
A User�Level Process Package for PVM�

Ravi Konuru� Jeremy Casas� Steve Otto� Robert Prouty� Jonathan Walpole
Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology
fkonuru� casas� prouty� otto� walpoleg�cse�ogi�edu

Abstract
This paper describes an approach to supporting ef�

�cient processor virtualization and dynamic load bal�
ancing for message�based� parallel programs� Specif�
ically� a user�level process package �UPVM� for
SPMD�style PVM applications is presented� UPVM
supports light�weight virtual processors that are trans�
parently and independently migratable� It also imple�
ments a source�code compatible PVM interface� which
means that existing PVM programs only need to be re�
compiled and re�linked� The performance of UPVM is
discussed and compared with that of standard PVM�

� Introduction
Processor virtualization is an attractive goal be�

cause it frees application programmers from the bur�
den of managing physical processor location and avail�
ability� Virtual processors �VPs� allow programmers
to think and code solely in terms of the parallelism
within their application� Processor virtualization also
improves system resource utilization because it allows
systems software to transparently adapt to changes
in processor availability� preemption� and load imbal�
ance� Support for dynamic reallocation is useful in
large multicomputers and essential in shared worksta�
tion environments�

Parallel processing packages� such as PVM ���	 and
P
 �
	� use operating system �OS� processes as their
VPs� Consequently� system calls provided by the OS
are used to implement their message�passing and task�
management interfaces� While this approach simpli�
�es the development and portability of such systems�
the need to invoke the OS for operations such as lo�
cal communication and scheduling leads to signi�cant
overhead� For example� communication between two
processes on the same node involves switching the reg�
ister and virtual memory context as well as copying
the message by the OS between the two processes�
The cost of these operations is high compared to alter�
natives� such as direct copy or pointer manipulation�
within the same address space�

Because of these overheads� a common approach
is to maintain a one�to�one mapping of processes to
processors� removing the need for local communica�
tion and scheduling� A side�e�ect of this approach�
however� is that programmers resort to non�blocking
message�passing primitives in an attempt to overlap

�To appear in SHPCC��� �contributed paper��

communication with computation� The use of such
primitives is generally undesirable because it increases
programming complexity�

A one�to�one mapping is also undesirable in multi�
user environments because it limits application par�
allelism to the number of currently available physical
processors� This link between application parallelism
and physical parallelism is particularly problematic in
shared workstation environments where the number
of physical processors available for parallel processing
changes frequently� In this environment� new work�
stations become idle or allocated workstations are re�
claimed by their owners� Consequently� applications
are forced to either suspend until the correct number
of processors becomes available� or double�up� on the
remaining processors� In the latter case� application
performance su�ers due to operating system overhead
and load�imbalance�

Alternatively� dynamic changes in processor avail�
ability can be managed within the application� In
this approach� application programmers are respon�
sible for redistributing work dynamically� This option
may have the greatest potential for high performance�
but results in a signi�cant increase in application pro�
gramming complexity�

A simpler approach� called over�decomposition
�OD�� is to create many more VPs than there are pro�
cessors� and to delegate the responsibility of handling
changes in processor parallelism and load balancing to
the underlying VP system� Application�independent�
dynamic load balancing is performed by the VP sys�
tem through migration of these small�grainVPs� Also�
OD allows the communication of one VP to be over�
lapped with the computation of another VP� hence
removing the need for non�blocking message�passing
primitives� If the overhead of VPs is low enough� this
approach becomes attractive� However� OD at the
granularity of OS processes leads to excessive over�
head�

Attempts to address the high cost of OS pro�
cesses have introduced a new OS abstraction called
the thread ���� �� �� ��	� Like processes� threads have
a register context and a stack� However� unlike pro�
cesses� threads do not have their own private address
space� Consequently� thread switches can be cheaper
than process switches because they need not involve
virtual memory context switches� Similarly� local com�
munication is reduced to accessing memory locations
in the same address space� Some packages implement



the thread abstraction above the OS at user level ��� �	�
These user�level thread packages further reduce the
cost of thread operations by avoiding the need to en�
ter the OS for thread scheduling and management�

The lower cost of local communication and context
switching for both user and OS�level threads means
that OD can be implemented e�ciently� However� the
fact that threads share memory means that it is di��
cult to delineate the state of one thread from another�
Hence� it is di�cult to migrate threads independently
of each other� Furthermore� existing process�based ap�
plications require extensive modi�cation to take ad�
vantage of threads�

The approach presented in this paper combines the
low�overhead of user�level threads with the migration
capability and programming model of processes� To
this end� a new VP abstraction� the User Level Process
�ULP�� is de�ned� Like a thread� a ULP de�nes a reg�
ister context and a stack� However� ULPs di�er from
threads in that they also de�ne a private data and
heap space� ULPs di�er from processes in that their
data and heap space is not protected from other ULPs
of the same application� That is� ULPs do not de�ne
a private protection domain or address space� By con�
vention� ULPs only communicate with each other via
message passing� Hence� when a ULP must migrate�
its state is clearly captured in its data space� heap�
register context and stack� These can all be trans�
ferred to the target machine independently of other
ULPs�

0

ULPs ULPs

Network

UNIX process

Machine A

Operating System

1 4

Machine B

3 5

Operating System

2

ULP System ULP System

Figure �� ULP System

From the application programmer�s perspective�
ULPs look like OS processes� Consequently� exist�
ing message�based� parallel applications that use pro�
cesses as their VPs can use ULPs with little modi�
�cation� From the ULP library�s perspective� there
are potentially many ULPs per OS process �see �g ���
All ULPs within a single OS process are scheduled by
the ULP library code that also resides in that process�
This means that ULP creation� context switching� and
local communication do not require OS intervention�
From the perspective of the OS� there is only one pro�
cess per application on any given processor�� In this
way� the parallel programmer�s notion of processor�
is virtualized� while maintaining the e�ciency of one
OS process per physical processor�

This paper presents UPVM� a prototype ULP
system for PVM applications� Existing SPMD�

�The ULP system enforces this constraint�

style PVM applications typically require only re�
compilation and relinking to use UPVM� Performance
results are presented at both the micro�benchmarking
level and at the application level� and UPVM per�
formance is compared with that of standard� UNIX��
process�based PVM�

The remainder of the paper is organized as follows�
Section � presents related work� Section � outlines the
implementation of UPVM� Performance results and a
comparison with PVM� are presented in section 
�
Section � discusses some of the main issues raised by
this research and section � gives conclusions�

� Related work
There is a wide body of work that addresses �ner

virtual processor granularity than that of OS pro�
cesses� These approaches can be broadly classi�ed as
OS�thread based� user�level�thread based� language��
based� and object�based approaches�

Operating systems such as Chorus ���	� Mach ��	�
V ��	� and Solaris ���	� provide OS threads that can
be used to reduce the cost of OD� Context switches
between OS threads of the same process do not re�
quire the switching of the virtual memory context�
Consequently� thread context switch is generally an
order of magnitude or so faster than process context
switch� An additional advantage is that local� inter�
thread communication can be performed using shared
memory� Further� the reduced thread context switch
costs increase the scope for overlap of remote commu�
nication with computation�

To further reduce the cost of thread operations�
user�level thread libraries have been proposed that
obviate operating system intervention for thread cre�
ation� termination� context switch and scheduling
���� ��� �	� Generally� user�level thread performance
is an order of magnitude better than OS threads� Al�
though both these thread�based approaches o�er sig�
ni�cant improvement over the use of OS processes�
there are two main objections to thread based ap�
proaches�

First� threads export a shared�memory program�
ming model that poses several obstacles in achieving
an e�cient implementation for distributed architec�
tures� The root of many of these problems is the
need to preserve the memory consistency imposed by
the shared�memory programming model� Distributed
shared memory �DSM� mechanisms exist that provide
consistency at the granularity of the machine page size
rather than the size of the actual data structure being
shared ���	�

Second� thread migration is complicated in the con�
text of a shared�memory programming model because
a thread�s state can be implicitly changed by other
threads through shared memory� Thus� accurate inter�
thread� data�dependence information must be known
about the application to achieve an optimal migra�
tion� In the absence of such information� application
performance is limited to that achieved from a general�
purpose DSM implementation� In contrast� ULPs do
not have any implicit data�dependence amongst them

�PVM library from ORNL� version 	�
���



as each ULP has independent register context� data
and stack segments� All changes in a ULP state due to
other ULPs occur through explicit messages between
ULPs� Since a ULP state is so clearly delineated from
other ULPs� ULP migration becomes a much simpler
problem�

Further� thread�based approaches also have a prac�
tical disadvantage� Existing process based applica�
tions have to be extensively modi�ed or rewritten to
take advantage of threads� In contrast� our approach
supports the familiar process programming model�
This implies that existing programs employing the
process model can directly bene�t from ULPs�

The Data Parallel C �DPC� compiler and run�time
environment ���	 export a SIMD� shared address space
model operated upon by a user�speci�ed number of
VPs� This number is usually much larger than the
number of processors available� The multicomputer
DPC compiler translates the SIMD DPC program
source into SPMD C code� The SPMD C code is then
compiled into an executable image using a C compiler
and an OS process is created on each allocated pro�
cessor� Multiple VPs are then emulated within each
process�

Both DPC and the ULP system separate
application�level parallelism from processor availabil�
ity and make the e�cient choice of one process per
allocated processor� Another similarity between DPC
and the ULP system is that dynamic load balancing is
performed at the granularity of VPs� However� there
are signi�cant di�erences between the two approaches�

The combination of the language and the SIMD
programming model allow DPC to reduce VP emula�
tion into simple indexing operations� All VPs share a
single stack and have no special state to be saved or
restored on a context switch� For example� switching
to a new VP in the same process is simply a matter of
using a new index for accessing the VP�s data� Thus�
heterogeneous migration is possible and OD costs are
extremely small� However� the VP emulation model
in DPC constrains VP migration to speci�c points in
execution� Speci�cally� VP migration is possible only
at the beginning or end of code segments that emulate
a single VP�

In contrast� the ULP�based approach is more lan�
guage independent and VP migration can be per�
formed at any instant�� Since an independent data�
stack and register context is maintained for each ULP�
preemption of a ULP is possible by simply saving its
current register context and restoring it on resump�
tion� In other words� the per�ULP context allows ULP
emulation and migration to be independent of the ex�
ecution state of other ULPs� However� these bene�ts
are achieved at the cost of higher context switch over�
heads and the restriction of migration to homogeneous
pools of processors�

Object�based systems such as Amber ��	 and COOL
���	 provide a programming environment that exports
a thread�based object oriented programmingmodel to
the user� The objects share a single address space per

�except for certain small critical sections within the ULP
system�

application� The address space is distributed across
the nodes in the network and the objects are free
�with certain restrictions� to migrate from one node
to another� Instead of providing these facilities in the
context of an object creation and invocation model of
programming� our approach aims to provide the same
bene�ts in the context of a procedure oriented� process
model�

� UPVM implementation
In this section� we outline the implementation of the

UPVM prototype on HP series �������� workstations�
running the HP�UX ���� operating system� Porting to
other systems is discussed in Sec� ��
� A more detailed
description is provided in ��
	� Some familiarity with
the PVM interface is assumed�

When the application is invoked� control is imme�
diately transferred into the UPVM library� At this
point� the number of idle processors is determined� a
process is created on each allocated processor� and the
ULPs are created within these processes� The number
of ULPs created is speci�ed by the application pro�
grammer at startup� The number of VPs is a runtime
parameter� but cannot be changed during the run �
there is no facility for new ULP creation during the
run� The amount of physical parallelism can change
during a run� as VPs migrate to newly idle processors�

Each ULP has an opaque� location�independent
identi�er�UID� that is unique within an application�
This identi�er replaces the TID exported by PVM� All
communication is performed using these UIDs� Thus
applications that treat TIDs as opaque objects have
no problem in using UPVM�

Each ULP is assigned distinct data� heap and stack
regions in the address space of the process� In other
words� each ULP has its own view of global variables
and current execution state� Malloc and free func�
tions invoked by a ULP result in operations on the
per�ULP heap space� Furthermore� the mapping of a
ULP to a set of virtual addresses is made unique across
all the processes of the application� For example� con�
sider an application that is decomposed into �� ULPs
across � processes� If ULP � is allocated a virtual ad�
dress region V� in process A� then V� is reserved for
ULP � in all other processes� even though ULP � is
not present in those processes� This mapping allows a
ULP to migrate from one process to another without
requiring pointer manipulation�

HP�UX compilers generate all data references rela�
tive to a user�accessible register called the data pointer
�DP�� Thus for an SPMD application� for which all
ULPs share the same code� a ULP context switch sim�
ply involves storing the general register state� stack
pointer and DP� and restoring these for the new ULP�
Since UPVM implements non�preemptive scheduling�
only those registers that need to be saved on a proce�
dure call �callee�save registers� are saved�

The non�preemptive scheduler manages a ULP run
queue and a blocked queue� A ULP blocks when it
executes a pvm recv for which the required message
has not arrived� The ULP chosen to run next de�
pends on the location of the source ULP speci�ed
in the pvm recv� If the source ULP is local� that



is� within the same process� and is runnable� UPVM
schedules the destination ULP regardless of its posi�
tion in the run queue� This technique is called hand�o�
scheduling��	�

The PVM bu�er management interface is imple�
mented by giving each ULP its own local view of bu�er
identi�ers� the current send bu�er and receive bu�er�
These local bu�er identi�ers �LBIDs� are mapped
into global bu�er identi�ers �GBIDs� by UPVM� The
global bu�ers are created within the library and are
indirectly accessed by all ULPs within the same pro�
cess using the PVM interface� It is possible for two
or more ULPs to have LBIDs pointing to the same
GBID� This indirection is used by UPVM to opti�
mize local communication� When the destination of
a message is a local ULP� the �communication� is im�
plemented by mapping the GBID of the send bu�er
into the LBID table of the destination ULP� Thus�
copying of bu�ers from one ULP to another is elim�
inated� The LBID indirection is also useful when a
ULP executes a pvm setsbuf�LBID� call� If the
global bu�er mapped to the LBID is shared with other
ULPs� then a new global bu�er is allocated trans�
parently to the ULP� The LBID�GBID consistency is
managed through reference counting mechanisms�

Since UPVM implements the PVM interface� a lot
of functionality provided by the standard PVM library
needs to be duplicated within UPVM� To facilitate a
quick implementation� the UPVM prototype is built
on top of the PVM library� In other words� UPVM
implements the ULP abstraction� heap space man�
agement� ULP scheduling� and local ULP communi�
cation and uses PVM for actual bu�er creation� pack�
ing� unpacking� and remote communication� In fact�
the GBIDs are the bu�er identi�ers returned by the
PVM library� For example� a mk buf call in UPVM
is implemented by callingmk buf in PVM� allocating
a LBID in the ULP� and establishing a LBID�to�GBID
mapping� Thus� the call has a slightly higher overhead
in UPVM than in PVM� A similar approach is adopted
to implement the packing and unpacking interface�

The decision to use PVM as the underlying plat�
form for UPVM resulted in a certain complication�
The PVM library makes the assumption that it is
called in the context of a single process �i�e� a sin�
gle data space�� which is no longer true in the case of
ULPs� Since each ULP has its own global variables�
PVM code will access values from di�erent locations
depending on the ULP context in which it is executed�
We solved this problem by allocating a speci�c data
segment in which all PVM code is executed� In other
words� for every PVM call� the DP register is changed
to point to PVM�s data segment� PVM code is exe�
cuted� and the original DP is restored at the end of
the call� Also� certain extra UPVM data is sent on
each of the pvm send calls that is used for protocol
exchange between the di�erent UPVM processes�

Finally� dynamic memory management routines
such as malloc and free� provided by OS libraries�
cannot be used since the routines need to use di�er�
ent heaps depending on the execution context� To get
around this problem� we implemented our own mem�
ory management routines�

� Performance Analysis
The performance analysis of the UPVM package is

divided into two sections� We �rst present the results
of certain micro�benchmarks for context switch� lo�
cal communication� and remote communication� The
goal is to ascertain the costs of the primitive opera�
tions provided by UPVM� We then analyze two ap�
plications� a program that implements ring communi�
cation and one that implements a Laplace solver for
two�dimensional grids�

All experiments were conducted on two HP series
�������� workstations that were otherwise idle� con�
nected over a ��Mb�sec Ethernet� Each of the work�
stations has a PA�RISC ��� processor� �
 MB main
memory� and is running the HP�UX ���� operating
system�

��� Context switch
The context switch benchmark measures the time

taken for one VP �an OS process or ULP� to yield to
another of the same kind� For comparison purposes�
the cost of executing a null procedure call on the HP�
UX workstation is ���� micro�seconds� Figure � gives
the context switch cost of ULPs and OS processes�
both in absolute time and as a ratio to null procedure
call cost�

Type Cost �micro�seconds� Ratio
ULP switch 
��
 ����
UNIX switch ������ ����
�

Figure �� Context switch costs �absolute and relative�

Isolating the process context switch cost in a
portable manner is extremely di�cult� since there is no
equivalent of a yield�to�another�process system call on
UNIX� Our solution to this problemwas to use Ouster�
hout�s context switch benchmark ���	� In this case� we
calculate half the time taken by two UNIX processes
to alternately read and write one byte from a pair of
pipes� This implies that the UNIX process switch cost
given in �gure � includes the cost of reading and writ�
ing one byte from a pipe in addition to the true process
switch costs� However� even if we consider only half
of the observed process switch costs� the ULP switch
is still more than an order of magnitude faster� The
ULP package performance can be attributed to two
factors� First� since the ULPs are within the same OS
process� performing system calls is not necessary to
yield to another ULP� Second� the ULP package em�
ploys hand�o� scheduling which eliminates the latency
in scheduling the destination ULP�

��� Local communication
The local communication benchmark measures the

round�trip message communication cost between two
VPs� The benchmark is compiled with PVM library
and then with UPVM� yielding two di�erent executa�
bles� In the case of PVM� the local communication
cost measured is between two UNIX processes on the
same node� In the case of UPVM� the cost measured
is between two ULPs that are executing within the
same UNIX process� The numbers in �gure � are half



the round�trip cost� We assume that this closely ap�
proximates the one�way communication cost�

Message size�bytes� PVM�ms� UPVM�ms�
� ��
� ����
� ��
� ����

��� ���� ���

���� ���� ���


����� ���� ����
������ 
���� ����

Figure �� Local communication costs

The local communication cost of UPVM is around
an order of magnitude better than that of PVM� This
improvement can be attributed to two factors� the
low ULP context switch costs� and optimized message
passing that takes advantage of the shared address
space�as described in section ��� In other words� local
ULP communication avoids the cost of system call in�
vocation� process context switch� message bu�er copy
from source process into kernel� and message bu�er
copy from kernel into the destination process�

��� Remote communication
Since UPVM uses PVM for remote communication

and treats PVM as a black box as much as possible�
we expected a marginal increase in the cost of the re�
mote communication� This increase is visible in �gure

� which shows that UPVM costs are about ��� �� ��
and �� higher for �K� ��K and ���K message sizes
respectively� The overhead is due to a combination of
per�ULP bu�er table operations� the reference count�
ing mechanism� a locality check� and some run�time
debugging code�

Message size�bytes� PVM�ms� UPVM�ms�
� ���� ����
� ���� ����

��� ���� ����
���� 
��� 
���

����� ����� �����
������ �

��� �
����

Figure 
� Remote communication costs

��� Ring communication
The ring program creates a speci�ed number of VPs

that then perform ring communication using small
�one integer data item� messages� The time measured
is the average time taken by a message to go once
around the ring�

The �rst experiment measures the ring program
performance when all VPs are allocated on a single
node� The results are shown in �gure �� Since all
VP communication is local� the order of magnitude
improvement in UPVM performance over PVM is in
line with the local communication and context switch
results�

The second experiment examines the performance
e�ects of two VP�to�processor allocation strategies�
interleaved and blocked� In the interleaved �Intlv�

� VPs PVM�ms� UPVM�ms�
� ���� ����

 ���
 ����
� ��
� ����
� ����� ����

�� �
��� ����
�
 ����� ����
�� ����� ����
�
 
���� ����

Figure �� Ring on one node

scheme� the application VPs are distributed over two
processors such that every inter�VP communication is
remote� In other words� VPs that are �neighbours� in
the ring are allocated to di�erent processors� Thus�
this is worst�case scenario in UPVM since there is
no possibility for optimizing local communication� In
contrast� the blocked �Blk� allocation scheme takes
advantage of the ring communication pattern� The
ring of VPs is cut in the middle and the two parts are
allocated to the di�erent processors� Thus� irrespec�
tive of the degree of VP decomposition� only two re�
mote communications are needed in sending a message
once around the ring� and all other communications
will be local to the processors� Figure � summarizes
the results for the two schemes�

As expected� performances of ring on PVM and
UPVM are comparable for the interleaved scheme�
UPVM performs signi�cantly better than PVM for the
blocked scheme� Speci�cally� it performs at least twice
as better as PVM for � or more VPs� This is because�
as the number of VPs increase� UPVM gains more
from its local communication optimizations� Thus� a
suitable VP allocation scheme is a critical factor for
UPVM in achieving high performance�

� VPs PVM�ms� UPVM�ms�
Intlv Blk Intlv Blk

� 
��� 
��� ���� ����

 ���� ���� ����� ����
� �
��
 ����� ����� ���

� ����� �
��� ����
 ��
�

�� ����� ����� ����� ����
�
 ����� ���
� ����� ����
�� ����� ����� ����� ����
�
 �
��� 
���� ����� ����

Figure �� Ring on two nodes

��� Laplace grid solver
The Laplace ��dimensional grid solver �LGS� uses

the Gauss�Jacobi method for solving a ���x��� grid�
The grid is distributed to the application VPs along
the column dimension using block decomposition� For
example� if the application is decomposed into two
VPs� each VP gets a ���x�
 grid� Each VP sweeps�
over its portion of the grid �� times doing an averag�
ing operation at each point of its grid and then per�
forms a pair�wise exchange with its neighbouring VP
to update its border�element strip� After ���� sweeps�



the application terminates� For the ���x��� grid� the
border�element strip is ��� bytes ���� �oating point
numbers� long� Since there are ��� border�strip com�
munications� the total number of messages during this
application execution is equal to �N��� �� ����� where
N is the number of VPs�

Figure � shows the results for LGS executing on one
processor� For comparison� the performance of the se�
quential LGS is ���� M�ops� The main thing to note is
that the performance is comparable for small number
of VPs since the application has a large computation�
to�communication ratio� However� as the number of
VPs increases� so does the number of local messages
as calculated from the above formula� This accounts
for the performance improvement of UPVM over PVM
for larger number of VPs� For example� at �� VPs�
PVM performance has degraded by about ���� while
UPVM has degraded by about ���

� VPs PVM �M�ops� UPVM �M�ops�
� ���� ����
� ���� ����

 ���� ����
� ���� ����
� ���
 ����
� ���� ����
� ��
� ����
� ��
� ����

�� ���� ����
�� ���
 ����

Figure �� LGS on one node

Figure � shows the results of the application run�
ning on two processors� The VPs are block�allocated�
that is� VPs operating on neighbouring portions of the
grid are allocated to the same processor� Thus� remote
communication is reduced to one pair�wise exchange
of border strips� once per �� sweeps�

As expected� PVM performs better in the two�VP
case� since all communication is remote� However�
we see that UPVM performs better than PVM for
all other cases� PVM has a performance degradation
of about ��� and ��� for � and �� VPs respectively�
For UPVM� the degradation is about ����� for � VPs
and ����� for �� VPs�

� VPs PVM �M�ops� UPVM �M�ops�
� ���� ����
� ���
 ����

 
��
 
���
� 
��� 
���
� 
��� 
��

� 
��� 
���
� 
�

 
���
� 
��� 
�
�

�� 
�
� 
���
�� ���� 
���

Figure �� LGS on two nodes

Note the di�erent performance trends of odd and

even number of VPs in �gure �� The performance
of the even�numbered VPs is decreasing while that of
odd�numbered VPs is increasing as we go down the
table� The reason is that of load imbalance between
the two processors� The three�VP case has the worst
performance in both systems because it has the most
imbalance in load� As the number of VPs increase� the
amount of imbalance decreases in the odd case� thus
improving the performance�

For the case of even number of VPs however� the ap�
plication is always load balanced� Thus performance
degrades with the increasing overhead of supporting
additional VPs�

� Discussion
Based on the experimental results� what can be said

about the feasibility of over�decomposing PVM appli�
cations using UPVM 

The UPVM prototype has demonstrated an order
of magnitude performance improvement over PVM for
the communications on the same node� Applications�
for which the amount of remote communication can be
controlled� also perform better with proper allocation
of ULPs to processors� The ULP allocation scheme
is critical in achieving optimal performance� This has
been shown by both the ring and Laplace benchmarks�

However� UPVM is still constrained by its remote
communication performance� Applications that use
broadcasts among VPs cannot be over�decomposed
without increasing the number of remote communi�
cations� Considering the current implementation� this
will result in large overheads� In our future work� we
plan to optimize remote communication along with
several other portions of the UPVM prototype�

The idea of user�level processes is one approach to
the problem of providing light�weight OD and trans�
parent migration for message based parallel applica�
tions� However� there are several issues that need
to be considered when implementing� porting� pro�
gramming� or determining the applicability of UPVM�
Some of the main issues are discussed below�

��� OS support for performance
The problems of supporting programming abstrac�

tions at user�level are well explored in the literature
���� �	� Operating systems manage processes or OS
threads� and do not know about abstractions imple�
mented at user�level� This mismatch� can result in
performance degradation of applications� For exam�
ple� because the OS does not know about ULPs� a
page fault incurred by one ULP blocks the entire OS
process� even if other ULPs are ready to run within
that process� The same situation occurs for blocking
I�O operations�

Another signi�cant problem is the decrease in the
CPU time allocated to the application in a time�
sharing environment� The OS allocates one CPU time
quantum to a process even if there are multiple�say N�
user�level abstractions executing within the process�
Thus� instead of getting N time quantums per unit
time� the process gets � time quantum that is shared
among all the user�level abstractions� Because of such
problems� care had to be taken in benchmarking the
UPVM package�



However� most of these problems have been ad�
dressed in the context of user�level� thread�based sys�
tems using scheduler activations ��	 and �rst�class
user�level threads ���	� The mechanisms implemented
therein provide the required OS support for user�level
abstractions� Similarly� the Solaris operating system
���	 implements new types of signals that can be used
to achieve better integration of user�level libraries with
the OS� We believe that future commercial operating
systems will provide more support for integrating user�
level abstractions�

��� Supporting a general purpose ULP
ULPs have been speci�cally designed to support

message�based scienti�c computing� Consequently�
general purpose operations permitted by their OS
counterparts are not supported� For example� true
preemptive scheduling and interfaces for forking� sock�
ets� signals� resource usage timers� etc� are not sup�
ported�

Although this functionality could be supported by
ULPs� it would add signi�cant overhead for those ap�
plications that do not need this full generality and add
more complexity to ULP migration�

For these reasons� we suggest that a specialized ap�
plication interface be used for scienti�c computing�
that is much narrower than a general purpose OS in�
terface� Applications operating within this specialized
environment can obtain the bene�ts of location in�
dependence� transparent migration and dynamic load
balancing that are essential for shared workstation
networks� There is ongoing work with the ORNL
PVM group to de�ne such an interface� called the Con�
current Processing Environment �CPE� interface� for
PVM�based parallel applications��	�

��� Migration
Transparent ULP migration is one of the major

goals of this work and is under current development�
ULP migration is designed to work between worksta�
tion architectures that are binary compatible� Het�
erogeneity is possible� but restricted� in the ULP en�
vironment� An application can be executed such that
some of its workstations are of say� architecture A and
others are of architecture B� The ULP system then
maintains two virtual address spaces� one for archi�
tecture A� and one for architecture B and allows the
migration of ULPs among the same architecture� This
allows for ULPs that are created on one architecture
to have overlapping addresses with the ULPs created
on a di�erent architecture�

Shared libraries present yet another problem for mi�
gration even within a binary compatible environment�
These libraries are shared read�only by multiple ex�
ecuting processes on a workstation� When a process
starts executing� certain variables within the user pro�
cess are initialized by the dynamic loader so that pro�
cess can access these shared libraries� These variables
must be handled properly on migration�

Currently we restrict the scope of migration to stat�
ically linked programs�

��� Portability
Three portability issues have been considered while

designing the ULP package� One issue is porting the

ULP package to di�erent architectures� The second
issue is that of supporting SPMD versus task paral�
lelism� Finally� we considered supporting a message�
passing interface other than PVM�

For porting to a new architecture� the procedure
calling conventions of the OS need to be understood�
These conventions determine the general and �oating
point registers that must be saved and restored in a
ULP context switch� Since ULPs are laid out in dis�
tinct regions of a process virtual address space� the
virtual memory layout� as de�ned by the OS� must
also be taken into account�

To support SPMD applications only� it is su�cient
to have a compiler on the target workstation capable
of generating instructions that access data relative to
a user accessible general register �such as DP�� Since
text is shared among all ULPs in an SPMD applica�
tion� a ULP context switch simply becomes the act of
saving and restoring this DP register� in addition to
the general register context�

On the other hand� extending support to task par�
allelism requires more e�ort� The compiler on the tar�
get workstation must be able to generate position in�
dependent code so that the object code can be loaded
into any virtual address region within a process� Fur�
thermore� the operating system must provide an in�
terface to dynamically load and link code and data
modules into an existing virtual address space�

The concept of ULPs is clearly applicable to pro�
cess based applications using message�passing inter�
faces other than PVM� The ULP creation� control�
context switch� scheduling� memory allocation� �le ac�
cess� and a portion of the migration mechanism are all
independent of the message�passing interface� Thus�
for supporting a ULP package for another message�
passing interface� only the inter�ULP communication
and a portion of the migration mechanism needs to be
rewritten�

��� Protection and Debugging
One potential source of di�culty is that the ULP

system does not provide protection between the local
VPs of an application� This means that the execution
of multiple ULPs within the same process can cause
unexpected side�e�ects� A more practical problem
is that operating system utilities such as debuggers
and pro�lers that work on processes do not recognize
ULPs� Thus� debugging an application using ULPs
is di�cult� Similarly� pro�lers have problems under�
standing the control �ow within a multi�threaded pro�
cess�

Since UPVM provides the same interface as PVM�
one can debug and pro�le PVM applications as normal
UNIX processes� Once the application is debugged� it
can then be compiled with UPVM� In fact� this was
the approach we adopted in running PVM programs
on UPVM�

� Conclusions and Future work
The UPVM package provides processor virtualiza�

tion for PVM� Currently� existing SPMD applications
can be run using UPVM� usually with no modi�cations
to the application source� Micro�benchmarks on the



initial UPVM implementation show an order of mag�
nitude improvement over PVM in the local case� In
particular� the over�decomposition results are encour�
aging� When virtual processors �ULPs� are allocated
properly� performance of the application benchmarks
on UPVM performs and scales better than on PVM�
Our e�orts are now directed toward the completion of
the ULP migration mechanism and porting to other
architectures�

Acknowledgements
We thank Jon Inouye and Khaled Al Saqabi for

discussions�

References
��	 T� E� Anderson� B� N� Bershad� E� D� Lazowska�

and H� M� Levy� Scheduler activations� E�ec�
tive kernel support for the user�level management
of parallelism� ACM Transactions on Computer
Systems� ��������!��� February �����

��	 Adam Beguelin� Jack Dongarra� Al Geist� Robert
Manchek� Steve Otto� and Jon Walpole� PVM�
Experiences� current status and future direction�
In Supercomputing�	
 Proceedings� pages ���!��
�����

��	 David L� Black� Scheduling support for concur�
rency and parallelism in the Mach operating sys�
tem� Computer� ��������!
�� May �����

�
	 Ralph Butler and Ewing Lusk� User�s guide to the
p
 parallel programming system� Technical Re�
port ANL������� Argonne National laboratory�
�����

��	 Je�rey S� Chase� Franz G� Amador� Edward D�
Lazowska� Henry M� Levy� and Richard J� Little�
�eld� The Amber system� Parallel programming
on a network of multiprocessors� In Proceedings of
the ��th Symposium on Operating System Prin�
ciples� pages �
�!���� December �����

��	 David R� Cheriton� The V kernel� A software base
for distributed systems� IEEE Software� �������!

�� April ���
�

��	 Eric C� Cooper and Richard P� Draves� C
Threads� Technical Report CMU�CS������
�
School of Computer Science� Carnegie Mellon
University� February �����

��	 Thomas W� Doeppner� Threads� A System for
the Support of Concurrent Programming� Tech�
nical Report CS������� Department of Computer
Science Brown University� Providence� RI ������
June �����

��	 Mike Accetta et al� Mach� A new kernel foun�
dation for UNIX development� In Proceedings of
the Summer �	� USENIX Conference� pages ��!
���� Atlanta� Georgia� �����

���	 E�W� Felten and D� McNamee� Improving ap�
plication performance by multithreading� In
Proceeding of the Scalable High Performance
Computing Conference� Williamsburg� VA� April
�����

���	 G� A� Geist and V� S� Sunderam� Network�
Base Concurrent Computing on the PVM Sys�
tem� Concurrency� Practice and Experience�

�
�����!���� June �����

���	 Michel Gien� Micro�kernel design� UNIX RE�
VIEW� ��������!��� November �����

���	 Philip J� Hatcher� Robert R� Jones Anthony
J� Lapadula� Michael J� Quinn� and Ray J� Ander�
son� A Production�quality C" Compiler for Hy�
percube Multicomputers� In Proceedings of the
Second ACM SIGPLAN Symposium on Princi�
ples � Practice of Parallel Programming� pages
��!��� Williamsburg VA� April �����

��
	 Ravi Konuru� Jeremy Casas� Robert Prouty�
Steve Otto� and Jonathan Walpole� A user�level
process package for concurrent computing� Tech�
nical Report TR�������� Dept of Computer Sci�
ence and Engineering� Oregon Graduate Institute
of Science # Technology� �����

���	 Rodger Lea� Paulo Amaral� and Christian
Jacquemot� COOL��� An object oriented support
platform built above the Chorus micro�kernel�
In Proceedings of the �		� International Work�
shop on Object Orientation in Operating Systems�
pages ��!��� Palo Alto� CA� October �����

���	 B� D� Marsh� M� L� Scott� T� J� LeBlanc� and
E� P� Markatos� First�class user�level threads� In
Proceedings of the �
th ACM Symposium on Op�
erating Systems Principles� pages ��!���� Paci�c
Grove� CA� October �����

���	 Bill Nitzberg and Virginia Lo� Distributed Shared
Memory� A Survey of Issues and Algorithms�
IEEE Computer� �
������!��� August �����

���	 John K� Ousterhout� Why aren�t operating sys�
tems getting faster as fast as hardware In Pro�
ceedings of the Summer �		� USENIX Confer�
ence� pages �
�!���� Anaheim� CA� June �����

���	 M� L� Powell� S� R� Kleiman� S� Barton� D� Shah�
D� Stein� and M� Weeks� SunOS multi�thread
architecture� In Proceedings of the Winter �		�
USENIX conference� pages �!�
� Dallas� TX�
January �����


