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This paper presents an overview of MPI, a proposed
standard message passing interface for MIMD dis-
tributed memory concurrent computers. The design
of MPI has been a collective effort involving researchers
in the United States and Europe from many organi-
zations and institutions. MPI includes point-to-point
and collective communication routines, as well as sup-
port for process groups, communication contexts, and
application topologies. While making use of new ideas
where appropriate, the MPI standard is based largely
on current practice.

1 Introduction

This paper gives an overview of MPI, a proposed
standard message passing interface for distributed
memory concurrent computers and networks of work-
stations. The main advantages of establishing a mes-
sage passing interface for such machines are portabil-
ity and ease-of-use, and a standard message passing
interface is a key component in building a concurrent
computing environment in which applications, soft-
ware libraries, and tools can be transparently ported
between different machines. Furthermore, the defini-
tion of a message passing standard provides vendors
with a clearly defined set of routines that they can
implement efficiently, or in some cases provide hard-
ware or low-level system support for, thereby enhanc-
ing scalability.

The functionality that MpI is designed to provide
is based on current common practice, and is similar
to that provided by widely-used message passing sys-
tems such as Express [15], PVM [2], NX/2 [16], Vertex,
[14], PARMACS [10, 11], and P4 [4, 13]. In addition, the
flexibility and usefulness of MPI has been broadened
by incorporating ideas from more recent and innova-
tive message passing systems such as cHIMP [6, 7],
Zipcode [17, 18], and the IBM External User Inter-
face [8]. The general design philosophy followed by
MPI is that while it would be imprudent to include
new and untested features in the standard, concepts

1See the Acknowledgements section for a list of members of
the MPI Forum.

that have been tested in a research environment should
be considered for inclusion. Many of the features in
MPI related to process groups and communication con-
texts have been investigated within research groups
for several years, but not in commercial or production
environments. However, their incorporation into MPI
is justified by the expressive power they bring to the
standard.

The MPI standardization effort involves about 60
people from 40 organizations mainly from the United
States and Europe. Most of the major vendors of con-
current computers are involved in MPI, along with re-
searchers from universities, government laboratories,
and industry. The standardization process began with
the Workshop on Standards for Message Passing in a
Distributed Memory Environment, sponsored by the
Center for Research on Parallel Computing, held April
29-30, 1992, in Williamsburg, Virginia [19]. At this
workshop the basic features essential to a standard
message passing interface were discussed, and a work-
ing group established to continue the standardiza-
tion process. Following this a preliminary draft pro-
posal, known as MPI1, was put forward by Dongarra,
Hempel, Hey, and Walker [5]. This proposal was in-
tended as a discussion document, and embodies the
main features that were identified in the earlier work-
shop as being necessary in a message passing standard.
A meeting of the MPI working group was held at Su-
percomputing 92, at which i1t was decided to place
the standardization process on a more formal footing,
and generally to follow the format and organization
of the High Performance Fortran Forum. Subcommit-
tees were formed for the major component areas of the
standard, and an email discussion service established
for each. In addition, the goal of producing a draft
MPI standard by July 1993 was set. To achieve this
goal the MPI working group has met every 6 weeks for
two days, and is presenting the draft MPI standard at
the Supercomputing ’93 conference in November 1993.
These meetings and the email discussion together con-
stitute the MPI forum, membership of which 1s open to
all members of the high performance computing com-
munity.

This paper is being written at a time when MPI
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is still in the process of being defined, but when the
main features have been agreed upon. The only major
exception 1s the role played by communicator objects
in handling process groups and communication con-
texts. This 1s discussed in Section 3.1, and at the
time of writing (August 1993) is still an area of ac-
tive discussion. The details of the syntax, and the
language bindings for Fortran-77, Fortran-90, C, and
C++, have not yet been considered in depth, and so
will not be discussed here. This paper is not intended
to give a definitive, or even a complete, description
of MPI. While the main design features of MPI will be
described, limitations on space prevent detailed justifi-
cations for why these features were adopted. For these
details the reader 1s referred to the MPI specification
document, and the archived email discussions, which
are available electronically as described in Section 4.

2 An Overview of MPI

MPI is intended to be a standard message pass-
ing interface for applications running on MIMD dis-
tributed memory concurrent computers and worksta-
tion networks. We expect MPI also to be useful in
building libraries of mathematical software for such
machines. MPI is not specifically designed for use by
parallelizing compilers. MPI does not contain any sup-
port for fault tolerance, and provides reliable commu-
nications (or fails the program). MPI is a message pass-
ing interface, not a complete parallel computing pro-
gramming environment. Thus, issues such as parallel
I/0, parallel program composition, and debugging are
not addressed by MP1. (Though MPI does provide a
portable mechanism which will allow its intrumenta-
tion and the collection of tracefiles for tools such as
ParaGraph[9] or Upshot[12]). MPI does not provide
support for active messages. MPI was designed easily
to allow heterogeneous implementations and virtual
communication channels. Finally, MPI provides no ex-
plicit support for multithreading, although one of the
design goals of MPI was to ensure that it can be imple-
mented efficiently for a multithreaded environment.

3 Details of MPI

In this section we discuss the MPI routines in more
detail, and indicate some of the alternate suggestions
that have been made for different aspects of the inter-
face. Since the point-to-point and collective communi-
cation routines depend heavily on the approach taken

to groups and contexts, and to a lesser extent on pro-
cess topologies; we shall discuss groups, contexts, and
topologies first. These three related areas have gen-
erated much discussion within the MP1I forum, and at
the time of writing a consensus is only just beginning
to emerge.

3.1 Groups, Contexts, and Communica-
tors

This section explains the concepts of group and con-
text, which are, in turn, bound together into abstract
communicator objects.

3.1.1 Process Groups

A process group 1s an ordered collection of processes,
and each process is uniquely identified by its rank
within the ordering. For a group of n processes the
ranks run from 0 to n — 1. This definition of groups
closely conforms to current practice.

Process groups can be used in two important ways.
First, they can be used to specify which processes are
involved in a collective communication operation, such
as a broadcast. Second, they can be used to introduce
task parallelism into an application, so that different
groups perform different tasks. If this is done by load-
ing different executable codes into each group, then
we refer to this as MIMD task parallelism. Alterna-
tively, if each group executes a different conditional
branch within the same executable code, then we re-
fer to this as SPMD task parallelism (also known as
control parallelism). The initial MPT specification will
adopt a static process model, so that, as far as the
application is concerned, a fixed number of processes
exist from program initiation to completion. Since
MPI says nothing about the way in which a program
is started, it takes no stance on whether these pro-
cesses are multiple instances of the same executable
(the SPMD model), or instances of many executables
(loose MIMD model), or something in between. How-
ever, the MPI draft will not preclude the subsequent
addition or adoption of a more sophisticated, dynamic
process model.

Although the MPI process model is static, process
groups are dynamic in the sense that they can be cre-
ated and destroyed, and each process can belong to
several groups simultaneously. However, the member-
ship of a group cannot be changed. To make a group
with different membership, a new group must be cre-
ated. This operation can be performed either locally
(without synchronisation), or by a collective partition-
ing operation in the group to be split. In MPI a group
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is an opaque object referenced by means of a handle!.
MPI provides routines for creating new groups by list-
ing the ranks (within a specified parent group) of the
processes making up the new group, or by partitioning
an existing group using a key. The group partitioning
routine is also passed an index, the size of which deter-
mines the rank of the process in the new group. This
also provides a way of permuting the ranks within a
group, if all processes in the group use the same value
for the key, and set the index equal to the desired new
rank. Additional routines give the rank of the calling
process within a given group, test whether the calling
process is in a given group, perform a barrier synchro-
nization with a group, and inquire about the size and
membership of a group.

3.1.2 Communication Contexts

Communication contexts were initially proposed to al-
low the creation of distinct, separable message streams
between processes, with each stream having a unique
context. A common use of contexts is to ensure that
messages sent in one phase of an application are not in-
correctly intercepted by another phase. The point here
is that the two phases may actually be calls to two dif-
ferent third-party library routines, and the application
developer has no way of knowing if the message tag,
group, and rank completely disambiguate the message
traffic of the different libraries from one another and
from the rest of the application. Context provides an
additional criterion for message selection, and hence
permits the construction of independent message tag
spaces (see Section 3.3.1).

The user never performs explicit operations on con-
texts (there is no user visible context data type), how-
ever contexts are maintained within communicators
on the user’s behalf, so that messages sent through
a given communicator can only be received through
the correctly matching communicator. MPI provides a
collective routine on a communicator to pre-allocate
a number of contexts for use within the scope of that
communicator, these can then be used by the MPI sys-
tem, without a further synchronisation, when the user
creates duplicates or sub-groups using the communi-
cator. The program is correct, provided that these op-
erations occur in the same order on all the processes
which own the communicator. (This is the same cri-
terion as for the other collective operations on a com-
municator.)

1In Fortran, a handle is an index into a table, while in C, a
handle will be a provided typedef.

3.1.3 Communicator Objects

The “scope” of a communication operation is specified
by the communication context used, and the group,
or groups, involved. In a collective communication,
or in a point-to-point communication between mem-
bers of the same group, only one group needs to be
specified, and the source and destination processes are
given by their rank within this group. In a point-to-
point communication between processes in different
groups, two groups must be specified. In this case the
source and destination processes are given by their
ranks within their respective groups. In MPI abstract
objects called “communicators” are used to define the
scope of a communication operation. Communicators
used in intra-group and inter-group communication
are referred to as intra- and inter-communicators, re-
spectively. An intra-communicator can be regarded
as binding together a context and a group, while an
inter-communicator binds together a context and two
groups, one of which contains the source and the other
the destination. Communicator objects are passed to
all point-to-point and collective communication rou-
tines to specify the context and the group, or groups,
involved in the communication operation.

3.2 Application Topologies

In many applications the processes are arranged
with a particular topology, such as a two- or three-
dimensional grid. MPI provides support for general
application topologies that are specified by a graph in
which processes that communicate are connected by
an arc. As a convenience, MPI provides explicit sup-
port for n-dimensional Cartesian grids. For a Carte-
sian grid periodic or nonperiodic boundary conditions
may apply in any specified grid dimension. In MPI a
group either has a Cartesian or graph topology, or no
topology.

3.3 Point-to-Point Communication

3.3.1 Message Selectivity

MPI provides for point-to-point communication, with
message selectivity explicitly based on source process,
message tag, and communication context. The source
and tag may be wild-carded, so that in effect they
are ignored in message selection. The context may
not be wild-carded. The source and destination pro-
cesses are specified by means of a group and a rank.
For intra-group communication the group and context
are bound together in an intra-communicator, as dis-
cussed in Section 3.1.3. For inter-group communica-
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tion the groups containing the source and destination
processes are bound together with the context in an
inter-communicator. Thus, a send routine is passed a
handle to a communicator object, the rank of the des-
tination process, and the message type to fully specify
the context and destination of a message. A receive
routine uses the same three things to determine mes-
sage selectivity.

3.3.2 Communication Modes

A send operation can take place in one of three com-
munication modes. A message sent in standard mode
does not require a corresponding receive to have been
previously posted on the destination process. A mes-
sage sent in standard mode will still be delivered when
the receive is posted sometime later. A message sent
in ready mode requires that a receive have been previ-
ously posted on the destination process. If the receive
has not been previously posted the outcome is indeter-
minate. In standard mode, the send can return before
the matching receive has been posted. For a message
sent in synchronous mode the send operation does
not return until a matching receive has been posted
on the destination process.

For each of the three communication modes, a send
operation can either be locally blocking or nonblock-
ing, so there are a total of six different types of send
routine. A blocking send routine will not return until
the data locations specified in the send can be safely
reused without corrupting the message. A nonblock-
ing send does not wait for any particular event to oc-
cur before returning. Instead it returns a handle to a
communication object that can subsequently be used
when calling routines that check for completion of the
send operation.

A receive operation may also be locally blocking or
nonblocking and either of these two types of receive
may be used to match any of the six types of send. A
blocking receive will not return until the message has
been stored at the locations indicated by the receive.
A nonblocking receive returns a handle to a commu-
nication object, and does not wait for any particular
event to occur. The handle can be used subsequently
to check the status of the receive operation, or to block
until 1t completes. A nonblocking receive also returns
a handle to a “return status object” which is used
to store the length, source, and tag of the message.
When the receive has completed this information can
then be queried by calling an appropriate routine.

The 6 send and 2 receive routines described above
form the core of the MPI standard for point-to-point
communication.

3.3.3 User-defined Datatypes

MPI provides mechanisms to specify general, mixed (of
different types), non-contiguous message buffers. This
is done by allowing the user to define the datatype
(which consists of a set of types and memory off-
sets) using MPI datatype-definition routines. Once the
datatype i1s defined, it can be passed into any of the
point-to-point or collective communication routines.
The effect of this will be for data to be collected out
of possibly non-contiguous memory locations, trans-
mitted, and then placed into possibly non-contiguous
memory locations at the receiving end. It is up to the
implementation to decide whether the data of a gen-
eral datatype should be first packed in a contiguous
buffer before being transmitted, or whether it can be
collected directly from where it resides.

User-defined datatypes as supported by MPI allow
the convenient and (potentially) efficient transmittal
of general array sections (in Fortran 90 terminology),
and arrays of (sub-portions of) records or structures.

since all send and receive routines specify numbers
of data 1tems of a particular type, whether built-in or
user-defined, implementations have enough informa-
tion to provide transaltions that allow an MPI program
to run on heterogeneous networks.

3.4 Collective Communication

Collective communication routines provide for co-
ordinated communication among a group of processes
[1, 3]. The process group and context is given by the
intra-communicator object that is input to the rou-
tine. The MPI collective communication routines have
been designed so that their syntax and semantics are
consistent with those of the point-to-point routines. In
addition, the collective communication routines may
be , but do not have to be, implemented using the
MPI point-to-point routines. Collective communica-
tion routines do not have a tag argument. A collective
communication routine must be called by all members
of the group with consistent arguments. As soon as a
process has completed its role in the collective com-
munication it may continue with other tasks. Thus, a
collective communication 1s not necessarily a barrier
synchronization for the group. On the other hand, an
MPI implementation is free to have barriers inside col-
lective communication functions. In short, the user
must program as if the collective communication rou-
tines do have barriers, but cannot depend on any syn-
chronization from them. MPI does not include non-
blocking forms of the collective communication rou-
tines. In MPI collective communication routines are
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divided into two broad classes: data movement rou-
tines, and global computation routines.

3.4.1 Collective Data Movement Routines

There are three basic types of collective data move-
ment routine: broadcast, scatter, and gather. There
are two versions of each of these. In the one-all case
data are communicated between one process and all
others; in the all-all case data are communicated be-
tween each process and all others. The all-all broad-
cast, and both varieties of the scatter and gather
routines, involve each process sending distinct data
to each process, and/or receiving distinct data from
each process. All processes must send and/or receive
buffers of the same type and length.

The one-all broadcast routine broadcasts data from
one process to all other processes in the group. The
all-all broadcast broadcasts data from each process to
all others, and on completion each has received the
same data. Thus, each process ends up with the same
output buffer, which is the concatenation of the input
buffers of all processes, in rank order.

The one-all scatter routine sends distinct data from
one process to all processes in the group. This is also
known as “one-to-all personalized communication”. In
the all-all scatter routine each process scatters distinct
data to all processes in the group, so the processes
receive different data from each process. This 1s also
known as “all-to-all personalized communication”.

The communication patterns in the gather routines
are the same as in the scatter routines, except that
the direction of flow of data is reversed. In the one-
all gather routine one process (the root) receives data
from every process in the group. The root process
receives the concatenation of the input buffers of all
processes, in rank order. The all-all gather routine is
identical to the all-all scatter routine.

3.4.2 Global Computation Routines

There are two basic global computation routines in
MPI: reduce and scan. The reduce and scan routines
both require the specification of an input function.
One version is provided in which the user selects the
function from a predefined list, and in the second ver-
sion the user supplies (a pointer to) a function. Thus,
MPI contains four reduce and four scan routines.

4 Summary and Conclusions

This paper has given an overview of the main fea-
tures of MPI, but has not described the detailed syn-
tax of the MPI routines, or discussed language binding
issues. These will be fully discussed in the MPI spec-
ification document, a draft of which is expected to
be available by the Supercomputing 93 conference in
November 1993.

The design of MPI has been a cooperative effort
involving about 60 people. Much of the discussion has
been by electronic mail, and has been archived, along
with copies of the MPI draft and other key documents.
Copies of the archives and documents may be obtained
by netlib. For details of what is available, and how to
get it, please send the message “send index from mpi”
to netlib@ornl.gov.
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