n, and

Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 11

2. every occurrence of a in r has only variables as arguments at traversal argu-
ment positions and,

3. every symbol f € D occurring in a right-hand side of R, which has a variable
at a traversal argument position (i.e. f can become a consumer for a best
candidate in Rp) is a directly fusable consumer.

Definition 7 (directly fusable best deforestation candidate). A best de-
forestation candidate ¢ is directly fusable if and only if its producers are di-
rectly fusable producers and its consumers are directly fusable consumers.

For example, length(x@y) is directly fusable but length(rev(z)) is not.

Definition 8. An orthogonal, constructor-based, and terminating rewrite sys-
tem R is directly fusable if every best deforestation candidate in R is directly
fusable.

Lemma9 (direct fusability lemma). If a lefi-hand side of a deforestation
eureka with eureka symbol h is a directly fusable best deforestation candidate,
then rules in Ry, are fused. Moreover Ry is directly fusable.

The proof is straightforward by application of the above definitions. Every di-
rectly fusable consumer passes through the constructors produced by a directly
fusable producer argument to form redexes of the deforestation eureka. The best
deforestation candidates of Ry are directly fusable by condition (2) of Definition
5 and by condition (3) of Definition 6.

Consequence 10. Let us start with an orthogonal, constructor-based, terminat-
ing, and directly fusable system R, and with L = (). Using the transition rules
repeatly results in an orthogonal, constructor-based, terminating and directly fus-
able rewrite system R’ which contains no deforestation candidate.

Chin’s e-treeless terms are similar to our directly fusable terms. If a system
R is not directly fusable, laws in the set L can be used to force the fusion.
Unfortunately, a fused system R’ is not always more efficient than R.

4.2 Improvement
Consider for example the system R:

f(z) — tails(downto(x))
tails(z ©ws) — (v ws) tails(xs) (1) downto(0) —]
tails([]) — [l downto(s(x)) — s(x) :: downto(x)

R is terminating, left-linear, and directly fusable. A procedure based on the
transition rules returns the system R’:

f(x) — h(x)
h(0) — [[]] h(s(n)) — (s(n) :: downto(n)) :: h(xs)
The list downto(n) = n ... 23 21 [] is computed for each n =1,.. .,

in R'. This happens because the right-hand side of Rule (1) is not linear for the
accumulative variable xs.

12 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

Definition11. Let F' : {—7 be a recursive rule of R;. A variable z is an
accumulative variable of F if and only if occurs in a non-variable proper
subterm of [, and x occurs also in r at a position u > w where w is a position of
an occurrence of f in r.

Definition12. A symbol f € D is safe if every rule in Ry is right linear for its
accumulative variables.

Lemma 13 (improvement lemma). Lel R be a fusable, terminating, orthog-
onal, and constructor-based rewrite system. Processing a deforestation eureka
s — d by the transition rules returns a result R' at least as efficient as R if
every symbol in s is safe.

Let h be the eureka symbol. The right linearity plus fusability guarantee that
a producer b in s does not occur in Rp. The data structure computed by b is
therefore definitively eliminated.

The safety property of the system R is a too strong requirement. It can be
useful to process deforestation eurekas with unsafe left-hand sides. For example
with the deforestation eureka

map_sum(tails(downto(x)) — h(z),

where map_sum(x :: xs) = sum(x) + map_sum(zs), downto(x) is consumed
by sum. Therefore it is eliminated from the result. Work need to be done to
extend the notion of safety. Notice that tupling strategy, when it applies, always
succeeds to improve a system R.

4.3 Combining tupling eurekas with deforestation eurekas

The order in which we treat deforestation eurekas with respect to tupling eurekas
is worth considering. Ambiguities between both strategies are typified by the
following example. Consider the rule

F:f(z) — k(g1(2), 92(2))

Suppose 1 is the only traversal argument position of k. There exists a defor-
estation eureka Eq: k(g1(2),y) — hi(x), and an tupling eureka Fs:

g1(2) = fst(ha(x)) g2(x) — snd(ha(z)) pair(fst(ha(x)), snd(ha(x))) — ha(z)

Starting with Ey results in Fy = {f(z) — hi(x,g2(2))} U Rp,. There is no
more tupling eureka for Fj.

Starting with Fs results in Fa = {f(x) — k(fst(ha(z)), snd(h2(x)))} U Rp,
There is no more deforestation eureka because fst ¢ D and snd € D.

Consider again the rule F', but suppose k has two traversal positions 1 and
2. There exists a different deforestation eureka Ei: k(g1(2), g2(y)) — hi(z,y)
and the same tupling eureka FEs. Starting with Ej results in F5 = {f(») —
hi(z,2)} U Ry

Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 13

If all the deforestation eurekas are processed before tupling eurekas, the terms
that remain candidates for tupling are only the terms k(u1, ua, ..., u,) where k
is the reserved symbol pair, or k is a primitive symbol, i.e. a symbol that occurs
only in right-hand sides of R, or k is not a fusable symbol. When there is an am-
biguity between the two strategies, deforestation candidates become unavailable
after tupling because fst, snd and pair are non-defined symbols. Moreover, no
new deforestation candidate can appear after tupling for the same reason. We
choose to process all the deforestation eurekas before the tupling eurekas.

5 Termination of the procedure

As we said earlier, processing a deforestation eureka with eureka symbol A, is
likely to generate rules of Ej that contains new deforestation terms so that it
can never end.

Lemmal. Let GG be the set of symbols occurring in a left-hand side g of a defor-
estation eureka g —d. Let S = UfeG Ry. Assume that S s directly fusable, and
that there 1s no deforestation candidate in S. Then, a program which implements
the transition rules to transform the system S U g—d always terminates.

The assumptions about ¢ ensure that best deforestation candidates in the Rp
rules have depths no higher than 2. Proofs of similar results can be found in [17]
or in [7]. Suppose we treat only deforestation eureka which obeys the assump-
tions of the above lemma, then more deforestation terms obeying the assump-
tions can be available, and so on. This “bottom-up” process must terminate.
Therefore if R contains no mutually recursive function, termination is guaran-
teed as consequence of Lemma 1. The result remains valid even if we do not
follow a “bottom-up” order in processing the deforestation eurekas. However
requiring that R is not mutually recursive is too strong. When a deforestation
eureka contains a symbol f that “calls” ¢ and g “calls” f, it is enough to ensure
that no deforestation candidate containing a call of f or ¢ can appear later in
the process. This is guaranteed by the mutual safety condition.

Definition2. Let K : [— r be a rule. A spine position w in 7 is a dpos position
of the rule K if and only if there exists an accumulative variable z € V(r|,), at
position v in r, such that each position u, w < u < v is a spine position.

For example, ¢ is a dpos position of P : p(x :: s, y) — k(xs, g(z), f(d(y)), but 2,
3, and 3.1 are not dpos positions of P.

Definition3. Let f € D and let ¢ € D occurring at a spine position in Ry. A
symbol k is on dpath from g to f if and only if either k occurs in R, at a dpos
position, or k is on the dpath from j to f where j is a symbol that occurs in R,
at a dpos position.

Consider mutually recursive rules P, M : m(y, z :: xs) = p(xs,y) :: m(y, xs), and
F: f(x)—a(m(z,z)), m, p are on the dpath from m to f but not f. Suppose

14 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

that g occurs in a best deforestation candidate of a rule of R¢. Symbols in a
dpath from ¢ to f, and no others, are likely to occur in a best deforestation
candidate later.

Definition4 (mutual safety condition). A system R is mutually safe if
and only if for every symbol f occurring in a best deforestation candidate of R,
there exists no symbol g occurring in best deforestation candidate of R; such
that f is in the dpath from g to f.

Theorem 5. Given an orthogonal, constructor-based, terminating, mutually safe
and fusable rewrite system R, a procedure using the transition rules terminates
returning a terminating system R’ equivalent to R which contains no deforesta-
tion candidate.

6 Conclusion

Inside the system Astre, deforestation and tupling strategies are implemented
as automatic transformations for orthogonal, fusable, terminating, and mutu-
ally safe constructor-based rewrite systems. Termination of the input rewrite
system 1s an obvious requirement for a transformation system based on rewrit-
ing. We show in the paper that left-linearity guarantees the correctness of the
transformation. The mutually safe property ensures that the process terminates.
Fusability guarantees that every deforestation term can be fused. Directly fus-
able terms are fusable terms that corresponds to the e-treeless terms of Chin [7].
At the present time, fusability of other terms relies on a set of laws provided
by the user. We are currently exploring ways to use the completion process to
synthesize rules that enlarge the class of directly fusable terms. The enlarged
class corresponds to the potentially normalizable terms of Sheard [16].

A completion procedure is used for controlling the unfold/fold process in
each transformation step. It provides a great flexibility for testing a strategy on
examples and validating the solutions before implementing them. Moreover, it
provides an ideal framework for integrating new tactics and combining diverse
strategies. We plan to integrate next the generalization tactic which allows for
instance automatic recursion removals.

The superiority of Chin’s work is that it is not restricted to first-order pro-
grams. Because we are using first-order term rewriting, it seems more difficult
to integrate a ‘defunctionalization’ transformation. We have explored a way to
combine partial evaluation with completion in [5].

Acknowledgement We have enjoyed discussions with L. Fegaras. Many
thanks to J. Bell and D. Spencer for reading the current draft of the paper.

References

1. L. Bachmair, N. Dershowitz. Commutation, transformation, and termination. Proc.
8th Int. Conf. on Automated Deduction, LNCS 230, pages 5-20, 1986.

Id:

10.
11.

12.

13.

14.

15.

16.

17.

7

cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar 15

. F. Bellegarde, P. Lescanne. Termination by Completion. Journal of Applied Algebra

in Engineering, Communication and Computing, 1, pages 79-96, 1990.

. F. Bellegarde. Program Transformation and Rewriting. Proc. 4th Conf. on Rewrit-

ing Techniques and Applications. LNCS 488, pages 226-239, 1991.
F. Bellegarde. Astre, a Transformation System using Completion. Technical Re-
port, Oregon Graduate Institute, 1991.

. F. Bellegarde. A transformation System Combining Partial Evaluation with Term

Rewriting, Presented to HOA’93: An international Workshop on Higher Order
Algebra, Logic and Term Rewriting, Participant proc., Amsterdam, Sept. 93.

. R. M. Burstall and J. Darlington. A Transformation System For Developing Re-

cursive Programs. Journal of the Association for Computing Machinery, 24, pages
44-67, 1977.

W. N. Chin. Safe Fusion of Functional Expressions. Proc. of the Conference on
Lisp and Functional Programming, San Francisco, 1992.

. N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,

3(1&2), pages 69-116, 1987.

. N. Dershowitz. Completion and its Applications. Resolution of Equations in Alge-

braic Structures,, 2, pages 31-86, Academic Press, 1988.

M. Fokkinga. Tupling and Mutamorphisms. The Squiggolist, vol. 1,4, 1989.

A. Gill, J. Launchbury and S.L. Peyton Jones. A short cut to Deforestation. Proc. of
the 6th Conf. on Functional Programming Languages and Computer Architecture,
Copenhagen, pages 223-232, June 1993.

J.P. Jouannaud, M. Munoz, Termination of a set of rules modulo a set of equations,
Proc. of the 7th Int. Conference of Automated Deduction. LNCS 170, pages 175-
193, 1984.

L. Kott. About a transformation system: a theoretical study. Proc. of the 8rd Symp.
on Programming, Paris, 1978.

U. S. Reddy. Transformational derivation of programs using the Focus system.
Symp. Practical Software Development Fnuvironments, pages 163-172;, ACM, De-
cember 1988.

U. S. Reddy. Rewriting Techniques for Program Synthesis. Proc. of the 3rd Conf.
on Rewriting Techniques and Applications. LNCS 355, pages 388-403, 1989.

T. Sheard and L. Fegaras. A fold for All Seasons. 6th Conf. on Functional Pro-
gramming Languages and Computer Architecture, pages 233-242, 1993.

P. Wadler, Deforestation: Transforming programs to eliminate trees. ESOP’88.
LNCS 300, 1988.

Appendix

The proof of Theorem 4 Section 3 requires some preliminary lemmas.

Notations on relations The relations on terms —~!

, or < denote the

converse of the relation — between two terms. We write —pg, . —p, for the
composition of the two relations —g, and —pg,. Given two relations —pr and
—g5, =g/ —s is called R modulo S and stands for the relation —% . —p . —%.
Note that —p / —g and —g / —% are the same. In the proof, we use as lemma
the following result from [2].

16 Id: cade.tex,v 1.2 1993/11/12 19:14:07 bellegar Exp bellegar

Lemmal. Let S and T be rewrite systems. Suppose S locally cooperates with
T, SUT is terminating and T is confluent. The relation (—g /(—1U+—7))t
can be used to prove termination, i.e. a rewrite system that satisfies

(g /(Gus)t r

for all rules | —r is terminating.

The local cooperation of a system S with a system 7" 1s a kind of local confluence
between rules of S and 7" that can be tested by a criteria on critical pairs between
S and T when the system T is variable preserving and left-linear. Therefore, «f
there s no overlap between S and T, and T s left-linear and variable preserving,
then S locally cooperates with T'.

Lemma 2. Let E be a deforestation eurcka for a constructor-based, and termai-
nating rewrite system R and T = E~1 be the converse of the eureka rule. If R
15 left linear, then RUT is terminating.

Proof: First, the system 7' is terminating. For proof, it 1s sufficient
to take a recursive path ordering where all symbols occurring in the
deforestation term (or in the terms for tupling) are less than the eureka
symbol h. Second, R quasi-commutes over T'. Consider a rewriting by R
followed by a rewriting by 7.

ulo(l)] —g ulo(r)] —r ¢’
Because the right-hand side r does not contain the symbol &, the rewrit-
ing by T can only occur either in the context u, then the two rewritings

commute, or under a variable in 7. This variable occurs in [once because
R is left linear, therefore the two rewritings commute again. O

Proof of Theorem 4 Section 3

— There is no overlap between rules of 7" and 7T is terminating, therefore T is
confluent.

— There is no overlap between R and T and 7" is variable preserving and left-
linear by definition of a deforestation eureka. Therefore R locally cooperates
with 7'

— RUT is terminating by Lemma 2.

then (—g /(—7 U 7))t can be used to prove the termination of R4 U Ry by
Lemma 1. There are two cases to consider:

1. either | — r € Rjoq then | —gp—% r by definition of R;.4, therefore

+
l (;/(?U?)) r ., or
2. l — r € Ry, then
l<_T—1_>R_>(RUT—1)* r
because a rule in Rj is a RCP pair normalized by R UT~!. Therefore

h(te,tea, ... ten) (? /(?U ?))"' r

