
Automatic Transformations by Rewriting
Techniques ��

Fran�coise Bellegarde

Oregon Graduate Institute of Science � Technology
PO Box ����� Portland� Oregon

bellegar�cse�ogi�edu

Abstract� The paper shows how term rewriting techniques can be used
to automatically transform �rst�order functional programs by both de�

forestation 	eliminating useless intermediate data structures
 and tupling

	eliminating parallel traversals of identical data structures
� Its novelty
is that it includes these strategies for program improvement in a trans�
formation system which uses completion procedures to automatically
control a unfold�fold methodology� This means that eurekas for these
strategies are automatically discovered and that they are processed by a
completion procedure� The completion procedure is automatically con�
strained for orienting pairs into rules and for producing critical pairs� An
interesting result is that the process preserves termination of the original
set of rules� which is not guaranteed in general by a unfold�fold method�

Introduction

As it has often been said� functional programs are constructed using only func�
tions as pieces� Data structures such as lists and trees are the glue to hold
them together� Although this compositional style of programming is attractive�
it comes at the expense of e�ciency� Compositions produce many intermedi�
ate data structures when computed in an eager �call�by�value� evaluation� One
way to circumvent this problem is to perform deforestation on programs as ad�
vocated by Wadler 	
��� Several approaches for eliminating useless intermedi�
ate data structures have been proposed� First came the algorithm proposed by
Wadler 	
�� which performs automatic deforestation on a restricted class of terms
called treeless terms� Later� Chin
s remarkable work on fusion 	�� applies to a
wider class of e�treeless terms and to higher�order programs in general� More re�
cently� promotion theorems have been utilized to normalize programs 	
��� This
technique is applicable to a class of potentially normalizable terms� Also an au�
tomatic way to implement deforestation inside the Haskell
s compiler has been
shown in 	

��

Deforestation algorithms do not recognize that an expression contains two or
more functions that consume the same data structure� Such functions create a

� The work reported here is supported by the contract with Air Force Material Com�
mand 	F��
��R����






 Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

�parallel� traversal of a data structure� These functions can be put together in
a tuple as a single function that traverses the data structure only once� This is
another way of transforming programs according to the tupling lemma 	
���

General purpose program transformation systems are based on a unfold�fold
method 	��� Deforestation and tupling are particular instances of this strategy� In
the Focus system 	
��� folding and unfolding are seen as rewritings� It has been
pointed out in 	�� that an unfold�fold strategy can be controlled by a completion
procedure� Following this idea� the transformation system Astre 	�� �� is based
on completion procedures� Astre takes into account of inductive laws provided
by the user during the completion process� All these systems are interactive�

The paper shows how deforestation and tupling are automatable using com�
pletion� These strategies are implemented inside the system Astre� The programs
are presented as a set of �rst�order equations� The system limits the number of
critical pairs that are produced by the completion procedure� But because its
purpose is to be general� it still generates excessive critical pairs for deforestation
and tupling strategies� The paper presents a way to restrict the overlaps between
left�hand sides of rules so that the completion procedure computes exactly the
pairs that are needed� For automating the process� not only the production of
critical pairs needs to be limited but the orientation of the critical pairs into rules
has to be automated� Moreover� automatization demands that the combinations
of function candidates for deforestation and the tuples for parallel traversal re�
movals are also discovered algorithmically and used to build what is called a
�eureka rule� in the unfold�fold method� Automating the process means that
the system itself produces the eureka rules� The discovery of a eureka rule repre�
sents one transformation step� accomplished by a completion procedure� which
is guaranteed to never fail and to always terminate� We give su�cient conditions
that guarantee the correctness of the transformation step� e�g� that a transfor�
mation step does not transform a terminating program into a non�terminating
one� The system processes one eureka after the other� combining transformation
steps until no more deforestation and parallel traversal removals can be done�
Su�cient conditions guarantee the termination of the process�

� Application of Completion to Unfold�Fold Strategies

Basic Notations
Let F be a set of function symbols and V be a set of variables� T �F� V � is

the set of terms with symbols in F and variables in V � V �t� is the set of all the
variables occurring in t� A position or occurrence within a term t is represented
as a �nite sequence � of positive integers describing the path from the root of t
to the root of the subterm at that position� denoted by tj�� The position of the
root of a term t is �� The notation t � u	s� emphasizes that the term t contains
s as subterm in the context u� G�t� is the set of the positions of all the function
symbols in t� A term s is less than t for the subsumption ordering if and only
if t is an instance of s� We write s v t if a subterm of t is an instance of s� A
term t is said to be linear if no variable occurs more than once in t�



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar �

A rewrite rule is an ordered pair of terms� written as l � r� where V �r� �
V �l�� A rule l � r is left�linear if l is linear� it is right�linear if r is linear and� it
is variable preserving if V �l� � V �r�� A rewrite system is a set of rewrite rules�
The rewriting relation is denoted as �R with its transitive closure denoted as
��

R and its re�exive and transitive closure denoted as ��

R� The rewrite system
R is terminating if and only if there is no in�nite sequence of terms t�� t�� � � � �
such that t� �R t� �R � � � The R�normal form of a term t is a term t �R
such that t ��

R t �R and there is no u such that t �R�R u� Some particular�

well�founded orderings � allow to prove termination of a rewrite system R by
proving only that l � r for each rule l � r in R� One of them is the recursive
path ordering 	�� which is based on a precedence �well�founded quasi�ordering�
of symbols�

A rewrite system is overlapping if there exists an overlap between left�hand
sides of two rules g � d and l � r� i�e� if there exists a position � in G�l� such
that lj� and g are uni�able with the most general uni�er �� A critical pair is the
identity ��l	� � ��d��� � ��r� where t	� � u� denotes the replacement in t of
the subterm at position � by u�

An orthogonal system is a left linear and non�overlapping rewrite system�
A system is constructor�based if all proper subterms of its left�hand sides have
only free constructor symbols and variables� The roots of left�hand sides are
de�ned symbols� C and D denote respectively the set of constructors and the set
of de�ned symbols� Rf is the set of all the rules l � r of a constructor�based
rewrite system R where the root of l is f � A rewrite system is con�uent if and only
if the relation �� veri�es the diamond property� Con�uence ensures the unicity
of the normal form while termination ensures its existence� A non�overlapping
and terminating rewrite system is con�uent� A completion procedure aims at
discovering critical pairs in a terminating rewrite system R to check whether the
two sides of the pair rewrite to the same term� Otherwise� it adds the critical pairs
to R� orienting them in such a way as to preserve the termination property� If the
procedure does not fail and terminates� it returns a con�uent and terminating
system equivalent to R�

Completion Procedure and Unfold�Fold Method

The unfold�fold method 	�� consists of � rules� namely De�nition� Instantia�
tion� Unfolding� Folding� Abstraction� and Law� that allow new identities to be
introduced that are equational consequences of existing identities� Dershowitz 	��
has shown how the combination of Instantiation and Folding is enabled by critical
pair generation� Unfolding and Law are simpli�cations by rewriting� De�nition
is the introduction of an eureka rule� Abstraction is used for a tupling tactic�

Deforestation

Consider a naive example of a single deforestation of one term� length�x�y�
where

Rlength �
length�	�� � �
length�x �� xs� � S�length�xs��

R� �
	��y � y
�x �� xs��y � x �� �xs�y�

� These well�founded orderings are fully invariant reduction orderings 	see ���
�



� Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

S is the successor function� The list x is traversed once to append it to y and
once more to count the length of the result� A eureka rule length�x�y� � h�x� y�
is introduced� It overlaps with rules of R� yielding two critical pairs�

length�y� � h�	�� y�

length�x �� �xs�y�� � h�x �� xs� y�

The last pair simpli�es by the second rule in Rlength into S�length�xs�y�� �
h�x �� xs� y�� Now h is de�ned by�

h�	�� y� � length�y�

h�x �� xs� y� � S�length�xs�y�� � S�h�xs� y��

which makes only one traversal of x to compute the result� For this very simple
example� no law is necessary� But suppose the eureka rule is length�rev�x�� �
h�x� where one rule of Rrev is� rev�x �� xs� � rev�xs��	x�� we need the rule
�Law� length�x�y� � length�x�� length�y� to simplify the left�hand side of the
pair length�rev�xs�	x��� � h�x �� xs� according to the following derivation�

length�rev�xs��	x�� � length�rev�xs�� � length�	x�� � h�xs� � length�	x��
�� S�h�xs�� yielding a Rh rule h�x �� xs� � S�h�xs��

Tupling Tactic
Consider another naive example� Ave�x� � sum�x�	length�x� where

Rsum �
sum�	�� � �
sum�x �� xs� � x� sum�xs�

Rlength �
length�	�� � �
length�x �� xs� � S�length�xs��

The list x is traversed twice �in parallel� to compute the average� In this case�
we introduce the rules�

Eureka �
sum�x� � fst�h�x��
length�x� � snd�h�x��
pair�fst�h�x��� snd�h�x��� � h�x�

Comp �
fst�pair�x� y�� � x
snd�pair�x� y�� � y

By rewriting the left�hand side with the two �rst eureka rules� we get� Ave�x� �
fst�h�x��	snd�h�x�� which can be computed with a single traversal of x by shar�
ing the common computation of h�x�� The two �rst eurekas rules overlap respec�
tively with rules of Rsum and Rlength yielding the pairs�

� � fst�h�	���
x� sum�xs� � fst�h�x �� xs��

� � snd�h�	���
S�length�xs�� � snd�h�x �� xs��

which can be turned into rules from right to left�

fst�h�	��� � � �
�
fst�h�x �� xs�� � x� sum�xs� ���

snd�h�	��� � �
snd�h�x �� xs�� � S�length�xs��

Afterwards� these rules overlap with the third eureka yielding Rh rules�

h�	�� � pair��� ��� h�x �� xs� � pair�x� fst�h�xs��� S�snd�h�xs����



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar �

These last two rules reduce the left�hand sides of Rules 
 and �� The Comp rules
further reduce these left�hand sides so that they become identical to the right�
hand sides� Then the rules can be deleted� It is worthwhile to notice that this
tactic can be applied to transform a function that computes the nth �bonacci
number k in time proportional to k itself into a function that computes the same
number in only n steps� This example has been used in 	
�� showing how a com�
pletion procedure produces useless explosion of critical pairs when controlling
an unfold�fold transformation� Our way of implementing the tupling tactic al�
ways generates exactly the needed critical pairs� The completion� used for each
transformation step� always terminates� Moreover� an algorithm for automatic
deforestation and tupling must recognize terms candidates for such tactics�

� Eureka Rules Discovery

A term is normalized for the above two transformation strategies if its computa�
tion traverses each data structure exactly once� It is useful to de�ne the traversal
argument positions of a de�ned symbol f �

De�nition� �traversal argument positions�� A symbol f traverses a data
structure at traversal argument positions i� i � �
� � � � � n�� if there exists a
rule f�tc�� tc�� � � � � tcn� � r in Rf such that tci �� V

For example� the symbol � de�ned by

	� � x � x �x �� xs� � y � x �� �xs � y�

traverses a data structure List with constructors 	�� �� at argument position 
�
The spine positions indicate where traversals of data structures are located in a
term�

De�nition� �spine positions�� A position � in a term t is a spine position
if

	 either � is �� or
	 � � u�i where u is a spine position� the root f of tju � D and i is a traversal

argument position of f �

The spine positions of �x � y� � z are �� 
� 
�
 but the spine positions of
x � �y � z� are �� 
�

De�nition
� The deforestation depth of a term t is the length of the largest
spine position in t�

The above terms have deforestation depths respectively equal to � and 
� Spine
positions allow to control deforestation� For example a term f�x��y is a defor�
estation candidate because f�x� occurs at a spine position� But the term x�f�y�
is not a deforestation candidate because f�y� does not occur at a spine position�
In particular� � does not traverse the result of f�y� in the latest term� For

revonto�	�� u� � u revonto�x �� xs� u� � revonto�xs� x �� u�



� Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

the term revonto�f�x�� y� is a deforestation candidate but revonto�x� f�y�� is
not a deforestation candidate� This motivates us to de�ne a candidate as�

De�nition� �deforestation candidate�� A term s� of deforestation depth
greater than 
� is a deforestation candidate for a term t in R�normal form for
a constructor�based� non�overlapping� and terminating rewrite system R if and
only if s is linear� and s v t�

The additional constraint that s does not contain a given symbol f is required
for building a eureka rule� For example� in the recursive rule

concall�x �� xs� � all�x� � concall�xs�

the deforestation candidate all�x� � u does not contain the recursive symbol
concall� Given a depth n� we prefer a deforestation candidate which is a minimal
element for the subsumption ordering� For example the term

t � flatten�x��map sqr�rev�y��

is a deforestation candidate of depth � as well as s� � flatten�x��u v t and
s� � map sqr�rev�y�� v t� But t is an instance of s�� s� and s� are the best
deforestation candidates of depth ��

De�nition� �best deforestation candidate�� For a given a depth n� a best
deforestation candidate for the term t is a minimal element for the subsump�
tion ordering among deforestation candidates of depth n for t�

A best deforestation candidate of greatest depth is used to build a deforestation
eureka�

De�nition
 �deforestation eureka�� Suppose s is a best deforestation can�
didate for the left�hand side r of a rule l � r � Rf � Assume s is constrained to
contain no occurrence of f and to be of maximal deforestation depth� Given
l� r� a deforestation eureka of R is a rule s � h�x�� x�� � � � � xn� where
fx�� x�� � � � � xng � V �s�� The eureca symbol h is a new symbol� i�e� h does
not occur in R�

Given the rule f�x� y� � flatten�x��map sqr�rev�y��� flatten�x��y � h�x� y�
and map sqr�rev�y�� � h��y� are deforestation eurekas� Notice how we can
determine that 
 is the unique traversal argument position of h� Two subterms
that traverse the same data structure are used to construct tupling eurekas�

De�nition� �tupling eureka�� Assume that one of the right�hand sides of the
rules of Rf has a subterm k�u�� u�� � � � � un�� Suppose there exists two distinct�
non�variable terms� both �� T �C� V � ui and uj which have the same variables
at the spine positions and which are both linear for these variables� then the
tupling eureka of Rf is constituted by the rules�

u�i � fst�h�x�� x�� � � � � xn�� �
� u�j � snd�h�x�� x�� � � � � xn�� ���
pair�fst�h�x�� x�� � � � � xn��� snd�h�x�� x�� � � � � xn��� � h�x�� x�� � � � � xn� ���



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar �

where h is a eureka symbol� and u�i and u�j are renamings of ui and uj � respec�
tively� These renamings preserve the variables at the spine positions and make
distinct all the variables located at the non�spine positions� Also fst� snd� and
pair are reserved symbols �e�g� �� D �C�� with rewrite rules�

fst�pair�x� y�� � x snd�pair�x� y�� � y�

and fx�� x�� � � � � xng � V �u�i� � V �u�j��

It is required that u�i and u�j not be variables because a rule such as x � g�x�
cannot belong to a rewrite system� Otherwise x� g�x� � g�g�x�� � � � �

Automatic discovery of eurekas is based on the above de�nitions�

� Critical Pairs and Orientation

For clarity� we consider only the case of deforestation� Nevertheless� all that fol�
lows can be extended to tupling� The following theorem justi�es the orientation
of the deforestation eureka�

Theorem�� Let R be a non�overlapping� constructor�based� and terminating
rewrite system and g� d a deforestation eureka of Rf � The system R�fg� dg
is terminating�

Proof� First� the system E � fg � dg is terminating� For proof�
it is su�cient to take a recursive path ordering where all the symbols
occurring in g have a greater precedence than the eureka symbol h�
Second� the system E quasi�commutes over R� Indeed� if a rewriting by
R follows a rewriting by E� we have

t � u	��g�� �E u	��d�� �R t�

The rewriting by R cannot occur at the occurrence of the eureka symbol
h in d� Therefore it occurs either in the context u or it rewrites one of the
subterms ��xi�� In the �rst case� t� is obviously obtained by rewriting
�rst by R and then by E� In the second case� the same can be done
because xi occurs only once in the linear term g� Since R and E are
terminating and E quasi�commutes over R� R�E is terminating 	
� 
���
�

As a consequence� right�hand sides of the rules of R can be normalized by E�
yielding a terminating rewrite system we call Rfold� Overlaps between a
deforestation eureka g � d andR at the spine positions of g produce critical pairs
that substitute terms of T �C� V � into the variables that are located under the
eureka symbol� Two kinds of critical pairs are produced� Consider an example�

f�x �� xs� � �x � x� �� f�xs� �
�

g�x �� xs� � �x 	 x� �� g�xs� ���

zip�x �� xs� y �� ys� � �x� y� �� zip�xs� ys�



� Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

with the deforestation eureka� zip�f�x�� g�y�� � h�x� y�� From rule 
 we get the
critical pair�

P � zip��x � x� �� f�xs�� g�y�� � h�x �� xs� y�

If we orient P from left to right� then it overlaps with rule � yielding a pair�

Q � zip��x � x� �� f�xs�� �y 	 y� �� g�ys�� � h�x �� xs� y �� ys�

The pair Q normalizes into a rule of Rh� The pair P is said to be uncovered
and is oriented from left to right to enable overlap with rule �� The pair Q is
covered and oriented from right to left as part of Rh�

De�nition� �eureka critical pairs�� Let R be a constructor�based system�
Consider a rule e � g � h�tc�� tc�� � � � � tcn�� where h is a eureka symbol and
tci � T �C� V �� i � �
� � � � � n��� A eureka critical pair is one between e and a
rule l � r of R built from an overlap at a spine position � of the term g� More
precisely� there exists a uni�er � with range T�C�V�� such that ��gj�� � ��l�
yielding the critical pair�

��g	����r��� � h���tc��� ��tc��� � � � � ��tcn��

De�nition
� A eureka critical pair Q�g � h�tc�� tc�� � � � � tcn�� in R�normal form
is covered if and only if either


� for every traversal argument position i of h� tci �� V � or
�� there exists no overlap between R and Q�

Condition �
� alone is insu�cient� For example the pair 	� � h�	�� y� is covered
even if � is a traversal argument position for h� Indeed� h�	�� y� � 	� belongs to
Rh� Uncovered eureka critical pairs� or UCP pairs� are directed pairs from left
to right �towards the eureka symbol	� Directed pairs in UCP are not used for
rewriting� However� only their left�hand sides are overlapped with R� Left�hand
sides of UCP pairs are normalized by Rfold� Covered eureka critical pairs� or
RCP rules� are directed from right to left �from the eureka symbol	� Right�hand
sides of RCP rules are normalized by Rfold � E where E is the deforestation
eureka� Afterwards they becomes rules of Rh� RCP rules are combined with
Rfold � This process is described by the set of transition rules in Section ��

At this point� we must ensure that combiningRCP rules withRfold preserves
the termination of the rewrite system� Still� the termination of R is not enough
to ensure the termination of Rfold �RCP � It is well�known that the unfold�fold
method preserves only partial correctness 	
��� However� if the system R is left�
linear the following theorem ensures termination of the system Rfold�Rh� Linear
patterns is a usual requirement in functional programming� therefore this is not
such a strong requirement�

Theorem�� Assume R is an orthogonal� constructor�based� and terminating
rewrite system� Let T � E�� be the converse of the deforestation eureka of
eureka symbol h� Consider also the rewrite system Rfold� i�e� R normalized by
E� The rewrite system Rfold �Rh is terminating�

The reader can �nd the proof of Theorem � in appendix�

�
e is either a deforestation eureka� or an uncovered critical pair�



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar �

� Transition rules for automatic partial completion

From now on� we simply use eureka as a shorthand for deforestation eureka
or tupling eureka� The deforestation and tupling process is described here by a
set of transition rules� A transition rule� transforms a tuple �R�E�UCP�RCP�L	
where R is a set of constructor�based rules� E is a set of rules containing a single
eureka� UCP is a set of uncovered critical pairs� RCP is the set of covered critical
pairs whose right�hand sides have not been normalized yet� L is an optional set
of laws that can be used to simplify RCP� ECP denotes the set of eureka critical
pairs between E � UCP and R�

Eureka
R� 
� 
� 
� L�� R�E� 
� 
� L if E is a eureka for R
Critical Pair
R�E�UCP�RCP�L�� R�E�UCP �ECP�RCP�L ifECP �� 

UCP�Unfolding
R�E�UCP � fg � dg� RCP�L �� R�E�UCP � fg� � dg� RCP�L
if g �R g�

R�Folding
R � fl � rg� E� UCP�RCP�L�� R � fl� r�g� E� UCP�RCP�L
if r �E r�

Covered Pair
R�E�UCP � fg � dg� RCP�L �� R�E�UCP�RCP � fd� gg� L
if g � d is covered
RCP�Unfold�Fold
R�E�UCP�RCP � fp� qg� L �� R�E�UCP�RCP � fp� q�g� L
if q �R�E��L� q

�

Rule for h
R�E�UCP�RCP � fl� rg� L �� R � fl� rg� E� UCP�RCP�L
if r is in R �E��L��normal form
Flush
R�E�UCP�RCP�L�� R� 
� UCP�RCP�L if ECP � 


For processing a tupling eureka� we must add the simpli�cation of a left�hand
side of a rule of R and the deletion of a pair of identical terms borrowed from
transition rules of a standard completion procedure� In this case� we must also
compute the overlaps between the left�hand sides of rules of a tupling eureka�
The above transition rules� except Eureka� can be implemented by using a
completion procedure� This completion is guaranteed to terminate� However�
the entire process is not guaranteed to terminate because it could generate in�
�nitely many eurekas� Assuming supplementary conditions on R� discussed later
in the paper� we can derive an algorithm which always terminates and moreover
achieves deforestation and parallel traversal removals�

Proposition�� Starting with an orthogonal� terminating� and constructor�based
rewrite system R� and using the above transition rules repeatly until none is appli�
cable results either in a constructor�based and terminating system R� equivalent
to R� or else it generates in�nitely new eurekas�



�� Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

Note that the proposition does not claim that the �nal result is free of useless
data structures� This is achieved only when we can guarantee that Rh is fused
for every deforestation eureka where h is the eureka symbol�

��� Fusability

Consider a best deforestation candidate a�b�x�� yielding the deforestation eureka
E � a�b�x�� � h�x�� According to a nomenclature invented by Chin� let us call
the bottom symbol b a producer� and a a consumer� By overlapping E with rules
B � b�tc� � r of Rb� we get UCP pairs of the form a�r� � h�tc�� If b occurs in
r at a position � i�e� if B is a recursive rule� all the symbols located above
� in r are symbols produced by g� The fusion can be achieved if during the
normalization of a�r� by R��L�� all the produced symbols are consumed by a�
creating a subterm a�b�rj��� which rewrites into h�rj���

De�nition�� A symbol k � F is produced by f if and only if k occurs at
position u � � in a recursive rule l � r � Rf where � is a position of f in r�

De�nition
� In a best deforestation candidate� every symbol b � D at position
di�erent from � is a producer� Every symbol a which has a producer b as
argument is a consumer� A producer which is not also a consumer is a bottom
producer�

De�nition�� Let s be a best deforestation candidate of depth �� left�hand side
of the deforestation eureka E� Let b be a bottom producer in s� and B be a
recursive rule of Rb� Let a be a consumer of b� The Rh rule H � l � r� built from
an overlap of B and E� is fused for a if and only if� either a does not occur in
r� or else a occurs at a position � in r In this case� if b occurs also in r at a
position 
 � �� a symbol k occurring at position �� 
 � � � �� must not be a
symbol produced by b�

This means simply that the consumer a has �passed through� the symbols pro�
duced by the producer b to form redexes for the deforestation eureka� The above
de�nition can be extended to best deforestation candidates of depth greater than
�� A directly fusable consumer a is guaranteed to �pass through� all the symbols
produced by a directly fusable producer b argument of a�

De�nition�� A symbol b is a directly fusable producer if and only if


� every symbol k produced by b � C� and
�� every symbol f � D occurring in Rb as argument of a produced symbol k

�i�e� f can become later a producer symbol for a best candidate in Rh� is a
directly fusable producer�

De�nition
� A symbol a is a directly fusable consumer at traversal ar�
gument position i if and only if for every rule l� r in Ra


� lji � C or lji � c�x�� x�� � � � � xn� where c � C� xi � V� i � 
� � � � � n� and



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar ��

�� every occurrence of a in r has only variables as arguments at traversal argu�
ment positions and�

�� every symbol f � D occurring in a right�hand side of Ra which has a variable
at a traversal argument position �i�e� f can become a consumer for a best
candidate in Rh� is a directly fusable consumer�

De�nition� �directly fusable best deforestation candidate�� A best de�
forestation candidate t is directly fusable if and only if its producers are di�
rectly fusable producers and its consumers are directly fusable consumers�

For example� length�x�y� is directly fusable but length�rev�x�� is not�

De�nition�� An orthogonal� constructor�based� and terminating rewrite sys�
tem R is directly fusable if every best deforestation candidate in R is directly
fusable�

Lemma� �direct fusability lemma�� If a left�hand side of a deforestation
eureka with eureka symbol h is a directly fusable best deforestation candidate�
then rules in Rh are fused� Moreover Rh is directly fusable�

The proof is straightforward by application of the above de�nitions� Every di�
rectly fusable consumer passes through the constructors produced by a directly
fusable producer argument to form redexes of the deforestation eureka� The best
deforestation candidates of Rh are directly fusable by condition ��� of De�nition
� and by condition ��� of De�nition ��

Consequence��� Let us start with an orthogonal� constructor�based� terminat�
ing� and directly fusable system R� and with L � 
� Using the transition rules
repeatly results in an orthogonal� constructor�based� terminating and directly fus�
able rewrite system R� which contains no deforestation candidate�

Chin
s e�treeless terms are similar to our directly fusable terms� If a system
R is not directly fusable� laws in the set L can be used to force the fusion�
Unfortunately� a fused system R� is not always more e�cient than R�

��� Improvement

Consider for example the system R�

f�x� � tails�downto�x��
tails�x �� xs� � �x �� xs� �� tails�xs� �
�
tails�	�� � 		��

downto��� � 	�
downto�s�x�� � s�x� �� downto�x�

R is terminating� left�linear� and directly fusable� A procedure based on the
transition rules returns the system R��

f�x� � h�x�
h��� � 		�� h�s�n�� � �s�n� �� downto�n�� �� h�xs�

The list downto�n� � n �� � � � �� � �� � �� 
 �� 	� is computed for each n � 
� � � � � x
in R�� This happens because the right�hand side of Rule �
� is not linear for the
accumulative variable xs�



�
 Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

De�nition��� Let F � l� r be a recursive rule of Rf � A variable x is an
accumulative variable of F if and only if x occurs in a non�variable proper
subterm of l� and x occurs also in r at a position u � � where � is a position of
an occurrence of f in r�

De�nition��� A symbol f � D is safe if every rule in Rf is right linear for its
accumulative variables�

Lemma�
 �improvement lemma�� Let R be a fusable� terminating� orthog�
onal� and constructor�based rewrite system� Processing a deforestation eureka
s � d by the transition rules returns a result R� at least as e
cient as R if
every symbol in s is safe�

Let h be the eureka symbol� The right linearity plus fusability guarantee that
a producer b in s does not occur in Rh� The data structure computed by b is
therefore de�nitively eliminated�

The safety property of the system R is a too strong requirement� It can be
useful to process deforestation eurekas with unsafe left�hand sides� For example
with the deforestation eureka

map sum�tails�downto�x�� � h�x��

where map sum�x �� xs� � sum�x� � map sum�xs�� downto�x� is consumed
by sum� Therefore it is eliminated from the result� Work need to be done to
extend the notion of safety� Notice that tupling strategy� when it applies� always
succeeds to improve a system R�

��
 Combining tupling eurekas with deforestation eurekas

The order in which we treat deforestation eurekas with respect to tupling eurekas
is worth considering� Ambiguities between both strategies are typi�ed by the
following example� Consider the rule

F � f�x� � k�g��x�� g��x��

Suppose 
 is the only traversal argument position of k� There exists a defor�
estation eureka E�� k�g��x�� y� � h��x�� and an tupling eureka E��

g��x�� fst�h��x�� g��x�� snd�h��x�� pair�fst�h��x��� snd�h��x��� � h��x�

Starting with E� results in F� � ff�x� � h��x� g��x��g � Rh� � There is no
more tupling eureka for F��

Starting with E� results in F� � ff�x�� k�fst�h��x��� snd�h��x���g � Rh�

There is no more deforestation eureka because fst �� D and snd �� D�
Consider again the rule F � but suppose k has two traversal positions 
 and

�� There exists a di�erent deforestation eureka E�

�� k�g��x�� g��y���h���x� y�
and the same tupling eureka E�� Starting with E�

� results in F� � ff�x� �
h���x� x�g �Rh�

�

�



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar ��

If all the deforestation eurekas are processed before tupling eurekas� the terms
that remain candidates for tupling are only the terms k�u�� u�� � � � � un� where k
is the reserved symbol pair� or k is a primitive symbol� i�e� a symbol that occurs
only in right�hand sides of R� or k is not a fusable symbol� When there is an am�
biguity between the two strategies� deforestation candidates become unavailable
after tupling because fst� snd and pair are non�de�ned symbols� Moreover� no
new deforestation candidate can appear after tupling for the same reason� We
choose to process all the deforestation eurekas before the tupling eurekas�

� Termination of the procedure

As we said earlier� processing a deforestation eureka with eureka symbol h� is
likely to generate rules of Rh that contains new deforestation terms so that it
can never end�

Lemma�� Let G be the set of symbols occurring in a left�hand side g of a defor�
estation eureka g�d� Let S �

S
f�G Rf � Assume that S is directly fusable� and

that there is no deforestation candidate in S� Then� a program which implements
the transition rules to transform the system S � g�d always terminates�

The assumptions about g ensure that best deforestation candidates in the Rh

rules have depths no higher than �� Proofs of similar results can be found in 	
��
or in 	��� Suppose we treat only deforestation eureka which obeys the assump�
tions of the above lemma� then more deforestation terms obeying the assump�
tions can be available� and so on� This �bottom�up� process must terminate�
Therefore if R contains no mutually recursive function� termination is guaran�
teed as consequence of Lemma 
� The result remains valid even if we do not
follow a �bottom�up� order in processing the deforestation eurekas� However
requiring that R is not mutually recursive is too strong� When a deforestation
eureka contains a symbol f that �calls� g and g �calls� f � it is enough to ensure
that no deforestation candidate containing a call of f or g can appear later in
the process� This is guaranteed by the mutual safety condition�

De�nition�� Let K � l � r be a rule� A spine position � in r is a dpos position
of the rule K if and only if there exists an accumulative variable x � V �rj��� at
position v in r� such that each position u� � � u � v is a spine position�

For example� � is a dpos position of P � p�x �� xs� y�� k�xs� g�x�� f�d�y��� but ��
�� and ��
 are not dpos positions of P �

De�nition
� Let f � D and let g � D occurring at a spine position in Rf � A
symbol k is on dpath from g to f if and only if either k occurs in Rg at a dpos
position� or k is on the dpath from j to f where j is a symbol that occurs in Rg

at a dpos position�

Consider mutually recursive rules P �M � m�y� x �� xs� � p�xs� y� �� m�y� xs�� and
F � f�x�� a�m�x� x��� m� p are on the dpath from m to f but not f � Suppose



�� Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

that g occurs in a best deforestation candidate of a rule of Rf � Symbols in a
dpath from g to f � and no others� are likely to occur in a best deforestation
candidate later�

De�nition� �mutual safety condition�� A system R is mutually safe if
and only if for every symbol f occurring in a best deforestation candidate of R�
there exists no symbol g occurring in best deforestation candidate of Rf such
that f is in the dpath from g to f �

Theorem�� Given an orthogonal� constructor�based� terminating� mutually safe
and fusable rewrite system R� a procedure using the transition rules terminates
returning a terminating system R� equivalent to R which contains no deforesta�
tion candidate�

� Conclusion

Inside the system Astre� deforestation and tupling strategies are implemented
as automatic transformations for orthogonal� fusable� terminating� and mutu�
ally safe constructor�based rewrite systems� Termination of the input rewrite
system is an obvious requirement for a transformation system based on rewrit�
ing� We show in the paper that left�linearity guarantees the correctness of the
transformation� The mutually safe property ensures that the process terminates�
Fusability guarantees that every deforestation term can be fused� Directly fus�
able terms are fusable terms that corresponds to the e�treeless terms of Chin 	���
At the present time� fusability of other terms relies on a set of laws provided
by the user� We are currently exploring ways to use the completion process to
synthesize rules that enlarge the class of directly fusable terms� The enlarged
class corresponds to the potentially normalizable terms of Sheard 	
���

A completion procedure is used for controlling the unfold�fold process in
each transformation step� It provides a great �exibility for testing a strategy on
examples and validating the solutions before implementing them� Moreover� it
provides an ideal framework for integrating new tactics and combining diverse
strategies� We plan to integrate next the generalization tactic which allows for
instance automatic recursion removals�

The superiority of Chin
s work is that it is not restricted to �rst�order pro�
grams� Because we are using �rst�order term rewriting� it seems more di�cult
to integrate a !defunctionalization
 transformation� We have explored a way to
combine partial evaluation with completion in 	���

Acknowledgement We have enjoyed discussions with L� Fegaras� Many
thanks to J� Bell and D� Spencer for reading the current draft of the paper�

References

�� L� Bachmair� N� Dershowitz� Commutation� transformation� and termination� Proc�
�th Int� Conf� on Automated Deduction� LNCS 
��� pages ��
�� �����



Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar ��


� F� Bellegarde� P� Lescanne� Termination by Completion� Journal of Applied Algebra
in Engineering� Communication and Computing� �� pages ������ �����

�� F� Bellegarde� Program Transformation and Rewriting� Proc� �th Conf� on Rewrit�

ing Techniques and Applications� LNCS ���� pages 

��
��� �����

�� F� Bellegarde� Astre� a Transformation System using Completion� Technical Re�
port� Oregon Graduate Institute� �����

�� F� Bellegarde� A transformation System Combining Partial Evaluation with Term
Rewriting� Presented to HOA���� An international Workshop on Higher Order
Algebra� Logic and Term Rewriting� Participant proc�� Amsterdam� Sept� ���

�� R� M� Burstall and J� Darlington� A Transformation System For Developing Re�
cursive Programs� Journal of the Association for Computing Machinery� 
�� pages
������ �����

�� W� N� Chin� Safe Fusion of Functional Expressions� Proc� of the Conference on

Lisp and Functional Programming� San Francisco� ���
�

�� N� Dershowitz� Termination of Rewriting� Journal of Symbolic Computation�
�	��

� pages ������� �����

�� N� Dershowitz� Completion and its Applications� Resolution of Equations in Alge�

braic Structures�� 
� pages ������ Academic Press� �����

��� M� Fokkinga� Tupling and Mutamorphisms� The Squiggolist� vol� ���� �����

��� A� Gill� J� Launchbury and S�L� Peyton Jones� A short cut to Deforestation� Proc� of
the �th Conf� on Functional Programming Languages and Computer Architecture�
Copenhagen� pages 

��
�
� June �����

�
� J�P� Jouannaud� M� Munoz� Termination of a set of rules modulo a set of equations�
Proc� of the �th Int� Conference of Automated Deduction� LNCS ���� pages ����
���� �����

��� L� Kott� About a transformation system� a theoretical study� Proc� of the 	rd Symp�

on Programming� Paris� �����

��� U� S� Reddy� Transformational derivation of programs using the Focus system�
Symp� Practical Software Development Environments� pages ������
� ACM� De�
cember �����

��� U� S� Reddy� Rewriting Techniques for Program Synthesis� Proc� of the 	rd Conf�

on Rewriting Techniques and Applications� LNCS ���� pages �������� �����
��� T� Sheard and L� Fegaras� A fold for All Seasons� �th Conf� on Functional Pro�

gramming Languages and Computer Architecture� pages 
���
�
� �����

��� P� Wadler� Deforestation� Transforming programs to eliminate trees� ESOP
���
LNCS ���� �����

	 Appendix

The proof of Theorem � Section � requires some preliminary lemmas�
Notations on relations The relations on terms ���� or � denote the

converse of the relation � between two terms� We write �R�
��R�

for the
composition of the two relations �R�

and �R�
� Given two relations �R and

�S � �R 	�S is called R modulo S and stands for the relation ��

S ��R ���

S �
Note that �R 	�S and �R 	��

S are the same� In the proof� we use as lemma
the following result from 	���



�� Id� cade�tex�v ��� ����	��	�� ����
��� bellegar Exp bellegar

Lemma�� Let S and T be rewrite systems� Suppose S locally cooperates with
T � S � T is terminating and T is con�uent� The relation ��S 	��T ��T ���

can be used to prove termination� i�e� a rewrite system that satis�es

l ��
S
	��

T
��

T
��� r

for all rules l� r is terminating�

The local cooperation of a system S with a system T is a kind of local con�uence
between rules of S and T that can be tested by a criteria on critical pairs between
S and T when the system T is variable preserving and left�linear� Therefore� if
there is no overlap between S and T � and T is left�linear and variable preserving�
then S locally cooperates with T �

Lemma�� Let E be a deforestation eureka for a constructor�based� and termi�
nating rewrite system R and T � E�� be the converse of the eureka rule� If R
is left linear� then R � T is terminating�

Proof� First� the system T is terminating� For proof� it is su�cient
to take a recursive path ordering where all symbols occurring in the
deforestation term �or in the terms for tupling� are less than the eureka
symbol h� Second� R quasi�commutes over T � Consider a rewriting by R
followed by a rewriting by T �

u	��l�� �R u	��r�� �T t�

Because the right�hand side r does not contain the symbol h� the rewrit�
ing by T can only occur either in the context u� then the two rewritings
commute� or under a variable in r� This variable occurs in l once because
R is left linear� therefore the two rewritings commute again� �

Proof of Theorem � Section 


	 There is no overlap between rules of T and T is terminating� therefore T is
con�uent�

	 There is no overlap between R and T and T is variable preserving and left�
linear by de�nition of a deforestation eureka� Therefore R locally cooperates
with T �

	 R � T is terminating by Lemma ��

then ��R 	��T ��T ��� can be used to prove the termination of Rfold �Rh by
Lemma 
� There are two cases to consider�


� either l� r � Rfold then l �R�
�

T r by de�nition of Rfold� therefore

l ��
R
	��

T
��

T
��� r � or

�� l � r � Rh� then
l �T���R��R�T���� r

because a rule in Rh is a RCP pair normalized by R � T��� Therefore

h�tc�� tc�� � � � � tcn� ��
R
	��

T
��

T
��� r

�


