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Abstract

This paper presents a new approach to optimizing functional programs based on com�
bining partial evaluation and rewriting� Programs are composed of higher�order primitives�
Partial evaluation is used to eliminate higher�order functions� First�order rewriting is used
to process the transformation� Laws about the higher�order primitives that are relevant
for the optimizations are automatically extracted from a library and transformed into �rst�
order terms using partial evaluation� Such a combination of a partial evaluation system
and an intrinsically �rst�order rewriting tool allows a form of higher�order rewriting at a
�rst�order level� This way� it is possible to automate deforestation of higher�order programs�

Introduction

The so�called Squiggol ���� style for program construction is a high�level programming technique
that consists of building a program by composing primitives or other functions while taking into
account well�known laws on the primitives� Functions are usually de�ned according to recursion
patterns that are attached to the inductive structure of the data types� These recursive patterns
can be captured by higher�order functions� For example a particular kind of recursive pattern
attached to the recursive data type list called catamorphism ���� can be captured by the higher�
order primitive foldr� This higher�order primitive is provided in most functional languages� It
is called fold in ML and reduce in Common Lisp�

Although constructing programs by composing higher�order primitives provides the user
with a high degree of abstraction	 it comes at the expense of e
ciency� Indeed	 composi�
tions produce many intermediate data structures when computed in an eager �call by value�
evaluation� One way to circumvent this problem is to perform deforestation on programs as
advocated by Wadler ���� Deforestation algorithms ��	 ��	 as well as algorithms based on
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promotion theorems ���� eliminate these useless intermediate data structures	 but the opti�
mizations they perform are limited because they do not take into account any particular laws
about the operands of the compositions� As described in ����	 laws about higher�order polymor�
phic primitives can be derived for free from their type� When appropriately de�ned	 laws can
constitute a powerful calculus to derive e
cient programs from higher�level speci�cations� The
full paper describes an automatic process that uses laws on higher�order primitives to perform
an extended form of deforestation�

Related work

Wadler has proposed an algorithm for deforestation in ���� It works intrinsically on �rst�order
programs though it is extended to higher�order programs by treating higher�order programs
as macros� His algorithm performs automatic deforestation on treeless terms� Chin�s work
on fusion ��� applies to higher�order program in general	 it skips over terms to which the
technique does not apply� More recently	 promotion theorems have been applied to normalize
programs ����� This technique is applicable to potentially normalizable terms which are similar
to treeless terms� A new automatic way to implement deforestation inside the Haskell�s compiler
is shown in ����

General purpose program transformation systems are based on a folding�unfolding strategy
�a la Burstall and Darlington ���� Deforestation is a particular instance of this strategy� In the
Focus system ����	 folding and unfolding are seen as term rewritings� It has been pointed out
in ��� how a folding�unfolding strategy can be directed by a completion procedure� Following
this idea	 the transformation system Astre ��	 �� is based on partial completion procedures��
Astre takes into account of inductive laws provided by the user during the completion process�
All these systems are interactive� However a currently implemented automatic mode of Astre
performs automatically a simple � deforestation of a program� In this mode	 it has the same
functionality and the same limitations as the above deforestation algorithms� Both Focus and
Astre are based on �rst�order term rewriting techniques therefore they are limited to �rst�order
programs�

The paper

We describe a way to mimic an extended form of deforestation � of higher�order functional
programs using �rst�order rewriting� This is achieved by using partial evaluation to transform
a class of higher�order programs into �rst�order ones�

Partial evaluation aims at specializing a program with respect to part of its input �static
parts�� This process produces a specialized �residual� program ���� This specialized program
when applied to the remaining input value parts �dynamic parts� yields the same result as the
original program applied to a complete input� In this paper we are using Schism �� a partial
evaluator for pure functional programs� Our goal is to use partial evaluation to eliminate
higher�order functions by specializing higher�order primitives with respect to their functional
arguments�

�The completion is partial because it computes only part of the superpositions between rewrite rules�
�The deforestation is said to be simple if its processing does not use particular laws between the functions

and primitives�
�The deforestation is said to be extended if it can be achieved only by using particular laws between the

functions and primitives�
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The objective of this paper is to show how a large class of higher�order programs can be
automatically improved by using powerful laws on higher�order primitives	 partial evaluation	
and term�rewriting� To our knowledge	 no general purpose transformation system supports this
kind of transformation�

� Maxsub example

We illustrate our transformational approach with a program presented by S� Thompson ����
and �rst introduced by J� Bentley ���� The problem solved by this program is stated as follows
by Thompson�

Given a �nite list of numbers� �nd the maximum value for the sum of a �contiguous�
sublist of the list�

Numbers can be positive as well as negative integers� In his book ����	 S� Thompson presents
formally the derivation of a functional program that achieves the computation described above�
It is displayed in Figure �� This program is quadratic in the length of the list�

In this program	 �� is the empty list	 �� is the constructor �often called cons� of the data type
list and consl is its pre�x version� The binary operation � produces the concatenation of two
lists� The operation � is the composition of two functions�

This program also assumes that the higher�order operators fold 	 map	 foldr and the function
bimax are primitive operations� The function bimax is the maximum function� The operation
� is pre�xed� For example�

foldr � � ������ �� �� � � � �� ���� �� � �� � ���� � �

The operator fold is similar to foldr 	 except that it only applies to non empty lists� For example�

fold bimax ������ �� �� � bimax � �bimax ���� �bimax � ��� � ��

The function sublists returns all the contiguous sublists of a given list� The function frontlists
returns all the sublists that are pre�xes of the list� For example�

frontlists ������ �� �� � ������� �� ��� ������ ��� ������� ���� ����

Faithful to the Squiggol method	 maxsub takes all the contiguous sublists of the list using
sublists	 then computes all the sum of the elements of every sublists using map sum	 �nally
computes their maximum using fold bimax �

The �nal result of the transformation is the functional program shown in Figure � which is
linear� The theorems used during the transformation process are listed in Figure ��

The details of the manual transformations using these laws can be found in ����� Let us
now consider	 a way to automate this transformation using completion and partial evaluation�

The system Astre ��	 �� based on a partial completion procedure	 deals with programs
presented by a set of �rst�order equations� A partial evaluator can automatically convert a
class of higher�order programs into �rst�order ones�
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maxsub � �fold bimax � � �map sum� � sublists
sum � foldr � �
sublists �� � ����
sublists �a �� x� � �map �consl a� �frontlists x�� � �sublists x�
frontlists �� � ����
frontlists �a �� x� � �map �consl a� �frontlists x�� � ����

Figure �� program source

maxsub �� � �
maxsub �a �� x� � �bimax �� a �maxfront x�� �maxsub x��
maxfront �� � �
maxfront �a �� x� � �bimax �� a �maxfront x�� ��

Figure �� �nal program

maplaw � map f � map g � map �f � g�
map�law � map f �x�y� � �map f x� � �map f y�
fold�law � fold f �x�y� � f �fold f x� �fold f y�

if f is associative and
x and y are non empty lists

foldmaplaw � fold f � map g � g � fold f

if f �g x� �g y� � g �f x y�

Figure �� laws for the transformations
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� Conversion to �rst�order programs

In order to understand the partial evaluation process	 consider a functional program expressed
as a typed ��term M � Some of the arguments �static arguments� of functions are substituted
by values according to their respective types� Let this substitution be �	 the partial evalua�
tion operates as if it normalizes ��M� by ��reduction and evaluates by unfolding the �xpoint
operator when possible� We denote by M �beta the beta�normal form of the ��term M �

For example	 consider the function append	 that is	 the pre�x version of the operator �
used in the maxsub example� The de�nition is�

append �� y � y

append �a �� x� y � a �� �append x y�

A partial evaluation of the term �append ��� �� �� y�	 where the �rst argument of append is the
static argument substituted by ��� �� ��	 returns the specialized de�nition�

append� y � � �� �� �� �� �� y��

The evaluation involves unfolding the recursive de�nition of append� But the partial evaluation
of the term �append x ��� �� ��	 where the second argument of append is the static argument
substituted by ��� �� �	 returns the specialized de�nition�

append� �� � ��� �� �

append� �a �� x� � a �� �append� x�

In this case unfolding the recursion is impossible	 only ��reduction is involved� Similarly	
consider a partial evaluation of the term �map sum x� given the following de�nition of map�

map f �� � ��

map f �a �� x� � �f a� �� �map f x�

It returns the following specialization of map with respect to the static argument f substituted
by the value sum�

map� �� � ��

map� �a �� x� � �sum a� �� �map� x�

Note that the partial evaluation need not unfold the recursive de�nition of map because the
recursive call applies to a variable function f � It only specializes the de�nition of map f with
respect to a sustitution of f by sum� It is important not to forget that map� is a specialization
of map sum in order to be able to know that the higher�order laws on map apply to map�
during the transformation of the converted program� This information consists of a triple�

�map�� ff � sumg�map f�

In the following	 RHOP will denote the set of the symbols of the recursive higher�order
primitives like map 	 fold 	 foldr � � �	 and � will be the substitution unfolding the de�nitions of
the RHOP symbols� We assume that the de�nitions of the RHOP functions are not mutually
recursive� The ��normalization of a ��term term M is noted by M �� �
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De�nition � A specialization triple is a triple �F� �� T � where F is the symbol of a �rst�order
specialization of a RHOP function� � is a specialization substitution� and T is a specialized
term such that a de�nition of F is obtained by folding every occurrence of ��T � in the term
s � ����T �� ���

We note by s�tnF � the replacement of each occurrence of the subterm t in the term s by the
symbol F �folding of F �� Then	 the de�nition of F according to a specialization triple �F� �� T �
is�

F � ����T �� �beta ���T �nF �

Triples �Fi� �i� Ti� and �Fj � �j � Tj� such that �i	 �j are ��convertible and Ti and Tj are also
��convertible are said to be ��convertible� In this case	 Fi and Fj must be the same so that
double de�nitions are not introduced�

Let �first be the relation between ��term and set of triples de�ned as follows�

De�nition � MST �first M �

ST � if and only if there exists an occurrence in M of a subterm
F U� U� � � � Un where F is a symbol of a RHOP function� and Ui are terms instantiating all
the functional arguments of F � then M � � M �F U� U� � � � UnnF�� where F� is the symbol of the
specialization of F with respect to the arguments U�� U�� � � � � Un� There can be two cases	

� either there exists in ST a specialization triple �F�� �� N�� then ST � � ST �

� or� the adequate specialization triple does not exist in ST 	 In this case a new specialization
triple is created for a new specialized function symbol F�� The set of specialization triple
ST � is then	

ST � f�F�� � � f�f� � U��� �f� � U��� � � � � �fn � Un�g�

N � � x� x� � � � xm �F f� f� � � � fn��g

where x�� x�� � � � � xm are the free variables in the ��term terms Ui�

We will omit the subscript by the set of specialization triples ST and we will consider the
updating of ST as a side e�ect� Then M �first denotes a normalization of M by the relation
�first�

The conversion to �rst�order processed by the partial evaluator for the class of programs we
are considering can be viewed as� M �first� The class of higher�order programs that are tackled
by our approach can be characterized as follows� These programs consist of �rst�order terms
and constant or variable�only higher�order primitives� Variable�only higher�order primitives are
functions whose higher�order arguments are solely made up of variables in each recursive call
to this function� This is called the variable�only criterion by Chin ���� In the context of partial
evaluation this criterion ensures that specializing functions with respect to higher�order values
always terminates� For example map

map f �a �� x� � �f a� �� �map f x�

is variable only	 so are fold and foldr� A function de�ned by ��

mapTwo f g �� � �� � mapTwo f g �a �� x� � �f a� �� mapTwo g f x

�This example comes from an anonymous referee
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is also variable only �the specialization of mapTwo f� g� into mapTwo� calls a specialization of

mapTwo g� f� into mapTwo� which itself calls mapTwo��� But a function H de�ned by�

H f �a �� x� � �f a� �� �H �f � f� x�

and
G f �a �� x� � �f a� �� �G �sqr� x�

are not� However G is constant�only because its functional argument in the recursive call is
a constant� The variable�only criteria is di�erent from the restrictions given to higher�order
functions that can be de�ned using higher�order macros as advocated in ���� the functional
arguments of these higher�order primitives must be �xed or unchanged across recursion� This
criteria excludes mapTwo and H but includes G�

Theorem � Assuming that the non RHOP functions in M are �rst�order� that the RHOP
functions are constant or variable�only� then M has a unique 
modulo ��conversion� normal
form M �first� and all the function calls in the normal form are calls to �rst�order functions�

The theorem ensures the soundness of the conversion to �rst�order process�

Proof� The only higher�order recursive functions are the RHOP functions�
They are called in M by �rst�order functions� Let F be a RHOP function and
F U� U�� � � � Un be an occurrence of a call of F in M � The terms Ui instantiate
all the functional arguments of F because the functions in M are �rst�order� This
call to a higher�order function must disappear� For that	 it must correspond to a
potential application of the relation �first� Let x�� x�� � � � � xm be the free variables
in the Ui� Such a call must correspond to a specialization triple

�F�� � � f�f� � U��� �f� � U��� � � � � �fn � Un�g�

N � � x� x� � � � xm �F f� f� � � � fn��

where F� � ����N�� �beta ���N�nF�� according to the de�nition of �first We need
to prove that we can de�ne such a function F�� The symbol F is a RHOP function�
By hypothesis	 a recursive call of F in the ��term term de�ning F invokes variables
only or constants� The functional variables are substituted by the Ui	 therefore	 if
the variables in the recursive call appears in the same order and are not duplicated
in the recursive calls	 they can be folded into calls to F�� If they are swapped
�with eventual repetitions� like in the example of mapTwo above	 a sequence of
specialization will eventually generate mutually recursive specializations according
to the number of inversions of the permutation� If there is a contant argument	
another specialization which also generates mutually recursive specializations is
necessary� The beta�reduction itself must terminate� Therefore	 the relation �first

applies	 and the term M � such that M � M � contains one occurrence of a higher
order call less than M � Therefore normalization eliminates every call to RHOP
functions from M 	 replacing them by calls to their specializations� The result of
eliminating these calls is a �rst�order term when the specialized functions de�nition
�de�nition of F� for the call above� does not contain any call to a higher�order
function� It is obviously the case when the de�nition of the higher�order function
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F 	 which is specialized	 contains no calls to another RHOP function� If it does
contain such a call	 it instantiates all its functional arguments and this call can
be the initiation of a specialization in the same way than above� The process is
terminating because the RHOP functions are not mutually recursive� This proves
that the specialization process is terminating and that the result is a �rst�order
program� The normal�form M �first exists� Finally	 the calls to RHOP functions
are distinct and fully applied in M	 thus the order we treat the calls does not change
the result� This gives unicity of the result modulo ��conversion� �

For the maxsub example	 the �rst�order conversion uses the following set of triples ST�

f�map��ff � sumg �� x��map f x��
�map� �ff � �consl x�g�� l x��map f l��
�fold� �ff � bimax g �� x��fold f x��g

A partial evaluator performs only the adequate specializations of the RHOP functions	 there
is no unfolding of recursive calls� Given M 	 its result is the normal form M �first� We are
currently using the partial evaluator Schism �� for �rst�order conversion� Schism uses a typed
dialect of Scheme as its object language� A translator from ML to Schism is available�

Modulo some renaming	 the result of partial evaluation of the translated program formaxsub
is shown in Figure �� The constructor �� becomes cons	 �� becomes ��� in Scheme�

However	 this program cannot be the input of a transformation system based on rewriting
such as Astre� Even if we forget about the di�erences of syntaxes	 an equation like�

�map� l� � if �null� l� then ��
else �sum �car l�� �� �map� �cdr l��

gives a non terminating rewriting rule� A translator from Schism to ML is currently imple�
mented� This translator will reintroduce the patterns that the translator from ML to Schism
has eliminated� This way	 the �rst�order converted program is translated into the �rst�order
set of equations shown in Figure ��

� First�Order Transformation

The transformation can now begin at a �rst�order level using the system Astre� Let us run
Astre giving the equations in Figure �� The reader can refer to ��� to get a precise idea of the
possibilities of the current version of the system� First	 Astre turns the set of equations into a
rewriting system	 directing the equations from left to right automatically and eventually	 �if it is
required by the user� it veri�es its ground convergence� Let us consider now the transformation
process� The main function maxsub is de�ned in a Squiggol way by composition of functions
and not inductively� The term

t � fold� �map� �sublists l��

is a candidate for a deforestation ���� Deforestation algorithm of P� Wadler will not perform
the deforestation of t because it requires the function de�nitions of fold�	 map�	 and sublists
that occurs in t to be treeless� fold� and sublists are not treeless because their de�nitions contain
applications of functions to terms that are not variables such as the application of bimax in



Id� HOA�tex�v ��� ����	
�	�� ���
�
� bellegar Exp bellegar �

�program �� �� �

�de�ne �maxsub l�
�fold� �map� �sublists l����

�de�ne �sublists l�
�if �null� l� then �cons ��� ����
else �� �map� �frontlists �cdr l�� �car l�� �sublists �cdr l��� ��

�de�ne �frontlists l�
�if �null� l� then �cons ��� ����
else �� �map� �frontlists �cdr l�� �car l�� �cons ��� ����� ��

�de�ne �map� l x�
�if �null� l� then ���
else �cons �cons x �car l�� �map� �cdr l� x�� ��

�de�ne �map� l�
�if �null� l� then ���
else �cons �sum �car l�� �map� �cdr l��� ��

�de�ne �fold� l�
�if �null� �cdr l�� then �car l�
else �bimax �car l� �fold� �cdr l��� ��

�de�ne �sum l�
�if �null� l� then ��
else ���car l� �sum �cdr l��� ��

�de�nePrimitive��
�de�nePrimitive bimax �
�de�nePrimitive��
��

Figure �� First�Order converted program source
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maxsub l � fold� �map� �sublists l��
sublists �� � ����
sublists �a �� x� � �map� �frontlists x� a� � �sublists x�
frontlists �� � ����
frontlists �a �� x� � �map� �frontlists x� a� � ����
�map� �� x� � ��
�map� �l �� lx� x� � �x �� l� �� �map� lx x�
map� �� � ��
map� �a �� x� � �sum a� �� �map� x�
fold� �a� � a

fold� �a �� �b �� c�� � �bimax a �fold� �b �� x���
sum �� � �
sum �a �� x� � �� a �sum x��

Figure �� Equations source

�bimax a �fold� �b �� x��� and the application of � in �map� �frontlists x� a� � �sublists x��
The normalization algorithm of ���� rejects also the deforestation of t which is not potentially
normalizable for this algorithm ��

We are currently implementing an automatic mode of Astre	 we call Automatic Astre which
discovers automatically the terms that are candidate for deforestation such as t and introduces
automatically an eureca rule such as�

fold� �map� �sublists l��� maxsub l ���

when it discovers a candidate for deforestation term� After that	 the partial completion proce�
dure processes the transformation� It automatically overlaps this reversed rule with the rules
for sublists generating the following normalized equations�

maxsub �� � �

maxsub �a �� x� � fold� �map� �map� �frontlists x� a� � �sublists x�� ���

The transformation with pencil and paper at the higher�order level gives a similar result�

maxsub �� � �

maxsub �a �� x� � fold bimax �map sum

�map �consl a� �frontlists x� � �sublists x��� ���

�The term t is not potentially normalizable because the call to frontlists where

frontlists �a  x
 � �map� �frontlists x
 a
 � ����

applies an inner catamorphismmap� to the recursive call of frontlist�
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Now it becomes interesting for the system to look for some input of theorems so that it rewrites
�folds� the right�hand side of the above equation by the eureca rule in order to it introduces
a recursive occurrence of maxsub� In the current version of Astre	 the user must provide the
laws� Let us consider how they can be automatically extracted for a library of general laws
on higher�order primitives and transposed at the �rst�order level using a law extractor which
is based on the set of instantiation triples given by a partial evaluator� Such a combination
of partial evaluation tools and intrinsically �rst�order rewriting tools can result in a powerful
transformation system�

� Interaction with the theorems

Let us come back to the higher�order level of the transformation� Suppose a higher�order law
L � R rewrites the ��term M to N � There exists a substitution � and an occurrence in M of
a subterm S �	�equal to ��L�� The rewritted term N is the result of the replacement of the
subterm S in M by a term �	�equal to ��R�� We will denote M �S o T � the replacement in M

of a subterm S by T � Let l be ��L� �first and r be ��R� �first� We want to show that M �first
reduces to N �first by the rule l � r�

As in ����	 we introduce the 	�expanded form of ��term� For example the 	�expanded form
of �map f � map g� of type order two is ��map f � map g� x� of type order one �or elementary��
Then the Church�Rosser theorem for the �	�calculus can be expressed in the following form�
For every two ��term M and N 	 we have M ��� N if and only if their 	�expanded form are
��equals� It is not a restriction to require that L and R are in ��normal form and that they
are 	�expanded so that their common type is elementary� For example the maplaw�

map f � map g � map �f � g�

where the type of both hand�sides is functional	 can be 	�expanded into�

��map f � map g� x � � map �f � g� x

or into�
�map f �map g x�� � map �f � g� x

when the de�nition of � is unfolded�

Theorem � Assume that the non RHOP functions in M are �rst�order and that the RHOP
functions are constant or variable�only� let L � R be a law that rewritesM with the substitution
� into the ��term N � let � be the restriction of � to the subset of the functional variables in the
domain of �� let m � M �first� and n � N �first� then m reduces to n by application of the
rule l � r where r is ��R� �first and l is ��L� � first�

Proof� We require that L is in 	�expanded form so that its type is elementary�
Or a subterm S �	�equal to ��L� occurs inM 	 therefore	 if L andM are in ��normal
form	 the subterm S is equal to ��L� whose type is elementary� The subterm ��R�
in ��normal form occurs in the ��reduction of N � Consider now m � M �first and
the corresponding set ST of triples �Fi� �i� Ti�� i � �� n� By de�nition of �first	
m � M ��i�Ti�nFi 	i� i � �� n�	 where the 	i � �� n means that a folding is done
for all triples in ST � In the same way	 l � ��l� �first� ��L���i�Ti�nFi 	i� i � �� n��
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Let 
 be the remaining part of the substitution � such that � � 
 � � where � is
the composition of substitutions� The term 
�l� is a subterm of m� On another
hand	 N � M �S o ��R��	 r � ��R���i�Ti�nFi 	i� i � �� n�	 and n � N �first�
M �S o ��R����i�Ti�nFi 	i� i � �� n�� Therefore m reduces to n by the rule l � r� �

For example	 the map�law rewrites the left hand�side of the equation � with the substitution
��

ff � sum� x � �map �consl a� �frontlists x��� y � �sublists x�g

The result is�

maxsub �a �� x� � fold bimax ��map sum �map �consl a� �frontlists x���

� �map sum �sublists x��� ���

At the �rst�order level the rule�

map� ��map� �frontlists x� a� � �sublists x��

� �map� �map� �frontlists x� a�� � �map� �sublists x��

reduces the �rst�order converted equation �� The result is�

maxsub �a �� x� � fold� ��map� �map� �frontlists x� a��

� �map� �sublists x��� ���

Theorem � shows the link between the transformation done at the higher�order level and the
transformation at the �rst�order level�

As a consequence of Theorem �	 we can justify the following way to �nd a reduction of a
�rst�order term t by a law at the �rst�order level�

Find a law L � R� a set of specialization triples ST� a �rst�order substitution 
� and a
position p in t such that tjp � 
�L �first�� then the �rst�order rule L �first� R �first rewrites t
at the position p with the substitution 
�

The above can be processed by a procedure	 we call a Law�Extractor	 which returns to Astre
a �rst�order theorem from a library of higher�order laws about the higher�order primitives�

For the maxsub example	 the set ST contains the triple�

f�map�� ff � sumg� � x��map f x��g

Considering equation � and the map�law of the library in Figure �	 the Law�Extractor returns
the �rst�order rule� �map� x � y� � �map� x� � �map� y�� which simpli�es equation � into
equation ��

Now	 considering the maplaw in the library and the set ST containing the triples�

�map��ff � sumg �� x��map f x��
�map��ff � �consl x�g�� l x��map f l��

the Law�Extractor returns the �rst�order rule�

map� �map� l x�� �map �sum � �consl x�� l� �first
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The �rst�order conversion of the left hand�side processes a new specialization which adds a
triple�

�map�� ff � � l��� x �sum l��g� � l x��map f l��

where the term substituted for f is the 	�expanded form of the ��reduction of the functional
argument of map � �sum � �consl x��� This rule rewrites equation � into�

maxsub �a �� x� � fold� �map� �frontlists x� a� � �map� �sublists x�� ��

The interested reader can follow the remaining of the transformation in the appendix�
Notice that there is always a problem of con�uence when a base of theorems is used for

program transformation� The choice of a law to rewrite a term is ambiguous when two over�
lapping laws can be chosen� It is not a problem if the set of laws is con�uent �if a notion of
con�uence is extended to higher�order logic�� The set of laws presented in Figure � is not free
of critical pairs� There is a uni�cation modulo the associativity of � between the left hand�sides
foldmaplaw and the maplaw	 the uni�ed term being� fold f � map f � map g� Fortunately	
by replacing the foldmaplaw by the generalized foldmaplaw

foldmaplaw � fold f � map �g � h� � g � ��fold f� � �map h��
if f �g x� �g y� � g �f x y�

the library of higher�order laws becomes �con�uent� so that we can use it for the transformation
of the maxsub example�

� Conclusion

Higher�order transformations based on well known properties of higher�order primitives are not
easily automated� The paper presents a way to mimic such transformations at the �rst�order
level by rewriting techniques� In this way	 we obtain a tool that automatically implement the
deforestation of higher�order Squiggol programs� Currently	 the state of our technology is the
following�

� a translator ML into Schism and a translator Schism to ML which restores the patterns
�currently implemented��

� the partial evaluator Schism �� which uses its own �typed� dialect of Scheme as its object
language	 and

� the interactive transformation system Astre ��� based on rewriting and completion pro�
cedures written in CAML� The mode �automatic Astre� for simple deforestations is cur�
rently implemented�

We have simulated the interaction of these tools to process the sketch of the transformation
of the maxsub example� The main piece of software to add is the Law�Extractor de�ned in
Section �� We expect that all these tools will work harmoniously in the near future to fully
automate deforestation of higher�order Squiggol programs� These transformations are applica�
ble to functional programs that describe �rst�order functions using constant or variable�only
higher�order primitives� For this class of programs	 the paper shows that the transformation
at the higher�order level can be mimicked by rewriting in �rst�order logic�

I would like to thank C� Consel and J� Hook for their comments and suggestions�
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	 Appendix

Consider following the sketch of the automatic transformation of maxsub starting with the
equation  we found at the end of Section ��

maxsub �a �� x� � fold� �map� �frontlists x� a� � �map� �sublists x��

At this point	 the set ST contains the triples�

f�map��ff � sumg �� x��map f x��
�map� �ff � �consl x�g �� l x��map f l��
�fold� �ff � bimax g �� x��fold f x��
�map� �ff � � l x��� x �sum l��g�� l x��map f l��g

Considering the fold�law	 the Law�Extractor returns the �rst�order rule�

fold� �x� y� � bimax �fold� x� �fold� y�

because bimax is associative� This rule rewrites equation  into�

maxsub �a �� x� � bimax �fold� �map� �frontlists x� a��

�fold� �map� �sublists x���

At this point	 Astre rewrites by the rule � which folds maxsub�

maxsub �a �� x� � bimax �fold� �map� �frontlists x� a�� �maxsub x� ���

Considering the generalized foldmaplaw introduced in Section �	 the Law�extractor returns the
�rst�order rule�

fold� �map� l x� � � x �fold� �map� l��

because bimax �� u x� �� u y� � � u �bimax x y�� This rule simpli�es the equation � into�

maxsub �a �� x� � bimax �� a �fold� �map� �frontlists x���� �maxsub x� ���

Now	 the composition of functions �fold� �map� �frontlists x��� is a candidate for a deforesta�
tion� As for maxsub	 an eureca rule for a new functional symbol maxfront which captures this
composition is introduced automatically�

fold� �map� �frontlists x��� maxfront x
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This reversed rule simpli�es equation � into the �nal result for maxsub�

maxsub �a �� x� � bimax �� a �maxfront x�� �maxsub x� ���

The partial completion procedure superposes this reversed rule with the rules for frontlists�
From the above transformation of maxsub	 it knows the full set of �rst�order laws to generate
the following equations for maxfront�

maxfront �� � �

maxfront �a �� x� � bimax �� a �maxfront x�� �


