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Abstract

Rapid advances in hardware technology have led to wide diversity in parallel computer ar�
chitectures� This diversity makes it di�cult to evaluate or compare the performance of di�erent
parallel computers� Existing benchmarks tend either to be too architecture�speci�c� or too
high�level� Both problems can result in benchmarks that not only provide insu�cient infor�
mation on the performance characteristics of the computer being tested� but are also di�cult
to port� New benchmarking approaches are needed for new architectural classes� particularly
distributed�memory� message�passing computers�

This paper focuses on benchmarking distributed�memory message�passing computers� A
synthetic benchmark called CoMet �COmmunication METrics	� is presented� CoMet is based
on common communication patterns found in parallel scienti�c algorithms� This paper presents
the CoMet design� and describes an implementation of CoMet on the Intel iPSC
��� CoMet
is freely available by anonymous FTP from Oregon Graduate Institute�

� Introduction

Rapidly changing technology has resulted in a proliferation of supercomputers with diverse archi�

tectures and programming models� This diversity makes it di�cult to compare supercomputers�

or to evaluate their suitability for running speci�c classes of applications� Evaluating a computer

is a function of numerous issues that arise from the interplay of the application� system software�

programming language� degree of optimization� and hardware architecture� Consequently� bench�

marks designed for one class of architectures and applications can be inappropriate for evaluating

computers and applications in a di�erent class� This paper addresses the problem of benchmark�

ing distributed�memory� message�passing multiprocessors� with emphasis on numerical� scienti�c

applications�

Because of the di�culty in isolating performance e�ects� the general trend in evaluating super�

computers is to construct benchmarks from complete kernel and application programs� The idea is

to predict the performance of a speci�c class of applications on the target computer without hav�

ing to port the entire application� Instead� smaller benchmark programs with behavior similar to

�Submitted to Concurrency� Practice and Experience
yThis work was partially supported by grants from Intel Supercomputing Systems Division and the Oregon Ad�

vanced Computing Institute �OACIS��

�



the application are ported and timed� The accuracy and usefulness of such benchmarks depend on

several factors� First� the benchmark must be portable� That is� porting it to a new architecture

should require few changes to the benchmark and should be considerably less time consuming than

porting entire application programs�

Second� the benchmark should be representative of many aspects of the target application	s

behavior� To aid in porting existing applications and in developing new ones� the benchmark should

also provide detailed information regarding the performance of the target computer for each aspect�

Existing benchmarks fall short on both these counts when used to evaluate distributed�memory

message�passing computers� Regarding portability� time is wasted initially because benchmark pro�

grams must be rewritten in message�passing style� Later in the porting process� the optimization

e�ort required to make the message�passing version of the benchmark e�cient either further increases

the cost of porting the benchmark� or it is ignored� making the benchmark results less accurate� Fur�

thermore� since benchmarks for shared memory architectures are not designed around the concept

of message�passing� they fail to capture the performance e�ects of various communication patterns

commonly found in message�passing applications�

The following sections present a synthetic benchmark� called CoMet 
COmmunication MET�

rics�� designed speci�cally for evaluating distributed�memory� message�passing computers� Unlike

other benchmarks� such as Genesis ��� ��� the NAS Parallel Benchmarks ��� MPLinpack ����� and

CPEP ���� which are based on application programs� CoMet is a synthetic benchmark contain�

ing code to measure the communication characteristics of the system� As well as measuring basic

communication costs� CoMet also includes communication patterns found in typical scienti�c and

engineering applications� Rather than reducing the results of the benchmark to a single number�

they are presented in the form of graphs and communication bandwidth and latency �gures� This

approach provides detailed information that enables users to make realistic predictions of the per�

formance of their own application programs�

The remainder of the paper is organized as follows� Section  discusses the overall design of

CoMet and describes each of the benchmark kernels� An implementation of CoMet on the Intel

iPSC����� is described in section �� Section � presents and discusses the results of running CoMet

on the iPSC����� Section � surveys related work� and section � concludes the paper�

� The CoMet Benchmark

CoMet consists of two levels of benchmark �kernels�� The low�level kernels measure the machine	s

basic communication capabilities by timing variable�size� message exchanges among nodes� These

kernels comprise a basic �echo� benchmark to measure unidirectional message exchange� a �pair�

wise exchange� benchmark to measure bidirectional exchange� plus �broadcast�� �global sum�� and

�global synchronization� benchmarks� The low level kernels also include �contention� and �over�

lap� kernels to measures the e�ect of load on the machine	s basic communication performance� The

�contention� kernel is based on running the echo kernel in the presence of arti�cially generated com�

munication loads� The �overlap� kernel examines the machines ability to overlap communication

and computation�

The remaining kernels measure the e�ciency with which the machine can support certain pat�

terns of communication� The communication patterns are generated by performing operations on

a two�dimensional block�decomposed matrix� The benchmark includes kernels that update guard
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strips� shift and transpose the matrix� and broadcast rows and columns� These kernels are intended

to be representative of the behavior of scienti�c computations on distributed�memory architectures�

Clearly� CoMet could be extended to include more communication patterns�

All of the kernels assume a distributed�memory message�passing architecture� and are written

entirely in C� The individual kernels are described in detail in section ��

��� Methodology

CoMet is based on a single program� multiple data 
SPMD� model of parallel programming� Hence�

one instance of the benchmark is loaded on each of the nodes in the system� Each processor proceeds

independently between synchronization points� CoMet also supports an optional host program for

machines that have a front�end machine and require a separate host program to load the individual

node programs� The host program has the three functions listed below�

�� Allocate the required number of nodes�

� Load the benchmark programs on the allocated nodes�

�� Assign each node a unique number in the range ���P��� where P is the number of nodes

allocated�

The time measurements in CoMet are based on elapsed� wall�clock time measured on a dedicated

system� This approach avoids complications due to external system load and architecture�speci�c

measures of CPU time� Furthermore� CoMet is structured such that all timing measurements can

be made on a single node� This approach avoids the need for globally synchronized clocks that are

generally not available on distributed architectures� Finally� architectures with low clock resolution

are handled by using a repeat loop to execute each kernel multiple times for each time measurement�

The use of a call to a dummy function inside the loop� with the increment variable as a parameter�

prevents optimizing compilers from removing this loop� The overhead of the repeat loop and dummy

function calls is measured separately and subtracted from the total time in order to derive the �nal

measurement�

CoMet is designed to work over a wide range of architectures� from loosely coupled networks of

workstations to hypercube and tree�based communication networks ���� However� it is unrealistic

to expect the benchmark kernels to be completely architecture independent� Since CoMet contains

two�dimensional matrix operations� it is important to map the matrix to the processing nodes in

a manner appropriate to the architecture� CoMet de�nes a two�dimensional matrix of processors

that captures nearest�neighbor mappings� This matrix is referred to as the adjacency matrix for

the machine� This approach allows a two�dimensional application matrix to be block�decomposed

such that adjacent blocks of the application matrix are located on nearest�neighbor nodes in the

hardware architecture� The adjacency matrix can be speci�ed by hand or in other ways� In our

implementation on the iPSC���� it is speci�ed using Gray codes �����

Although there have been several attempts at message�passing standards� such as PARMACS

���� PICL ����� and MPI ����� none are yet established as standards� CoMet implements communica�

tions using high�level macros and functions to describe the di�erent patterns� The current macros

are written in NX�� but can be ported to other systems� The locally synchronous� communication

�In the locally synchronous model 
��� a send blocks until the application bu�er is copied into system space and
is available for reuse� Similarly a receive blocks until the contents of the message are completely copied into the
process�s application bu�er�
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macros used in CoMet are blocked send� blocked recv� and blocked broadcast� The macros for asyn�

chronous communication are unblocked send and unblocked recv� and are used in conjunction with

the wait for send to complete and wait for recv to completemacros� The unblocked probe msgmacro

is provided to detect the arrival of typed messages� Finally� the barrier macro is provided to allow

synchronization among nodes at the start of the benchmark kernels� Supporting communication in

this way allows communication library functions to be invoked from within the benchmark kernels

in a portable manner� but with minimal overhead�

CoMet also provides a set of support functions and macros for tasks such as initialization� clean�

up� timing� and topology description 
the number of nodes� the mapping of nodes to the adjacency

matrix� the identi�cation of nearest neighbors� and the measurement of inter�node distances� etc��

For more details see �����

Finally� our approach to benchmark integrity is to specify explicitly the functions and macros

that are allowed to be modi�ed by CoMet users� Users are not supposed to alter any other parts of the

benchmark source code� CoMet does� however� permit the use of any level of compiler optimization�

The motivation for this approach is that special compiler techniques that optimize communication

arising from common matrix manipulations are likely to be of widespread bene�t to applications�

��� Benchmark Kernels

����� Basic Communication Kernels

CoMet	s basic communication benchmarks are organized into a number of kernels� each of which

transfers varying length messages between system nodes� The �rst kernel� echo� measures the

cost of unidirectional message transfer� The second� pairwise exchange� measures the cost of

bi�directional message exchange�� The next three kernels� broadcast� global sum� and barrier

measure a machine	s support for global communication and synchronization� The echo with con�

tention kernel measures the e�ects of contention on communication performance� and the overlap

kernel measures the extent to which computation and communication can be overlapped� Each of

these kernels is described below�

Echo The echo kernel 
Figure �� is based on a simple� uni�directional transfer of messages between

nodes� A test node sends a message to another node and waits for a reply message� Time measure�

ments are taken only on the initiating node� Therefore� the time for the uni�directional transfer is

assumed to be half of the measured time� Echo generates a set of results for di�erent message sizes

and various inter�node distances�

Pairwise Exchange The pairwise exchange kernel 
�gure � is an extension of the echo kernel

that measures the time to exchange messages between two nodes� Two nodes simultaneously call

send and then receive in order to exchange messages� Timing is performed on one node only� This

kernel assumes bu�ered message passing semantics for the simultaneous sends� Note that on systems

that do not support such semantics� this kernel can deadlock�

Broadcast The broadcast kernel 
�gure �� measures the time taken to broadcast a message to

all other nodes� In the absence of a broadcast primitive or library support� this kernel can be

�This kernel has the potential to deadlock on machines with non�bu�ered message�passing semantics�
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begin
for 
hop � � to hop � maximum hops possible�
begin

for 
message size � � to message size � over a page size�
begin

t� � get time�
if 
test node� then

send message to another node�
receive message from other node�

else
if 
communicating node�

receive message from test node�
send message back to test node�

end if
end if
t� � get time�
echo time on test node � t� � t��

end for
end for

end

Figure �� Pseudo�code for echo

begin
for 
hop � � to hop � maximum hops possible�
begin

for 
message size � � to message size � over a page size�
begin

t� � get time�
if 
test node� then

send message to communicating node�
receive message from communicating node�

else
if 
communicating node�

send message to test node�
receive message from test node�

end if
end if
t� � get time�
pairwise exchange time on test node � t� � t��

end for
end for

end

Figure � Pseudo�code for pairwise exchange
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begin
for 
message size � � to message size � over a page size�
begin

t� � get time�
if 
test node� then

broadcast message to all nodes�
else
begin

receive message broadcasted�
end if
barrier
��end if
t� � get time�
broadcast time on test node � t� � t��

end for
end

Figure �� Pseudo�code for broadcast

begin
double precision � vector�

for 
vector length � � to vector length � max vec length�
begin

t� � get time�
vector �� global sum of vector across all nodes�
t� � get time�
global sum time on test node � t� � t��

end
end

Figure �� Pseudo�code for global reduction

implemented using a series of sends� As with the other kernels� broadcast generates results for

various message sizes�

Global Reduction The global reduction kernel 
�gure �� is related to the broadcast kernel in

the sense that it requires each node to send a value to all other nodes� However� global reduction

also requires each node to calculate the global sum of the individual elements of a double precision

vector stored on each node� At the end of the global reduction� all nodes contain the answer� The

global reduction kernel is executed for varying vector lengths�

Global Synchronization The global synchronization kernel measures the minimumtime required

to complete a global barrier synchronization� Timing it is di�cult because di�erent nodes may be

at di�erent stages of execution when it is �rst called� Hence� attempting to measure the best�case

time for a global synchronization makes more sense than measuring the worst�case time� The global

synchronization kernel accomplishes this by repeatedly calling and timing global synchronizations�

The time for the �rst barrier is not reported by the benchmark�
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Figure �� The logical topology for the contention kernel� The arrows denote communication links
and the boxes denote nodes� Nodes  and � run the echo kernel while nodes � and � provide cross
tra�c�

Contention All the kernels described above are intended to be run on idle systems� In order to

study the e�ects of system load on communication performance� the contention kernel 
Figure ����

introduces measured loads into the system while running the echo kernel� It chooses four nodes

such that two can introduce load 
by continuously exchanging messages� on the communication

links between the other two that are running the echo kernel� The choice of these four nodes is

architecture dependent� For example� on an eight�node iPSC���� hypercube� nodes � and � would be

chosen to continuously exchange messages� i�e�� they would correspond to nodes � and � respectively

in �gure �� These messages would pass through nodes � and �� which would be running the echo

kernel in order to gather measurements� i�e�� hypercube nodes � and � would correspond to nodes 

and � respectively in �gure �� The degree of load introduced is varied by transferring messages of

di�erent sizes�

Overlap The overlap kernel 
�gure � and �� is designed to measure the extent to which commu�

nication and computation can be overlapped on the target architecture� First� it runs the pairwise

exchange kernel with a DAXPY 
����� computational part using synchronous communication� Then

it repeats the pairwise exchange kernel� overlapping asynchronous communication with the DAXPY

computational part� The amount of computation is varied by changing the lengths of the vectors

for the DAXPY� and the amount of communication is varied by changing the message size� The

kernel uses di�erent message sizes and vector lengths to explore the extent to which overlap can be

achieved�

����� Matrix�Related Kernels

Although scienti�c computation gives rise to a variety of communication patterns� matrix manipu�

lation is central to many scienti�c applications� Therefore� the kernels in CoMet	s higher layer are

modeled on common matrix manipulation operations� The update guard� shift� transpose� and

row�column broadcast kernels are based on a two dimensional matrix that is block�decomposed�

with a one�element guard�wrapper� over a set of acquired nodes� A setup module is used to initialize

the matrix with values that are un�writable by the user� Similarly� the values in the resultant matrix

are checked by a veri�cation module� All matrix operations are invoked as macros or functions that

can be in�lined� and all but the setup and veri�cation modules can be re�implemented by the user�

as desired�

�The guard wrapper conceptually surrounds the part of the matrix local to the node� It is used to store the
neighboring values of the matrix that are resident on neighboring nodes� The motivation behind the guard wrapper
lies in the fact that a node can access some of the non�local values of the global matrix by simply referring to the
values in this guard wrapper � see Figure ��
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begin
if 
node �� � or node �� �� then

forever loop
if 
node �� �� then

send message to fourth node�
end if
if 
node �� �� then

receive message from �rst node�
end if

end for
else

if 
node ��  or node �� �� then
t� � get time�
if 
node �� � then

send message to third node�
receive message from third node�

else
if 
node �� ��

receive message from second node�
send message back to second node�

end if
end if
t� � get time�
echo time with contention 
on node � � t� � t��

end if
end if

end

Figure �� Pseudo�code for echo with contention

begin �synchronous version�
t� � get time�
if 
test node� then

send message to other node�
receive message from other node�

else
if 
communicating node� then

send message to test node�
receive message from test node�

end if
endif
perform DAXPY computation 
vector length��
t� � get time�
time without overlap on test node � t� � t��

end �synchronous version�

Figure �� Pseudo�code for synchronous portion of the overlap kernel
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begin �asynchronous version�
t� � get time�
if 
test node� then

post a send message to other node�
post a receive message from other node�

else
if 
communicating node� then

post a send message to test node�
post a receive message from test node�

end if
endif
perform DAXPY computation�
wait for sends and receives to complete�
t� � get time�
time with overlap on test node � t� � t��

end �asynchronous version�

Figure �� Pseudo�code for asynchronous portion of the overlap kernel

Figure �� The view of the block�distributed matrix on a node� The shaded portions refer to the
guard wrapper� while the inner values of the matrix refer to the parts of the matrix local to the
node�

Update Guard The update guard kernel 
�gure ��� is implemented as a function that takes as

parameters a pointer to the local matrix and its dimension� and updates the non�local elements in

the guard wrapper by communicating with neighboring nodes� The identities of the neighboring

nodes are speci�ed in the global values pred� succ� top and bottom for each node by dereferencing

the adjacency matrix� The northern portion of the guard wrapper thus contains values from the top

node� the southern portion of the wrapper contains values from the bottom node� and the eastern

and western portions of the wrapper contain values from the nodes identi�ed by pred and succ

respectively 
see �gure ����

Shift Matrix The shift matrix kernel 
�gure �� shifts a distributed matrix by N�P elements�

where N�P is the number of matrix elements divided by the number of processors in the direction

being shifted� This is a commonly used matrix operation� The kernel implements the local portions

of the matrix� with guard wrappers� as an array� To simplify bu�er management� the kernel shifts
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Figure ��� View of neighboring nodes with respect to a node and its guard wrapper�

begin
t� � get time�
read northern guard wrapper values into a vector�
send vector to top node�
read southern guard wrapper values into a vector�
send vector to bottom node�
read eastern guard wrapper values into a vector�
send vector to succ node�
read western guard wrapper values into a vector�
send to pred node�
receive vectors from top� bottom� pred and succ nodes�
update southern� northern� eastern and western guard wrapper values�
t� � get time�
update time � t� � t��

end

Figure ��� Pseudo�code for update guard�local matrix� local dimension�
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begin
t� � get time�
if 
direction is NORTH� then

send local matrix to top node�
else

if 
direction is EAST� then
send local matrix to succ node�

end if
end if
receive matrix into local bu�ers�
t� � get time�
shift matrix time � t� � t��

end

Figure �� Pseudo�code for shift matrix�local matrix� local dimension� direction�

begin
t� � get time�
identify transpose node�
send local matrix to transpose node�
receive matrix into local bu�ers�
transpose local matrix�
t� � get time�
transpose time � t� � t��

end

Figure ��� Pseudo�code for transpose matrix�local matrix� local dimension�

the whole local matrix along with its guard wrapper� In addition to taking a pointer to the local

matrix and the local matrix dimension as parameters� the shift matrix kernel also allows the shift

direction to be speci�ed as a parameter� The enumerated variable NORTH is used as the direction

to be shifted if the matrix has to be shifted upward and the enumerated variable EAST is used if

the matrix has to be shifted sideways� Following the shift� the shifted part of the matrix resides on

each node in the original local matrix data structure�

Transpose Matrix The transpose matrix kernel 
�gure ��� is included because it is an important

application in its own right and yields a completely di�erent communication pattern from the previ�

ous kernels� The kernel involves two stages� an exchange of local matrices among nodes� followed by

an internal transpose of the local matrix� The target nodes for exchanging data are determined from

the adjacency matrix� Transpose could also have been implemented using the divide and conquer

approach� which would have led to a completely di�erent communication pattern� We did not imple�

ment this in CoMet� However� it would be interesting to compare the results of the two approaches�

The transpose kernel only implements the simple transpose algorithm for which the sub�matrix on

each processor is square�

Row and Column Broadcast The row broadcast and column broadcast kernels 
�gure ���

measure the speed with which a machine can broadcast a single row and a single column of a block�
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begin
t� � get time�
if 
node possesses part of the row� then

identify nodes to which the part of the row has to be broadcast�
loop for all identi�ed nodes

send local part of the row to identi�ed node�
end loop

else
receive broadcast row�

end if
t� � get time�
time to broadcast row � t� � t��

end

Figure ��� Pseudo�code for row broadcast�local matrix� local dimension� row�

distributed matrix to all other processors� This kernel is important for LU decomposition� The

kernels take as input the 
global� index of the row or column to be broadcast� If a node possesses

part of the speci�ed row or column� it multi�casts it to all other nodes in a direction orthogonal

to the row or column� That is� rows are multi�cast in the vertical direction of the matrix� columns

are multi�cast in the horizontal direction of the matrix� Nodes that do not contain a piece of the

speci�ed row or column wait to receive part of the row or column� The time that is reported by

CoMet represents the rate at which broadcasts can be initiated� Other useful measures not currently

reported by this kernel are� the machine�wide latency in completing the broadcast� the times for the

initiators and receivers of the broadcasts could be made distinct�

� Implementing CoMet on the Intel iPSC����

In this section� we describe an implementation of CoMet on the Intel iPSC�����

��� Architectural Overview of the Intel iPSC����

The iPSC���� is a distributed�memory multiprocessor based on a hypercube interconnect and Intel

i��� processors� Each node is connected to the hypercube communication network via a direct

connect module 
DCM�� DCMs support � bit�serial and bidirectional �� MB�sec channels to connect

to direct neighbor nodes� Since one channel in the DCM is reserved for special I�O� the maximum

size of the iPSC���� is �� nodes� Communication paths between any two nodes are established

dynamically using free channels and an e�cube algorithm ���� These paths are freed once the

communication request has been completed� Each node on the iPSC���� hypercube runs the NX�

node operating system� NX� ��� �� performs process management and message passing and allows

only one application to execute per node at a time�

��� Communication Protocols in NX��

The communication protocol used by NX� is based on bu�ers� The system bu�ers all incoming and

outgoing messages such that no rendezvous is necessary for any two communicating processes� Each

NX� instance has a number of ����byte bu�ers reserved for every other node that can communicate
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with that node� NX� 
on node A� also keeps track of bounds on the number of free bu�ers 
reserved

for node A� on all other nodes� Applications identify the memory area containing the message to

be communicated by passing a pointer to it as a parameter to the message passing primitive� In the

blocking version of the send primitive� the application is then blocked from further execution until

the message has been successfully copied into the system bu�ers�

For messages smaller than or equal to ��� bytes� NX� on the sending node tries to determine


locally� if there is a free bu�er reserved for it on the receiving node� If it knows that such a free

bu�er exists� NX� decrements its count of free bu�ers available for it on the receiving node and

sends the data� If it isn	t sure that there is an available bu�er 
the counts are merely bounds��

NX� enters a non�local protocol 
handshake� with the receiving node that will wait until a bu�er

becomes available� The system piggy�backs bu�er statuses on messages� In this way� the free bu�er

counts are eventually incremented�

For larger messages� allocation is performed dynamically in a circuit�switched manner� A short

message is sent requesting that a bu�er� equal in size to the length of the message� be allocated�

The sending node waits for an acknowledgement before sending the data�

Three di�erent semantics for sending and receiving data are provided�

�� blocking send�receive 
locally synchronous��

� non�blocking send�receive 
asynchronous� and�

�� interrupt�driven send�receive 
also asynchronous��

Using the blocking primitives� the sender is blocked until the message has been copied into the

system bu�ers and the receiver is blocked until the message data has been copied into the receive

bu�er in its address space� The C version of the calls are

csend�message type� bu	er� bu	er size� id of receive node� process id��

crecv�message type� bu	er�bu	er size��

At present NX� supports only a single process executing at a time on each node� The parameter

process id is therefore unused and is to be speci�ed as an integer � in the calls�

For the non�blocking primitives� the sender and receiver initiate the communication with a call

and return immediately with an identi�er for the message being sent�received� Before re�using the

contents of either send or receive bu�ers� applications must check for completion of the non�blocking

call� This checking is accomplished using msgwait�

message id 
 isend�message type� bu	er� bu	er size� id of receive node�

process id��

message id 
 irecv�message type� bu	er� bu	er size��

msgwait�message id�

The last type of communication semantics is implemented using�

hsend�message type� bu	er� bu	er size� id of receive node� process id�

handler��

hrecv�message type� bu	er� bu	er size� handler��

These calls return as soon as possible� however� instead of requiring the application to explicitly

check for completion� NX� directly invokes a handler function speci�ed with the call�
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In addition to the basic message passing primitives� the programmer is also provided with

system calls to search for speci�c messages identi�ed by their message types 
�probing��� Again�

these calls are implemented in both blocking and non�blocking versions� In the non�blocking form�

the call returns a �ag to indicate the result of the search for the message of a speci�c type� The

blocking probe is�

cprobe�message type��

while the non�blocking form is�

�ag 
 iprobe�message type��

��� Mapping CoMet Primitives

To port CoMet to the iPSC����� we

�� mapped all the macro calls to iPSC���� message passing primitives�

� set all the macro variables�

�� mapped the hardware hypercube topology onto a two�dimensional grid�

�� wrote the functions to implement the matrix manipulation routines� and

�� wrote a shell script to extract and organize all relevant output data into a form acceptable to

gnuplot��

The iPSC���� does not require any special initialization in order to start CoMet other than

loading the various kernels onto the nodes� Only one process is initiated on each node and since the

nodes are numbered contiguously starting at �� by the operating system itself� porting CoMet to

the iPSC���� was relatively straightforward� CoMet	s get node id and get num nodes support

functions were mapped directly onto the NX� primitivesmynode�� and numnodes�� respectively�

Table � lists the mapping of CoMet macros to iPSC���� primitives and values�

Both the benchmark macros and iPSC���� message passing primitives are based on bu�ered

communication� making it straightforward to map the macros to NX� message passing calls�

The macros blocked send and blocked recv were mapped onto csend�� and crecv��� and the

macros unblocked send and unblocked recv were mapped onto isend�� and irecv�� respectively�

CoMet	s blocked broadcast macro was implemented using the csend�� primitive with the input

parameter identifying the node the message is intended for� set to ��� Thewait for send to complete

and wait for recv to complete macros were both mapped onto the system call msgwait��� The

macro implementing the search for speci�c messages unblocked probe msg was mapped onto

iprobe�� and the macro barrier was mapped onto gsynch���

To measure elapsed times for the various benchmark kernels� the macro get time was mapped

onto the system call dclock�� which returns double precision time in seconds since the machine was

booted� The elapsed times for the benchmark were found to converge when averaged over about

���� runs� Hence� to obtain accurate measurements� the macromax times was set to ����� Finally�

the macro page size was set to the page size of the i��� microprocessor� which is �����

�Gnuplot is a freely�available plotting package available from the Free Software Foundation�

��



page size ����
max times ����
max vec len �����
get time
� dclock
�
blocked broadcast
msgtyp� msg� msg size� csend
msgtyp� msg� msg size� ��� ��
blocked send
msgtyp� msg� msg size� node� csend
msgtyp� msg� msg size� node� ��
blocked recv
msgtyp� msg� msg size� crecv
msgtyp� msg� msg size�
unblocked probe msg
msgtyp� iprobe
msgtyp�
barrier
� gsync
�
global sum
num� dummy� gdsum
�num� �� �dummy�
unblocked send
msgtyp� msg� msg size� node� isend
msgtyp� msg� msg size� node� ��
unblocked recv
msgtyp� msg� msg size� irecv
msgtyp� msg� msg size�
wait for send to complete
id� msgwait
id�
wait for recv to complete
id� msgwait
id�

Table �� Mapping of macros� The left�hand column contains CoMet macros� the right�hand column
contains the corresponding NX� implementation�

To measure the overlap of computation and communication� the macro specifying maximum

vector length for the DAXPY part� max vec len� was set� somewhat arbitrarily� to ����� based

on the memory available in the system and to observe signi�cant overlaps of communication with

computation� The message lengths in the communication part of the kernel ranged from � to about

������ to observe the behavior of small to large messages in the benchmark kernels�

To map the hypercube topology onto a two�dimensional mesh� a Gray code was used �����

The elements in the mesh represent nodes in the system such that adjacent elements in the matrix

are also physical neighbors� The dimensions of the mesh are determined by variables proc dim�

and proc dim�� If the number of nodes allocated to the benchmark is a perfect square� the two

dimensions are set equal to the square root of the number of nodes allocated� Otherwise� proc dim�

is twice proc dim� and is set equal to the square root of twice the number of processors allocated

to the benchmark� The function get hop node�� which returns the identity of nodes n hops away�

is de�ned using bit arithmetic that characterizes the hypercube con�guration �����

The update guard� shift matrix� transpose� row broadcast and col broadcast kernels

were written using a combination of csend� crecv� isend and irecv� For update guard� the

northern� southern� eastern and western values were assembled into separate bu�ers� and the four

assembled bu�ers were sent to the neighboring nodes top� bottom� pred and succ respectively�

To update its own guard wrappers� each node receives messages from the four neighboring nodes

and copies them into its respective guard wrappers� This function is implemented such that the

assembly of bu�ers is overlapped with communication 
see Figure ����

In the shift matrix kernel� the entire local matrix is sent to a neighboring node using csend���

and the shifted matrix is received into the same bu�er using crecv��� The transpose kernel is

implemented in a straightforward manner� with the identity of the node to exchange messages with

being obtained by dereferencing the processor mesh with the node row and node col transposed�

After receiving the local matrix from another node� each node performs an internal transpose to

complete the operation� Finally� the row broadcast and col broadcast kernels were implemented

using csend and crecv 
see Figure ����

��



begin
assemble north guard wrapper into bu�er�
initiate send to north neighbor top�
assemble south guard wrapper into bu�er�
initiate send to south neighbor bottom�
assemble east guard wrapper into bu�er�
initiate send to east neighbor succ�
assemble west guard wrapper into bu�er�
initiate send to west guard wrapper pred�
initiate receive from bottom to �ll north guard wrapper�
initiate receive from top to �ll south guard wrapper�
initiate receive from pred to �ll west guard wrapper�
initiate receive from succ to �ll east guard wrapper�
wait for all sends and receives to complete�

end

Figure ��� Pseudo code for update guard�

row � global row�local dim�
local row � global row�local dim�
ptr � local matrix 
local dim �!
  local row� ��
if 
node row �� row� f

for
i��� i�proc dim� i  � f
if 
i �� node row�

csend
ROW CAST� ptr� local dim!sizeof
double��

i!proc dim� node col�� ���

g
for 
i��� i�proc dim� i  �

crecv
GOTIT� null� ���
g
else f

crecv
ROW CAST� ptr� local dim!sizeof
double���
csend
GOTIT� null� �� infonode
�� ���

g

Figure ��� C code fragment for row broadcast
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� Results and Analysis

CoMet was implemented and executed on � �� � and �� nodes of the iPSC����� The results obtained

from running the benchmark are presented in the form of graphs together with a brief analysis�

	�� Basic Communication Kernels

The fundamental characteristics associated with message�passing machines are the start�up time

and time taken per byte of data� These characteristics can be derived using CoMet by running the

echo kernel and plotting the elapsed times for di�erent message sizes� If tstart�up is the message

latency for a ��byte message and tper�byte is the transfer time for one byte� the time taken to echo

a message of N bytes from a neighboring node one hop away� is modeled by�

t
N � � tstart�up  Ntper�byte�

For messages echoed between nodes that are more than one hop apart� say n communication links

away� an additional overhead proportional to the number of hops is expected� This behavior is

re�ected in �gure ��� The time taken for a message of N bytes to be echoed from a node n hops

away thus becomes�

t
N � � tstart�up  Ntper�byte  
n � ��h�

where h is the incurred overhead per hop� Bomans and Roose ���� Dunigan ���� ���� Berrendorf and

Helin ��� have all used the above empirical formulae in interpreting the communication characteristics

of the iPSC����� However� the echo graph also shows discontinuities at around ���� ��� and ����

bytes� The �rst discontinuity is easily explained because the operating system uses a di�erent

protocol for messages of size smaller than or equal to ��� bytes� The other two discontinuities are

more di�cult to explain� Messages of size ���� bytes are guaranteed to lie across page boundaries

which could potentially lead to additional overhead� However� it is interesting to note that message

transfers get faster� not slower� at around ��� and ���� bytes� We are unable to explain this

behavior�

One can usefully �t the data in the regions between the discontinuities� A linear least�squares

�t can be used to deduce tstart�up of around ���s for transmitting messages less than ��� bytes

and ����s for messages greater than ��� bytes� Similarly� tper�byte is around �����s for messages

less than ��� bytes and �����s for messages greater than ��� bytes� and the overhead h is ��s

for messages greater than ��� bytes� Adding hops seems to add only a small overhead to the total

transmission time� Hence� wire time does not account for much of the transmission time�

The graph in Figure �� presents the same results as before� but as bandwidth �gures� The peak

bandwidth for the echo kernel between adjacent nodes is �� MB�s� Half of the peak bandwidth is

achieved with message sizes of ��� bytes and ninety percent of the peak bandwidth is achieved with

message sizes around ���� bytes� The message sizes that produce ��� and ��� peak bandwidth

utilization will be used later to generate load in the contention kernel�

The results for the broadcast kernel plot the elapsed times against message size " see Figure

��� The di�erent curves correspond to di�erent machine sizes� Again� a discontinuity is observed at

a message size of ��� bytes due to the change of protocol� For message sizes larger than ��� bytes�

the time taken to broadcast messages to all other nodes increases linearly with respect to message

size� As expected� the broadcast times for di�erent machine sizes increases linearly with the log of

the number of processors�
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Figure ��� Echo kernel on �� nodes� The lower line represents the echo times between adjacent
nodes and the upper line represents the echo times between nodes � hops apart� The time for a
single send�recv is obtained by halving these numbers�
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Figure ��� Echo kernel 
bandwidth� on �� nodes� The upper line represents the bandwidth achieved
between adjacent nodes and the lower line represents the bandwidth achieved between nodes � hops
apart�
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Figure ��� Broadcast kernel� The lowest line represents the broadcast times for � nodes� the middle
line represents the times for � nodes and the upper line represents the times for �� nodes�

The results obtained from the pairwise exchange kernel are interpreted by plotting the elapsed

time against message size 
see �gure ��� Empirically� this curve can again be interpreted by the

equation�

t
N � � tstart�up  Ntper�byte  
n � ��h�

The bidirectional nature of the communication channels in the iPSC���� is re�ected in the fact

that pairwise exchange is faster than the results obtained by running the echo kernel for the same

message size� The graph also shows points at which the pairwise exchange completes considerably

faster than expected� We hypothesize that this behavior occurs when the communicating nodes are

synchronized such that the receive is posted before the message arrives�

All of the results discussed above re�ect a contentionless environment� Figure � presents the

elapsed times for the echo test between nodes � and � under ��� and ��� loads between node � and

�� Predictably� �gure � shows that echo runs slower as the load between nodes � and � increases�

For barrier synchronization� the log of the number of nodes is plotted against the minimum

time required for a barrier synchronization 
see �gure �� For global reduction� the time taken for

a global sum of a vector of doubles is plotted against the length of the vector on each node 
see

�gure ��� The di�erent curves correspond to di�erent machine sizes�

Interestingly� the global reduction times increase almost linearly with the log of the number

of processors� This illustrates that the vector� global sum primitive available follows a logarithmic�

tree reduction scheme� Other algorithms are competitive with this� depending on various parameters

such as the vector length� See Little�eld for a study of alternative algorithms ����

Finally� the last results 
Figures �� �� � and ��� pertain to the overlap of computation and

communication� The fact that the iPSC���� has separate communication and computation hardware

means that communication and computation can be partially overlapped� The �gures display results
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Figure �� Pairwise exchange kernel on �� nodes� The shaded circles represent elapsed times for a
pairwise exchange between adjacent nodes and the empty circles represent elapsed times between
��hop nodes�
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Figure �� Contention kernel on � nodes� The empty circles represent echo times under contention
from ��� load and the �lled circles represent echo times under ��� load
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for message sizes varying from � to ����� bytes and for vector lengths varying from � to �����

double precision units� The asynchronous version of the kernel 
the one that allows overlap� shows an

improvement over the synchronous version in all cases except for very small message sizes where the

overhead involved in setting up the asynchronous calls outweighs the saving obtained by overlapping

communication� Performance improvements of over ��� are observed when overlapping a pairwise

transfer of large messages with a double precision computation involving large vectors�

Interestingly� as messages get larger the asynchronous version of the kernel is faster than the

synchronous version even when there is little computation� This behavior occurs because messages

are copied directly into user space� avoiding a memory copy 
see �gure ��� The results for the

overlap kernel also re�ect the same unusual behavior as the pairwise exchange kernel� That is� at

some points� the kernel completes much faster than expected 
see �gure ��� Again� we suspect

that this behavior may occur when events are synchronized such that the receive is posted prior to

message arrival�
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Figure �� Overlap kernel at message size �� The vector size refers to the size of the vector input to
the DAXPY� The dots represent the times for the non�overlapped version of the kernel and the line
represents the times for the overlapped version�

	�� Matrix
Related Kernels

Since it was possible to preserve adjacency while decomposing the matrix onto the iPSC���� nodes�

most of the matrix operations are transfers between adjacent nodes� Therefore� it is not surprising to

�nd a linear relationship between the times for the update guard 
see �gure ��� row broadcast

and col broadcast 
see �gure ��� kernels and matrix sizes� The relationship between the times

for the shift matrix 
see �gure �� and transpose 
see �gure ��� kernels and the matrix size is

quadratic� This behavior is also expected� Note that matrix size in the graphs refers to the matrix

order 
number of rows�� not the number of elements� Finally� the di�erence between the results
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Figure �� Overlap kernel at message size ���� For this message size� the overlapped times begin
to beat the non�overlapped times�
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Figure �� Overlap kernel at message size ���� This �gure is a zoomed�in view of the previous
�gure for low message sizes�
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for the row and column broadcast in �gure �� is due to the additional time required to assemble

columns into a bu�er before broadcasting it 
in C " had we used Fortran� the curves would have

been reversed��

	 Related Work

To provide meaningful performance information for distributed�memory computers� benchmarks

based on complete applications or application components have been developed� These benchmarks

can be categorized as either synthetic� kernel� or application�based benchmarks�

Synthetic benchmarks consist of code segments that re�ect frequently used program constructs

and basic machine functions� Existing benchmarks in this category include Whetstones ���� Dhrys�

tones ��� ���� and BeLinda ��� The simplicity of benchmarks at this level usually makes them easy

to port from one architecture to another� However� relating the results to performance predictions

for real applications requires a detailed understanding of the application	s use of the benchmark

primitives�

Kernel benchmarks consist of larger code segments extracted from real applications� They

represent frequently used algorithms that are thought to contribute most to application execution

times� Example kernel benchmarks include Livermore Loops ����� NAS kernels ��� and LINPACK

routines ��� ��� These benchmarks are a compromise between synthetic benchmarks and full�blown

application benchmarks� they are relatively easy to port and support fairly detailed information

about application performance�

Application�based benchmarks are implementations of real�world applications� usually in the

area of scienti�c computing� Well�known benchmarks in this category include the SPEC ���� Perfect

��� �� and Euroben benchmark suites ���� These benchmarks accurately re�ect the performance

characteristics of a machine with respect to speci�c classes of real�world applications� However� the

porting process can be di�cult and the amount of work put into porting the benchmarks can have

a major impact on results�

In addition to these benchmarks� micro�measurements and global performance formulae have

been used to estimate supercomputer performance ���� These approaches provide a more detailed

view of the underlying hardware characteristics than the higher�level benchmarks described above�

According to the classi�cation presented above� CoMet is a synthetic benchmark� That is� its

components are considerably smaller than application based benchmarks� However� the high level

of speci�city of CoMet	s matrix related kernels to scienti�c applications makes it more application�

speci�c than other synthetic benchmarks� It is this compromise between synthetic and application

levels that distinguishes CoMet from other benchmarks such as Genesis� The primary motivation

for this compromise is 
a� distributed�memory multiprocessors are predominantly used for scienti�c

applications that make extensive use of matrix manipulations� and 
b� it is extremely di�cult to

port complete application�based benchmarks across the diverse range of distributed�memory multi�

processor architectures ����

� Conclusions

This paper has described a synthetic benchmark for message�passing architectures� The benchmark�

called CoMet� consists of kernels to measure a machine	s basic communication characteristics under

�



light and heavy load� CoMet also contains some higher�level kernels that measure a machine	s

performance on common matrix manipulations�

In addition to outlining CoMet	s key components in general terms� we described a speci�c

implementation of CoMet on the Intel iPSC���� and discussed the results obtained�

An obvious area for future work is to port CoMet to other architectures� particularly those far

removed from the iPSC����� Ports to PVM ��� �� and MPI ���� would be interesting and useful�

The benchmark itself could also be extended to include kernels that measure characteristics of

interrupt�driven communication such as the hsend�hrecv of the iPSC���� or �active� messages such

as those proposed by von Eicken� et al� ����� At the application level� CoMet should be made more

comprehensive by including more communication patterns from scienti�c computing� Finally� the

performance of many applications also depends on the performance of secondary storage accesses�

CoMet could be extended to characterize the interaction of a machine	s distributed�memory system

with its Input�Output subsystem�

The CoMet benchmark program is publicly available� The C source� together with a make�le�

user	s guide and a shell script to execute the benchmark and organize the results are available by

anonymous ftp from cse�ogi�edu in pub�dsrg�CoMet�


 Acknowledgements

We thank Joe Brandenburg of Intel SSD� Jon Inouye� and Ravi Konuru for useful discussions� This

work was partially supported by grants from Intel Supercomputing Systems Division and the Oregon

Advanced Computing Institute�

� Bibliography

References

��� Cli� Addison� Vladimir Getov� Anthony Hey� Roger Hockney� and Ivan Wolton� The Genesis

distributed�memory benchmarks� Proc� of Parallel Processors � Benchmarking and Assessment�

March ����

�� D� H� Bailey� E� Barszcz� L� Dagum� and H� D� Simon� NAS parallel benchmark results� In

Proceedings � Supercomputing ���� ����

��� A� L� Beguelin� J� J� Dongarra� A� Geist� R� J� Manchek� and V� S� Sunderam� Heterogeneous

network computing� In Sixth SIAM Conference on Parallel Processing� �����

��� Rudolf Berrendorf and Jukka Helin� Evaluating the basic performance of the Intel iPSC����

parallel computer� Concurrency� Practice and Experience� �
����#��� May ����

��� M� Berry� G�Cybenko� and J� Larson� Scienti�c benchmark characterisations� Parallel Comput�

ing� ��� �����

��� L� Bomans� D�Roose� and R� Hempel� The Argonne�GMD macros in FORTRAN for portable

parallel programmning and their implementation on the Intel iPSC�� Parallel Computing�

������#�� �����

�



��� George Cybenko� Supercomputer performance trends and the perfect benchmarks� Technical

Report ����� CSRD� University of Illinois at Urbana�Champaign� April �����

��� Kaivalya M� Dixit� The SPEC benchmarks� Parallel Computing� ��� �����

��� J� Dongarra� Performance of various computers using standard linear equations software in a

fortran environment� Technical Report CS������� Computer Science Department� University of

Tennessee� Knoxville� TN� �����

���� J� Dongarra� J� Bunch� C� Moler� and G� W� Stewart� LINPACK User�s Guide� SIAM� Philadel�

phia� PA� �����

���� J� Dongarra and D� Sorensen� Linear algebra on high performance computers� In Proceedings

of Parallel Computing� �����

��� Jack Dongarra� Al Geist� Robert Manchek� and Vaidy Sunderam� Integrated PVM framework

supports heterogeneous network computing� Computers in Physics� April �����

���� T� H� Dunigan� Performance of the Intel iPSC���� and Ncube ���� hypercubes� Parallel

Computing� ������#���� �����

���� Thomas Dunigan� Communication performance of the intel touchstone delta mesh� Technical

Report ORNL�TM������� Oak Ridge National Laboratory� January ����

���� J� T� Feo� An analysis of the computational and parallel complexity of the Livermore Loops�

Parallel Computing 	� �����

���� The Message Passing Interface Forum� Document for a standard message�passing interface�

Technical Report CS������� University of Tennessee� November �����

���� G� Fox� M� Johnson� G�Lyzenga� S� Otto� J� Salmon� and D� Walker� Solving problems on

Concurrent Processors� volume �� Prentice Hall� Inc�� �����

���� Nalini Ganapati� CoMet� A synthetic benchmark for message�passing architectures� Master	s

thesis� Oregon Graduate Institute of Science � Technology� July �����

���� G� A� Geist� A user	s guide to PICL� a portable instrumented communication library� Technical

Report ORNL�TM������� Oak Ridge National Laboratory� September �����

��� Anthony J� G� Hey� The Genesis distributed memory benchmarks� Parallel Computing� ���

December �����

��� Intel Corporation� iPSC
�� Programmer�s Manual� �����

�� S� Kambhatla� J� Inouye� and J�Walpole� Experiences with BeLinda� A Synthetic Linda Bench�

mark for Parallel Computing Platforms� In Proceedings of the ��� International Conference

on Parallel Processing� volume II� pages ���#��� St� Charles� Illinois� August �����

��� R� Little�eld� Modeling node bandwidth limits and their e�ect on vector combining algorithms�

Technical Report PNL�SA����� Batelle Paci�c Northwest Laboratory� ����

��� P� Messina� C� Baillie� E� Felten� P� Hipes� R� Williams� A� Alagar� A� Kamrath� R� Leary�

W� Pfei�er� J� Rogers� and D� Walker� Benchmarking advanced architecture computers� Con�

currency� Practice and Experience� 
������#��� September �����

�



��� Steve Nugent� The iPSC� direct�connect technology� In �rd conference on Hypercube Concur�

rent Computers and Applications� New York� NY� ����� ACM Press�

��� Paul Pierce� The NX� operating system� In Proceedings of the �rd conference on Hypercube

Concurrent Computers and Applications� �����

��� Willi Schonauer and Harmut Hafner� Performance estimates of supercomputers� Parallel Com�

puting� ��� �����

��� Thinking Machines Corporation� Connection Machine CM�� Technical Summary� October �����

��� Aad J� van der Steen� The benchmark of the Euroben group� Parallel Computing �	� December

�����

���� Thorsten von Eicken� David E� Culler� Seth Copen Goldstein� and Klaus Erik Schauser� Active

messages� a mechanism for integrated communication and computation� Communications of

ACM� pages ��#��� July ����

���� R� Weicker� Dhrystone� A synthetic systems programming benchmark� Communications of

ACM� �����

��� R� P� Weicker� A detailed look at some popular benchmarks� Parallel Computing� ��� �����

�



��

��

��

��

��

��

���

���

��

���

� ����� ����� ����� ������ �����

Time
in
ms

Vector Length

r r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r

Figure �� Overlap kernel at message size ������
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Figure �� Update guard wrapper on �� nodes�
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Figure �� Shift matrix on �� nodes� The quadratic growth is due to the fact that the amount of
data shifted grows as the square of the matrix size�
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Figure ��� Row and Column Broadcast on �� nodes� The lower curve is the row multi�cast time�
the upper curve is the column multi�cast time� The di�erence is due to the necessity of marshalling
the data in the column case�
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Figure ��� Transpose matrix on �� nodes�
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