
AutoCRAT: An Automated Tool
to Support Conflict Detection

in a Concurrent Engineering Environment

Donald R. Schwartz
Lois M. L. Delcambre

Technical Report No. CS/E 94-021

May 1994



AutoCRAT: An Automated Tool to Support Conflict Detection
in a Concurrent Engineering Environment

Donald R. Schwartz Lois M. L. Delcambre
Department of Computer Science Dept. of Comp. Science and Engineering

Louisiana Tech University Oregon Graduate Institute of Science & Technology
P. O. Box 10348 P. O. Box 91000

Ruston, LA 71272 Portland, OR 97291-1000
(318) 257-2621 (503) 690-1689

schwartz@engr.latech.edu lmd@cse.ogi.edu



Abstract

Concurrent engineering requires the simultaneous consideration of a huge diversity of
issues regarding a given object under design. Successful support for concurrent engineer-
ing requires a conceptually integrated environment that can address this diversity of
issues and assist with the detection and resolution of conflicts among design constraints
and decisions.

The Automated Constraint Refinement and Assessment Tool (AutoCRAT) is a generic
tool for the top-down refinement and bottom-up validation of design constraints. Auto-
CRAT supports the diversity of issues that arise in a concurrent engineering environment
because constraints can address any aspect of the product under design and because con-
straints can be expressed in any language, including natural language.

The focus of this paper is on the structuring facility of AutoCRAT that supports a user-
defined organizational structure for constraints. This structure allows constraints to be
flagged, annotated, browsed, and queried. This paper describes how the structuring facil-
ity of AutoCRAT supports conflict detection.

1. Introduction

Concurrent engineering refers to the collaborative effort of teams of specialists who each

focus on a distinct aspect of the object (or system or product) under design [Shi91].

There are several challenges that must be addressed to support concurrent engineering.

(1) The design environment must be able to simultaneously address all of the diverse
aspects considered for concurrent engineering [RWC91]. Examples of the vari-
ous aspects include: the cost of, the ability to manufacture, and the ability to
repair or maintain the object, in addition to the usual aspects concerning form
(e.g., weight, size) and function (e.g., gas mileage, power output).

(2) The design environment must support the entire life cycle of the object [Tur91].
Each aspect considered during concurrent engineering has, historically, been con-
sidered at a particular stage in the life cycle. Aesthetics might be part of the earli-
est design (e.g., when design sketches are done). Form might be considered fairly
early in order to set the physical dimensions of the object. Function soon follows
(or may proceed in parallel). Manufacturability may (or historically may not)
have been considered very early in the process. Safety and cost might be consid-
ered throughout the life cycle.

A design environment to support concurrent engineering must be able to support
all aspects through the entire life cycle so that conflicts from all sources can be

1



identified, examined, and resolved whenever they occur.

(3) The design environment must interoperate with a large and growing number of
design tools that can provide sophisticated assistance for some particular aspect
of the design. Such specialized tools might provide solid models, stress analysis,
safety, simulation testing, mechanical drawing, etc.

The goal, then, is to provide a conceptually unified environment that supports the diver-

sity of aspects and design tools considered and used during concurrent engineering

throughout the entire life cycle of a product. The question is: what is an appropriate

generic framework for such a design environment?

This research adopts the Theory of Plausible Design (TPD) [AD87] as the generic frame-

work for a design environment. TPD represents the design, at any stage of the life cycle,

as a set of constraints, and supports a design process of top-down refinement of those

constraints. Perhaps the most valuable aspect of TPD is that it also provides for the vali-

dation (or refutation) of design constraints through the provision of evidence. Evidence

for a detailed (bottom-level) constraint establishes the plausibility state for the constraint.

The plausibility state (of either validated or refuted) is then propagated upwards through

the refinement graph to ultimately validate (or refute) a complete design. TPD supports

concurrent engineering because constraints stated in TPD can be expressed in any lan-

guage (including natural languages) and can address any aspect of the object under

design. TPD can easily represent "The car must be cute and sporty" as well as "The car

must deliver 140 hp."

This paper focuses on AutoCRAT [DS92], an automated tool that implements TPD.

AutoCRAT assists human designers through the articulation of constraints, the top-down

2



refinement of constraints into alternative sets of subconstraints, and ultimately through

the documentation of evidence that the designer uses to establish the likelihood that the

constraint will be satisfied when the object is actually constructed (i.e., to validate or

refute the constraint).

The diversity of issues addressed during concurrent engineering significantly increases

the likelihood of conflict and increases the difficulty of conflict detection. The goal of

concurrent engineering and the critical element of its success is the detection and resolu-

tion of conflict. Also, the benefit is greatest when such conflicts are detected early. A

rule of thumb during the design of space systems is that 90% of the budget is committed

before 10% of the budget is actually spent. This implies that early detection and resolu-

tion of conflict has a huge potential benefit for cost control.

AutoCRAT represents constraints, the refinement structure, evidence, and the plausibility

states in order to support TPD. AutoCRAT provides a structural facility for constraints

that can be used to flag or mark and annotate constraints (e.g., that address a given aspect

of the design) and formulate queries based on Boolean combinations of flags. This paper

explains how the AutoCRAT structuring facility helps the design team detect conflict.

Note that AutoCRAT allows the user to define and refine constraints, and provide evi-

dence for constraints; AutoCRAT does not currently do any automatic design. Similarly,

the AutoCRAT structuring facility allows design teams to detect and resolve conflict.

The organization of this paper is as follows. Section 2 provides the background for Auto-

CRAT with a brief presentation of TPD. Section 3 presents the AutoCRAT structuring

3



facility in detail, along with examples. Section 4 describes how the structuring facility

supports conflict detection among constraints. Conclusions and future work are offered

in Section 5.

2. Background: The Theory of Plausible Design as the Basis for AutoCRAT

The Theory of Plausible Design (TPD) is intended to capture the essence of design, par-

ticularly in the earlier stages of the life cycle. This section introduces TPD in Section 2.1

and explains the AutoCRAT support for TPD in Section 2.2.

2.1. Overview of the Theory of Plausible Design (TPD)

Early in the design, requirements are usually stated in natural language, and as such, may

be expressed in imprecise, ambiguous, and/or non-quantitative terms such as "efficient",

"manufacturable", and so on. Yet, the design team, at each stage of the design, must

begin with such specifications and produce a more-detailed, more-precise design, i.e., a

description, specification or plan that represents the target artifact. At the final stage, the

design serves as a blueprint for manufacture, and an artifact manufactured according to

the design is expected to satisfy the given set of requirements. The challenge is to pro-

duce a precise, final design that the designer has confidence will satisfy the imprecise

requirements given as a starting point.

The central notion of the Theory of Plausible Design (TPD) is that the process of design

is a process of top-down refinement of a set of constraints, properties that must be satis-

fied by the artifact under design. Constraints can address the functionality, performance,

4



reliability, safety, cost, aesthetics, manufacturability, modifiability, etc., of the product

under design. In practice, when constraints of several types must be considered together,

e.g. in a concurrent engineering environment, conflicts among the constraints often arise.

For example, design constraints concerning safety and reliability generally cause prob-

lems for constraints on cost and manufacturability. When additional constraints concern-

ing weight and power requirements are introduced, additional conflicts can arise.

The process of design is often a process of refinement. For each design statement the

designer must answer the question: "How can I demonstrate that this constraint is satis-

fied?" Often, the answer results in a new, more detailed set of design subconstraints.

TPD captures this process of refinement by building a constraint dependency graph

(CDG) in a top-down manner to document how the design process proceeded as the con-

straints were formulated. The CDG can include design alternatives through the use of or

and refinement into a set of subconstraints through the use of and. In addition to provid-

ing a set of subconstraints, a given constraint can be validated or refuted by the provision

of evidence that directly demonstrates that the constraint is, or cannot be, satisfied.

One of the driving factors that led to the development of TPD is that a designer, at any

stage in the design process, would like to hav e confidence that the original, top-level

requirements of a design are being met. The goal is to validate a complete design by vali-

dating the original set of top-level constraints. The initial state of constraints, as they are

entered into the CDG, is assumed. The validation process begins by validating the leaf-

level or most-detailed constraints directly through the provision of evidence. The

5



evidence provided for a leaf-level constraint documents the reasons which either support

or defeat the constraint. Based on the evidence, the state of the constraint is either vali-

dated or refuted, respectively. Stated more formally, a constraint C can be in exactly one

of three plausibility states:

Assumed: If no evidence against C’s plausibility has been documented.

Validated: If significant evidence in favor of and no evidence against C’s plausi-
bility has been documented.

Refuted: If evidence against C’s plausibility has been documented.

The state of each leaf-level constraint is then systematically propagated upwards based on

the and/or connections in the graph according to the laws of plausibility [Das89].

The plausibility state of a constraint is thus a function of the available evidence. TPD

provides for the documentation of evidence, which can be of any type. Examples of evi-

dence include: formal proofs, which uses formal deductive logic to demonstrate that the

plausibility state of a constraint is implied from given premises; experiments, from which

conclusions can be drawn; data, analyses or models reported in the technical literature;

heuristics, arguments based on common sense reasoning; expert opinion, given by by one

or more experts in the realm of the particular design; previous experience; simulation;

testing; and prototyping.

The decision about what constitutes the end of a design varies depending on the point of

view of the designer. Early design may begin with an initial set of requirements and pro-

duce a more detailed set of requirements as the final, leaf-level deliverable. This in turn

becomes the starting point for the next team of designers. Each design phase can use

6



TPD to support the top-down development and bottom-up validation of the design.

2.2. Overview of AutoCRAT

TPD was adopted as the formal framework for a design tool called AutoCRAT: the Auto-

mated Constraint Refinement and Assessment Tool. AutoCRAT has been implemented

with inspiration provided by the early design stages for satellite and space systems.

[DSG92] Space systems tend to be one-of-a-kind or at least few-of-a-kind, yet they

require sophisticated functionality under the pressure of limited budgets and precise

schedules.

AutoCRAT provides four windows, including both a textual and a graphical representa-

tion of constraints as they are organized into the CDG: the Constraint Graph window

shows the top-down refinement structure of constraints and the Notebook window dis-

plays a series of menus and forms to provide for the entry, display and manipulation of all

textual data, including the statement of constraints and evidence posted against (leaf-

level) constraints. A third window, the Message window, is used to display error mes-

sages and other information originating in any of the components of AutoCRAT. The

fourth window is called the Flag Graph window. The capabilities of flags and their asso-

ciated annotations to organize and retrieve constraints is the major focus of this paper.

These capabilities are referred to as the AutoCRAT structuring facility and are explained

in the following section.

7



3. The AutoCRAT Structuring Facility

In addition to the definition and maintenance of constraints within the constraint depen-

dency graph, a structural facility has been provided in AutoCRAT that allows the designer

to organize, retrieve, and further describe constraints that appear in the constraint depen-

dency graph [Sch93]. The structuring facility provides a way to organize and annotate

constraints. The query facility uses this structure as a basis for browsing and highlighting

constraints.

3.1. The AutoCRAT Flag Facility

There are two uses of flags in the structural facility: (1) to identify constraints which fall

into particular, user-defined classes and (2) to enter additional textual information that the

designer wishes to capture about individual constraints.

The use of flags to mark constraints is introduced here with an example. There may be a

certain set of constraints that are particularly important to the overall cost of an object

under design. A flag can be defined with the name "Cost". Each constraint that affects

cost can then be marked with this flag. There may be another flag defined with the name

"Safety" to tag constraints that pertain to some safety aspect of the object under design.

Any category of interest can be defined as a flag and can then be used to mark constraints.

The flags can be organized into a simple semantic network, meaning that subflags and

sub-subflags, etc., can be defined. A subflag is a flag that represents a more specific con-

cept than its parent flag. As an example, when designing a car, a flag might be defined

8



called "Driver Safety", meaning that all constraints that are considered to be critical to the

safety of the driver are marked with the flag "Driver Safety". Another flag could be

defined to mark those constraints concerning passenger safety. These flags, "Driver

Safety" and "Passenger Safety", could be defined as subflags under the "Safety" flag.

Graphically, a subflag appears to the right of its parent flag.

Based on the semantics of subflag, whenever a constraint is marked by a flag, it is auto-

matically marked by all of its superflags as well. Under the configuration of flags in Fig-

ure 1, any constraint marked by "Driver Safety" would automatically be marked by both

the "Driver Safety" and "Safety" flags.

The other use of flags allows that each time the flag is associated with a constraint, the

designer has the opportunity to enter a textual description about the association. One

example of this use of flags is the way that AutoCRAT supports the documentation of evi-

dence. There is a flag for "Evidence" and there are subflags for each type of evidence

needed during the design. Examples of evidence include, but are certainly not limited to,

previous experience, simulation, expert opinion, and testing, as shown in Figure 2.

Safety

Passenger
Safety

Driver
Safety

Figure 1. Safety Flags

9



For each subflag of evidence, the designer can enter a description giving the details of the

evidence provided. As an example, if constraint C70 were validated because an existing,

available component already satisfied that requirement, and this use of the component

requires no changes, then C70 could be associated with the "Previous Experience" flag.

The annotation or documentation for this evidence entry might be "The design used in a

previous model exhibited excellent performance and required only routine, scheduled

maintenance." In space systems, such evidence is used for validation when a component

has successfully "flown before", e.g., on a previous shuttle mission. If another constraint,

say C81, were validated using simulation results, then C81 could be associated with the

"Simulation" flag and the textual description might say: "Simulation program model-1243

for the given car provides evidence that this constraint is satisfied with a confidence level

of 0.95."

Previous
Experience

Simulation

Expert
Opinion

Testing

Evidence

Figure 2. Evidence Subflags

10



The use of annotations with flags can also provide additional structure or attributes for the

constraint itself. It might be useful to describe several different aspects of the constraint.

Such annotation can be organized by providing an appropriate flagging structure that

allows constraint-specific information to be entered according to the various categories

established by the flagging structure. This use of flags might be called a "table of con-

tents" for a constraint. As an example, consider the flagging structure in Figure 3.

For each of the flags that appears below the flag called "Constraint", the user/designer can

enter textual information specific to the constraint. The designer can thus enter the justi-

fication for including the constraint, independently from the actual constraint statement.

Also, the designer can enter the expected feasibility of the constraint, the source of the

constraint, the author of the constraint (with any commentary), and the justification for

including the constraint in the design. Each AutoCRAT user, as well as each application

area, can custom design the flagging structure to serve as a "table of contents" for con-

straints to meet his/her specific needs. Using other terminology, each flag (with annota-

tion) serves as an attribute for constraints. Thus a flag with subflags serves as a hierarchi-

cally-structured attribute for constraints.

The decision about when, if ever, to enter the constraint-specific information (i.e., the

annotation) for a given association of a flag with a constraint is left to the user. Some

Figure 3. Sample Table-of-Contents Flag Structure

11



constraints may be associated with the flag "Simulation" long before the details are

known. Thus, it is up to the user to enter the constraint-specific annotation whenever

desirable.

3.2. The AutoCRAT Querying Facility

The flagging facility provides the framework for querying the design. The AutoCRAT

querying facility allows the designer to browse and query against the constraint depen-

dency graph, including the annotations [SD93]. AutoCRAT provides pre-defined queries

for several commonly-used queries and a general query facility based on flags.

The AutoCRAT predefined queries include such queries as "List all constraints and their

states" and "List all flags associated with a particular constraint". The flag-based query

facility allows the user to select flags and combine them using using the connectors AND,

OR, AND NOT, and OR NOT to dev elop ad hoc queries. These queries are built using

mouse clicks on alternating lists of flags and connectors. For example, if the user wanted

to see all constraints validated by H. Brown, he would build the query using

validated AND H. Brown

He/she may wish to see all constraints which deal with cost and either power or perfor-

mance:

cost AND power OR cost AND performance

To see constraints that affect cost, but that are not related to safety, the user can issue the

following query:

cost AND NOT safety

12



In addition, queries can use a string searching capability based on the actual text of anno-

tations, including the constraint statements themselves. This allows the AutoCRAT user,

for example, to search for all constraints that mention the terms mileage, gas, economy,

or MPG in the constraint statement. Such selection criteria can be combined with other

flags or selection criteria using the AND, OR, and NOT connectors.

In response to a query, AutoCRAT returns a list and description of the constraints which

satisfy the query. To better orient the user as to which constraints are returned, these con-

straints are highlighted in the graphical representation of the CDG. Facilities are also

present which allow the user to browse through the complete constraint statements for

those constraints that comprise the answer to the query.

13



4. AutoCRAT Support for Conflict Detection

The AutoCRAT support for conflict detection can be viewed as a three-part process: (1)

Identification of constraints that (unexpectedly or unknowingly) deal with other, div erse

aspects of the design (through the string-matching facility), (2) Identification of all con-

straints that deal with multiple, particular, overlapping, and potentially conflicting aspects

of a design (through the query facility), and (3) Inspection of the design rationale that

lead to each (conflicting) constraint (through examination of the refinement process docu-

mented in the CDG) and the evidence given to validate and/or refute this and other alter-

native design choices.

Note that AutoCRAT is a support tool for a human designer. AutoCRAT, as currently

defined and implemented, allows the designer to state constraints, refine them, and estab-

lish their plausibility state. For conflict detection, AutoCRAT likewise provides the

human designer with technology to organize constraints, search for conflicts, and under-

stand the design rationale for each (conflicting) constraint. Thus AutoCRAT does not

explicitly provide for automatic design nor automatic conflict detection/resolution. How-

ev er, AutoCRAT, through the CDG and the structuring facility, can be viewed as provid-

ing a design representation structure which could directly support intelligent processing,

e.g., for automatic design or conflict detection.

In this section, a rather simple and contrived example of the design of a car is used to

demonstrate AutoCRAT’s support for conflict detection and resolution. When designing

a car, some typical top-level constraints might be:

14



• The car must be safe.

• The car must be economical.

• The car must be powerful.

• The car must be comfortable.

Naturally, each of these would be refined. A resulting constraint dependency graph

(CDG) might appear as follows.

15





The designers would also be required to associate flags with the various constraints.

Adding to the flags introduced in Figure 1, the following flag structure in Figure 4 results.

Safety

Passenger
Safety

Driver
Safety

Physical

Weight

Dimensions

Cost

Figure 4. Flags

Sample constraint-flag associations are depicted in the Table 1. Using these constraint-

flag associations, a designer (or manager or assessor) can easily create queries to browse

the CDGs in order to detect conflicts. For example, to see which constraints affect cost

and driver safety, the following query is used:

cost AND driver safety

17



Table 1: Constraint-Flag Associations

Flag Name Constraint ID
Cost C10 C20 C30 C40

C50 C60 C70 C93
C94 C200 C210 C300
C310 C400 C410 C420

Driver Safety C10 C20 C30 C40
C200 C300 C310 C400
C410 C420

Passenger Safety C10 C20 C30 C40
C210 C300 C310 C400
C410 C420

Safety C10 C20 C30 C40
C200 C210 C300 C310
C400 C410 C420

Weight C30 C300 C400
Size C91 C92 C94 C300

C400

The result of this query is the following set of constraint IDs:

C10 C20 C30 C40
C200 C300 C310 C400
C410 C420

These constraints can then be individually examined to see whether or not they conflict.

For example, suppose a constraint exists stating that a particular engine is needed to pro-

vide the required power but another constraint limits the total weight of the car to 2000

pounds. Both constraints should be associated with the "weight" flag. If the weight of

the proposed engine causes the total weight of the car to exceed 2000 pounds, that engine

18



would have to be rejected or modified or the total weight constraint would have to be

modified (if that were a feasible option). This is precisely the type of conflict that should

be detected during concurrent engineering. If the designers look for and evaluate con-

flicts early in the design life cycle, the project will certainly benefit in the long run.

5. Conclusions and Future Work

Too often, design tools tend to be application specific and most fail to support the addi-

tional requirements needed for concurrent engineering. AutoCRAT is a unique tool in the

realm of design. It provides a generic facility for the statement, organization, monitoring,

and refinement of design constraints throughout the design life cycle. Because no restric-

tions are placed on the type of constraints, nor the way in which constraints are stated,

AutoCRAT allows the designer to consider all aspects of design. Constraints arising from

all aspects of concurrent engineering can be entered and monitored just as easily as con-

straints concerning form and function. Through the use of the flagging facility, the

designer can identify all constraints which affect any particular aspect of the artifact. This

is a particularly important benefit during the assessment of a design, especially when the

design must be approved by multiple assessors: each assessor can trace decisions made

about his particular area, e.g., safety or cost.

Because the state of each constraint is automatically propagated upward through the

CDG, and the state of each constraint is graphically represented in the CDG, conflicts

which arise due to various constraints are clearly indicated (since the state of such

19



constraints will be "refuted"). Using the various browsing and query facilities available

in AutoCRAT, the designer can review the history of the design process, the evidence

provided for the various constraints, and the justification given for the inclusion of the

conflicting constraints. AutoCRAT helps to detect these conflicts, but does not offer

advice on how to resolve the conflicts.

The contribution of AutoCRAT arises from its focus on: a flexible representation for con-

straints (based on the flags to define additional fields of interest that can represent state-

ments in any formal or natural language), the generic aspects of design (based on top-

down refinement, provision of evidence, and bottom-up validation of the initial require-

ments), and the organizational and retrieval capabilities (based on the Structural and

Query Facilities).

AutoCRAT has been implemented and initially tested in the satellite design arena [SD93].

The long-term research plan for AutoCRAT envisions an architecture where AutoCRAT

provides the unified representation of design as a middle layer with various knowledge-

based and other tools for automatic design layered on top of AutoCRAT. Below Auto-

CRAT, one could imagine various specialized design tools such as CAD or modeling

tools, that represent specific aspects of the object under design. The key to successful

concurrent engineering is in the seamless integration of design tools with the generic con-

straint statement, validation, and conflict detection capabilities of AutoCRAT. As part of

the pilot implementation, AutoCRAT was successfully integrated with VEHICLES, a

knowledge-based system for spacecraft design [BG90]. The interface between the two

20



systems focused on the introduction of several additional predicates (in the VEHICLES

Prolog program) that were asserted whenever a certain aspect of the design succeeded. In

essence, VEHICLES was posting evidence to AutoCRAT automatically. In general, the

interface requires the delivery of constraints to the underlying design tool (in an under-

standable format) and the automatic posting of evidence back to AutoCRAT.

The major effort of the original research involving AutoCRAT was its integration with a

CAD database which was developed in order to provide a generic representation of

design object components and configurations and to truly capture the essence of func-

tional block diagrams which describe the objects [BK85][BdC85]. This integration pro-

vides the basis for a design environment which supports the top-down refinement of

design constraints and the bottom-up configuration of the physical objects being designed

[Kat90]. The integration of the generic CAD database with the power of AutoCRAT pro-

vides an environment that spans the design life-cycle from high-level, abstract require-

ments to actual, implemented design object. This environment also allows the user to

trace design decisions made and to track the multidimensional set of constraints and

requirements which arise in concurrent engineering.

References

[AD87] U. Aguero and S. Dasgupta. A Plausibility-Driven Approach to Computer
Architecture Design. Communications of the ACM, 30(11):922-932, Nov.
1987.

[BdC85] Alejandro P. Buchmann and Concepcion Perez de Celis. An Architecture and
Data Model for CAD Databases. In Proceedings of the Eleventh International
Conference on Very Large Databases, pages 105-114, 1985.

[BG90] K. L. Bellman and A. Gillam. Achieving Openness and Flexibility in VEHI-
CLES. Proceedings of the SCS Eastern Multiconference, Simulation Series,

21



Volume 22, Number 3, The Society for Computer Simulation, April 1990.

[BK85] D. S. Batory and Won Kim. Modeling Concepts for VLSI CAD Objects. ACM
Tr ansactions on Database Systems, 10(3):322-346, Sept. 1985.

[Das89] Subrata Dasgupta. The Structure of Design Processes. Advances in Comput-
ers, 28, 1989.

[DS92] Lois Delcambre and Donald Schwartz. AutoCRAT: Automated Support for
Design in a Concurrent Engineering Environment. In Proceedings of the Euro-
pean Joint Conference on Engineering Systems Design and Analysis, June
1992.

[DSG92] Lois Delcambre, Donald Schwartz, and April Gillam. AutoCRAT Templates
for Design Knowledge Capture. In Proceedings of the International Space Year
Conference on Earth and Space Science Information Systems, Feb. 1992.

[Kat90] Randy Katz. Tow ard a Unified Framework for Version Modeling in Engineer-
ing Databases. ACM Computing Surveys, 22(4):375-408, Dec. 1990.

[RWC91] Ramana Reddy, Ralph Wood, and K. Cleetus. The Darpa Initiative: Encourag-
ing New Industrial Practices. IEEE Spectrum, Vol. 28, No. 7, pages 26-29, July
1991.

[Sch93] Donald Schwartz. A Computer-Aided Design Database Integrated with a
Generic, Formal Design Paradigm. Ph.D. Dissertation, University of South-
western Louisiana, May 1993.

[SD93] Donald Schwartz and Lois Delcambre. Credibility Assessment Using Auto-
CRAT. In Proceedings of the 1993 Simulation MultiConference: Simulation in
Military and Government, pages 67-72, Apr. 1993.

[Shi91] Sammy G. Shina. New Rules for Design. IEEE Spectrum, Vol. 28, No. 7,
pages 23-25, July 1991.

[Tur91] Jon Turino. Concurrent Engineering: Making It Work. IEEE Spectrum, Vol.
28, No. 7, pages 30-31, July 1991.

22


