
Automating Synthesis by Completion

Fran�coise Bellegarde�

Paci�c Software Research Center
Oregon Graduate Institute of Science � Technology
PO Box ������ Portland� Oregon �	
�������� USA�

fbellegarg�cse�ogi�edu

April 

� ����

Abstract

When using a completion procedure� simple static analyses allow automatizing the ma�
nipulation of �rst�order functional programs� This paper shows how to apply these tech�
niques in order to fully automatize program transformation by the two strategies� defor�

estation �eliminating useless intermediate data structures� and tupling �eliminating parallel
traversals of identical data structures�� These techniques enable us to transform a larger
class of programs than the current deforestation algorithms� Programs are translated into a
constructor�based rewrite system� Then� a completion procedure can be used for synthesis
of the transformed rewrite system� Static analyses of the rewrite system are needed to au�
tomatize a given transformation strategy� They permit the following� �	� to automatically
discover the speci�cations of the functions that need to be synthesized by completion in
order to accommodate the strategy� �
� to control the production of critical pairs during
the completion process according to the strategy� ��� to determine how and when to orient
the critical pairs into rewrite rules without losing termination of the rewrite system� ��� to
guarantee termination of the process� not only by ensuring termination of the completion�
but also by ensuring that the transformation does not require in�nitely many completions�
and �nally �
� to guarantee the e�ectiveness of the transformation�

�The author is supported in part by a contract with Air Force Material Command �F�������	�C�

����

�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

� Introduction

��� Deforestation and Functional Programming

It has often been said that functional programs are constructed using only functions as pieces�
Data structures such as lists and trees are the glue to hold them together� Although this
compositional style of programming is attractive ����� it comes at the expense of e�ciency�
Compositions produce many intermediate data structures� One way to circumvent this prob	
lem is to perform fusion or deforestation on programs as advocated by Burge in �
� and by
Wadler ���� ���� Several approaches for eliminating useless intermediate data structures have
been proposed� The algorithm proposed by Wadler ���� performs automatic deforestation on
a restricted class of terms called treeless terms� Later� Chin
s remarkable work on fusion ���
applies to a wider class of e�treeless terms and to higher	order programs in general� Sheard
and Fegaras ���� utilizes laws about combinator compositions �Promotion theorems� to defor�
est programs written with combinators� This technique is applicable to a class of potentially
normalizable terms built with a special set of higher	order combinators� An automatic way to
implement deforestation inside the Haskell
s compiler has been shown in ����� Also a widened
deforestation algorithm is proposed in a recent paper �����

Deforestation algorithms do not recognize that an expression contains two or more functions
that consume the same data structure� Such functions create a �parallel� traversal of a data
structure� These functions can be put together in a tuple as a single function that traverses
the data structure only once� This is another way of transforming programs according to the
tupling lemma ����

General purpose program transformation systems are based on a unfold	fold method pro	
posed by Burstall and Darlington ���� Deforestation and tupling are particular instances of this
strategy� In the Focus system ����� folding and unfolding are seen as rewritings� It has been
pointed out by Dershowitz ���� that an unfold	fold strategy can be controlled by a completion
procedure� Following this idea� the transformation system Astre ��� �� is based on completion
procedures� The �rst versions of Astre were highly interactive� requiring intervention of an
expert user� A transformation system must be automated to be e�ectively used as a tool in a
transformational approach to software design�

��� This work

Simple static analyses of �rst	order recursive equations allows us to automate both deforestation
and tupling� We only consider terminating rewrite systems�

Dershovitz has shown in ���� ��� that a completion procedure is good at synthesizing a
constructor	based equational de�nition of a function h from a synthesis rule� which speci�es
how h is de�ned in terms of other functions� That is what we need for deforestation� where
h is de�ned by a composition of other functions that generates intermediate data structures�
and for tupling� where h is de�ned by a tuple �pair� of functions that traverse the same data
structure�

�This rule is called an 
eureka� in the fold�unfold methodology�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

If the synthesis has to be fully automatized� these synthesis rules must be discovered auto	
matically by a static analysis of the system of equations at hand�

Moreover� a completion procedure is far too general� Its purpose is to generate critical pairs�
equational consequences of a set of rules coming from overlapping left	hand sides of existing
rules� What N� Dershowitz noticed in ���� is that it is possible that the completion generates
the critical pairs which constitute a constructor	based de�nition of a function h� However this
generation� ��� must be controlled by a suitable ordering� ��� can be explosive� and ��� can even
loop by generating in�nitely many critical pairs� A static analysis of the system of equations
allows us to to restrict the overlaps between left	hand sides of rules so that the completion
procedure computes exactly the critical pairs that are needed for the synthesis�

For automating the process� not only the production of critical pairs needs to be limited�
but the orientation of the critical pairs into rewrite rules has to be automated� Once again�
an analysis of a critical pair allows us to know if the synthesis is achieved so that the critical
pairs can be oriented in a rule of the constructor	based synthesized de�nition of h� Moreover�
the process must preserve termination of the rewrite system�

The discovery of a synthesis rule demands at least one synthesis� accomplished by a comple	
tion procedure� which is guaranteed to never fail and to always terminate� We also guarantee
that the process does not perform in�nitely many syntheses�

Moreover� the process must choose the strategy ensuring the e�ectiveness of the transfor	
mation� i�e� that the resulting program is� in some way� more e�cient than the given program�

��� Outline

The paper is organized as follows� Section � introduces basic notations in term rewriting sys	
tems that are used for our analyses and it presents naive examples illustrating how a completion
procedure performs synthesis for deforestation and tupling� Section � presents the analysis nec	
essary for synthesis rules discovery in the case of deforestation and tupling strategies� Section
� presents the analysis that is necessary to control the completion process� Section 
 dis	
cusses termination� e�ectiveness� limitations and possible extension issues� Section � relates
our techniques with other work followed by concluding remarks in Section ��

� Application of Completion to Unfold�Fold Strategies

��� Basic Notations

Let F be a set of function symbols and V be a set of variables� T �F� V � is the set of terms with
symbols in F and variables in V � V �t� is the set of all the variables occurring in t� A position or
occurrence within a term t is represented as a �nite sequence � of positive integers describing
the path from the root of t to the root of the subterm at that position� denoted by tj�� The
position of the root of a term t is �� G�t� is the set of the positions of function symbols in t� A
term s is less than t for the subsumption ordering if and only if t is an instance of s� We say
that t encompasses s if a subterm of t is an instance of s� A term t is said to be linear if no
variable occurs more than once in t�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

A rewrite rule is an ordered pair of terms� written as l � r� where V �r� � V �l�� A rule
l� r is left�linear if l is linear� it is right�linear if r is linear� A rewrite system is a set of rewrite
rules� The rewriting relation is denoted as �� The rewrite system R is terminating if and only
if there is no in�nite sequence of terms t�� t�� � � � � such that t� �R t� �R � � � The R	normal
form of a term t is a term t �R such that t��

R t �R and there is no u such that t �R�R u�
A rewrite system is overlapping if there exists an overlap between left	hand sides of two

rules g� d and l� r� i�e� if there exists a position � in G�l� such that lj� and g are uni�able
with the most general uni�er �� A critical pair is the identity ��l�� � ��d��� � ��r� where
t�� � u� denotes the replacement in t of the subterm at position � by u�

An orthogonal system is a left	linear and non	overlapping rewrite system� A system is
constructor�based� if all proper subterms of its left	hand sides have only free constructor symbols
and variables� The roots of left	hand sides are de�ned symbols� C and D denote respectively the
set of constructors and the set of de�ned symbols� A constructor term is a member of T �C� V ��
Rf is the set of all the rules l� r of a constructor	based rewrite system R where the root of l
is f � A rewrite system is con�uent if and only if the relation �� veri�es the diamond property�
Con�uence ensures the unicity of the normal form while termination ensures its existence� A
non	overlapping and terminating rewrite system is con�uent� A completion procedure aims at
discovering critical pairs in a terminating rewrite system R to check whether the two sides of the
pair rewrite to the same term� Otherwise� it adds the critical pairs to R� orienting them in such
a way as to preserve the termination property� If the procedure does not fail and terminates� it
returns a con�uent and terminating system equivalent to R� If for each rule l� r � R� l� and
r are irreducible by R� then R is interreduced�

��� Completion Procedure and Unfold�Fold Method

In this paragraph� we illustrate by basic examples how a completion procedure interactively
controls a fold	unfold method� The unfold	fold method ��� consists of � rules� namely De�ni�
tion� Instantiation� Unfolding� Folding� Abstraction� and Law� that allow new identities to be
introduced that are equational consequences of existing identities� Dershowitz ���� has shown
how the combination of Instantiation and Folding is enabled by critical pair generation� Un�
folding and Law are simpli�cations by rewriting� De�nition is the introduction of a synthesis
rule by the user� Abstraction is used for a tupling tactic�

Deforestation Example

Consider a naive example of a single deforestation of one term� length�x�y� where

Rlength �

�
length���� � �
length�x �� xs� � � � length�xs�

R� �

�
���y � y

�x �� xs��y � x �� �xs�y�

The list x is traversed once to append it to y and once more to count the length of the result�
A synthesis rule length�x�y� � h�x� y� is introduced� It overlaps with rules of R� yielding

�A constructor�based system of equations is similar to set of de�nition equations with pattern�matching
parameters in functional programming�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar 


two critical pairs�

length�y� � h���� y�

length�x �� �xs�y�� � h�x �� xs� y�

The last pair simpli�es by the second rule in Rlength into �� length�xs�y� � h�x �� xs� y�� Now
h is de�ned by� �

h���� y� � length�y�
h�x �� xs� y� � � � length�xs�y� � � � h�xs� y�

which makes only one traversal of x to compute the result� For this very simple example� no
law is necessary� But suppose the synthesis rule is length�flat�x�� � h�x� where one rule of
Rflat is� flat�x �� xs�� x � flat�xs�� the rule �Law� length�x�y�� length�x� � length�y� is
required to simplify the left	hand side of the pair length�x � flat�xs�� � h�x �� xs� according
to the following derivation�

length�x � flat�xs��� length�x� � length�flat�xs��� length�x� � h�xs�
yielding a Rh rule� h�x �� xs� � length�x� � h�xs�

This needs for laws in the method is an obstacle to full automatization� We will see how� we
avoid the input of laws by using completion to synthesize exactly what is needed to achieve the
synthesis of h�

Tupling Tactic Example
Consider another naive example� Ave�x�� sum�x��length�x� where

Rsum �

�
sum����� �
sum�x �� xs� � x� sum�xs�

Rlength �

�
length���� � �
length�x �� xs� � � � length�xs�

The list x is traversed twice �in parallel� to compute the average� In this case� we introduce
the rules�

Synthesis �

���
��

sum�x�� fst�h�x�� ���
length�x�� snd�h�x�� ���
pair�fst�h�x��� snd�h�x���� h�x�

Comp �

�
fst�pair�x� y�� � x
snd�pair�x� y�� � y

By rewriting left	hand sides by rules ��� and ���� we get� Ave�x�� fst�h�x���snd�h�x�� which
can be computed with a single traversal of x by sharing the common computation of h�x�� The
two �rst synthesis rules overlap respectively with rules of Rsum and Rlength yielding the pairs�

� � fst�h�����
x � sum�xs� � fst�h�x �� xs��

� � snd�h�����
� � length�xs� � snd�h�x �� xs��

which can be turned into rules from right to left��
fst�h����� � � ���
fst�h�x �� xs�� � x� sum�xs� ���

�
snd�h����� � �
snd�h�x �� xs�� � � � length�xs�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

Afterwards� these rules overlap with the third synthesis rule yielding Rh rules��
h���� � pair��� ��
h�x �� xs� � pair�x� fst�h�xs��� �� snd�h�xs���

These last two rules reduce the left	hand sides of Rules � and �� The Comp rules further reduce
these left	hand sides so that they become identical to the right	hand sides� Then the rules can
be deleted� It is worthwhile to notice that this tactic can be applied to transform a function
that computes the nth �bonacci number k in time proportional to k itself into a function that
computes the same number in only n steps� This example has been used in ��
� showing how a
completion procedure produces useless explosion of critical pairs when controlling an unfold	fold
transformation� Our way of automating the tupling and deforestation tactics always generates
exactly the needed critical pairs� It also discovers automatically the synthesis rules�

� Automatic Synthesis Rules Discovery

The �rst	order functional program is presented by a constructor	based orthogonal terminating
and interreduced rewriting system� The purpose of the analysis is to discover synthesis rules� ��
to eliminate useless data structures by deforestation� we call fusion rules� and �� to eliminate
multiple traversal removal by tupling� we call tupling rules�

��� Fusion Rules

In this paragraph� we show how we analyze the term t in order to build a fusion rule �syn�
thesis rule for deforestation�� A fusion rule must reduce t into a term t� which contains less
intermediate data structures than t� Such a rule has the form s� h�x�� x�� � � � � xn� where h
is a fresh symbol� and fx�� x�� � � � � xng � V �s�� Obviously� s must subsume a subterm of t so
that the fusion rule rewrites t� but s must be carefully chosen� Consider for example a term
t � f�x� � g�t� where � is de�ned by the constructor	based rules R��

�� � x � x �x �� xs� � y � x �� �xs � y�

The subterm f�x� produces an intermediary list which is consumed by � but though the
subterm g�t� produces a list argument of �� this list is not traversed by �� According to a
vocabulary invented by Chin in ���� the symbol � is a consumer� and f�x� is a producer
in the term t� Contrary to Chin� we do not consider g�t� as a producer� We say that � can
be a consumer only at inductive position �� In t� there is only one useless data structure
produced by f�x� and consumed by �� A rule f�x� � y� h�x� y� reduces t into t� � h�x� g�t��
which does not contain the useless data structure produced by f�x�� The inductive positions
of a symbol f �see Figure �� de�ned by the constructor	based rules Rf indicate the positions
where f can be a consumer�

De�nition � �inductive positions� A symbol f consumes a data structure at inductive
positions i if there exists a rule l � r in Rf where lji is a constructor term and not a
variable	



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

By following the inductive positions of the de�ned symbols in a term t� we can extract re	
cursively a fusion term s �see Figure �� from a term t which contains the symbols that
produces useless data structures in t� These symbols are located at the spine positions of t
�see Figure ���

De�nition � �spine positions� A position � in a term t is a spine position if

� either � is �� or

� � � u�i where u is a spine position� the root f of tju � D and i is an inductive position
of f 	

The inductive positions of a fresh symbol h can be known by analyzing its fusion rule �see
Figure ��� Indeed� if a variable x occurs in the fusion term at a spine positions� the position
of x in the list �x�� x�� � � � � xn� in the right�hand side indicates an inductive position of h� The
reason is that overlaps with the constructor	based rules of the producers can only substitute
constructor terms at these positions�

To perform deforestation of a constructor	based system R� it is enough to search for fusion
terms in the right	hand sides of de�nition rules� then to build a fusion rule r �see Figure ���
and �nally to synthesize the constructor based system Rh of the fresh symbol h�

De�nition � �fusion rule� Let f�tc�� tc�� � � � � tcn�� r be a rule of a constructor�based termi�
nating and interreduced rewrite system R� a fusion term s can be extracted from r� if there
exists a position u in r such that


�	 rju is an instance of s �encompassment��

�	 the top symbol of s is a de�ned symbol� and every other functional symbol in s is a de�ned
symbol or a constructor� and every functional symbol that occurs in s is located at a spine
position of s �deforestation��


	 s is linear �linearity��

�	 f does not occurs in s �skip over recursive calls�

�	 there exists a spine position of s of length greater that � �nontriviality�

�	 s is not contained in any deforestation term extracted from r �maximality�

When such a fusion term s exists� the rule s� h�x�� x�� � � � � xn�� where h is a fresh symbol and
x�� x�� � � � � xn are the variables in s� is a fusion rule	

The linearity ensures preservation of the termination of the union of the rewrite system R

with the fusion rule as proved in ���� As we will see later� the skip over recursive calls is
required for ensuring the termination of the deforestation process� For example� no fusion term
can be found in the recursive rule

S � subs�x �� xs� � subs�xs� � map cons�x� subs�xs��



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

k��� � � k�s���� � s��� k�s�s�x�� � k�x� � k�s�x��

k � �� ���� s and � are constructors�

g���� � �� g��s�x�� � g��x� �� s�x�

g� � �

f���� x� z� � �� f�x� ��� z� � �� f�x �� xs� y �� ys� z� � �x� z� �� f�xs� ys� z�

f � �� �� �� and �� are constructors�

g��z� ��� � �� g��z� x �� xs� � �z � x� �� g��z� xs�

g� � �

Figure �� Function de�nitions and inductive positions analysis

��
��

��
��

��
��

��
����
��

��
��

��
��

��
��

��
��

��
��

�����
PPPPP

�
��

�
�

�
��

�
ZZ�

�
��
��
��
�
��
��

f

g� g
 k

k fk y

s y k xs z

x x

Figure �� Spine positions�f�� �� ���� ������ �� ���� ������ �������� �����g

������
XXXXX

���
bbb

���
bbb

f

g� g
 x


k x
 f

s k x� x�

x� x�

Figure �� Fusion rule�f�g��k�s�x�����g��x�� f�k�x��� x�� x���� x���h�x�� x�� x�� x�� x�� x���



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �

where map cons has inductive position �� Our method attempts a fusion for all the intermediate
data structures produced by de�ned symbols but those produced by the recursive calls	 Moreover�
it performs a degenerative kind of fusion when the producer is a constructor � For example�
zip�x �� xs� y� where zip has inductive positions � and �� is a fusion term�

��� Tupling Rules

Two functional symbols that traverse the same data structure are used to construct tupling
rules� For example� sum�x� and length�x� traverse the same list in sum�x��length�x�� fib�x�
and fib�s�x�� traverse the same natural number in fib�x� � fib�s�x��� Also downto�xs� and
tails�xs� traverse the same list in �x �� downto�xs�� �� tails�xs�� Two tupable subterms

f�t�� t�� � � � � tn� and g�s�� s�� � � � � sm� of a term r share the same set of variables located at the
inductive positions of f and g� Figure 
� and Figure � show less naive situations�

When it �nds a tupling pair as subterms of a right	hand side r� the process introduces
automatically two di�erent rewrite rules �tupling rules��

f�t�� t�� � � � � tn�� fst�h�x�� x�� � � � � xn�� g�s�� s�� � � � � sm�� snd�h�x�� x�� � � � � xn��

where fx�� x�� � � � � xng � V �s�� � V �s�� and h is a fresh symbol� The tupling rules rewrite r�
creating two common subterms h�t�� t�� � � � � tn� which can be shared at the level of the transla	
tion� For example� after this replacement� fib�x� � fib�s�x�� becomes fst�h�x�� � snd�h�x���

The completion synthesizes a constructor	based de�nition of fst composed with h� Rfst and
a constructor	based de�nition of snd composed with h� Rsnd� For the above example� the result
of this synthesis is��

fst�h����� �
fst�h�s�x��� snd�h�x��

�
snd�h����� s���
snd�h�s�x���� fst�h�x�� � snd�h�s�x���

This synthesis is possible only if there is� indeed� overlaps between the elements of the tupling
pair and the constructor	based rewrite systems Rf and Rg of their top symbols f and g� This
can happen only if the symbols at inductive positions of f and g are constructors or variables
and if there is always a variable at a maximal inductive position �see Figure ���

The process introduces systematically the pair rule�

pair�fst�h�x��� snd�h�x����h�x�

and the rules fst�pair�x� y���x� snd�pair�x� y���y which allows the completion to achieve
the synthesis of h� For the above example� the result is��

h��� � pair��� s����
h�s�x���pair�snd�h�x��� fst�h�x�� � snd�h�s�x�����

Then the completion cancels the now useless rules Rfst and Rsnd�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

De�nition � �Tupling pair� Let l� r be a rule of a constructor�based rewrite system R� the
right�hand side r contains a tupling pair

�rjp� � f�t�� t�� � � � � tn�� rjp� � g�s�� s�� � � � � sm��

where f and g are de�ned symbols� and p�� p� are positions in r if


�	 rjp� and rjp� share the same variables X at inductive positions of f and g �tupability��

�	 V �rjp�� � V �rjp�� �separatability��


	 rjp� and rjp� have only constructors or variables at inductive positions of f and g and
there is always a variable to share at a maximal inductive position �synthesizability��

�	 rjp� and rjp� are di�erent �noncommonality��

�	 rjp� and rjp� are linear �linearity�	

If two tupable subterms s� and s� are identical� they can be shared �using a local let declaration�
by the translation of the resulting rewrite system into an ML program� For example the pair
�k�x�� k�x�� in the right	hand side of the rule f�x �� xs���x � k�xs�� �� �k�xs� �� ��� is not
considered for tupling� It can be translated into �

funf�x �� xs� � let val v � k�xs� in �x� v� �� �v �� ��� end�

Linearity and separability ensures that the introduction of the tupling rules preserves the
termination of the rewrite system �see ����� Note that fst� snd� pair are reserved symbols �i�e�
	� D 
 C��

Automatic discovery of synthesis rules is based on the above analyses�

� Analyses for automatization of the syntheses

The synthesis rules we have seen so far are of the form ��� s� h�x�� x�� � � � � xn� for a fusion rule�
or of the form ��� s� fst�h�x�� x�� � � � � xn�� and s� snd�h�x�� x�� � � � � xn�� for the tupling rules�
Such rules rewrite right	hand sides of the system R to get a system Rfold� So doing� modulo
the synthesis of the constructor	based rules Rh� we perform the desired fusion or the desired
tupling� Moreover we have proved in ��� that Rfold is terminating when R is terminating�

��� Critical pair analysis

Overlaps between a synthesis rule and a rule of Rfold� l� r happen� either when the top symbol
f of l occurs as a producer in a fusion term left	hand side of the fusion rule� or when f is the top
symbol of an element of a tupling pair in the left	hand side of a tupling rule� Such an overlap
produces a critical pair that substitutes constructor terms into the variables that are located



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
����
��

��
��

��
��

��
��
��
����

�� ������
XXXXX

���
bbb

���
bbb

�

f

g� g
 x


k x
 f

s k x�

x� x�

g
 � 


f � � � 


k � � � ���

x�

h � � � � � ��� � �

h � x� � x
 � x� � x� � x� � x
 �

s constructor

g���

Figure �� Inductive Positions of h

���
HHH

���
bbb

�� ��

f

g� k

s k g


x y y x

g� � �� ���

g
 � 


s� constructor

Figure 
� Tupling pair� �g��s�x�� k�y��� g��y� x��

��
��

���
HHH

���
bbb

�� ��

f

k

s k g


x y y x

g
 � 


s� constructor

g��� �

g��

circled x is not in a spine position

Figure �� No tupling pair

����
XXXX

	
	
A
A

	
	
S
S



 ��

f

g� k g�

s k g
 x y

x y xy

g� � � � ���

g
 � 


s � constructor

Figure �� Tupling triple� �g��s�x�� k�y��� g��y� x�� g��x� y��



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

under the symbol h at inductive positions of h� Therefore� it is a step towards the synthesis of
a constructor	based rule of Rh� This critical pair has one of the following forms�

�s�� h�tc�� tc�� � � � � tcn�� �s�� fst�h�tc�� tc�� � � � � tcn��� �s�� snd�h�tc�� tc�� � � � � tcn���

where tcii���n is a constructor term� Let us now analyze these critical pairs� For example� the
critical pair �f���� k�z�� g�y��� h���� y� z��� where h has inductive positions � and �� is said to be
un�lled because there is a variable y at position �� This position can be �lled by an overlap
between the critical pair and a rule of Rg such as g�������� In this case� we say that the critical
pair is noncovered� On another hand� we do not want to process an overlap with a rule of
Rk such as k������� which �lls the noninductive third position� A constrained critical pair
veri�es the following� Only variables are located at noninductive positions of h� Every critical
pair generated by the completion which does not verify this property is rejected by the process	
In a constrained critical pair� consider the subterm tci where i is an inductive position of
h� If tci is a variable� we say that the inductive position i in un�lled� Otherwise� we say
that the position i is �lled� A constrained critical pair with some un�lled positions is said
to be un�lled� If there exists an overlap with a rule of Rfold that could �ll this position�
as in the above example� we say that critical pair is noncovered� otherwise� we say that
it is covered� Examples in Figure � illustrate each of the three possible kinds of critical
pairs� The process forces completion� not to use noncovered critical pairs as rewrite rules
because they could destroy the termination property� or not even be a rewrite rule at all when
V �s�� � V �h�tc�� tc�� � � � � tcn��� Rejection and orientation of the critical pairs is automatic�

By de�nition� there exist no overlap to be done with a covered critical pair� We must be
able to analyze if we can derive a rule of Rh from such a pair�

��� Synthesizability analysis of covered critical pairs

From now on� we consider that the covered critical pairs are in normal form� We want to
analyze these critical pairs in order to decide if the synthesis is successful�

Consider the case of the tupling strategy	 Let �f�t�� t�� � � � � tn�� g�s�� s�� � � � � sm�� be
the tupling pair� Our criterion for success is simple� f and gmust not occur in normalized
covered critical pairs	 For example� let the tupling pair be �g�x� ���� f lat�x��� the covered
critical pair� P � �pair�g�xs� �x��� x � snd�h�xs���� h�x �� xs�� does not satisfy the criterion� In
P � g and h share the variable xs at inductive positions� The criterion for success guarantees
that the de�nition of Rh does not show a parallel traversal for f and�or g� Therefore it
guarantees that the transformation is e
ective�

Consider now the case of a fusion	 Consider the fusion term s� A consumer can only
consume constructor symbols that are produced by a producer� This is so because it is de�ned
by constructor	based rules� When a producer does not produce a constructor� e�g� when it has
de�ned symbols or primitive symbols at its top� those symbols cannot be consumed� They stay

�Ordered �or unfailing� type of completion also keep nonorientable critical pairs as pairs� We can qualify our
synthesis process as being controlled by an unfailed �according to our analysis� it keeps noncovered critical pairs
as pairs� partial �according to our analysis� it rejects some critical pairs� completion procedure�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

�
f�x �� xs�� �x� x� �� f�xs�
f���� � ��

�
g�x �� xs�� �x � x� �� g�xs�
g���� � ��

fusion rule� zip�f�x�� g�y��� h�x� y�

� Zip � � x � x � �� f � x � � g � y � � � h � x �� xs � y � �

�

�

overlapping with g to be done

un�lled position

Un�lled Uncovered Critical Pair

fusion rule� zip�f�x�� y �� ys�� h�x� y�

� �

�lled positions

� � x � x � y � �� Zip � f � xs � � ys � � h � x �� xs � y �� ys � �

Filled Covered Critical Pair

fusion rule� zip�f�x�� y�� h�x� y�

� �

no more overlapping to be done

� �� � h � �� � y � �

un�lled

Un�lled Covered Critical Pair

Figure �� Diverse kinds of Critical Pairs



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

in s� obstructing the fusion� Therefore the criterion for successful fusion is the following�
the fusion term s must not be embedded �modulo a renaming of the variables� into a covered
normalized critical pair� Intuitively� a term t is embedded into a term s if we can get t from s

by removing some nodes to s� For example� the fusion term length�flat�x�� is embedded into
the covered critical pair�

�length�x � flat�xs��� h�x �� xs���

This embedding exists because the consumer length is unable consume the symbol � produced
by flat �see Figure ����� The criterion for successful fusion guarantees that fusion has
been done�

Successful covered critical pairs are oriented into rules of Rh� For the tupling strategy� the
discovery of an unsuccessful covered critical pair results in automatically undoing the com	
pletion and automatically rejecting the tupling pair from the search� For the fusion strategy�
completion is used to turn an unsuccessful covered critical pair into a successful one�

��� Secondary fusions

Let us illustrate the process using the above example �see Figure ���� The process introduces the
secondary fusion rule length�x � y��h��x� y� length�y��� This indicates that the argument
y which subsumes flat�xs� must be consumed by length� Let us call length�y� a subsumption
term in the unsuccessful covered critical pair� The secondary fusion rule forces the consumer
length to consume � produced by flat� Using this rule� the unsuccessful covered critical pair
is reduced into the now successful �according to our criterion for success� covered critical pair�

�h��x� flat�xs�� h�xs��� h�x �� xs��

In this example� the useless and costly occurrence of flat�xs� will disappear later in the process�
We will discuss this issue in the next section� By synthesizing Rh� � one of the rules obtained
by completion is�

h��x �� xs� y� length�y���� � h��x� y� length�y��

It is not a constructor	based rule yet because of the presence of length�y� as an argument�
However� this argument can be subsumed by a variable� The result of this generalization is
the constructor	based rule�

h��x �� xs� y� z��� � h��x� y� z�

Now we can analyze this rule� looking for useless arguments� This analysis shows that the
second argument is useless� The process automatically introduces a rewrite rule�

h��x� y� z��h�

��x� z�

By interreduction� the synthesis of Rh is completed as shown in Figure ��� In a few cases� there
will be no useless arguments to remove �see next section��

�For this example� suppose the rewrite system R contains the rewrite rule �law� length�x � y�� length�x� �
length�y�� the normalized covered critical pair is then �length�x� � h�xs�� h�x �� xs�� which is successful�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar �


SUCCEEDS

FAILS

�

�

spine position

� length � x � 	at � xs � � � h � x��xs� �

� length � rev � xs � � � x � � � h � x ��xs � �

not a spine position

Figure �� Subsumption Criterion

Unfortunately� subsumption could fail to turn a covered secondary critical pair into a
constructor	based rule� Consider� for example� the fusion term length�rev�x�� and the un	
successful covered critical pair� �length�rev�xs� � �x��� h�x �� xs��� A secondary fusion rule
is�

length�x � y��h��x� y� length�x��

where x is located at spine position� The overlaps with rules of R� substitutes x so that
the subsumption term length�x� gets modi�ed� Therefore its subsumption would not give a
constructor	based rule� For example� one of the covered critical pairs would be�

�� � h��x� y� length�xs��� h��x �� xs� y� �� length�xs���

Subsumption criterion	 The unsuccessful covered critical pair can be transformed by a
secondary fusion if the producer does not occur at spine position �see �gure ��� This criterion
guarantees that the subsumption term in the secondary fusion rule is preserved through critical
pairs� hence ensuring that its subsumption results in a constructor	based rule�

A criterion for successful argument removal also needs to be developed� For example� the
second argument is removable in the de�nition of h� above� but the second and third arguments
are not removable in the de�nition of k below�

k���� y� z� � z k�x �� xs� y� z� � �x �� �xs � y�� �� k�xs� y� z�

because y and z occurs outside the recursive calls�
Argument removal criterion	 A variable located at a noninductive position in the left�

hand side of rules of Rf indicates a useless position if� either it does not occur in the right�hand
sides� or it only occurs at the same position in recursive calls	



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

USELESS

z z

	
	
	
		


�

�

PPPPPq
���

A
A
A
AU

�

�

�

� �

�

�� JJ�

�

�

�

�

�

length � �� � 


length � x��xs � � � length � xs�

�� 	at � x �� xs �	at � �� �

length � 	at � x � �

� �� � h � �� � �

x � 	at � xs �

h � x �

� length �x � 	at � xs � � � h � x �� xs � �

EMBEDDED

� h� � x � 	at � xs � � h � xs � � � h � x��xs� �h� � x � y � length � y � �length � x � y �

h� � �� � y � length � y � � length � y �

h� � x��xs � y � length � y � �

z z

� � h� � x � y � length � y � �

h� � x � y � z � h�� � x �z ��
h�������
h�x �� xs��h�

�
�x� h�xs��

�
h�

����� z��z
h�

�
�x �� xs� z�� � � h�

�
�x� z�

Final system

Figure ��� Synthesis and secondary synthesis



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

� Diverse Issues

��� Termination

There are di�erent kind of termination issues� We proved in ��� that the process preserves the
termination of the rewrite system� The termination of the completion which performs each
synthesis is guaranteed because there can be only a �nite number of overlaps that covers the
inductive positions of a fresh symbol� Moreover� we must also guarantee that the whole process
does not generate in�nitely many fusion or tupling rules� Consider� for example� the rules

f�x �� xs� � x �� p�f�x�� p�x �� xs� � x �� p�xs�

When looking for a fusion term� our process skips over the recursive calls �see Section ��
so that it does not introduce the fusion rule p�f�x���h��x�� But suppose it does� A �rst
synthesis would return h��x �� xs��x �� p�h��x��� This would yield to a second fusion rule
p�h��x���h��x� resulting into h��x �� xs�� x �� p�h��x��� This would generate in�nitely
many syntheses� Unfortunately� the termination is not ensured only by skipping over the
recursive calls because of mutually recursive calls� Let us de�ne an equivalence between de�ned
symbols f 
 g if and only if f calls g and g calls f � Let us reinforce our criterion for
successful tupling into� Symbols equivalent to the top symbols f and�or g of the tupling pair
must not occur in the covered critical pair� Let us also reinforce our criterion for successful
fusion into� The fusion term must not be call�embedded �modulo renaming of the variables�
in the covered critical pair� The call	embedding is the embedding relation induced by 
�
For example� f�x� g��� y�� is embedded in k�f�x� h�k�g��� y������ it is also call	embedded in
k�f ��x� h�k�g���� y����� if f � 
 f and g� 
 g� The covered critical pair is declared successful
or unsuccessful according to this stronger criterion� Moreover� a secondary fusion rule can be
built� according to the process described in Section �� by replacing the equality of symbols by

� These criteria guarantee the termination of the process� A sketch of a proof for fusions
without secondary rules is done in ����

��� E�ectiveness

The question we raise here� is about the e�ectiveness of our process� Does a fusion or a tupling
always remove intermediate data structures or parallel traversals without loss of e�ciency�
The answer to the question is positive for the tupling� The tupling pair �s�� s�� occurring in
r is replaced by fst�h�x�� x�� � � � � xn��� snd�h�x�� x�� � � � � xn�� where fx�� x�� � � � � xng � V �s�� �
V �s��� Later� a local let can be introduced to share the common sub	expression h�x�� x�� � � � � xn�
as we suggested in Section � so the tupling is e�ective at this level of the transformation�
Moreover� the synthesizability condition in the de�nition of the tupling pair �see Section �
together with the criterion for success for covered critical pairs �see Section� � guarantee the
e�ectiveness of the removal�

Unfortunately� the answer to the above question is negative for the fusion when the consumer
is nonlinear for an inductive position� Consider� for example� the function�

tails���� � �� �� �� tails�x �� xs� � �x �� xs� �� tails�xs�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

and the fusion rule� tails�x � y�� h�x� y�� The completion returns Rh��
h���� y�� tails�y�
h�x �� xs� y���x �� �xs � y�� �� h�xs� y��

h appends each tail of x to y which results in an obvious loss of e�ciency� We could have chosen
to skip over such fusions� However� we noticed that the ine�ciency disappears by tupling� For
the above example� processing the tupling pair ��xs � y�� h�xs� y�� results in��

h���� y�� tails�y�
h�x �� xs� y���x �� fst�h��xs� y�� �� snd�h��xs� y���

where� �
h����� y��pair�y� tails�y��
h��x �� xs� y�� pair�x �� fst�h��xs� y��� �x �� fst�h��xs� y��� �� snd�h��xs� y���

The translation can now share the common sub	expression h��x� y�� When a consumer is
nonlinear for an inductive position� the ine�ectiveness of the fusion is corrected by tupling�

This phenomenon is even more obvious with a secondary fusion rule� In the example in
Figure ��� the subterms �flat�xs�� h�xs�� are tupable in� �h��x� flat�xs�� h�xs��� h�x �� xs���
Tupling would apply if the second argument of h� could not be removed� As we saw earlier in
Section �� we choose systematically to add possibly too many arguments� creating beforehand
and systematically an ine�ciency� This ine�ciency is recuperated afterwards� either by elim	
ination the useless argument as shown in the fusion length�flat�x��� or by tupling when the
argument is not removable�

We choose to systematically perform all the fusions before tuplings for the fol	
lowing reasons�

�� Tupling corrects the ine�ectiveness of some fusions as we shown above�

�� It is only after fusions� that a subterm f�t�� t�� � � � � tn� where f � D meet the synthe	
sizability condition for tupling elements �see Section ��� For example� let f and f � have
inductive position �� the term f�g�x�� k�y��� where g is a de�ned symbol �or a constructor�
cannot be put in a tupling pair with f ��x� y� because g occurs at a maximal inductive
position of f � But �rst it can be transformed by fusion into h�x� k�y�� and second it can
become an element of a tupling pair with f ��x� y��

�� Recall that we do not fuse recursive calls� Tupling can remove intermediate data struc	
tures provided by recursive calls �like in the fib example��

��� Possible Extensions

In this section� we consider the limits of the automatic process for deforestation and parallel
traversal removal we described in the paper� We indicate possible ways to overcome these
limitations�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

Consider the fusion	 The process we described performs each fusion that does not involve
a recursive call as producer or consumer �see Section �� and that satis�es the strong subsumption
criterion �see Subsection 
���� Another presentation of the function can overcome syntactic
limitations� For example� we can fuse some recursive calls by using the well known tactic of
introducing accumulative variables so that the recursive call occurs at the top of the right	hand
side� This tactic is called nontail recursion removal� Using this tactic�

rev������� rev�x �� xs�� rev�xs� � �x �� ���

is transformed into
rev�x��g�x� ���
g���� u��u g�x �� xs� u�� g�xs� x �� u�

The intermediate data structure created by the recursive call of rev disappears in this new
presentation� The tactic requires to know that � is associative and has �� as right identity�
This transformation allows us to perform fusions that would be otherwise rejected by the
subsumption criterion� As we shown as example in Section ��� the fusion of length�rev�x�� is
rejected because rev occurs in an inductive position of � in �length�rev�xs�� � �x��� h�x �� xs���
Let us suppose that� at this point in the process� we modify the presentation of rev by using the
accumulator introduction tactic� then� the fusion of length�rev�x� becomes possible because
the producer rev is at the top� and� as such� is ready to be consumed at any time� Note
that when this transformation does not work� laws can be used within our process without
di�culty� mixing laws within a rewrite system is always possible providing that it preserves
the termination of the rewrite system�

Consider the tupling	 The process we described does not remove all parallel traversals
because of the separability requirement we impose on the tupling pair� This� we can easily
overcome� For example� suppose f and g have inductive position �� the subterms f�xs� k�y� z��
and g�xs� y� of a term r� which have not the same set of variables� will not be considered as a
tupling pair though they both traverse the same data structure� If we were processing this pair�
we will not only get the tupling rule f�xs� k�y� z���h�x� y� z� but also G � g�xs� y��h�x� y� z�
which cannot be a rewrite rule� We could consider G as a pair whose left element can be
overlapped but which cannot be used for rewriting� In this case� the subterm g�xs� y� in r
would have to be replaced by h�xs� y� z� by direct replacement and not by rewriting�

� Related Work

There have been a number of di�erent proposals for program transformations that are derived
from the unfold�fold method� Let us consider only the works which automatize deforestation
of �rst	order functional programs�

The ancestor is Wadler
s deforestation algorithm in ����� Fusion terms must be composed
of treeless function symbols to be accepted by the algorithm� Using our terminology� a de�ned
symbol f is treeless if the right	hand side of rules in Rf are linear and built solely with con	
structors and calls of de�ned functions with variables as arguments� For example� � and zip are
treeless� but rev� flat and tails are not� It is easy to see the reasons behind these restrictions�



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

��� if a right	hand side in Rf is not linear �like for Rtails�� we have seen that the fusion risks to
be ine�cient� We have not this limitation because we use tupling afterwards� ��� if a recursive
call in a right	hand side has a term as argument� it will not be able to consume a producer at
this position �in this case� our process yields an embedding of the fusion term which creates
a secondary fusion�� ��� if a call of a function g in a right	hand side has a term as argument
which contains a recursive call �like � for flat or rev�� g will create an obstruction as producer�
Again� in our process� we get an embedding of the fusion term which creates a secondary fu	
sion� Wadler
s deforestation algorithm considers composed terms like x � d�x� that we reject
because d�x� occurring at a noninductive position of � does not create an intermediate data
structure� We consider this case as another tactic for program manipulation which� from our
point of view� is not a deforestation but a composition removal� This complementary tactic is
also automatizable using completion and other kind of analyses�

Chin in ��� has extended Wadler
s work by re�ning the analysis� He annotates an argument
position i of a de�ned symbol as safe if� in Rf � the variables of the argument tci occurs only
once and� moreover� if in the recursive call f�t�� t�� � � � � tn�� ti is a variable or a constant� A
function f can consume only at safe positions� The producer is safe if its recursive calls do not
occur in a safe position of a consumer� This makes tails unsafe consumer but safe producer�
The functions flat and rev are unsafe producers but they are safe consumers� Therefore
Chin
s extended deforestation algorithm accepts fusions such as length�tails�x��� flat�x�y��
and rev�x�y� as safe� It rejects fusions tails�x�y�� length�flat�x��� and length�rev�x�� as
unsafe� Wadler
s rejects all of them� These annotations permit the extended deforestation
algorithm to track all the e�ective fusions that do not require laws or secondary fusions�

A recent article ���� compares diverse transformation techniques� deforestation� supercom	
pilation� partial evaluation� and generalized partial computation with respect to the amount
of information propagation they enable� It proposes a widened deforestation algorithm which
enables more information propagation than Chin
s extended deforestation algorithm�

Our superiority with respect to these algorithms for deforestation is� ��� that we combine
both deforestation and tupling� and ��� that we perform the secondary fusions� This extends
the class of the deforestation that are automatizable�

� Conclusion

The analyses we propose in this paper allow us to use completion in an e�ective and automatic
way for combining the two transformation tactics of deforestation and tupling�� First	order
functional programs presented by a set of pattern	matching de�nition rules are translated
into a constructor	based orthogonal rewrite system� Rewrite techniques apply if the system
is terminating� We were surprised to discover how combining deforestation and tupling can
be fruitful� The superiority of using a rewrite system and completion for synthesis is that
we can manipulate equations which are not constructor	based� In other words� we are not
limited by a pattern	matching presentation of the rules we use� This permits us to implement
the tupling by using the non	constructor	based rules we call tupling rules in the paper� This

�Presently� the fully automatic process we present in this paper is implemented in ASTRE



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

also permits us to generate what we call the secondary fusion rules in the paper� The purely
automatic system we describe in the paper performs most of the fusions which otherwise could
not be processed without adding laws� Moreover� the user can introduce laws as he desires�
These laws can facilitate fusions without perturbating the process� Without input of laws�
thanks to secondary fusions and to tupling� the automatic process performs a more complete
deforestation of the program than Chin
s extended deforestation algorithm� Another advantage
of our method is that it is possible to add incrementally other strategies for transformation�
It is also easy to experiment with a new strategy and to try its interaction with others by
mixing the user	directed version of the completion with the automatized one�s�� However�
we are technically restricted to �rst	order terminating rewrite systems� Presently� we use a
higher	order removal transformation performed by partial evaluation as a preprocessor of our
system� Moreover� we can combine the partial evaluator Schism ��� with our system ���� Partial
evaluation� on the �y� transforms a given set of higher order laws into the �rst	order laws that
facilitate a transformation�

Acknowledgements I wish to thank Olivier Danvy for its encouragement and comments
and Laura McKinney for her help in proof reading the paper�

References

��� F� Bellegarde� Program Transformation and Rewriting� Proc	 �th Int	 Conf	 on Rewriting
Techniques and Applications� volume ��� of Lecture Notes in Computer Science� pages
���	���� Springer Verlag� �����

��� F� Bellegarde� Astre� a Transformation System using Completion� Technical Report� Ore	
gon Graduate Institute� �����

��� F� Bellegarde� A transformation System Combining Partial Evaluation with Term Rewrit	
ing� Proc	 HOA��

 An international Workshop on Higher Order Algebra� Logic and Term
Rewriting� to appear in a volume of Lecture Notes in Computer Science� Amsterdam� Sept�
���

��� F� Bellegarde� Automatic Transformation by Rewriting Techniques� Technical Report
No ��� ���� Oregon Graduate Institute� �����

�
� W�H� Burge Recursive Programming Techniques� Addisson	Wesley� ���
�

��� R� M� Burstall and J� Darlington� A Transformation System For Developing Recursive
Programs� J	 of the Association for Computing Machinery� �����	��� �����

��� W� N� Chin� Safe fusion of Functional Expressions II� Further Improvements� J	 of Func�
tional Programming� ����	��� �����

��� C� Consel and O� Danvy� Tutorial Note on Partial Evaluation� Conf	 Record of the Twen�
tieth Annual ACM Symposium on Principle of Programming Languages� pages ���	
���
ACM� �����



Id� sas�tex�v ��� ����	
�	
� �������� bellegar Exp bellegar ��

��� M� Fokkinga� Tupling and Mutamorphisms� The Squiggolist� ����� �����

���� N� Dershowitz� Computing with rewrite systems� Information and Control��
����	�
�� ���
�

���� N� Dershowitz� Completion and its Applications� Resolution of Equations in Algebraic
Structures�� ����	��� Academic Press� �����

���� A� Gill� J� Launchbury and S�L� Peyton Jones� A short cut to Deforestation�Proc	 of the �th
Conf	 on Functional Programming Languages and Computer Architecture� Copenhagen�
pages ���	���� June �����

���� U� S� Reddy� Transformational derivation of programs using the Focus system� Symp	
Practical Software Development Environments� pages ���	���� ACM� December �����

���� J� Hughes� Why Functional Programming Matters� Computer Journal� ��������	���� �����

��
� U� S� Reddy� Rewriting Techniques for Program Synthesis� Proc	 of the 
rd Conf	 on
Rewriting Techniques and Applications� volume �

 of Lecture Notes in Computer Science�
pages ���	���� Springer Verlag� �����

���� T� Sheard and L� Fegaras� A fold for All Seasons� �th Conf	 on Functional Programming
Languages and Computer Architecture� pages ���	���� �����

���� M� H� S rensen� R� Gl!uck and N�D� Jones� Towards Unifying Deforestation� Supercom	
pilation� Partial Evaluation and Generalized Partial Computation� Proc	 of Eureopean
Symposium on Programming� Lecture Notes in Computer Science� Springer Verlag� April
�����

���� P� Wadler� Listlessness is better than laziness II� Composing listless functions� Workshop
on Program as Data Objects� volume ��� of Lecture Notes in Computer Science� pages
���	��
� Springer Verlag� Copenhagen� ���
�

���� P� Wadler� Deforestation� Transforming programs to eliminate trees� Proc	 of European
Symposium on Programming� volume ��� of Lecture Notes in Computer Science� pages
���	�
�� Springer Verlag� �����


