
Software Design for Reliability and Reuse

A Proof�of�Concept Demonstration

J� Bell� F� Bellegarde� J� Hook� R� B� Kieburtz� A� Kotov� J� Lewis�
L� McKinney� D� Oliva� T� Sheard� L� Tong� L� Walton� and T� Zhou�

Paci�c Software Research Center
Oregon Graduate Institute of Science � Technology

The Paci�c Software Research Center is developing a new method to support reuse and
introduce reliability into software� The method is based on design capture in domain spe�
ci�c design languages and automatic program generation using a reusable suite of program
transformation tools� The transformation tools� and a domain speci�c component generator
incorporating them� are being implemented as part of a major project underway at the Oregon
Graduate Institute of Science and Technology� The processes used in tool development and ap�
plication of the method are being captured� Once completed� an experiment will be performed
on the generator to assess its usability and �exibility�

This paper describes the SDRR method and illustrates its application to the Message Trans�
lation and Validation domain� a problem identi�ed by our sponsors because of a previously
existing state�of�the�art solution based on code templates produced by the SEI��	
�

� The SDRR design concept

SDRR is a method for the design of �exible and powerful software component generators�
With a component generator� software components themselves are not the basis for design
reuse�the design encapsulated in the generator is the reusable artifact� When a subsequent
application or version of a design is needed� design modi�cations are made to the speci�cation
that is input to the generator� and a new software component is generated automatically� This
allows each design change to be made at the appropriate level of abstraction�details of the
software irrelevant to the change are not involved� It also allows the applications designer and
the software maintainer to use a design language that directly expresses application domain
concepts� rather than the encodings of these concepts necessary in wide�spectrum programming
languages�

This generation based method can be viewed from two fundamental perspectives� The
developers of a generator see a reusable set of tools and amethod for their use in the construction
of generators� The users of a generator see a system that allows them to go from a speci�cation
to a software component without having to understand the details of how the generator is
constructed�

Component generators achieve their greatest advantage for the design of families of software
modules that are needed in many particular instances� If a software component is anticipated to

�The authors were supported in part by a contract with Air Force Materiel Command �F�������	�C�

����

�



be a one�o� instance� dissimilar to any existing design� then developing a component generator
to produce it has little advantage� However� this is almost never the case� Most software
modules have family resemblances to other modules and undergo use and modi�cation as part
of an extended life cycle that requires their design to be maintained and updated� SDRR
generators are intended to produce software components that can be reliably and inexpensively
maintained throughout their entire life cycle�

An SDRR generator design team includes two kinds of specialists who need to coordinate
their e�orts but are able to work concurrently and independently on their assigned tasks�

� The domain experts who have overall responsibility for the software design� its validation
and documentation�

� The SDRR method experts� who have knowledge of the principles of language design and
are familiar with the transformation tools� 
In the method de�nition report� these roles
are signi�cantly re�ned��
��

Steps in the design of a software component generator

The design of an SDRR component generator proceeds in a series of steps� The �rst step needs
the attention of the domain experts� In this step� domain analysis is performed to determine
the requirements of the intended application� This step is common to all software development�
It is not unique to SDRR� The other steps are unique to the SDRR method� Method experts
must�

� Formulate a domain�speci�c design language 
DSDL� in which to express the parameters�
operations and constraints necessary to meet the requirements of the domain application�

� Formalize a computational semantics of the DSDL in terms of ADL� the algebraic design
language used in SDRR��� �
� This task requires a computer scientist with advanced
training in formal aspects of programming languages and software design�

� Design an implementation template characterizing the execution environment� SDRR
implementations are stereotyped� A developer designs a set of implementation primitives
that specify how the computational semantics of the DSDL are to be realized in terms of
the target programming language Ada�

Performance improvement is obtained through the use of automated program transformations
that are applied during the course of program generation� These transformations are mathemat�
ically based and are guaranteed to preserve the computational meaning of the ADL�speci�ed se�
mantics� The transformation tools include� HOT� which applies higher�order transformations����
��
� Schism� a partial evaluator��
� Firstify� an implementation of Reynold�s algorithm for
defunctionalization���� �� �
� and� Astre� a �rst�order transformation tool based on term�
rewriting techniques��� �
�

When an SDRR�designed program generator is applied to a DSDL speci�cation� it au�
tomatically applies the necessary transformations� The transformation tools provide a very

�



advanced optimizing compiler that takes ADL as input and generates Ada as output� The
system architecture is summarized in Figure ��

� Domain Speci�c Design Languages � DSDLs

A domain speci�c design language is intended to formally specify software designs� It is a
formal language that is expressive over the abstractions of an application domain� A DSDL
may be wholly or partially declarative or it may be a functional language with libraries of
functions specialized to the application domain� Common examples of DSDLs are�

� Schema description and query languages for databases�

� Layout languages for prettyprinting the text of computer programs�

� A message format description language for the message domain of military C� systems

MTV��

Using a DSDL� a domain expert can express concepts in the problem space directly� without
encoding them� This allows the domain expert to formalize the speci�cation of a software
solution immediately instead of communicating a speci�cation informally to a software specialist
who may be less familiar with the intended application�

The de�nition of a DSDL introduces a new� formal� reviewable artifact into the domain
analysis phase of a software development process� This formal de�nition may bene�t the
process just as developing formal speci�cations bene�ts the requirements analysis phase�

��� Designing a DSDL

A DSDL is de�ned by a computer scientist in consultation with a domain expert� In the
design of a DSDL� a dialogue is necessary between the two in order to settle the following three
important issues� The issues are illustrated with speci�c examples from the DSDL for the
message translation and validation domain 
MTV�� which will be described in greater detail in
Section ��

� To clearly identify the principal conceptual abstractions of the domain�

For the MTV domain the essential abstractions are the internal and external representa�
tions and the translation functions that map between them�

� To formally de�ne a language of terms to represent these abstract concepts� A term
language can be de�ned in terms of a syntactic phylum 
syntactic category� for each
conceptual entity� These languages give a means to express instances of the concepts and
the relations between them�

For MTV� the basic phyla describe the logical structure of the internal representation of
data and the message translation actions that parse 
and implicitly generate� a message�

�



�

�

�

�

�

�

�

�

�

�

�

ADL

Translator

PEP

Schism

Firstify

Astre

Program

Instantiator

Graphical

User Interface

DSDL

Compiler

Algebraic Transformation

Tools

Implementation

Language Tools

Domain Speci�c

Transformations

Higher�Order

Figure �� Software Architecture of an SDRR generator

�



� To interpret the relations among the principal conceptual entities� This interpretation is
initially given by the domain expert in an informal manner� by describing the relations
in natural language 
English�� The computational content of this description will later
be elaborated by giving a formal semantics to the DSDL�

In MTV� two documents generated at this stage of design have been delivered to the
clients� The �rst was a speci�cation document summarizing our domain analysis� includ�
ing the identi�cation of the principal abstractions��
� The second was the preliminary
de�nition and informal semantics of the language���
� Documents giving the revised
DSDL de�nition and its formal de�nition in ADL are planned�

Often� a graphical user interface 
GUI� can be used to help an application designer formulate
a design in the DSDL� With a well�designed GUI� the application designer does not need to
�learn another language� to use the DSDL� Even when a GUI is not developed� DSDLs tend
to be quite small and readily learned since they include only those concepts necessary for the
problem domain�

The need for a GUI is determined by studying the natural �ow of work for engineers using
the generator� For MTV� this determination is not yet complete� preliminary indications are
that a text�based interface will �t most naturally into the work environment� A GUI� however�
may allow the environment to evolve to include less skilled workers�

� Formalizing the semantics of a DSDL

The formal semantics of a DSDL is de�ned in terms of PacSoft�s algebraic design language

ADL���� �
� This semantics gives the DSDL a computational interpretation in which the
relations between the principal concepts of a design abstraction are formalized�

The �rst step in the formal speci�cation of a semantics is to specify a datatype that corre�
sponds to the abstract syntax of the DSDL� To each operator of the abstract syntax there will
correspond a data constructor of the datatype� The semantics of a term constructed with a
given data constructor will be composed from the semantics of the subterms given as arguments
to the data constructor�

The control structure of an ADL program is speci�ed through families of high level combina�
tors� For the MTV example� the translations are speci�ed in terms of about a dozen primitives
and �ve basic combinators� From these basic building blocks� arbitrarily complex translation
functions can be constructed�

Each operator of the abstract syntax of a DSDL is given a computational interpretation by
a semantic function� The semantic function is well�typed in the type system of ADL� and is
de�ned by cases on the data constructors of the ADL datatype derived from the abstract syntax
of the DSDL� For each such case� the prescribed meaning of a DSDL fragment is speci�ed by a
computation programmed in ADL� In the case of MTV� the semantic functions are de�ned by
approximately three pages of ADL code�

This programming technique uses the syntax of the DSDL to structure the speci�cation of
a computational solution� The resulting solution is compositional� less attention is given to the

�



e�ciency of a solution than to the regularity of its construction from its component parts� The
goal is to specify a computation in such a way that it is amenable to formal reasoning� so that
one can verify that it corresponds to the informally speci�ed problem requirements� Algorithmic
e�ciency will be improved at a later stage by meaning�preserving program transformation of
an ADL speci�cation and by compilation into an e�cient representation in Ada�

� Transformational Improvement

When the semantics of a DSDL is fully elaborated in ADL it is algorithmically e�ective� A
component design speci�ed in the DSDL can be executed as a rapidly constructed prototype�
However� without further work� it is likely to have poor performance in terms of execution time
and space usage� The SDRR method encourages highly modular design of semantic functions
in ADL� This produces a design that is easy to understand� to validate and to maintain�
but engenders many more uses of function composition than might otherwise be necessary�
Accordingly� control structures that might be shared are often duplicated� and intermediate
data structures may be built and analyzed when they could have been avoided by careful
programming�

To avoid paying performance penalties for modular design� SDRR employs extensive pro�
gram transformation on the ADL speci�cation� The transformations that are used are meaning

preserving� which implies that they will never introduce errors that were not present in the
original design� These transformations are� in fact� derived as instances of theorems in the
algebra of ADL� There are transformations that support�

� deforestation�elimination of intermediate data structures�

� fusion�consolidation of similar control structures�

� accumulator introduction�caching of values to avoid recomputation�

� recursion elimination� in favor of iterative control�

� introduction of state 
i�e� global variables��

Transformations of an SDRR design are applied automatically� Transformations are directed
by pattern�matching which triggers the invocation of embedded tactics�

� Implementation Templates

An implementation is speci�ed by a set of implementation templates and an interface speci�
�cation���� ��
� An interface speci�cation documents the 
typed� system interface that will be
seen by the software component that is the object of the design� The functionality required of
the interface can be speci�ed informally or in terms of a �rst�order logic or software speci�cation
language�

�



The interface provided by the designed component includes the types of its visible functions
or procedures� together with the formal speci�cation of the component as elaborated in the
design�

Implementation templates are macro�like translation forms for the primitive access and
construction functions of ADL datatypes� For example� the template mechanism is used in the
MTV domain to make operations on bit�strings visible in ADL� A set of implementation tem�
plates must contain generic templates for algebraic datatypes but it may also contain specialized
templates for speci�c types that are commonly used� Through implementation templates� a
designer can specify a hashed symbol table� for instance� as the implementation of a dictionary�

Implementation templates are typically quite small� of the order of a few hundred source
lines� although a set of templates can grow if additional� specialized implementations are spec�
i�ed for particular datatypes� These templates are highly reusable� both because templates
are copied many times during the translation of a single design from ADL to the target im�
plementation language� and because a set of templates can be used in any number of speci�c
applications�

� MTV	 An Example

A message translation and validation problem is presented to an engineer as an interface control

document 
ICD�� The ICD is a semi�formal speci�cation of the external representation of the
message� It consists of general information� such as message size� followed by a �eld�by��eld
description of the message and its contents� Field descriptions may themselves have internal
structure� For example� a date �eld will contain a day� month and year� Some �elds may
have di�erent kinds of data� for example a �eld may represent an altitude if it contains only
digits or a location if it contains alphabetic characters� The ICD also contains constraints on
valid messages� these are expressed in informal 
and sometimes ambiguous� English language
annotations�

For each message format� the engineer must design two additional representations� 
��
an internal representation to be communicated to other system components and 
�� a �user�
representation to be used in system logs and test message generation� A �solution� consists of
six functions� translation functions between external and internal� between user and internal�
and check functions on user and external messages�

In the speci�cation document� Lewis introduced a �logical� representation that is essentially
the internal representation without the intra�eld constraints��
� This provides a representation
that can be tested for compliance to the constraints� In the MTV DSDL a user speci�es the
logical structure of the message as the logical type� The user also speci�es one direction of the
translations from logical to user and from external to logical� From these speci�cations� the
system infers the inverse translations as well� Below we will focus exclusively on the external
to logical translation� we will not consider the logical to user translation�

A typical problem speci�cation is given in Figure �� Study of the domain analysis in the
SEI model solution��	
 and analysis of messages led Lewis to specify that the basic types in
messages are integers� integer subranges� strings� string subranges� booleans and enumeration

�



No� Field Name Size Range Amplifying Data

� Course � 		����	 In degrees�

			 No value reported�

Field Separator � � Slash�

� Speed � 				����	 In knots�
Field Separator � � Slash�

� Altitude or 	 or � 	���� In thousands of feet�
Track Con�dence HH High con�dence�

MM Medium con�dence�
LL Low con�dence�
NN No con�dence�
Blank No altitude value reported or

altitude less than �			 feet�
Field Separator � � Slash�

� Time Time Group

� 		��� Hour
� 		��� Minute

End of line � CR Carriage return�

Figure �� Sample Interface Control Document

types� These types may be arranged in records 
labeled products�� variant records 
labeled
sums�� lists of arbitrary length� or arrays� This analysis determined the logical type structure
of the DSDL for MTV�

The message reader actions are constructed compositionally using the structure present in
the type system� A set of primitive translation functions are provided for the base types� Rules
for combining products� sums� arrays and lists of actions are used to aggregate a collection of
actions into a new action� For example� Asc�Int � reads two ascii characters 
which must be
digits� and produces an integer value� Two such read actions can be aggregated into a record
reader by writing them inside curly braces�

� latitude � Asc�Int �� longitude � Asc�Int ��

To accommodate variant records� and to make the reading of enumeration typed expressions
more consistent� a failure mechanism is provided� Consider the Altitude or Track Con�dence
�eld in the example� If the data is presented as a sequence of digits it is assumed to be an
altitude� but if it is alphabetic it is a track con�dence� If it is neither of these� it must be
empty� In all cases the message is delimited by a ���� The failure mechanism supports this by
allowing variant record readers to be declared within square brackets as follows�

�



� Altitude � Asc�Int ��

Track	Confidence� to	Confidence� 
� a previously specified action ��

No	value	or	Alt	less	than	
���� Skip �� � delim ���

In this case� �rst Asc�Int tries to read the input� If it succeeds� the variant record reader
constructs an Altitude� If it fails� the to	Confidence reader is invoked� Again� success of the
component reader will lead to success of that branch� and failure will lead to attempting the
next branch� If all branches fail the variant record reader fails� If the variant record reader
succeeds� the delimiter reader is invoked� The delimiter reader succeeds only if it reads exactly
the string speci�ed as the delimiter� Thus� the aggregate reader succeeds exactly when the
input is an appropriately delimited �eld as speci�ed in the ICD�

In a similar manner� the other �elds in the ICD may be translated into the formal notation
of the MTV DSDL program in Figure �� Note that this translation is very straightforward�
there are no unnecessary encodings of concepts� The MTV DSDL �program� looks more like a
speci�cation than an algorithm� Maintenance of an artifact expressed at this level is expected
to be signi�cantly easier than maintenance of a code level representation�

The MTV DSDL translator takes a speci�cation at this level and compiles it into an inter�
mediate form in ADL� the algebraic design language� A series of program transformation tools
optimize this� removing any layers of interpretation introduced by the generality of the solution�
Finally� the program instantiator generates Ada code� This code can then be integrated into a
command and control system�


 The Project

The SDRR proof of concept demonstration project is unique in two important ways� �rst�
the goal of the current e�ort is the support of a carefully planned software engineering ex�
periment comparing the new technology to an existing technology� second� aggressive project
management methods are being applied to an academic team doing research�

In the planning phase of the project� PacSoft negotiated an experiment with the sponsor
to test the claims of usability� �exibility� predictability� productivity and adaptability� In this
experiment� two subjects provided by an independent contractor will do a matched series of
tasks selected by the sponsor in each of the two technologies being compared� Data on their
performance on these tasks will be collected and analyzed� The results of this experiment give
both a success criteria for the current e�ort and will help identify directions for future research�

Recognizing that the �chaotic� methods traditionally applied in one and two investigator
academic research projects would not scale to a team of over a dozen researchers� PacSoft
made a conscious decision to use more mature management practices� We began with the
development of a plan for the research project� developed jointly with Paul Szulewski� Faye
Budlong� Walter Ellis and Stuart Schi�man at Draper Laboratories� This has been followed by
a systematic maturation of the group as we build ownership� de�ne� document and evolve our
processes� To provide feedback to these maturing processes� and to give the clients evidence
of the team�s progress� we have integrated the collection and analysis of metrics data into
our management� planning and assessment� The keen interest of our clients and the quarterly

�




� Type declarations ��

type Confidence	type � �High� Medium� Low� No��

type Alt	or	TC	type � �Altitude� integer

������

Track	confidence� Confidence	type�

No	value	or	Alt	less	than	
�����

type Time	type � �Hour� integer
�������

Minute� integer
��������

message	type MType � �Course� integer
��������

Speed� integer
����

���

Alt	or	TC� Alt	or	TC	type�

Time� Time	type��


� Action declarations ��

EXRaction to	Confidence � �High� Asc � � �HH��

Medium� Asc � � �MM��

Low� Asc � � �LL��

No� Asc � � �NN���

EXRaction to	Alt	or	TC � �Altitude� Asc�Int ��

Track	confidence� to	Confidence�

No	value	or	Alt	less	than	
���� Skip �

� � Delim ���� 
� field separator ��� ��

EXRaction to	Time � �Hour� Asc�Int ��

Minute� Asc�Int �

� � Delim ��n�� 
� CR as field separator ��

EXRmessage	action to	MType � �Course� Asc�Int � � Delim ����

Speed� Asc�Int � � Delim ����

Alt	or	TC� to	Alt	or	TC�

Time� to	Time��

Figure �� Sample MTV DSDL speci�cation

�	



review process that we have put in place help keep the group invigorated and focused on our
common goals� To date� our experience with these management practices has been positive�

� Conclusion

The next generation of software tools will support the manipulation of designs directly without
requiring the manipulation of intermediate encodings of these concepts in programs� The SDRR
proof�of�concept demonstration project is providing�

� A method for developing the appropriate domain speci�c design languages and imple�
menting �exible and maintainable generators supporting them�

� A tool suite to support this method�

� A generator for a real�world problem constructed by applying the SDRR method�

� An experiment comparing the resulting generator to the current state�of�the�art� and�

� A record of the process and metrics data characterizing our experience with the method
and its development�

Together� this combination of research� demonstration� and experimentation exemplify a new
paradigm for the rapid transfer of technology from an academic research institution into indus�
trial and government software development practice�

References

��
 Je�rey M� Bell� An implementation of Reynold�s defunctionalization method for a modern
functional language� Master�s thesis� Oregon Graduate Institute� January �����

��
 Je�rey M� Bell and James Hook� Defunctionalization of typed programs� Technical report�
Department of Computer Science and Engineering� Oregon Graduate Institute� February
�����

��
 Fran�coise Bellegarde� ASTRE� a transformation system using completion� Technical re�
port� Department of Computer Science and Engineering� Oregon Graduate Institute� �����

��
 Fran�coise Bellegarde and James Hook� Monads� indexes� and transformations� In TAP�

SOFT ���� Theory and Practice of Software Development� volume ��� of LNCS� pages
�������� Springer�Verlag� ����� A page was omitted from the proceedings� it may be
obtained via ftp from ftp�cse�ogi�edu in the �le pub�pacsoft�papers�tapsoft�dvi�

��
 Charles Consel� The Schism Manual� version ��	� Technical report� Department of Com�
puter Science and Engineering� Oregon Graduate Institute� �����

��



��
 Richard B� Kieburtz� Software design for reliability and reuse 
preliminary method def�
inition�� Technical report� Department of Computer Science and Engineering� Oregon
Graduate Institute� October �����

��
 Richard B� Kieburtz and Je�rey Lewis� Programming with algebras� Technical Report

submitted for publication�� Oregon Graduate Institute� October �����

��
 Richard B� Kieburtz and Je�rey Lewis� Algebraic design language 
preliminary de�nition��
Technical report� Department of Computer Science and Engineering� Oregon Graduate
Institute� January �����

��
 Je�rey R� Lewis� A speci�cation for an MTV generator� Technical Report ���		�� De�
partment of Computer Science and Engineering� Oregon Graduate Institute� September
�����

��	
 Charles Plinta� Kenneth Lee� and Michael Rissman� A model solution for C�I message
translation and validation� Technical Report CMU�SEI����TR��� ESD����TR��	� Soft�
ware Engineering Institute� Carnegie Mellon University� December �����

���
 John C� Reynolds� De�nitional interpreters for higher�order programming languages� In
ACM National Conference� pages ������	� ACM� �����

���
 Tim Sheard� Type parametric programming� Technical Report ���	��� Department of
Computer Science and Engineering� Oregon Graduate Institute� November �����

���
 Tim Sheard and Leonidas Fegaras� A fold for all seasons� In Proceedings of the conference

on Functional Programming and Computer Architecture� Copenhagen� June �����

���
 Dennis Volpano and Richard B� Kieburtz� Software templates� In Proceedings Eighth

International Conference on Software Engineering� pages ����	� IEEE Computer Society�
August �����

���
 Dennis Volpano and Richard B� Kieburtz� The templates approach to software reuse� In
Ted J� Biggerssta� and Alan J� Perlis� editors� Software Reusability� pages �������� ACM
Press� �����

���
 Lisa Walton and James Hook� A preliminary de�nition of a domain speci�c design language
for message translation and valiation� Technical report� Department of Computer Science
and Engineering� Oregon Graduate Institute� February �����

��


