PVM: Experiences, Current Status and Future Direction *

Adam Beguelin §, Jack Dongarraﬂ, Al Geist J[,
Robert Mancheki, Steve Ottoﬂ, and Jon VV.ELlpoleﬂ

10ak Ridge National Laboratory

Mathematical Sciences Section
P. O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

11Oregon Graduate Institute
Computer Science Department
P. O. Box 9100
Portland, OR 97291-1000

The computing requirements of many current and
future applications, ranging from scientific computa-
tional problems in the material and physical sciences,
to simulation, engineering design, and circuit analysis,
are best served by concurrent processing. While hard-
ware multiprocessors can frequently address the com-
putational requirements of these high-performance ap-
plications, there are a number of integration aspects
to concurrent computing that are not adequately ad-
dressed when conventional parallel processors are used
to solve these problems.

The PVM (Parallel Virtual Machine) software
package provides the software infrastructure for pro-
gramming heterogeneous networks [4, 1, 3]. PVM pro-
vides mechanisms for configuring a virtual machine
on a network, initializing processes on this network
and communicating among these processes. PVM is
a lightweight package intended for user installation.
Nearly any Unix or Unix-like machine can be used as
a processor in a virtual machine as long as the user
has an account on the machine and it is accessible
over a network. Several existing concurrent applica-
tions have been ported to execute on the PVM system,
with encouraging results. For example, PVM execu-
tion speeds for molecular dynamics simulations (an ap-
plication with a high volume of communication) using

*This project was supported in part by the Defense Ad-
vanced Research Projects Agency under contract DAALO03-91-
C-0047, administered by the Army Research Office, the Ap-
plied Mathematical Sciences subprogram of the Office of En-
ergy Research, U.S. Department of Energy, under Contract DE-
AC05-840R 21400, and by the National Science Foundation Sci-
ence and Technology Center Cooperative Agreement No. CCR-
8809615.

University of Tennessee
Department of Computer Science
107 Ayres Hall
Knoxville, TN 37996-1301

§Carnegie Mellon University

School of Computer Science
5000 Forbes Avenue

Pittsburgh, PA 15213-3890

IBM RS/6000 workstations averaged only 30 percent
slower than an iPSC/860 hypercube with a compa-
rable number of processors. Another application cal-
culates the electronic structure of a high-temperature
superconductor at a rate of approximately 250 Mflops
under the PVM system.

Applications that use a combination of shared
memory machines, hypercubes, and scalar proces-
sors have been run under the PVM system, with
corresponding increases in performance over any one
multiprocessor. Preliminary experiments have shown
promise in this type of computing environment. PVM
virtualizes such a heterogeneous collection of comput-
ers into a distributed-memory, message-passing, par-
allel computer. PVM is becoming a spanning software
technology for network computers, cluster comput-
ers, and tightly-coupled massively-parallel processors
(MPPs), and significantly, vendors, including IBM,
Convex, and Cray, are implementing versions of PVM
on their platforms.

We are working to enhance significantly the func-
tionality of PVM. Extensions to PVM along a num-
ber of dimensions are proposed. First, we are plan-
ning to add support for parallel and distributed pro-
cessing in multi-user and multi-owner environments.
This support will include the ability to capture idle
cycles available on shared networks, to sensibly sched-
ule multiple parallel jobs, and to integrate MPPs with
networked personal workstations. Secondly, we will
add a collection of tools for debugging, profiling and
monitoring concurrent applications. Source level de-
bugging will be supported using existing debugging
systems that will be adapted for concurrent environ-

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.



ments [2]. Profiling will concentrate on visual anima-
tion and display of program behavior, with emphasis
on inter-component communication and synchroniza-
tion. In addition, we will also develop tools for mon-
itoring overall system load, resource availability, and
network traffic. These facilities will permit reconfigu-
ration and relocation of application components, and
will provide administrative interfaces for general re-
source management. Finally, we will extend the PVYM
message passing system to support communication of
multimedia data, including digital audio and video.
The idea here is to give a simple and very portable
interface for multimedia applications.

This new version of PVM will form the “kernel” of
a Concurrent Processing Environment (CPE). Rather
than build all the above capabilities directly into the
kernel, we will take a modular approach. Interfaces
are defined that allow the modules to be used inde-
pendently in other environments, and allow the en-
vironment to coexist with related software systems.
A distributed scheduler, for example, will be a sepa-
rate module with a well-defined interface to the CPE
kernel. This “open-systems” approach addresses het-
erogeneity at the system software level as well as at
the operating system and hardware levels.

By hiding the complexity of concurrent processing
systems and by presenting a uniform programming
model we will encourage the development of parallel
applications and system services. The CPE will also
provide a runtime environment and target (virtual)
machine for compilers such as HPF.

Despite our focus on heterogeneous multiuser net-
works, the project will also contribute to the process of
integrating massively parallel processors (MPPs) with
more common-place workstation networks. A promi-
nent trend in MPP design has been the move towards
cluster-oriented architectures. Examples of such sys-
tems are the Intel Paragon and TMC CMb5. These
systems are conceptually similar to workstation net-
works in that they are multi-user, network-based ar-
chitectures with an operating system running on each
node. In fact, such systems constitute a simpler (be-
cause they are homogeneous and do not support such
complex notions of ownership) subset of the architec-
tures considered in the proposed research. Further-
more, MPP vendors are already interested in ports of
PVM to their platforms. Consequently, we expect our
environment to become a spanning technology that
will assist in the seamless integration of MPPs into
heterogeneous networks.

Future users of our system will be able to run batch
and interactive parallel applications unobtrusively on

multi-user heterogeneous networks. These applica-
tions will be able to transfer audio and video data as
well as conventional data, will enjoy fault-tolerant ex-
ecution, and will have access to external visualization
and performance monitoring packages. The system
will support automatic redistribution of work, through
dynamic process migration, in order to cope with re-
claimed and newly available processors. This dynamic
reconfiguration will be transparent to application pro-
grammers, who will program in terms of virtual, rather
than physical, processors. Application programmers
will not need to worry about the degree of physical
parallelism, the location of processors, process migra-
tion, resource allocation or scheduling. Hence, the
programming model based on PVM message passing,
will be kept simple.

Not only will the application programmer’s inter-
face to our system be simple and transparent, but the
execution of the system will also be transparent to
other users of the machines on the heterogeneous net-
work. A key requirement of a cycle harvesting system
is that it be unobtrusive to the users of the computers
it 18 using. Our system will place high importance on
this characteristic, if necessary trading efficiency for
unobtrusiveness. In this way, we hope to gain access
to many more processor cycles than would otherwise
be possible.

Acknowledgements

We would like to thank Jim Patterson of BCS for
helpful discussions.

References

[1] A. L. Beguelin, J. J. Dongarra, A. Geist, R. J.
Manchek, and V. S. Sunderam. Heterogeneous net-
work computing. In Swzth SIAM Conference on
Parallel Processing, 1993.

[2] D. Cheng. Proposal for a standard debugger server
protocol. Technical report. To appear at the Su-
perComputing '93 workshop, “Debuggers for High
Performance Computers.”

[3] Jack Dongarra, Al Geist, Robert Manchek, and
Vaidy Sunderam. Integrated PVM framework sup-
ports heterogeneous network computing. Comput-
ers in Physics, April 1993.

[4] A. Geist and V. S. Sunderam. Network-based
concurrent computing on the PVM system. Con-
currency: Practice and Frperience, 4(4):293-311,
June 1992.

Copyright 1993 ACM 0-8186-4340-4/93/0011 Permission to copy for non-commercial use granted by the Association for Computing Machinery.



