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The Pacific Software Research Center is developing a new method to support reuse and
introduce reliability into software. The method is based on design capture in domain spe-
cific design languages and automatic program generation using a reusable suite of program
transformation tools. The transformation tools, and a domain specific component generator
incorporating them, are being implemented as part of a major project underway at the Oregon
Graduate Institute of Science and Technology. The processes used in tool development and ap-
plication of the method are being captured. Once completed, an experiment will be performed
on the generator to assess its usability and flexibility.

This paper describes the SDRR method and illustrates its application to the Message Trans-
lation and Validation domain, a problem identified by our sponsors because of a previously
existing state-of-the-art solution based on code templates produced by the SEI[10].

1 The SDRR design concept

SDRR is a method for the design of flexible and powerful software component generators.
With a component generator, software components themselves are not the basis for design
reuse—the design encapsulated in the generator is the reusable artifact. When a subsequent
application or version of a design is needed, design modifications are made to the specification
that is input to the generator, and a new software component is generated automatically. This
allows each design change to be made at the appropriate level of abstraction—details of the
software irrelevant to the change are not involved. It also allows the applications designer and
the software maintainer to use a design language that directly expresses application domain
concepts, rather than the encodings of these concepts necessary in wide-spectrum programming
languages.

This generation based method can be viewed from two fundamental perspectives. The
developers of a generator see a reusable set of tools and a method for their use in the construction
of generators. The users of a generator see a system that allows them to go from a specification
to a software component without having to understand the details of how the generator is
constructed.

Component generators achieve their greatest advantage for the design of families of software
modules that are needed in many particular instances. If a software component is anticipated to
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be a one-off instance, dissimilar to any existing design, then developing a component generator
to produce it has little advantage. However, this is almost never the case. Most software
modules have family resemblances to other modules and undergo use and modification as part
of an extended life cycle that requires their design to be maintained and updated. SDRR
generators are intended to produce software components that can be reliably and inexpensively
maintained throughout their entire life cycle.

An SDRR generator design team includes two kinds of specialists who need to coordinate
their efforts but are able to work concurrently and independently on their assigned tasks.

e The domain experts who have overall responsibility for the software design, its validation
and documentation.

e The SDRR method experts, who have knowledge of the principles of language design and
are familiar with the transformation tools. (In the method definition report, these roles
are significantly refined[6].)

Steps in the design of a software component generator

The design of an SDRR component generator proceeds in a series of steps. The first step needs
the attention of the domain experts. In this step, domain analysis is performed to determine
the requirements of the intended application. This step is common to all software development.
It is not unique to SDRR. The other steps are unique to the SDRR method. Method experts
must:

¢ Formulate a domain-specific design language (DSDL) in which to express the parameters,
operations and constraints necessary to meet the requirements of the domain application.

¢ Formalize a computational semantics of the DSDL in terms of ADL, the algebraic design
language used in SDRRI[8, 7]. This task requires a computer scientist with advanced
training in formal aspects of programming languages and software design.

¢ Design an implementation template characterizing the execution environment. SDRR
implementations are stereotyped. A developer designs a set of implementation primitives
that specify how the computational semantics of the DSDL are to be realized in terms of
the target programming language Ada.

Performance improvement is obtained through the use of automated program transformations
that are applied during the course of program generation. These transformations are mathemat-
ically based and are guaranteed to preserve the computational meaning of the ADL-specified se-
mantics. The transformation tools include: HOT, which applies higher-order transformations[12,
13]; Schism, a partial evaluator[5]; Firstify, an implementation of Reynold’s algorithm for
defunctionalization[11, 1, 2]; and, Astre, a first-order transformation tool based on term-
rewriting techniques[3, 4].

When an SDRR-designed program generator is applied to a DSDL specification, it au-
tomatically applies the necessary transformations. The transformation tools provide a very



advanced optimizing compiler that takes ADL as input and generates Ada as output. The
system architecture is summarized in Figure 1.

2 Domain Specific Design Languages — DSDLs

A domain specific design language is intended to formally specify software designs. It is a
formal language that is expressive over the abstractions of an application domain. A DSDL
may be wholly or partially declarative or it may be a functional language with libraries of
functions specialized to the application domain. Common examples of DSDLs are:

¢ Schema description and query languages for databases.
¢ Layout languages for prettyprinting the text of computer programs.

e A message format description language for the message domain of military C? systems

(MTV).

Using a DSDL, a domain expert can express concepts in the problem space directly, without
encoding them. This allows the domain expert to formalize the specification of a software
solution immediately instead of communicating a specification informally to a software specialist
who may be less familiar with the intended application.

The definition of a DSDL introduces a new, formal, reviewable artifact into the domain
analysis phase of a software development process. This formal definition may benefit the
process just as developing formal specifications benefits the requirements analysis phase.

2.1 Designing a DSDL

A DSDL is defined by a computer scientist in consultation with a domain expert. In the
design of a DSDL, a dialogue is necessary between the two in order to settle the following three
important issues. The issues are illustrated with specific examples from the DSDL for the
message translation and validation domain (MTV), which will be described in greater detail in
Section 6.

e To clearly identify the principal conceptual abstractions of the domain.

For the MTV domain the essential abstractions are the internal and external representa-
tions and the translation functions that map between them.

e To formally define a language of terms to represent these abstract concepts. A term
language can be defined in terms of a syntactic phylum (syntactic category) for each
conceptual entity. These languages give a means to express instances of the concepts and
the relations between them.

For MTYV, the basic phyla describe the logical structure of the internal representation of
data and the message translation actions that parse (and implicitly generate) a message.
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e To interpret the relations among the principal conceptual entities. This interpretation is
initially given by the domain expert in an informal manner, by describing the relations
in natural language (English). The computational content of this description will later
be elaborated by giving a formal semantics to the DSDL.

In MTV, two documents generated at this stage of design have been delivered to the
clients. The first was a specification document summarizing our domain analysis, includ-
ing the identification of the principal abstractions[9]. The second was the preliminary
definition and informal semantics of the language[16]. Documents giving the revised
DSDL definition and its formal definition in ADL are planned.

Often, a graphical user interface (GUI) can be used to help an application designer formulate
a design in the DSDL. With a well-designed GUI, the application designer does not need to
“learn another language” to use the DSDL. Even when a GUI is not developed, DSDLs tend
to be quite small and readily learned since they include only those concepts necessary for the
problem domain.

The need for a GUI is determined by studying the natural flow of work for engineers using
the generator. For MTV, this determination is not yet complete; preliminary indications are
that a text-based interface will fit most naturally into the work environment. A GUI, however,
may allow the environment to evolve to include less skilled workers.

3 Formalizing the semantics of a DSDL

The formal semantics of a DSDL is defined in terms of PacSoft’s algebraic design language
(ADL)[7, 8]. This semantics gives the DSDL a computational interpretation in which the
relations between the principal concepts of a design abstraction are formalized.

The first step in the formal specification of a semantics is to specify a datatype that corre-
sponds to the abstract syntax of the DSDL. To each operator of the abstract syntax there will
correspond a data constructor of the datatype. The semantics of a term constructed with a
given data constructor will be composed from the semantics of the subterms given as arguments
to the data constructor.

The control structure of an ADL program is specified through families of high level combina-
tors. For the MTV example, the translations are specified in terms of about a dozen primitives
and five basic combinators. From these basic building blocks, arbitrarily complex translation
functions can be constructed.

Each operator of the abstract syntax of a DSDL is given a computational interpretation by
a semantic function. The semantic function is well-typed in the type system of ADL, and is
defined by cases on the data constructors of the ADL datatype derived from the abstract syntax
of the DSDL. For each such case, the prescribed meaning of a DSDL fragment is specified by a
computation programmed in ADL. In the case of MTV, the semantic functions are defined by
approximately three pages of ADL code.

This programming technique uses the syntax of the DSDL to structure the specification of
a computational solution. The resulting solution is compositional; less attention is given to the



efficiency of a solution than to the regularity of its construction from its component parts. The
goal is to specify a computation in such a way that it is amenable to formal reasoning, so that
one can verify that it corresponds to the informally specified problem requirements. Algorithmic
efficiency will be improved at a later stage by meaning-preserving program transformation of
an ADL specification and by compilation into an efficient representation in Ada.

4 Transformational Improvement

When the semantics of a DSDL is fully elaborated in ADL it is algorithmically effective. A
component design specified in the DSDL can be executed as a rapidly constructed prototype.
However, without further work, it is likely to have poor performance in terms of execution time
and space usage. The SDRR method encourages highly modular design of semantic functions
in ADL. This produces a design that is easy to understand, to validate and to maintain,
but engenders many more uses of function composition than might otherwise be necessary.
Accordingly, control structures that might be shared are often duplicated, and intermediate
data structures may be built and analyzed when they could have been avoided by careful
programming.

To avoid paying performance penalties for modular design, SDRR employs extensive pro-
gram transformation on the ADL specification. The transformations that are used are meaning
preserving, which implies that they will never introduce errors that were not present in the
original design. These transformations are, in fact, derived as instances of theorems in the
algebra of ADL. There are transformations that support:

o deforestation—elimination of intermediate data structures;

e fusion—consolidation of similar control structures;

¢ accumulator introduction—caching of values to avoid recomputation;
e recursion elimination, in favor of iterative control;

e introduction of state (i.e. global variables).

Transformations of an SDRR. design are applied automatically. Transformations are directed
by pattern-matching which triggers the invocation of embedded tactics.

5 Implementation Templates

An implementation is specified by a set of implementation templates and an interface speci-
fication[14, 15]. An interface specification documents the (typed) system interface that will be
seen by the software component that is the object of the design. The functionality required of
the interface can be specified informally or in terms of a first-order logic or software specification
language.



The interface provided by the designed component includes the types of its visible functions
or procedures, together with the formal specification of the component as elaborated in the
design.

Implementation templates are macro-like translation forms for the primitive access and
construction functions of ADL datatypes. For example, the template mechanism is used in the
MTYV domain to make operations on bit-strings visible in ADL. A set of implementation tem-
plates must contain generic templates for algebraic datatypes but it may also contain specialized
templates for specific types that are commonly used. Through implementation templates, a
designer can specify a hashed symbol table, for instance, as the implementation of a dictionary.

Implementation templates are typically quite small, of the order of a few hundred source
lines, although a set of templates can grow if additional, specialized implementations are spec-
ified for particular datatypes. These templates are highly reusable, both because templates
are copied many times during the translation of a single design from ADL to the target im-
plementation language, and because a set of templates can be used in any number of specific
applications.

6 MTV: An Example

A message translation and validation problem is presented to an engineer as an interface control
document (ICD). The ICD is a semi-formal specification of the external representation of the
message. It consists of general information, such as message size, followed by a field-by-field
description of the message and its contents. Field descriptions may themselves have internal
structure. For example, a date field will contain a day, month and year. Some fields may
have different kinds of data, for example a field may represent an altitude if it contains only
digits or a location if it contains alphabetic characters. The ICD also contains constraints on
valid messages; these are expressed in informal (and sometimes ambiguous) English language
annotations.

For each message format, the engineer must design two additional representations: (1)
an internal representation to be communicated to other system components and (2) a “user”
representation to be used in system logs and test message generation. A “solution” consists of
six functions: translation functions between external and internal, between user and internal,
and check functions on user and external messages.

In the specification document, Lewis introduced a “logical” representation that is essentially
the internal representation without the intrafield constraints[9]. This provides a representation
that can be tested for compliance to the constraints. In the MTV DSDL a user specifies the
logical structure of the message as the logical type. The user also specifies one direction of the
translations from logical to user and from external to logical. From these specifications, the
system infers the inverse translations as well. Below we will focus exclusively on the external
to logical translation; we will not consider the logical to user translation.

A typical problem specification is given in Figure 2. Study of the domain analysis in the
SEI model solution[10] and analysis of messages led Lewis to specify that the basic types in
messages are integers, integer subranges, strings, string subranges, booleans and enumeration



No. Field Name Size Range Amplifying Data

1 Course 3 001-360 In degrees.
000 No value reported.
Field Separator 1 / Slash.
2 Speed 4 0000-5110 In knots.
Field Separator 1 / Slash.
3 Altitude or 0or2 01-99 In thousands of feet.
Track Confidence HH High confidence.
MM Medium confidence.
LL Low confidence.
NN No confidence.
Blank No altitude value reported or
altitude less than 1000 feet.
Field Separator 1 / Slash.
4 Time Time Group
2 00-23 Hour
00-59 Minute
End of line 1 CR Carriage return.

Figure 2: Sample Interface Control Document

types. These types may be arranged in records (labeled products), variant records (labeled
sums), lists of arbitrary length, or arrays. This analysis determined the logical type structure
of the DSDL for MTV.

The message reader actions are constructed compositionally using the structure present in
the type system. A set of primitive translation functions are provided for the base types. Rules
for combining products, sums, arrays and lists of actions are used to aggregate a collection of
actions into a new action. For example, Asc2Int 2 reads two ascii characters (which must be
digits) and produces an integer value. Two such read actions can be aggregated into a record
reader by writing them inside curly braces:

{ latitude : Asc2Int 2, longitude : Asc2Int 2}

To accommodate variant records, and to make the reading of enumeration typed expressions
more consistent, a failure mechanism is provided. Consider the Altitude or Track Confidence
field in the example. If the data is presented as a sequence of digits it is assumed to be an
altitude, but if it is alphabetic it is a track confidence. If it is neither of these, it must be
empty. In all cases the message is delimited by a “/”. The failure mechanism supports this by
allowing variant record readers to be declared within square brackets as follows:



[ Altitude : Asc2Int 2,
Track_Confidence: to_Confidence, (* a previously specified action *)
No_value_or_Alt_less_than_1000: Skip 0] @ delim "/"

In this case, first Asc2Int tries to read the input. If it succeeds, the variant record reader
constructs an Altitude. If it fails, the to_Confidence reader is invoked. Again, success of the
component reader will lead to success of that branch, and failure will lead to attempting the
next branch. If all branches fail the variant record reader fails. If the variant record reader
succeeds, the delimiter reader is invoked. The delimiter reader succeeds only if it reads exactly
the string specified as the delimiter. Thus, the aggregate reader succeeds exactly when the
input is an appropriately delimited field as specified in the ICD.

In a similar manner, the other fields in the ICD may be translated into the formal notation
of the MTV DSDL program in Figure 3. Note that this translation is very straightforward—
there are no unnecessary encodings of concepts. The MTV DSDL “program” looks more like a
specification than an algorithm. Maintenance of an artifact expressed at this level is expected
to be significantly easier than maintenance of a code level representation.

The MTV DSDL translator takes a specification at this level and compiles it into an inter-
mediate form in ADL, the algebraic design language. A series of program transformation tools
optimize this, removing any layers of interpretation introduced by the generality of the solution.
Finally, the program instantiator generates Ada code. This code can then be integrated into a
command and control system.

7 The Project

The SDRR proof of concept demonstration project is unique in two important ways: first,
the goal of the current effort is the support of a carefully planned software engineering ex-
periment comparing the new technology to an existing technology; second, aggressive project
management methods are being applied to an academic team doing research.

In the planning phase of the project, PacSoft negotiated an experiment with the sponsor
to test the claims of usability, flexibility, predictability, productivity and adaptability. In this
experiment, two subjects provided by an independent contractor will do a matched series of
tasks selected by the sponsor in each of the two technologies being compared. Data on their
performance on these tasks will be collected and analyzed. The results of this experiment give
both a success criteria for the current effort and will help identify directions for future research.

Recognizing that the “chaotic” methods traditionally applied in one and two investigator
academic research projects would not scale to a team of over a dozen researchers, PacSoft
made a conscious decision to use more mature management practices. We began with the
development of a plan for the research project, developed jointly with Paul Szulewski, Faye
Budlong, Walter Ellis and Stuart Schiffman at Draper Laboratories. This has been followed by
a systematic maturation of the group as we build ownership, define, document and evolve our
processes. To provide feedback to these maturing processes, and to give the clients evidence
of the team’s progress, we have integrated the collection and analysis of metrics data into
our management, planning and assessment. The keen interest of our clients and the quarterly



(* Type declarations *)
type Confidence_type = [High, Medium, Low, No];

type Alt_or_TC_type = [Altitude: integer(1l..99),
Track_confidence: Confidence_type,
No_value_or_Alt_less_than_1000];

type Time_type = {Hour: integer(0..23),
Minute: integer(0..59)};

message_type MType = {Course: integer(0..360),
Speed: integer(0..5110),
Alt_or_TC: Alt_or_TC_type,
Time: Time_typel};

(* Action declarations *)

EXRaction to_Confidence = [High: Asc 2 | "HH",
Medium: Asc 2 | "MM",
Low: Asc 2 | "LL",
No: Asc 2 | "NN"];

EXRaction to_Alt_or_TC = [Altitude: Asc2Int 2,
Track_confidence: to_Confidence,
No_value_or_Alt_less_than_1000: Skip O
] @ Delim "/"; (x* field separator "/" *)

EXRaction to_Time = {Hour: Asc2Int 2,
Minute: Asc2Int 2
} @ Delim "\n"; (* CR as field separator *)

EXRmessage_action to_MType = {Course: Asc2Int 3 @ Delim "/",
Speed: Asc2Int 4 @ Delim "/",

Alt_or_TC: to_Alt_or_TC,
Time: to_Time};

Figure 3: Sample MTV DSDL specification
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review process that we have put in place help keep the group invigorated and focused on our
common goals. To date, our experience with these management practices has been positive.

8 Conclusion

The next generation of software tools will support the manipulation of designs directly without
requiring the manipulation of intermediate encodings of these concepts in programs. The SDRR
proof-of-concept demonstration project is providing:

¢ A method for developing the appropriate domain specific design languages and imple-
menting flexible and maintainable generators supporting them:;

e A tool suite to support this method;

A generator for a real-world problem constructed by applying the SDRR method;
e An experiment comparing the resulting generator to the current state-of-the-art; and,

o A record of the process and metrics data characterizing our experience with the method
and its development.

Together, this combination of research, demonstration, and experimentation exemplify a new
paradigm for the rapid transfer of technology from an academic research institution into indus-
trial and government software development practice.

References

[1] Jeffrey M. Bell. An implementation of Reynold’s defunctionalization method for a modern
functional language. Master’s thesis, Oregon Graduate Institute, January 1994.

[2] Jeffrey M. Bell and James Hook. Defunctionalization of typed programs. Technical report,
Department of Computer Science and Engineering, Oregon Graduate Institute, February
1994.

[3] Francoise Bellegarde. ASTRE, a transformation system using completion. Technical re-
port, Department of Computer Science and Engineering, Oregon Graduate Institute, 1991.

[4] Frangoise Bellegarde and James Hook. Monads, indexes, and transformations. In TAP-
SOFT °93: Theory and Practice of Software Development, volume 668 of LNCS, pages
314-327. Springer-Verlag, 1993. A page was omitted from the proceedings, it may be
obtained via ftp from ftp.cse.ogi.eduin the file pub/pacsoft/papers/tapsoft.dvi.

[5] Charles Consel. The Schism Manual, version 2.0. Technical report, Department of Com-
puter Science and Engineering, Oregon Graduate Institute, 1992.

11



[6] Richard B. Kieburtz. Software design for reliability and reuse (preliminary method def-
inition). Technical report, Department of Computer Science and Engineering, Oregon
Graduate Institute, October 1993.

7] Richard B. Kieburtz and Jeffrey Lewis. Programming with algebras. Technical Report
g g g
(submitted for publication), Oregon Graduate Institute, October 1993.

[8] Richard B. Kieburtz and Jeffrey Lewis. Algebraic design language (preliminary definition).
Technical report, Department of Computer Science and Engineering, Oregon Graduate
Institute, January 1994.

[9] Jeffrey R. Lewis. A specification for an MTV generator. Technical Report 94-003, De-
partment of Computer Science and Engineering, Oregon Graduate Institute, September
1993.

[10] Charles Plinta, Kenneth Lee, and Michael Rissman. A model solution for C*I message
translation and validation. Technical Report CMU/SEI-89-TR-12 ESD-89-TR-20, Soft-

ware Fingineering Institute, Carnegie Mellon University, December 1989.

[11] John C. Reynolds. Definitional interpreters for higher-order programming languages. In
ACM National Conference, pages 717-740. ACM, 1972.

[12] Tim Sheard. Type parametric programming. Technical Report 93-018, Department of
Computer Science and Engineering, Oregon Graduate Institute, November 1993.

[13] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Proceedings of the conference
on Functional Programming and Computer Architecture, Copenhagen, June 1993.

[14] Dennis Volpano and Richard B. Kieburtz. Software templates. In Proceedings Fighth
International Conference on Software Engineering, pages 55-60. IEEE, Computer Society,
August 1985.

[15] Dennis Volpano and Richard B. Kieburtz. The templates approach to software reuse. In
Ted J. Biggersstaff and Alan J. Perlis, editors, Software Reusability, pages 247-255. ACM
Press, 1989.

[16] Lisa Walton and James Hook. A preliminary definition of a domain specific design language
for message translation and valiation. Technical report, Department of Computer Science
and Engineering, Oregon Graduate Institute, February 1994.

12



