
Partitioning of Unstructured Meshes for Load Balancing �

Olivier C� Martin

Division de Physique Th�eoriquey� Institut de Physique Nucl�eaire�
Orsay CEDEX ����	 France
martin o
ipncls�in�p��fr

and
Steve W� Otto

Department of Computer Science and Engineering
Oregon Graduate Institute of Science Technology

����� NW Walker Rd� PO Box �����

Portland� Oregon� USA ����������
otto
cse�ogi�edu

January ��� ����

Abstract

Many large�scale engineering and scienti�c calculations involve repeated updating of vari�

ables on an unstructured mesh� To do these types of computations on distributed memory

parallel computers� it is necessary to partition the mesh among the processors so that the

load balance is maximized and inter�processor communication time is minimized� This can be

approximated by the problem of partitioning a graph so as to obtain a minimum cut� a well�

studied combinatorial optimization problem� Graph partitioning is NP complete� so for real

world applications� one resorts to heuristics� i�e�� algorithms that give good but not necessar�

ily optimumsolutions� These algorithms include local search methods such as Kernighan�Lin�

recursive spectral bisection� and more general purpose methods such as simulated anneal�

ing� We show that a general procedure enables us to combine simulating annealing with

Kernighan�Lin� The resulting algorithm is both very fast and extremely e�ective�

� Introduction

Consider an unoriented graph G��V�E�� i�e�� a collection of vertices Vi� i � �� ���N� and edges
Ei�j �Ei�j joins vertices Vi and Vj�� The graph partitioning problem �GPP� consists of �nding a
partition of V into k subsets of speci�ed sizes so that the number of 	cut
 edges is minimized� An
edge Ei�j is cut if i and j belong to di�erent subsets� The GPP has many practical applications�
It was used to segment program text ��� and is a major ingredient in the problem of cell
placement for VLSI ��� �� The application of interest for this paper is the partitioning of
unstructured meshes used in scienti�c and engineering problems� The computations performed

�
Submitted to Concurrency� Practice and Experience

y
Unit�e de Recherche des Universit�es Paris XI et Paris VI associ�ee au C�N�R�S�

�

on these meshes demand vast amounts of computer power� so that an e�cient implementation
using parallel computation is thus a great advantage� Parallel implementations on distributed�
memory computers require the partitioning of the mesh amongst the processors� thereby leading
to a graph partitioning problem where G��V�E� is given directly by the mesh ��� �� �� �� ��

Model the parallel computation as consisting of updates to variables located at the vertices
of G� with data dependences between the variables given by the edges� E� of G� We have in
mind an iterative solver of a PDE� such as simple relaxation or conjugate gradient� for which the
dominant computational cost has the structure as described� Mapping the computation onto
a distributed�memory parallel computer leads to a k�way graph partitioning problem� where k
is the number of processors� Load balancing is achieved by appropriately specifying the sizes o
each of the k subsets� If the processors are of equal speed� we simply choose equal size subsets�
Communication overhead is made small by minimizing the number of cut edges� This is a
simpli�ed version of the mapping problem� Strictly speaking� one should minimize the maximum
�over the k processors� of the combined communication and computation times� However� in
practice� one uses the GPP to represent the mapping problem because it is conceptually and
computationally more tractable� and because it is thought to give adequate solutions in most
cases of interest�

In what follows� we quickly summarize a number of solution methods for the GPP� and
stress particularly the heuristic champion� the Kernighan�Lin local search algorithm ��� After
this� we explain our method of combining local search methods� such as Kernighan�Lin� with
simulated annealing� This methodology� which we call chained local optimization �C�L�O�� is a
very general one� It can be applied to many optimization problems and is quite e�ective� The
paper goes on to compare C�L�O against other e�ective heuristics ���� �� for both synthetically
generated graphs and for graphs from real�world unstructured meshes� Finally� we describe the
implementation of the C�L�O algorithm on a parallel network of workstations running PVM
���� ���

� Graph Partitioning Heuristics

Since the GPP is NP�complete� it comes as no surprise that exact methods are slow� An integer
linear programming formulation of the GPP has recently been given by Barahona ���� Since
real applications have very large meshes� in practice it is necessary to take a heuristic approach�
Two important� general�purpose heuristics are simulated annealing ���� and a variable depth�
local search originally due to Kernighan and Lin ��� ��� which we will call Kernighan�Lin �K�L��
Methods speci�c to the mapping of unstructured meshes include recursive coordinate bisection
���� compaction methods ���� and recursive spectral bisection ��� �� Williams ��� compares
some of these methods� and Mansour� Savage� and Wloka give parallel implementations ���� ���

For the partitioning of generic �random� graphs� the 	best
 heuristics are simulated anneal�
ing and K�L� However� for unstructured meshes� K�L is substantially better than simulating
annealing� and is also much faster ���� Nevertheless� it is necessary to enhance K�L for it to
be competitive with special purpose methods such as recursive spectral bisection� K�L is used
within our algorithm� C�L�O� so we give a description and some enhancements for unstructured
meshes�

�

The Kernighan�Lin Local Search

It is easiest to describe K�L for k � � and equal sized partitions� so we restrict the explanation
to that case� To deal with k�way partitions� one successively applies the algorithm described
below to each pair of subsets chosen among the k subsets� until no improvement is found� It is
also be readily seen how to extend to the case of unequal sized partitions�

Let A and B be two disjoint subsets of G� of size N�� where N is the number of vertices
of the graph� De�ne a ��exchange to be an exchange of one element of A with an element of
B� Suppose one repeatedly applies ��exchanges that decrease the cut size until no more such
��exchanges can be found� The con�guration is then termed to be ��optimal� or ��opt for short�
An iterative procedure that strictly reduces the cut size at each step is an example of a local
search method�

It turns out that ��opt is a mediocre algorithm� and that going to higher n�opt �i�e�� looking at
all possible n�exchanges� is very costly and does not lead to much improvement� The Kernighan�
Lin �K�L� algorithm �� is a variable� n�exchange algorithm that is much more e�ective than
either ��opt or ��opt while being quite fast� 	Variable
 n means that some n�exchanges for n
large are done� but not necessarily all of them� K�L is essentially a greedy� tabu� ��exchange
sweep through all the members of sets A and B� at each step� one exchanges the most favorable
�or least unfavorable� pair of elements� During the sweep� if one element has already been
exchanged� it can no longer be considered �it is 	tabu
� for further exchange during that sweep�
Throughout the sweep� one monitors how the cut size changes� If the cut size does not decrease
anywhere in the sweep� the partition is de�ned to be K�L�optimal� If it does decrease� one takes
the partition with the lowest cut found during the sweep and uses that as the starting point
for another sweep� The cut size is a decreasing function of sweep number� and one in general
reaches a locally optimal partition in just a few sweeps�

For sparse graphs� K�L is fast� requiring O�Nln�N�� operations per sweep� As shown by
Johnson et al�� it is much faster than simulated annealing� and also gives smaller cut sizes ����
However� K�L gives erratic results from run to run� In particular� for unstructured meshes� it
is beaten by the recursive spectral bisection and coordinate bisection methods� Thus� for such
graphs� it is necessary to run K�L many times from di�erent random starts or to �nd ways to
enhance K�L�

Enhancements to Kernighan�Lin for Unstructured Meshes

There are two commonly used approaches for improving K�L� The �rst� called compaction ����
consists of contracting the graph by merging nearby vertices� partitioning the smaller graph via
K�L� undoing the merging procedure� and reapplying K�L� This approach� if used on multiple
levels in a hierarchical manner� is well suited to unstructured meshes� The second approach
consists of using something besides a random starting partition for the K�L� A simple� yet
e�ective� starting partition can be obtained by coordinate bisection ���� Since the coordinate�
bisection of two�dimensional meshes uses a dividing line with a random orientation� the algorithm
is named L�K�L for 	Line K�L
 ���� L�K�L gives as good results as a hierarchical compaction
approach but is simpler and is more e�ective than simulated annealing or K�L from random
starts� In view of this� we restrict ourselves to presenting comparisons of our algorithm� C�L�O�
to L�K�L only�

�

� Chained Local Optimization

Martin� Otto and Felten ��� introduced a new meta�heuristic for optimization by combining local
search methods with simulated annealing� The important realization is that simulated annealing
needlessly explores all con�gurations� For most optimization problems� there are local search
methods that quickly give good approximate solutions� By a simple generalization� we force
simulated annealing to sample only locally optimal con�gurations� The resulting algorithm is
termed 	Chained Local Optimization
 �C�L�O�� It is a general purpose algorithm that improves
upon both simulated annealing and local search methods �it necessarily beats local search� since
it incorporates local search in the inner�most loop of the algorithm�� We did ���� �� an in
depth study of C�L�O for the traveling salesperson problem� and found that it surpassed by
a wide margin Lin�Kernighan� the best heuristic for that combinatorial optimization problem
since ����� More generally� as discussed by Martin and Otto ���� C�L�O should perform well
on a wide class of problems which includes the GPP� For the purpose of this paper� important
features of C�L�O include the following�

� It is general purpose� so it can be applied to general graphs� On the contrary� the com�
paction and L�K�L methods only work well on graphs with spatial structure�

� It out�performs L�K�L�

� It out�performs mesh�mapping�speci�c methods�

� The method incorporates the good aspects of both simulated annealing and K�L�

C�L�O for the GPP proceeds as follows� Suppose the partition is currently locally optimal
�e�g�� K�L�opt�� This is labeled Start in Fig �� Now apply a 	kick
 �an n�exchange with n not
too small� to this partition so as to signi�cantly change the character of Start� After the kick�
we reach the con�guration labeled Intermediate in the �gure� Standard simulated annealing
would impose the accept � reject procedure to Intermediate� Instead� we notice that it is much
better to �rst improve Intermediate by a local search and apply the accept � reject test only
afterwards� The local search takes us from Intermediate to the partition labeled Trial in Fig ��
Now apply the accept � reject test� If Trial is accepted� we have managed to �nd an interesting
large change to Start� If Trial is rejected� we return to Start� The iteration� or chaining� of this
process is the C�L�O method� Since the partition often changes dramatically in going from Start
to Trial� the method behaves as a simulated annealing algorithm with very large steps from one
con�guration to the next�

C�L�O is much more e�ective than simulated annealing � as we�ve emphasized� the accept
� reject step is only applied after the partition is returned to a local minimum� Many of the
barriers �the 	ridges
� of the cost landscape are jumped over in one step by the C�L�O algorithm�
E�ectively� these barriers are smoothed or eliminated from the landscape� Simulated annealing�
by contrast� must climb over each of these ridges in a series of steps� passing the accept � reject
test many times� so that trapping is much more likely� Though C�L�O has the character of
simulated annealing� for example one has a parameter that plays a similar role to the 	temper�
ature
 of simulated annealing� C�L�O is outside the class of simulated annealing algorithms� A
symmetry property known as detailed balance is violated by C�L�O and this means that it does
not correspond to the true 	annealing
 of some 	physical
 system ����

�

Space of Partitions

Cut Size

Intermediate

Trial
Start

Figure �� Schematic representation of the objective function and of the partition modi�cation
procedure used in chained local optimization�

To implement C�L�O for an arbitrary combinatorial optimization problem� one requires two
things� a good local search heuristic� and a choice for the kick adapted to the optimization
problem� In the case of the GPP� the �rst requirement is met by the Kernighan�Lin local search�
To obtain an appropriate kick� notice that K�L generates partitions with many 	islands
� i�e��
the subsets A and B usually end up being highly fragmented� It is this bad behavior that
renders K�L uncompetitive against mesh�mapping�speci�c methods for these types of graphs�
The fragmentation suggests a kick which exchanges vertices between the islands and motivates
the following procedure for generating a kick� First� in each subset A and B� randomly choose
a vertex that belongs to a cut edge� These two vertices will be seeds� Let X and Y be the set
of vertices in A and B that will be exchanged by the kick� X and Y are generated by growing
a cluster around each seed� one adds to each cluster vertices that belong to the 	other
 subset
but that are connected to the current cluster� The size of X and Y is chosen randomly ahead of
time� but if one cluster can no longer grow �as happens when the seed is inside an island�� then
the cluster growth is stopped and one takes that as the kick� As shown in the next sections�
the overall procedure gives rise to dramatically better partitions for unstructured meshes� but
it also works extremely well for more general graphs�

� Performance on �Geometric� Graphs

A good graph partitioning algorithm for one type of graph may not be good for another� In
particular� the compaction and line algorithms discussed at the end of section � are good only for
a special class of graphs� This makes it clear that the choice of algorithm should be motivated
by the application� The graphs obtained from mesh�mapping problems are generally sparse
and have a built�in spatial structure� In Section �� we shall consider graphs associated with
unstructured meshes� but we also wish to benchmark our algorithm on a more homogeneous

�

Figure �� A geometric graph with N � ��� vertices and d � ���

ensemble of graphs that can be generated randomly� Choose the graphs of this ensemble to
be sparse and have spatial structure� For these graphs� hereafter called geometric graphs� the
vertices are laid at random inside the unit square� two vertices are connected if and only if they
are at a distance less than R �see �gure ��� As R increases� the connectivity as measured by d�
the average degree of a vertex� increases� Neglecting edge e�ects� one has� on average�

d � �R�N � ���

Johnson et al� did a thorough comparison of several algorithms and concluded that for such
geometric graphs� K�L from random starts was better than simulated annealing� but that the
best heuristic was L�K�L ����

We �rst compare the performance of C�L�O with K�L from random starts� Figure � contains
the results of a run on a geometric graph of N � ���� and average degree d � �� The histogram
gives the distribution of cut sizes encountered for ���� K�L�s from random start and those for
one run of C�L�O for ���� steps� the �rst �� being omitted from the histogram� The C�L�O
algorithm was run with a temperature of ���� Clearly� the C�L�O algorithm is exploring far
better solutions than K�L from random start�

The reason for the poor results of K�L can be understood by looking at typical partitions�
they are almost always fragmented as mentioned in section �� Better results would be obtained by
simply partitioning the vertices according to their coordinates� i�e�� by using coordinate bisection
���� For geometric graphs� this bisection can be obtained by choosing a random direction in
space and partitioning the graph by a line parallel to this direction� this corresponds to the line
algorithm discussed in section �� Clearly that procedure gives rise to cut sizes that scale as

p
N

for geometric graphs� Its performance can be calculated analytically� for instance� for a vertical

�

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

C-L-O K-L

Figure �� Histogram of solution values for a geometric graph with d � �� N � ����� The x�axis
corresponds to cut size and the y�axis corresponds to the number of times each cut size was
found� The data is for ���� K�Ls from random starts� and for ���� steps of a single C�L�O run�i
The highest bin of the C�L�O is o��scale by a factor of two�

or horizontal line� the line algorithm gives

hcut sizei � �

�

p
N�

d

�
����� ���

On the contrary� because K�L from random starts leads to fragmented partitions� it gives cut
sizes that scale as N � It might be argued that by running K�L many times one could get much
better results� However� since geometric graphs are extended in space� the central limit theorem
suggests that the distribution of K�L cut sizes will tend towards a Gaussian of width

p
N centered

on its mean �proportional to N�� Thus as N � �� it becomes hopeless to use K�L to get cut
sizes on the order of

p
N � More generally� the argument can be used to show that as N � ��

the performance of an algorithm is characterized by the average cut size it leads to� it is thus
more e�cient to improve an algorithm than to use it for multiple runs when N becomes large�

We now report on the performance of two algorithms� L�K�L� the Kernighan�Lin algorithm
with a line start� and C�L�O� For C�L�O� it is necessary to specify what to do with the temper�
ature� For simplicity� we consider runs where T has been set to � �zero temperature quenches��
we have also done runs where the temperature was �xed or followed an exponential annealing
schedule� but the results were not signi�cantly di�erent from the T � � runs� We have chosen
T � � because it has the advantage of corresponding to a parameter�free schedule�

What is the dependence of the min cut size on both N and d� For 	small
 values of d� the
min cut is generally very small and nearly N independent� because the connectivity is very low�
Indeed if d is su�ciently small� the graph becomes disconnected� and it is often possible to �nd
a zero cut partition� As d increases up to about �� min cut sizes are on the order of ���� or � as
would be the case if one had a tree graph� Finally� as d increases further� the min cut crosses
over to a

p
N scaling law� The graphs obtained from unstructured mesh problems belong to

this latter regime� We present results for d � � and for d � ��� we chose d � � because it is the

�

average degree of two�dimensional unstructured meshes �c�f� the instances investigated in the
next section�� and d � �� because Johnson et al� gave previous results for this case�

We begin with the case d � �� Before using the
p
N scaling law to compare performance�

we give explicit results as a function of N for illustrative purposes� Five instances of random�
geometric graphs were generated for several choices of the number of vertices� N � ���� ���� ����
and ����� For each instance� we ran L�K�L ���� times� and we ran C�L�O �� times� each run
consisting of ��� kick�K�L steps� From the ���� L�K�L data points� we followed the method
described in ��� to derive the distribution of the best cut found in ��� independent trials�
The mean was then compared with the corresponding mean of the best found in each of the
�� C�L�O runs� Both algorithms �one run of ��� steps of C�L�O and ��� L�K�Ls� use about
the same amount of CPU time� The results are presented in Table �� along with the average
L�K�L performances for completeness� One does not know for sure the exact minimum� but for
reference� we have also given the best cut ever found by any of the algorithms� For N � ����
the best cut ever found was always obtained by each algorithm and thus most likely corresponds
to the true optimum� N � ��� corresponds to 	easy
 problems� so we have omitted those data
from the table� For N � ���� ���� L�K�Ls was not enough to �nd the best ever for � of the �
graphs� and for the larger values of N � L�K�L was never able to �nd the best ever� C�L�O� on the
other hand� �nds �for ��� steps� the best ever multiple times among the �� runs N � ���� ���
and �����

For large N � the performance of the algorithms can be characterized by the factor C in the
formula hcut sizei � C

p
N � Using additional data for d � �� we �nd the C corresponding to ���

L�K�Ls to be C����L�K�L � ����� and CC�L�O � ����� for the T � � quenches� In practice�
our quenches were run for ��� kicks� so the quoted result is higher than the value for in�nitely
long runs� As it stands� ����L�K�L leads to cut sizes about �� larger than C�L�O�

The same methodology was used to study graphs with d � ��� Again� C�L�O beats L�K�L
for a given amount of computer time� We �nd C����L�K�L � ����� and CC�L�O � ����� We
observe that as the graphs become more dense� the advantage of C�L�O sets in at progressively
larger values of N � This makes sense� because as d increases for geometric graphs� the optimum
cut becomes straight and the L�K�L algorithm has an easier time �nding it�

In summary� L�K�L is superior to K�L for geometric graphs and� in particular� gives the
correct scaling in

p
N � However� it is surpassed by C�L�O for both sparse and dense geometric

graphs� even though we have not �ne�tuned the kick or the temperature in C�L�O� One should
also keep in mind that the C�L�O approach is not limited to graphs with spatial structure� and
indeed leads to good results for random graphs� The line initialization is not possible for such
graphs� nor is compaction of much use�

� Performance on unstructured meshes

Barnard and Simon �� studied recursive spectral bisection on several unstructured meshes that
arise in mesh�mapping problems� This section benchmarks L�K�L and C�L�O on these same
problems provided by H� Simon� The main di�erences with the ensemble of geometric graphs
used in the previous section are that these meshes form planar graphs and have an average degree
that is very close to �� The lack of variance in the degree of vertices makes these problems easier
to solve both for L�K�L and C�L�O�

�

Cut Size for Five� N � ��� Graphs
Algorithm

L�K�L ���� ���� ��� ���� ����
����L�K�L ��� ��� ��� ��� ���
C�L�O ��� ��� ��� ��� ���
Best Found � � � � �

Cut Size for Five� N � ��� Graphs
Algorithm

L�K�L ���� ���� ���� ���� ����
����L�K�L ���� ��� ��� ���� ����
C�L�O ���� ��� ��� ���� ���
Best Found � � � � �

Cut Size for Five� N � ���� Graphs
Algorithm

L�K�L ���� ���� ���� ���� ����
����L�K�L ���� ���� ���� ���� ����
C�L�O ���� ��� ���� ��� ����
Best Found � � �� � ��

Table �� Average performance on �� random geometric graphs of d � �� There are �ve graphs
each for N � ���� ���� and ����� For algorithm L�K�L� the value in the table shows the average
over ����� runs of L�K�L from random starts� For algorithm ����L�K�L� L�K�L was run ��� times
from random starts and the best value was taken� The result shown in the table is the average
value of that best� when this procedure is done many times� For algorithm C�L�O� the value in
the table is the average over �� runs of C�L�O� each of length ��� steps� The temperature of
the C�L�O runs was set to zero� The values under Best Found are the min over all the previous
procedures � this was always found among the �� runs of C�L�O�

The four meshes have the names� Spiral ������� Parc ������� Hammond ������� and Barth�
�������� where the number of vertices of each mesh is indicated in parentheses� In comparing
various algorithms� we need not consider simulated annealing since it has been shown that K�L
performs better than S�A on such sparse graphs ���� We consider the four graphs in turn�

Spiral has the geometry of a spiral� so the use of the line algorithm �i�e�� coordinate bisection�
leads to a fragmented partition� One thus might expect L�K�L to perform poorly� but the fact is
that the number of vertices is su�ciently small for K�L �and thus L�K�L� to give good results�
The average cut�size for L�K�L is given by hcut sizeiL�K�L � ����� and it �nds the best ever
�of cut size �� ��� of the time� The repeated use of L�K�L improves this result of course� so
that with ��� trials� one is virtually certain to hit the best ever� hcut sizei����L�K�L � ���� For
C�L�O� we did �� runs of ��� steps as in section �� and found also hcut sizeiC�L�O � ���� �The
best ever is found in all the C�L�O runs�� These results lead us to believe that the best ever is
the optimum�

The second mesh� Parc� is a triangulation of variable density� Again the two heuristics solve
this instance rather easily� We �nd hcut sizeiL�K�L � ����� hcut sizei����L�K�L � ����� and
hcut sizeiC�L�O � ���� with the same run parameters as before� L�K�L hits the best ever cut
���� with probability ������ and again C�L�O �nds this best ever in all �� runs�

�

The last two meshes correspond to airfoil problems� The smallest problem� Hammond� is still
rather easy to solve� All C�L�O runs found the best cut ever� of size ��� L�K�L found this cut
with probability ����� and give an average cut size of ������ With ��� L�K�L�s� one is virtually
certain to �nd the best cut� Spectral bisection got a cut size of ����

For Barth�� we �nd hcut sizeiL�K�L � ������ hcut sizei����L�K�L � ������ and
hcut sizeiC�L�O � ������ for runs of ��� steps� The best cut ever was ���� L�K�L found it
with probability ������ and C�L�O found it in �� of the �� runs� For this instance� spectral
bisection gives a cut size of ����

It is fair to conclude that these types of meshes are solved rather easily� either by L�K�L
using multiple tries� or by C�L�O� Not surprisingly� the larger meshes become more di�cult�
Note that both algorithms incorporate K�L� a general�purpose graph partitioning method� If we
compare them to the mapping problem�speci�c methods �coordinate or spectral bisection�� it is
clear that those methods are inferior� The key is to use K�L as a post�processor� Then� almost
any method will become competitive� as illustrated by coordinate bisection�s performance when
transformed into L�K�L� What about using K�L as a post�processor to spectral bisection� We
expect the performance will be improved signi�cantly� but the limitation is that the starting
point for K�L is �xed � there is no randomization�

� Parallel C	L	O

Most local search methods for the GPP do not parallelize well� mainly because the constraint
of maintaining a feasible solution is not readily implemented in parallel� Thus� we only consider
implementations where a given processor has a complete con�guration in local memory� We
work in the framework of a distributed�memory architecture and have implemented the codes
on a network of workstations under PVM ���� ���

The simplest way to parallelize chained local optimization is to have each processor run
independent C�L�O chains� This is equivalent to running multiple random starts on a single
processor� If we have P processors� at any given time we have a population of at least P
con�gurations� However� independent runs are not best because one should be able to use the
mutual information available in the current population� Thus� we have implemented branching
and pruning among the con�gurations on the di�erent processors� This is called Darwinian
selection for genetic algorithms and di�usion Monte Carlo in physics� In a branching step�
the best con�gurations are duplicated in the population while in pruning� the worst ones are
eliminated� Branching and pruning events occur relatively rarely �as measured in cpu time�
so very little time is spent on communication� leading to an e�cient parallel algorithm� In
our implementation� we run for a certain time interval� �nd the con�guration with the best
cut� and then apply a winner�take�all selection strategy� Note that two processors may contain
copies of the same con�guration� but they go through distinct random number sequences and
so they perform independent searches� The GP code runs both on uniprocessor systems and on
heterogeneous computing environments using PVM� All machines are used to near maximum
capacity� and parallel speed�up �at least for tens of workstations� is near�linear� This is simply
because communications are done rarely�

��

 Discussion and conclusion

Many algorithms have been proposed for partitioning unstructured meshes for the mapping
problem� The standard� general�purpose algorithms� simulated annealing and local search �in�
cluding K�L�� do rather poorly� This has stimulated the development of special purpose methods
such as coordinate or spectral bisection and graph compaction� In this paper� we showed how a
general�purpose approach to combinatorial optimization could be successfully adapted to graph
partitioning� As shown in sections � and �� the C�L�O algorithm beats special�purpose meth�
ods� It also beats the hybrid method� L�K�L� on geometric graphs� while being as good on
unstructured meshes� This performance was achieved without any parameter �ne�tuning �the
temperature was set to zero� and no e�ort was made to improve the kick�� C�L�O has several
advantages over L�K�L� �i� it works for more general graphs� �ii� it is easily generalized to k�way
partitions without resorting to recursive bisection �not limited to k a power of ��� �iii� it can
handle unequal partition sizes �important for mapping onto heterogeneous processors�� We plan
to extend the C�L�O graph partitioning to full k�way partitioning in future work�

� Acknowledgements

We thank Horst Simon of NASA Ames for his interest in our work and for having provided the
instances used in section �� We also thank Jeremy Casas� Ravi Konuru� Jon Inouye� Robert
Prouty� and Jonathan Walpole for help with the PVM implementation� Finally� we thank
Edward Felten� and Richard Friedberg for discussions� This work was supported in part by
NATO travel grant CRG �������

References

�� B�W� Kernighan� Some graph partitioning problems related to program segmentation� �����
Ph�D� Thesis�

�� K� Shahookar and P� Mazumder� VLSI cell placement techniques� ACM Computing Surveys�
��������� ���� June �����

�� M� Hanan and J�M� Kertzberg� A review of the placement and quadratic assignment prob�
lems� SIAM Review� ��� No� ������ �����

�� S� Barnard and H� Simon� A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems� Concurrency� Practice and Experience� ����� February
����� To appear�

�� J� Flower� S� Otto� and M� Salama� A preprocessor for �nite element problems� In Sym�

posium on Parallel Computations and Their Impact on Mechanics� American Society of
Mechanical Engineers� ASME Winter Meeting� Dec� ������ ����� Boston� Mass�

�� C� Farhat� On the mapping of massively parallel processors onto �nite element graphs�
Computers and Structures� ��������� ��� �����

��

�� A� Pothen� H� Simon� and K�P� Liou� Partitioning sparse matrices with eigenvectors of
graphs� SIAM J� Mat� Anal� Appl�� ��������� ��� �����

�� V� Venkatakrishnan� H� Simon� and T� Barth� A MIMD implementation of a parallel Euler
solver for unstructured grids� The Journal of Supercomputing� �������� ��� �����

�� B� Kernighan and S� Lin� An e�ective heuristic procedure for partitioning graphs� Bell

Syst� Tech� J�� ������� �����

��� D�S� Johnson� C�R� Aragon� L�A� McGeoch� and C� Schevon� Optimization by simulated
annealing� An experimental evaluation� part I �graph partitioning�� Oper� Res�� �������
�����

��� A� L� Beguelin� J� J� Dongarra� A� Geist� R� J� Manchek� and V� S� Sunderam� Heterogeneous
network computing� In Sixth SIAM Conference on Parallel Processing� �����

��� Jack Dongarra� Al Geist� Robert Manchek� and Vaidy Sunderam� Integrated PVM frame�
work supports heterogeneous network computing� Computers in Physics� April �����

��� F� Barahona and A� Casari� On the magnetisation of the ground states in two dimensional
Ising spin glasses� Comp� Phys� Communications� ������� �����

��� S� Kirkpatrick� C� Gelatt� and M� Vecchi� Optimization by simulated annealing� Science�
�������� �����

��� C�M� Fiduccia and R�M� Mattheyses� A linear�time heuristic for improving network parti�
tions� In Proceedings ���th Design Automation Workshop� page ���� �����

��� M� Berger and S� Bokhari� A partitioning strategy for non�uniform problems on multipro�
cessors� IEEE Trans� Computers� C����������� �����

��� T� Bui� C� Heigham� C� Jones� and T� Leighton� Improving the performance of the
Kernighan�Lin and simulated annealing graph bisection algorithms� In �	�th ACM
IEEE
Design Automation Conference� page ���� �����

��� R� Williams� Performance of dynamic load balancing algorithms for unstructured mesh
calculations� Concurrency� Practice and Experience� �������� ��� October �����

��� N� Mansour� Physical Optimization Algorithms for Mapping Data to Distributed�Memory
Multiprocessors� PhD thesis� Syracuse University� �����

��� J�E� Savage and M�G� Wloka� On parallelizing graph�partitioning heuristics� In Proceedings
of the ICALP���� page ���� �����

��� O� Martin� S�W� Otto� and E�W� Felten� Large�step Markov chains for the traveling salesman
problem� J� Complex Syst�� �������� �����

��� O� Martin� S�W� Otto� and E�W� Felten� Large�step Markov chains for the TSP incorpo�
rating local search heuristics� Oper� Res� Lett�� ������ ��� �����

��� O� Martin and S� Otto� Combining simulated annealing with local search heuristics� In
G� Laporte and I� Osman� editors� Metaheuristics in Combinatorial Optimization�

��

