
Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

MPI� A Message Passing Interface

The MPI Forum
�

This paper presents an overview of mpi� a proposed
standard message passing interface for MIMD dis�
tributed memory concurrent computers� The design
ofmpi has been a collective e�ort involving researchers
in the United States and Europe from many organi�
zations and institutions� mpi includes point�to�point
and collective communication routines� as well as sup�
port for process groups� communication contexts� and
application topologies� While making use of new ideas
where appropriate� the mpi standard is based largely
on current practice�

� Introduction

This paper gives an overview of mpi� a proposed
standard message passing interface for distributed
memory concurrent computers and networks of work�
stations� The main advantages of establishing a mes�
sage passing interface for such machines are portabil�
ity and ease�of�use� and a standard message passing
interface is a key component in building a concurrent
computing environment in which applications� soft�
ware libraries� and tools can be transparently ported
between di�erent machines� Furthermore� the de�ni�
tion of a message passing standard provides vendors
with a clearly de�ned set of routines that they can
implement e�ciently� or in some cases provide hard�
ware or low�level system support for� thereby enhanc�
ing scalability�

The functionality that mpi is designed to provide
is based on current common practice� and is similar
to that provided by widely�used message passing sys�
tems such as Express �	
�� PVM ���� NX� �	��� Vertex�
�	��� parmacs �	�� 		�� and P� ��� 	��� In addition� the
�exibility and usefulness of mpi has been broadened
by incorporating ideas from more recent and innova�
tive message passing systems such as chimp ��� ���
Zipcode �	�� 	��� and the IBM External User Inter�
face ���� The general design philosophy followed by
mpi is that while it would be imprudent to include
new and untested features in the standard� concepts

�See the Acknowledgements section for a list of members of

the mpi Forum�

that have been tested in a research environment should
be considered for inclusion� Many of the features in
mpi related to process groups and communication con�
texts have been investigated within research groups
for several years� but not in commercial or production
environments� However� their incorporation into mpi

is justi�ed by the expressive power they bring to the
standard�

The mpi standardization e�ort involves about ��
people from �� organizations mainly from the United
States and Europe� Most of the major vendors of con�
current computers are involved in mpi� along with re�
searchers from universities� government laboratories�
and industry� The standardization process began with
the Workshop on Standards for Message Passing in a
Distributed Memory Environment� sponsored by the
Center for Research on Parallel Computing� held April
������ 	���� in Williamsburg� Virginia �	��� At this
workshop the basic features essential to a standard
message passing interface were discussed� and a work�
ing group established to continue the standardiza�
tion process� Following this a preliminary draft pro�
posal� known as MPI	� was put forward by Dongarra�
Hempel� Hey� and Walker �
�� This proposal was in�
tended as a discussion document� and embodies the
main features that were identi�ed in the earlier work�
shop as being necessary in a message passing standard�
A meeting of the mpi working group was held at Su�
percomputing ���� at which it was decided to place
the standardization process on a more formal footing�
and generally to follow the format and organization
of the High Performance Fortran Forum� Subcommit�
tees were formed for the major component areas of the
standard� and an email discussion service established
for each� In addition� the goal of producing a draft
mpi standard by July 	��� was set� To achieve this
goal the mpi working group has met every � weeks for
two days� and is presenting the draft mpi standard at
the Supercomputing ��� conference in November 	����
These meetings and the email discussion together con�
stitute the mpi forum� membership of which is open to
all members of the high performance computing com�
munity�

This paper is being written at a time when mpi

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

is still in the process of being de�ned� but when the
main features have been agreed upon� The only major
exception is the r�ole played by communicator objects
in handling process groups and communication con�
texts� This is discussed in Section ��	� and at the
time of writing �August 	���� is still an area of ac�
tive discussion� The details of the syntax� and the
language bindings for Fortran���� Fortran���� C� and
C��� have not yet been considered in depth� and so
will not be discussed here� This paper is not intended
to give a de�nitive� or even a complete� description
of mpi� While the main design features of mpi will be
described� limitations on space prevent detailed justi��
cations for why these features were adopted� For these
details the reader is referred to the mpi speci�cation
document� and the archived email discussions� which
are available electronically as described in Section ��

� An Overview of MPI

mpi is intended to be a standard message pass�
ing interface for applications running on MIMD dis�
tributed memory concurrent computers and worksta�
tion networks� We expect mpi also to be useful in
building libraries of mathematical software for such
machines� mpi is not speci�cally designed for use by
parallelizing compilers� mpi does not contain any sup�
port for fault tolerance� and provides reliable commu�
nications �or fails the program�� mpi is a message pass�
ing interface� not a complete parallel computing pro�
gramming environment� Thus� issues such as parallel
IO� parallel program composition� and debugging are
not addressed by mpi� �Though mpi does provide a
portable mechanism which will allow its intrumenta�
tion and the collection of trace�les for tools such as
ParaGraph��� or Upshot�	���� mpi does not provide
support for active messages� mpi was designed easily
to allow heterogeneous implementations and virtual
communication channels� Finally� mpi provides no ex�
plicit support for multithreading� although one of the
design goals of mpi was to ensure that it can be imple�
mented e�ciently for a multithreaded environment�

� Details of MPI

In this section we discuss the mpi routines in more
detail� and indicate some of the alternate suggestions
that have been made for di�erent aspects of the inter�
face� Since the point�to�point and collective communi�
cation routines depend heavily on the approach taken

to groups and contexts� and to a lesser extent on pro�
cess topologies� we shall discuss groups� contexts� and
topologies �rst� These three related areas have gen�
erated much discussion within the mpi forum� and at
the time of writing a consensus is only just beginning
to emerge�

��� Groups� Contexts� and Communica�
tors

This section explains the concepts of group and con�
text� which are� in turn� bound together into abstract
communicator objects�

����� Process Groups

A process group is an ordered collection of processes�
and each process is uniquely identi�ed by its rank
within the ordering� For a group of n processes the
ranks run from � to n � 	� This de�nition of groups
closely conforms to current practice�

Process groups can be used in two important ways�
First� they can be used to specify which processes are
involved in a collective communication operation� such
as a broadcast� Second� they can be used to introduce
task parallelism into an application� so that di�erent
groups perform di�erent tasks� If this is done by load�
ing di�erent executable codes into each group� then
we refer to this as MIMD task parallelism� Alterna�
tively� if each group executes a di�erent conditional
branch within the same executable code� then we re�
fer to this as SPMD task parallelism �also known as
control parallelism�� The initial mpi speci�cation will
adopt a static process model� so that� as far as the
application is concerned� a �xed number of processes
exist from program initiation to completion� Since
mpi says nothing about the way in which a program
is started� it takes no stance on whether these pro�
cesses are multiple instances of the same executable
�the SPMD model�� or instances of many executables
�loose MIMD model�� or something in between� How�
ever� the mpi draft will not preclude the subsequent
addition or adoption of a more sophisticated� dynamic
process model�

Although the mpi process model is static� process
groups are dynamic in the sense that they can be cre�
ated and destroyed� and each process can belong to
several groups simultaneously� However� the member�
ship of a group cannot be changed� To make a group
with di�erent membership� a new group must be cre�
ated� This operation can be performed either locally
�without synchronisation�� or by a collective partition�
ing operation in the group to be split� In mpi a group

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

is an opaque object referenced by means of a handle��
mpi provides routines for creating new groups by list�
ing the ranks �within a speci�ed parent group� of the
processes making up the new group� or by partitioning
an existing group using a key� The group partitioning
routine is also passed an index� the size of which deter�
mines the rank of the process in the new group� This
also provides a way of permuting the ranks within a
group� if all processes in the group use the same value
for the key� and set the index equal to the desired new
rank� Additional routines give the rank of the calling
process within a given group� test whether the calling
process is in a given group� perform a barrier synchro�
nization with a group� and inquire about the size and
membership of a group�

����� Communication Contexts

Communication contexts were initially proposed to al�
low the creation of distinct� separable message streams
between processes� with each stream having a unique
context� A common use of contexts is to ensure that
messages sent in one phase of an application are not in�
correctly intercepted by another phase� The point here
is that the two phases may actually be calls to two dif�
ferent third�party library routines� and the application
developer has no way of knowing if the message tag�
group� and rank completely disambiguate the message
tra�c of the di�erent libraries from one another and
from the rest of the application� Context provides an
additional criterion for message selection� and hence
permits the construction of independent message tag
spaces �see Section ����	��

The user never performs explicit operations on con�
texts �there is no user visible context data type�� how�
ever contexts are maintained within communicators
on the user�s behalf� so that messages sent through
a given communicator can only be received through
the correctly matching communicator� mpi provides a
collective routine on a communicator to pre�allocate
a number of contexts for use within the scope of that
communicator� these can then be used by the mpi sys�
tem� without a further synchronisation� when the user
creates duplicates or sub�groups using the communi�
cator� The program is correct� provided that these op�
erations occur in the same order on all the processes
which own the communicator� �This is the same cri�
terion as for the other collective operations on a com�
municator��

�In Fortran� a handle is an index into a table� while in C� a

handle will be a provided typedef�

����� Communicator Objects

The �scope� of a communication operation is speci�ed
by the communication context used� and the group�
or groups� involved� In a collective communication�
or in a point�to�point communication between mem�
bers of the same group� only one group needs to be
speci�ed� and the source and destination processes are
given by their rank within this group� In a point�to�
point communication between processes in di�erent
groups� two groups must be speci�ed� In this case the
source and destination processes are given by their
ranks within their respective groups� In mpi abstract
objects called �communicators� are used to de�ne the
scope of a communication operation� Communicators
used in intra�group and inter�group communication
are referred to as intra� and inter�communicators� re�
spectively� An intra�communicator can be regarded
as binding together a context and a group� while an
inter�communicator binds together a context and two
groups� one of which contains the source and the other
the destination� Communicator objects are passed to
all point�to�point and collective communication rou�
tines to specify the context and the group� or groups�
involved in the communication operation�

��� Application Topologies

In many applications the processes are arranged
with a particular topology� such as a two� or three�
dimensional grid� mpi provides support for general
application topologies that are speci�ed by a graph in
which processes that communicate are connected by
an arc� As a convenience� mpi provides explicit sup�
port for n�dimensional Cartesian grids� For a Carte�
sian grid periodic or nonperiodic boundary conditions
may apply in any speci�ed grid dimension� In mpi a
group either has a Cartesian or graph topology� or no
topology�

��� Point�to�Point Communication

����� Message Selectivity

mpi provides for point�to�point communication� with
message selectivity explicitly based on source process�
message tag� and communication context� The source
and tag may be wild�carded� so that in e�ect they
are ignored in message selection� The context may
not be wild�carded� The source and destination pro�
cesses are speci�ed by means of a group and a rank�
For intra�group communication the group and context
are bound together in an intra�communicator� as dis�
cussed in Section ��	��� For inter�group communica�

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

tion the groups containing the source and destination
processes are bound together with the context in an
inter�communicator� Thus� a send routine is passed a
handle to a communicator object� the rank of the des�
tination process� and the message type to fully specify
the context and destination of a message� A receive
routine uses the same three things to determine mes�
sage selectivity�

����� Communication Modes

A send operation can take place in one of three com�
municationmodes� A message sent in standardmode
does not require a corresponding receive to have been
previously posted on the destination process� A mes�
sage sent in standard mode will still be delivered when
the receive is posted sometime later� A message sent
in readymode requires that a receive have been previ�
ously posted on the destination process� If the receive
has not been previously posted the outcome is indeter�
minate� In standard mode� the send can return before
the matching receive has been posted� For a message
sent in synchronous mode the send operation does
not return until a matching receive has been posted
on the destination process�

For each of the three communication modes� a send
operation can either be locally blocking or nonblock�
ing� so there are a total of six di�erent types of send
routine� A blocking send routine will not return until
the data locations speci�ed in the send can be safely
reused without corrupting the message� A nonblock�
ing send does not wait for any particular event to oc�
cur before returning� Instead it returns a handle to a
communication object that can subsequently be used
when calling routines that check for completion of the
send operation�

A receive operation may also be locally blocking or
nonblocking and either of these two types of receive
may be used to match any of the six types of send� A
blocking receive will not return until the message has
been stored at the locations indicated by the receive�
A nonblocking receive returns a handle to a commu�
nication object� and does not wait for any particular
event to occur� The handle can be used subsequently
to check the status of the receive operation� or to block
until it completes� A nonblocking receive also returns
a handle to a �return status object� which is used
to store the length� source� and tag of the message�
When the receive has completed this information can
then be queried by calling an appropriate routine�

The � send and � receive routines described above
form the core of the mpi standard for point�to�point
communication�

����� User�de�ned Datatypes

mpi provides mechanisms to specify general� mixed �of
di�erent types�� non�contiguous message bu�ers� This
is done by allowing the user to de�ne the datatype
�which consists of a set of types and memory o��
sets� using mpi datatype�de�nition routines� Once the
datatype is de�ned� it can be passed into any of the
point�to�point or collective communication routines�
The e�ect of this will be for data to be collected out
of possibly non�contiguous memory locations� trans�
mitted� and then placed into possibly non�contiguous
memory locations at the receiving end� It is up to the
implementation to decide whether the data of a gen�
eral datatype should be �rst packed in a contiguous
bu�er before being transmitted� or whether it can be
collected directly from where it resides�

User�de�ned datatypes as supported by mpi allow
the convenient and �potentially� e�cient transmittal
of general array sections �in Fortran �� terminology��
and arrays of �sub�portions of� records or structures�

since all send and receive routines specify numbers
of data items of a particular type� whether built�in or
user�de�ned� implementations have enough informa�
tion to provide transaltions that allow an mpi program
to run on heterogeneous networks�

��� Collective Communication

Collective communication routines provide for co�
ordinated communication among a group of processes
�	� ��� The process group and context is given by the
intra�communicator object that is input to the rou�
tine� The mpi collective communication routines have
been designed so that their syntax and semantics are
consistent with those of the point�to�point routines� In
addition� the collective communication routines may
be � but do not have to be� implemented using the
mpi point�to�point routines� Collective communica�
tion routines do not have a tag argument� A collective
communication routine must be called by all members
of the group with consistent arguments� As soon as a
process has completed its r�ole in the collective com�
munication it may continue with other tasks� Thus� a
collective communication is not necessarily a barrier
synchronization for the group� On the other hand� an
mpi implementation is free to have barriers inside col�
lective communication functions� In short� the user
must program as if the collective communication rou�
tines do have barriers� but cannot depend on any syn�
chronization from them� mpi does not include non�
blocking forms of the collective communication rou�
tines� In mpi collective communication routines are

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

divided into two broad classes� data movement rou�
tines� and global computation routines�

����� Collective Data Movement Routines

There are three basic types of collective data move�
ment routine� broadcast� scatter� and gather� There
are two versions of each of these� In the one�all case
data are communicated between one process and all
others� in the all�all case data are communicated be�
tween each process and all others� The all�all broad�
cast� and both varieties of the scatter and gather
routines� involve each process sending distinct data
to each process� andor receiving distinct data from
each process� All processes must send andor receive
bu�ers of the same type and length�

The one�all broadcast routine broadcasts data from
one process to all other processes in the group� The
all�all broadcast broadcasts data from each process to
all others� and on completion each has received the
same data� Thus� each process ends up with the same
output bu�er� which is the concatenation of the input
bu�ers of all processes� in rank order�

The one�all scatter routine sends distinct data from
one process to all processes in the group� This is also
known as �one�to�all personalized communication�� In
the all�all scatter routine each process scatters distinct
data to all processes in the group� so the processes
receive di�erent data from each process� This is also
known as �all�to�all personalized communication��

The communication patterns in the gather routines
are the same as in the scatter routines� except that
the direction of �ow of data is reversed� In the one�
all gather routine one process �the root� receives data
from every process in the group� The root process
receives the concatenation of the input bu�ers of all
processes� in rank order� The all�all gather routine is
identical to the all�all scatter routine�

����� Global Computation Routines

There are two basic global computation routines in
mpi� reduce and scan� The reduce and scan routines
both require the speci�cation of an input function�
One version is provided in which the user selects the
function from a prede�ned list� and in the second ver�
sion the user supplies �a pointer to� a function� Thus�
mpi contains four reduce and four scan routines�

� Summary and Conclusions

This paper has given an overview of the main fea�
tures of mpi� but has not described the detailed syn�
tax of the mpi routines� or discussed language binding
issues� These will be fully discussed in the mpi spec�
i�cation document� a draft of which is expected to
be available by the Supercomputing �� conference in
November 	����

The design of mpi has been a cooperative e�ort
involving about �� people� Much of the discussion has
been by electronic mail� and has been archived� along
with copies of the mpi draft and other key documents�
Copies of the archives and documents may be obtained
by netlib� For details of what is available� and how to
get it� please send the message �send index from mpi�
to netlib�ornl�gov�

Acknowledgements

Many people have contributed to mpi � so it is not
possible to acknowledge them all individually� How�
ever� many of the ideas presented in this paper are
the result of hours of deliberation with members of
the mpi Forum� which consists of� Scott Berryman�
Lyndon Clarke� Doreen Cheng� James Cownie� Jack
Dongarra� Anne C� Elster� Jim Feeney� Sam Fineberg�
Jon Flower� Al Geist� Ian Glendinning� Adam Green�
berg� William Gropp� Leslie Hart� Tom Haupt� Don
Heller� Tom Henderson� Rolf Hempel� Tony Hey� C�
T� Howard Ho� Steve Huss�Lederman� John Kapenga�
Bob Knighten� Rik Little�eld� Ewing Lusk� Arthur B�
Maccabe� Peter Madams� Oliver McBryan� Dan Nes�
sett� Steve Otto� Peter Pacheco� Paul Pierce� Sanjay
Ranka� Peter Rigsbee� Mark Sears� Ambuj Singh� An�
thony Skjellum� Marc Snir� Alan Sussman� Eric Van
de Velde� David Walker� Stephen Wheat� and Steven
Zenith�

References

�	� V� Bala� J� Bruck� R� Cypher� P� Elustondo�
A� Ho� C��T� Ho� S� Kipnis� and Marc Snir� Ccl�
A portable and tunable collective communication
library for scalable parallel computers� Technical
report� IBM T� J� Watson Research Center� 	����
Preprint�

��� A� Beguelin� J� J� Dongarra� G� A� Geist�
R� Manchek� and V� S� Sunderam� A users� guide

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

to PVM parallel virtual machine� Technical Re�
port TM�		���� Oak Ridge National Laboratory�
July 	��	�

��� J� Bruck� R� Cypher� P� Elustondo� A� Ho� C��T�
Ho� S� Kipnis� and Marc Snir� Ccl� A portable
and tunable collective communication library for
scalable parallel computers� Technical report�
IBM Almaden Research Center� 	���� Preprint�

��� Ralph Butler and Ewing Lusk� User�s guide to the
p� parallel programming system� Technical Re�
port ANL���	�� Argonne National Laboratory�
October 	����

�
� J� J� Dongarra� R� Hempel� A� J� G� Hey� and
D� W� Walker� A proposal for a user�level� mes�
sage passing interface in a distributed memory
environment� Technical Report TM�	���	� Oak
Ridge National Laboratory� February 	����

��� Edinburgh Parallel Computing Centre� Univer�
sity of Edinburgh� CHIMP Concepts� June 	��	�

��� Edinburgh Parallel Computing Centre� Univer�
sity of Edinburgh� CHIMP Version ��� Interface�
May 	����

��� D� Frye� R� Bryant� H� Ho� R� Lawrence� and
M� Snir� An external user interface for scalable
parallel systems� Technical report� IBM� May
	����

��� Heath� M� T� and J� A� Etheridge� 	��	� �Vi�
sualizing the performance of parallel programs��
Technical Report ORNL TM�		�	�� Oak Ridge
National Laboratory�

�	�� R� Hempel� The ANLGMD macros �PAR�
MACS� in fortran for portable parallel program�
ming using the message passing programming
model � users� guide and reference manual� Tech�
nical report� GMD� Postfach 	�	�� D�
��
 Sankt
Augustin 	� Germany� November 	��	�

�		� R� Hempel� H��C� Hoppe� and A� Supalov� A pro�
posal for a PARMACS library interface� Techni�
cal report� GMD� Postfach 	�	�� D�
��
 Sankt
Augustin 	� Germany� October 	����

�	�� Virginia Herrarte and Ewing Lusk� Studying par�
allel program behavior with upshot� Technical
Report ANL��		
� Argonne National Labora�
tory� 	��	�

�	�� Ewing Lusk� Ross Overbeek� et al� Portable Pro�
grams for Parallel Processors� Holt� Rinehart and
Winston� Inc�� 	����

�	�� nCUBE Corporation� nCUBE � Programmers

Guide� r���� December 	����

�	
� Parasoft Corporation� Express Version ���� A

Communication Environment for Parallel Com�

puters� 	����

�	�� Paul Pierce� The NX� operating system� In Pro�
ceedings of the Third Conference on Hypercube

Concurrent Computers and Applications� pages
�������� ACM Press� 	����

�	�� A� Skjellum and A� Leung� Zipcode� a portable
multicomputer communication library atop the
reactive kernel� In D� W� Walker and Q� F� Stout�
editors� Proceedings of the Fifth Distributed Mem�

ory Concurrent Computing Conference� pages
�������� IEEE Press� 	����

�	�� A� Skjellum� S� Smith� C� Still� A� Leung� and
M� Morari� The Zipcode message passing system�
Technical report� Lawrence Livermore National
Laboratory� September 	����

�	�� D� Walker� Standards for message passing in a
distributed memory environment� Technical Re�
port TM�	�	��� Oak Ridge National Laboratory�
August 	����

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.

