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Abstract

This paper describes an approach to supporting ef-
ficzent processor virtualization and dynamaic load bal-
ancing for message-based, parallel programs. Specif-
ically, a wuser-level process package (UPVM) for
SPMD-style PVM applications s presented. UPVM
supports light-weight virtual processors that are trans-
parently and independently migratable. It also imple-
ments a source-code compatible PVM interface, which
means that existing PVM programs only need to be re-
compiled and re-linked. The performance of UPVM is
discussed and compared with that of standard PVM.

1 Introduction

Processor virtualization is an attractive goal be-
cause 1t frees application programmers from the bur-
den of managing physical processor location and avail-
ability. Virtual processors (VPs) allow programmers
to think and code solely in terms of the parallelism
within their application. Processor virtualization also
improves system resource utilization because it allows
systems software to transparently adapt to changes
in processor availability, preemption, and load imbal-
ance. Support for dynamic reallocation is useful in
large multicomputers and essential in shared worksta-
tion environments.

Parallel processing packages, such as PVM [11] and
P4 [4], use operating system (OS) processes as their
VPs. Consequently, system calls provided by the OS
are used to implement their message-passing and task-
management interfaces. While this approach simpli-
fies the development and portability of such systems,
the need to invoke the OS for operations such as lo-
cal communication and scheduling leads to significant
overhead. For example, communication between two
processes on the same node involves switching the reg-
ister and virtual memory context as well as copying
the message by the OS between the two processes.
The cost of these operations is high compared to alter-
natives, such as direct copy or pointer manipulation,
within the same address space.

Because of these overheads, a common approach
i1s to maintain a one-to-one mapping of processes to
processors, removing the need for local communica-
tion and scheduling. A side-effect of this approach,
however, is that programmers resort to non-blocking
message-passing primitives in an attempt to overlap
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communication with computation. The use of such
primitives is generally undesirable because it increases
programming complexity.

A one-to-one mapping is also undesirable in multi-
user environments because it limits application par-
allelism to the number of currently available physical
processors. This link between application parallelism
and physical parallelism is particularly problematic in
shared workstation environments where the number
of physical processors available for parallel processing
changes frequently. In this environment, new work-
stations become idle or allocated workstations are re-
claimed by their owners. Consequently, applications
are forced to either suspend until the correct number
of processors becomes available, or “double-up” on the
remaining processors. In the latter case, application
performance suffers due to operating system overhead
and load-imbalance.

Alternatively, dynamic changes in processor avail-
ability can be managed within the application. In
this approach, application programmers are respon-
sible for redistributing work dynamically. This option
may have the greatest potential for high performance,
but results in a significant increase in application pro-
gramming complexity.

A simpler approach, called over-decomposition
(OD), is to create many more VPs than there are pro-
cessors, and to delegate the responsibility of handling
changes in processor parallelism and load balancing to
the underlying VP system. Application-independent,
dynamic load balancing is performed by the VP sys-
tem through migration of these small-grain VPs. Also,
OD allows the communication of one VP to be over-
lapped with the computation of another VP, hence
removing the need for non-blocking message-passing
primitives. If the overhead of VPs is low enough, this
approach becomes attractive. However, OD at the
granularity of OS processes leads to excessive over-
head.

Attempts to address the high cost of OS pro-
cesses have introduced a new OS abstraction called
the thread [12, 9, 6, 19]. Like processes, threads have
a register context and a stack. However, unlike pro-
cesses, threads do not have their own private address
space. Consequently, thread switches can be cheaper
than process switches because they need not involve
virtual memory context switches. Similarly, local com-
munication 1s reduced to accessing memory locations
in the same address space. Some packages implement



the thread abstraction above the OS at user level [7, 8].
These user-level thread packages further reduce the
cost of thread operations by avoiding the need to en-
ter the OS for thread scheduling and management.

The lower cost of local communication and context
switching for both user and OS-level threads means
that OD can be implemented efficiently. However, the
fact that threads share memory means that it is diffi-
cult to delineate the state of one thread from another.
Hence, it 1s difficult to migrate threads independently
of each other. Furthermore, existing process-based ap-
plications require extensive modification to take ad-
vantage of threads.

The approach presented in this paper combines the
low-overhead of user-level threads with the migration
capability and programming model of processes. To
this end, a new VP abstraction, the User Level Process
(ULP), 1s defined. Like a thread, a ULP defines a reg-
ister context and a stack. However, ULPs differ from
threads in that they also define a private data and
heap space. ULPs differ from processes in that their
data and heap space is not protected from other ULPs
of the same application. That is, ULPs do not define
a private protection domain or address space. By con-
vention, ULPs only communicate with each other via
message passing. Hence, when a ULP must migrate,
its state is clearly captured in its data space, heap,
register context and stack. These can all be trans-
ferred to the target machine independently of other
ULPs.
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From the application programmer’s perspective,
ULPs look like OS processes. Consequently, exist-
ing message-based, parallel applications that use pro-
cesses as their VPs can use ULPs with little modi-
fication. From the ULP library’s perspective, there
are potentially many ULPs per OS process (see fig 1).
All ULPs within a single OS process are scheduled by
the ULP library code that also resides in that process.
This means that ULP creation, context switching, and
local communication do not require OS intervention.
From the perspective of the OS, there is only one pro-
cess per application on any given processor.! In this
way, the parallel programmer’s notion of “processor”
is virtualized, while maintaining the efficiency of one
OS process per physical processor.

This paper presents UPVM, a prototype ULP
system for PVM applications.  Existing SPMD-
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style PVM applications typically require only re-
compilation and relinking to use UPVM. Performance
results are presented at both the micro-benchmarking
level and at the application level, and UPVM per-
formance is compared with that of standard, UNIX--
process-based PVM.

The remainder of the paper is organized as follows.
Section 2 presents related work. Section 3 outlines the
implementation of UPVM. Performance results and a
comparison with PVM? are presented in section 4.
Section 5 discusses some of the main issues raised by
this research and section 6 gives conclusions.

2 Related work

There 1s a wide body of work that addresses finer
virtual processor granularity than that of OS pro-
cesses. These approaches can be broadly classified as
OS-thread based, user-level-thread based, language--
based, and object-based approaches.

Operating systems such as Chorus [12], Mach [9],
V [6], and Solaris [19], provide OS threads that can
be used to reduce the cost of OD. Context switches
between OS threads of the same process do not re-
quire the switching of the virtual memory context.
Consequently, thread context switch is generally an
order of magnitude or so faster than process context
switch. An additional advantage is that local, inter-
thread communication can be performed using shared
memory. Further, the reduced thread context switch
costs increase the scope for overlap of remote commu-
nication with computation.

To further reduce the cost of thread operations,
user-level thread libraries have been proposed that
obviate operating system intervention for thread cre-
ation, termination, context switch and scheduling
[10, 16, 1]. Generally, user-level thread performance
1s an order of magnitude better than OS threads. Al-
though both these thread-based approaches offer sig-
nificant improvement over the use of OS processes,
there are two main objections to thread based ap-
proaches.

First, threads export a shared-memory program-
ming model that poses several obstacles in achieving
an efficient implementation for distributed architec-
tures. The root of many of these problems is the
need to preserve the memory consistency imposed by
the shared-memory programming model. Distributed
shared memory (DSM) mechanisms exist that provide
consistency at the granularity of the machine page size
rather than the size of the actual data structure being
shared [17].

Second, thread migration is complicated in the con-
text of a shared-memory programming model because
a thread’s state can be implicitly changed by other
threads through shared memory. Thus, accurate inter-
thread, data-dependence information must be known
about the application to achieve an optimal migra-
tion. In the absence of such information, application
performance is limited to that achieved from a general-
purpose DSM implementation. In contrast, ULPs do
not have any implicit data-dependence amongst them
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as each ULP has independent register context, data
and stack segments. All changes in a ULP state due to
other ULPs occur through explicit messages between
ULPs. Since a ULP state is so clearly delineated from
other ULPs, ULP migration becomes a much simpler
problem.

Further, thread-based approaches also have a prac-
tical disadvantage. Existing process based applica-
tions have to be extensively modified or rewritten to
take advantage of threads. In contrast, our approach
supports the familiar process programming model.
This implies that existing programs employing the
process model can directly benefit from ULPs.

The Data Parallel C (DPC) compiler and run-time
environment [13] export a SIMD, shared address space
model operated upon by a user-specified number of
VPs. This number is usually much larger than the
number of processors available. The multicomputer
DPC compiler translates the SIMD DPC program
source into SPMD C code. The SPMD C code is then
compiled into an executable image using a C compiler
and an OS process is created on each allocated pro-
cessor. Multiple VPs are then emulated within each
process.

Both DPC and the ULP system separate
application-level parallelism from processor availabil-
ity and make the efficient choice of one process per
allocated processor. Another similarity between DPC
and the ULP system 1s that dynamic load balancing is
performed at the granularity of VPs. However, there
are significant differences between the two approaches.

The combination of the language and the SIMD
programming model allow DPC to reduce VP emula-
tion into simple indexing operations. All VPs share a
single stack and have no special state to be saved or
restored on a context switch. For example, switching
to a new VP in the same process is simply a matter of
using a new index for accessing the VP’s data. Thus,
heterogeneous migration is possible and OD costs are
extremely small. However, the VP emulation model
in DPC constrains VP migration to specific points in
execution. Specifically, VP migration is possible only
at the beginning or end of code segments that emulate
a single VP.

In contrast, the ULP-based approach is more lan-
guage independent and VP migration can be per-
formed at any instant.® Since an independent data,
stack and register context is maintained for each ULP,
preemption of a ULP is possible by simply saving its
current register context and restoring it on resump-
tion. In other words, the per-ULP context allows ULP
emulation and migration to be independent of the ex-
ecution state of other ULPs. However, these benefits
are achieved at the cost of higher context switch over-
heads and the restriction of migration to homogeneous
pools of processors.

Object-based systems such as Amber [5] and COOL
[15] provide a programming environment that exports
a thread-based object oriented programming model to
the user. The objects share a single address space per
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application. The address space is distributed across
the nodes in the network and the objects are free
(with certain restrictions) to migrate from one node
to another. Instead of providing these facilities in the
context of an object creation and invocation model of
programming, our approach aims to provide the same
benefits in the context of a procedure oriented, process
model.

3 UPVM implementation

In this section, we outline the implementation of the
UPVM prototype on HP series 9000/720 workstations,
running the HP-UX 9.01 operating system. Porting to
other systems is discussed in Sec. 5.4. A more detailed
description is provided in [14]. Some familiarity with
the PVM interface is assumed.

When the application is invoked, control is imme-
diately transferred into the UPVM library. At this
point, the number of idle processors is determined, a
process is created on each allocated processor, and the
ULPs are created within these processes. The number
of ULPs created is specified by the application pro-
grammer at startup. The number of VPs is a runtime
parameter, but cannot be changed during the run —
there is no facility for new ULP creation during the
run. The amount of physical parallelism can change
during a run, as VPs migrate to newly idle processors.

Each ULP has an opaque, location-independent
identifier(UID) that is unique within an application.
This identifier replaces the TID exported by PVYM. All
communication is performed using these UIDs. Thus
applications that treat TIDs as opaque objects have
no problem in using UPVM.

Each ULP is assigned distinct data, heap and stack
regions in the address space of the process. In other
words, each ULP has its own view of global variables
and current execution state. Malloc and free func-
tions invoked by a ULP result in operations on the
per-ULP heap space. Furthermore, the mapping of a
ULP to aset of virtual addresses is made unique across
all the processes of the application. For example, con-
sider an application that is decomposed into 10 ULPs
across b processes. If ULP 1 is allocated a virtual ad-
dress region V1 in process A, then V1 is reserved for
ULP 1 in all other processes, even though ULP 1 is
not present in those processes. This mapping allows a
ULP to migrate from one process to another without
requiring pointer manipulation.

HP-UX compilers generate all data references rela-
tive to a user-accessible register called the data pointer
(DP). Thus for an SPMD application, for which all
ULPs share the same code, a ULP context switch sim-
ply involves storing the general register state, stack
pointer and DP; and restoring these for the new ULP.
Since UPVM implements non-preemptive scheduling,
only those registers that need to be saved on a proce-
dure call (callee-save registers) are saved.

The non-preemptive scheduler manages a ULP run
queue and a blocked queue. A ULP blocks when it
executes a pvim _recv for which the required message
has not arrived. The ULP chosen to run next de-
pends on the location of the source ULP specified
in the pvi_recv. If the source ULP 1s local, that



1s, within the same process, and is runnable, UPVM
schedules the destination ULP regardless of its posi-
tion in the run queue. This technique is called hand-off
scheduling[3].

The PVM buffer management interface is imple-
mented by giving each ULP its own local view of buffer
identifiers, the current send buffer and receive buffer.
These local buffer identifiers (LBIDs) are mapped
into global buffer identifiers (GBIDs) by UPVM. The
global buffers are created within the library and are
indirectly accessed by all ULPs within the same pro-
cess using the PVM interface. It is possible for two
or more ULPs to have LBIDs pointing to the same
GBID. This indirection is used by UPVM to opti-
mize local communication. When the destination of
a message is a local ULP, the ‘communication’ is im-
plemented by mapping the GBID of the send buffer
into the LBID table of the destination ULP. Thus,
copying of buffers from one ULP to another is elim-
inated. The LBID indirection is also useful when a
ULP executes a pvm_setsbuf(LBID) call. If the
global buffer mapped to the LBID is shared with other
ULPs, then a new global buffer is allocated trans-
parently to the ULP. The LBID-GBID consistency is
managed through reference counting mechanisms.

Since UPVM implements the PVM interface, a lot
of functionality provided by the standard PVM library
needs to be duplicated within UPVM. To facilitate a
quick implementation, the UPVM prototype is built
on top of the PVM library. In other words, UPVM
implements the ULP abstraction, heap space man-
agement, ULP scheduling, and local ULP communi-
cation and uses PVM for actual buffer creation, pack-
ing, unpacking, and remote communication. In fact,
the GBIDs are the buffer identifiers returned by the
PVM library. For example, a mk_buf call in UPVM
is implemented by calling mk_bufin PVM, allocating
a LBID in the ULP, and establishing a LBID-to-GBID
mapping. Thus, the call has a slightly higher overhead
in UPVM than in PVM. A similar approach is adopted
to implement the packing and unpacking interface.

The decision to use PVM as the underlying plat-
form for UPVM resulted in a certain complication.
The PVM library makes the assumption that it is
called in the context of a single process (i.e, a sin-
gle data space), which is no longer true in the case of
ULPs. Since each ULP has its own global variables,
PVM code will access values from different locations
depending on the ULP context in which it is executed.
We solved this problem by allocating a specific data
segment in which all PVM code is executed. In other
words, for every PVM call, the DP register is changed
to point to PVM’s data segment, PVM code is exe-
cuted, and the original DP is restored at the end of
the call. Also, certain extra UPVM data is sent on
each of the pvm_send calls that is used for protocol
exchange between the different UPVM processes.

Finally, dynamic memory management routines
such as malloc and free, provided by OS libraries,
cannot be used since the routines need to use differ-
ent heaps depending on the execution context. To get
around this problem, we implemented our own mem-
ory management routines.

4 Performance Analysis

The performance analysis of the UPVM package is
divided into two sections. We first present the results
of certain micro-benchmarks for context switch, lo-
cal communication, and remote communication. The
goal i1s to ascertain the costs of the primitive opera-
tions provided by UPVM. We then analyze two ap-
plications: a program that implements ring communi-
cation and one that implements a Laplace solver for
two-dimensional grids.

All experiments were conducted on two HP series
9000/720 workstations that were otherwise idle, con-
nected over a 10Mb/sec Ethernet. Each of the work-
stations has a PA-RISC 1.1 processor, 64 MB main
memory, and is running the HP-UX 9.01 operating
system.

4.1 Context switch

The context switch benchmark measures the time
taken for one VP (an OS process or ULP) to yield to
another of the same kind. For comparison purposes,
the cost of executing a null procedure call on the HP-
UX workstation is 0.65 micro-seconds. Figure 2 gives
the context switch cost of ULPs and OS processes,
both in absolute time and as a ratio to null procedure
call cost.

Type Cost (micro-seconds) | Ratio
ULP switch 4.74 7.30
UNIX switch 195.00 300.46

Figure 2: Context switch costs (absolute and relative)

Isolating the process context switch cost in a
portable manner is extremely difficult, since there is no
equivalent of a yield-to-another-process system call on
UNIX. Our solution to this problem was to use Quster-
hout’s context switch benchmark [18]. In this case, we
calculate half the time taken by two UNIX processes
to alternately read and write one byte from a pair of
pipes. This implies that the UNIX process switch cost
given in figure 2 includes the cost of reading and writ-
ing one byte from a pipe in addition to the true process
switch costs. However, even if we consider only half
of the observed process switch costs, the ULP switch
is still more than an order of magnitude faster. The
ULP package performance can be attributed to two
factors. First, since the ULPs are within the same OS
process, performing system calls is not necessary to
yield to another ULP. Second, the ULP package em-
ploys hand-off scheduling which eliminates the latency
in scheduling the destination ULP.

4.2 Local communication

The local communication benchmark measures the
round-trip message communication cost between two
VPs. The benchmark is compiled with PVM library
and then with UPVM, yielding two different executa-
bles. In the case of PVM, the local communication
cost measured is between two UNIX processes on the
same node. In the case of UPVM, the cost measured
is between two ULPs that are executing within the
same UNIX process. The numbers in figure 3 are half



the round-trip cost. We assume that this closely ap-
proximates the one-way communication cost.

Message size(bytes) | PVM(ms) | UPVM(ms)
0 1.40 0.12

1 1.42 0.12

512 1.61 0.14

1000 1.85 0.14

10000 6.55 0.39

100000 47.36 5.55

Figure 3: Local communication costs

The local communication cost of UPVM is around
an order of magnitude better than that of PVM. This
improvement can be attributed to two factors: the
low ULP context switch costs, and optimized message
passing that takes advantage of the shared address
space(as described in section 3). In other words, local
ULP communication avoids the cost of system call in-
vocation, process context switch, message buffer copy
from source process into kernel, and message buffer
copy from kernel into the destination process.

4.3 Remote communication

Since UPVM uses PVM for remote communication
and treats PVM as a black box as much as possible,
we expected a marginal increase in the cost of the re-
mote communication. This increase is visible in figure
4, which shows that UPVM costs are about 3.5 %, 3%
and 1% higher for 1K, 10K and 100K message sizes
respectively. The overhead i1s due to a combination of
per-ULP buffer table operations, the reference count-
ing mechanism, a locality check, and some run-time
debugging code.

Message size(bytes) | PVM(ms) | UPVM(ms)
0 2.65 2.80

1 2.63 2.80

512 3.35 3.50

1000 4.01 4.15

10000 17.06 17.60

100000 144.70 146.36

Figure 4: Remote communication costs

4.4 Ring communication

The ring program creates a specified number of VPs
that then perform ring communication using small
(one integer data item) messages. The time measured
is the average time taken by a message to go once
around the ring.

The first experiment measures the ring program
performance when all VPs are allocated on a single
node. The results are shown in figure 5. Since all
VP communication is local, the order of magnitude
improvement in UPVM performance over PVM 1is in
line with the local communication and context switch
results.

The second experiment examines the performance
effects of two VP-to-processor allocation strategies,
interleaved and blocked. In the interleaved (Intlv)

# VPs | PVM(ms) | UPVM(ms)
2 2.55 0.26

4 5.64 0.56

6 8.42 0.82

8 11.16 1.15

10 14.35 1.33

14 21.50 1.90

20 32.86 2.87

24 42.85 3.50

Figure 5: Ring on one node

scheme, the application VPs are distributed over two
processors such that every inter-VP communication is
remote. In other words, VPs that are ‘neighbours’ in
the ring are allocated to different processors. Thus,
this is worst-case scenario in UPVM since there is
no possibility for optimizing local communication. In
contrast, the blocked (Blk) allocation scheme takes
advantage of the ring communication pattern. The
ring of VPs is cut in the middle and the two parts are
allocated to the different processors. Thus, irrespec-
tive of the degree of VP decomposition, only two re-
mote communications are needed in sending a message
once around the ring, and all other communications
will be local to the processors. Figure 6 summarizes
the results for the two schemes.

As expected, performances of ring on PVM and
UPVM are comparable for the interleaved scheme.
UPVM performs significantly better than PVM for the
blocked scheme. Specifically, it performs at least twice
as better as PVM for 8 or more VPs. This is because,
as the number of VPs increase;, UPVM gains more
from its local communication optimizations. Thus, a
suitable VP allocation scheme is a critical factor for
UPVM in achieving high performance.

# VPs PVM(ms)
Intlv Blk
4.82 4.82 5.01 5.01

2
4 976  7.86 | 10.27 5.19
6
8

UPVM(ms)
Intlv Blk

14.64 10.82 | 15.08 6.14
21.75 14.01 | 20.34 6.40
10 | 26.28 17.06 | 25.59 7.21
14 | 36.86 23.48 | 35.67 7.69
20 | 52.88 33.66 | 51.30 8.95
24 | 64.86 41.86 | 60.88 9.73

Figure 6: Ring on two nodes

4.5 Laplace grid solver

The Laplace 2-dimensional grid solver (LGS) uses
the Gauss-Jacobi method for solving a 128x128 grid.
The grid is distributed to the application VPs along
the column dimension using block decomposition. For
example, if the application 1s decomposed into two
VPs, each VP gets a 128x64 grid. Each VP “sweeps”
over its portion of the grid 10 times doing an averag-
ing operation at each point of its grid and then per-
forms a pair-wise exchange with its neighbouring VP
to update its border-element strip. After 5000 sweeps,



the application terminates. For the 128x128 grid, the
border-element strip is 512 bytes (128 floating point
numbers) long. Since there are 500 border-strip com-
munications, the total number of messages during this
application execution is equal to (N —1)-2-500, where
N is the number of VPs.

Figure 7 shows the results for LGS executing on one
processor. For comparison, the performance of the se-
quential LGS is 2.79 Mflops. The main thing to note is
that the performance is comparable for small number
of VPs since the application has a large computation-
to-communication ratio. However, as the number of
VPs increases, so does the number of local messages
as calculated from the above formula. This accounts
for the performance improvement of UPVM over PVM
for larger number of VPs. For example, at 11 VPs,
PVM performance has degraded by about 16%, while
UPVM has degraded by about 8%.

# VPs | PVM (Mflops) | UPVM (Mflops)
2 2.75 2.79
3 2.68 2.69
4 2.63 2.68
5 2.57 2.67
6 2.54 2.66
7 2.50 2.65
8 2.45 2.59
9 2.42 2.58

10 2.38 2.58
11 2.34 2.56

Figure 7: LGS on one node

Figure 8 shows the results of the application run-
ning on two processors. The VPs are block-allocated,
that is, VPs operating on neighbouring portions of the
grid are allocated to the same processor. Thus, remote
communication is reduced to one pair-wise exchange
of border strips, once per 10 sweeps.

As expected, PVM performs better in the two-VP
case, since all communication is remote. However,
we see that UPVM performs better than PVM for
all other cases. PVM has a performance degradation
of about 21% and 23% for 5 and 11 VPs respectively.
For UPVM, the degradation is about 17.1% for 5 VPs
and 17.9% for 11 VPs.

# VPs | PVM (Mflops) | UPVM (Mflops)
2 5.19 5.02
3 3.84 3.93
4 4.84 4.96
5 4.10 4.30
6 4.75 4.94
7 4.15 4.32
8 4.44 4.63
9 4.11 4.41

10 4.41 4.63
11 3.99 4.26

Figure 8: LGS on two nodes

Note the different performance trends of odd and

even number of VPs in figure 8. The performance
of the even-numbered VPs is decreasing while that of
odd-numbered VPs is increasing as we go down the
table. The reason is that of load imbalance between
the two processors. The three-VP case has the worst
performance in both systems because it has the most
imbalance in load. As the number of VPs increase, the
amount of imbalance decreases in the odd case, thus
improving the performance.

For the case of even number of VPs however, the ap-
plication is always load balanced. Thus performance
degrades with the increasing overhead of supporting
additional VPs.

5 Discussion

Based on the experimental results, what can be said
about the feasibility of over-decomposing PVM appli-
cations using UPVM?

The UPVM prototype has demonstrated an order
of magnitude performance improvement over PVM for
the communications on the same node. Applications,
for which the amount of remote communication can be
controlled, also perform better with proper allocation
of ULPs to processors. The ULP allocation scheme
is critical in achieving optimal performance. This has
been shown by both the ring and Laplace benchmarks.

However, UPVM is still constrained by its remote
communication performance. Applications that use
broadcasts among VPs cannot be over-decomposed
without increasing the number of remote communi-
cations. Considering the current implementation, this
will result in large overheads. In our future work, we
plan to optimize remote communication along with
several other portions of the UPVM prototype.

The idea of user-level processes is one approach to
the problem of providing light-weight OD and trans-
parent migration for message based parallel applica-
tions. However, there are several issues that need
to be considered when implementing, porting, pro-
gramming, or determining the applicability of UPVM.
Some of the main issues are discussed below.

5.1 OS support for performance

The problems of supporting programming abstrac-
tions at user-level are well explored in the literature
[16, 1]. Operating systems manage processes or OS
threads, and do not know about abstractions imple-
mented at user-level. This “mismatch” can result in
performance degradation of applications. For exam-
ple, because the OS does not know about ULPs, a
page fault incurred by one ULP blocks the entire OS
process, even if other ULPs are ready to run within
that process. The same situation occurs for blocking
I/O operations.

Another significant problem is the decrease in the
CPU time allocated to the application in a time-
sharing environment. The OS allocates one CPU time
quantum to a process even if there are multiple(say N)
user-level abstractions executing within the process.
Thus, instead of getting N time quantums per unit
time, the process gets 1 time quantum that is shared
among all the user-level abstractions. Because of such
problems, care had to be taken in benchmarking the

UPVM package.



However, most of these problems have been ad-
dressed in the context of user-level, thread-based sys-
tems using scheduler activations [1] and first-class
user-level threads [16]. The mechanisms implemented
therein provide the required OS support for user-level
abstractions. Similarly, the Solaris operating system
[19] implements new types of signals that can be used
to achieve better integration of user-level libraries with
the OS. We believe that future commercial operating
systems will provide more support for integrating user-
level abstractions.

5.2 Supporting a general purpose ULP

ULPs have been specifically designed to support
message-based scientific computing. Consequently,
general purpose operations permitted by their OS
counterparts are not supported. For example, true
preemptive scheduling and interfaces for forking, sock-
ets, signals, resource usage timers, etc, are not sup-
ported.

Although this functionality could be supported by
ULPs, it would add significant overhead for those ap-
plications that do not need this full generality and add
more complexity to ULP migration.

For these reasons, we suggest that a specialized ap-
plication interface be used for scientific computing,
that is much narrower than a general purpose OS in-
terface. Applications operating within this specialized
environment can obtain the benefits of location in-
dependence, transparent migration and dynamic load
balancing that are essential for shared workstation
networks. There is ongoing work with the ORNL
PVM group to define such an interface, called the Con-
current Processing Environment (CPE) interface, for
PVM-based parallel applications[2].

5.3 Migration

Transparent ULP migration is one of the major
goals of this work and is under current development.
ULP migration is designed to work between worksta-
tion architectures that are binary compatible. Het-
erogeneity is possible, but restricted, in the ULP en-
vironment. An application can be executed such that
some of its workstations are of say, architecture A and
others are of architecture B. The ULP system then
maintains two virtual address spaces, one for archi-
tecture A, and one for architecture B and allows the
migration of ULPs among the same architecture. This
allows for ULPs that are created on one architecture
to have overlapping addresses with the ULPs created
on a different architecture.

Shared libraries present yet another problem for mi-
gration even within a binary compatible environment.
These libraries are shared read-only by multiple ex-
ecuting processes on a workstation. When a process
starts executing, certain variables within the user pro-
cess are initialized by the dynamic loader so that pro-
cess can access these shared libraries. These variables
must be handled properly on migration.

Currently we restrict the scope of migration to stat-
ically linked programs.

5.4 Portability
Three portability issues have been considered while
designing the ULP package. One issue is porting the

ULP package to different architectures. The second
issue is that of supporting SPMD versus task paral-
lelism. Finally, we considered supporting a message-
passing interface other than PVM.

For porting to a new architecture, the procedure
calling conventions of the OS need to be understood.
These conventions determine the general and floating
point registers that must be saved and restored in a
ULP context switch. Since ULPs are laid out in dis-
tinct regions of a process virtual address space, the
virtual memory layout, as defined by the OS, must
also be taken into account.

To support SPMD applications only, it is sufficient
to have a compiler on the target workstation capable
of generating instructions that access data relative to
a user accessible general register (such as DP). Since
text is shared among all ULPs in an SPMD applica-
tion, a ULP context switch simply becomes the act of
saving and restoring this DP register, in addition to
the general register context.

On the other hand, extending support to task par-
allelism requires more effort. The compiler on the tar-
get workstation must be able to generate position in-
dependent code so that the object code can be loaded
into any virtual address region within a process. Fur-
thermore, the operating system must provide an in-
terface to dynamically load and link code and data
modules into an existing virtual address space.

The concept of ULPs is clearly applicable to pro-
cess based applications using message-passing inter-
faces other than PVM. The ULP creation, control,
context switch, scheduling, memory allocation, file ac-
cess, and a portion of the migration mechanism are all
independent of the message-passing interface. Thus,
for supporting a ULP package for another message-
passing interface, only the inter-ULP communication
and a portion of the migration mechanism needs to be
rewritten.

5.5 Protection and Debugging

One potential source of difficulty is that the ULP
system does not provide protection between the local
VPs of an application. This means that the execution
of multiple ULPs within the same process can cause
unexpected side-effects. A more practical problem
i1s that operating system utilities such as debuggers
and profilers that work on processes do not recognize
ULPs. Thus, debugging an application using ULPs
1s difficult. Similarly, profilers have problems under-
standing the control flow within a multi-threaded pro-
cess.

Since UPVM provides the same interface as PVM,
one can debug and profile PVM applications as normal
UNIX processes. Once the application is debugged, it
can then be compiled with UPVM. In fact, this was
the approach we adopted in running PVM programs
on UPVM.

6 Conclusions and Future work

The UPVM package provides processor virtualiza-
tion for PVM. Currently, existing SPMD applications
can be run using UPVM, usually with no modifications
to the application source. Micro-benchmarks on the



initial UPVM implementation show an order of mag-
nitude improvement over PVM in the local case. In
particular, the over-decomposition results are encour-
aging. When virtual processors (ULPs) are allocated
properly, performance of the application benchmarks
on UPVM performs and scales better than on PVM.
Our efforts are now directed toward the completion of
the ULP migration mechanism and porting to other
architectures.
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