Induction and Synthesis for Automatic Program Transformation?

Francoise Bellegarde,

Oregon Graduate Institute of Science & Technology
PO Box 91000 Portland, Oregon, USA
503-690-1558
bellegar@cse.ogi.edu

The transformational approach to the development of programs is attractive for writing
small components of large software systems. In this approach, developing a software com-
ponent consists simply of writing an initial, possibly ineflicient, but correct program P and,
then, in transforming Py into a sequence of programs Py, Ps, ..., P, to get a new, semantically
equivalent program F,, which is more efficient. The transformation phase, to be effective, must
be automated so that it is not necessary to be an expert in transformation strategies to use
the transformational approach for software design. In our work, induction, synthesis and gen-
eralization are used as mechanisms for an automated system for transformation of functional
programs. Synthesis of a new program version is done by a completion procedure [4]. The
programs in the sequence Py, Py, ..., P, are presented by a terminating, constructor-based and
orthogonal first-order rewrite system. For example, the transformation strategies that are au-
tomated are: fusion or deforestation (eliminating useless intermediate data structures), tupling
(consolidation of similar control structures) and accumulator introduction (recursion elimina-
tion). Presently, the following mechanisms control or enhance the completion procedure.

(1) There is a mechanism for suggesting strategies which is accomplished by automatically
introducing new functions, called eurekas in the fold-unfold methodology [2] (previously these
new functions had to be introduced through the insight of a clever user). Consider, for ex-
ample, that the transformation step P; to P41 performs deforestation of a term ¢ in F;. The
transformation consists in looking for a set of rewrite rules S that reduce ¢ to a term t' free
of intermediary data structures. The mechanism for suggesting strategies is able to propose a
left-hand side s of a rule in S which encompasses ¢ and which contains no useless data struc-
tures. The right-hand side is built with a new functional symbol & which has as arguments all
the variables in s. Rules in 5 are called synthesis rules.

A synthesis rule triggers completion process. The completion synthesizes the constructor-
based rules, forming a complete definition of the function corresponding to the new functional
symbol h.

(2) There is a mechanism to control the production of critical pairs during completion.
For example, during a deforestation, the control mechanism rejects critical pairs between a

*The work reported here is supported in part by a contract with Air Force Materiel Command (F1928-R-0032)

constructor-based rule and a synthesis rule that do not substitute a constructor-term in an
inductive position of the new symbol h. The control guarantees the termination of completion.

(3) There is a mechanism for suggesting induction lemmas during the synthesis. For exam-
ple, associativity laws facilitate recursion removal synthesis, and endomorphisms or distribu-
tivity laws facilitate fusion synthesis. In such cases, the suggestion mechanism is followed by
a proof or a disproof of the lemma. If the proof succeeds, the result can be exploited by the
synthesis. If the proof fails, it knows that the transformation cannot be done and the eureka
can be rejected.

There is a problem when the suggestion is incomplete. For example, recursion removal is
often achieved by finding an identity. But we don’t know if this identity exists or not. If the
identity does not exist, the narrowing technique will search forever for it. Future work could
solve this problem in some cases, possibly by utilizing techniques presented in [1].

Fortunately most induction lemmas do not need to be known completely. Suppose a fu-
sion synthesis finds the critical pair: h(z :: 2s) = length(2Q flat(zs)), an interesting lemma
is flat(xQy) = flat(x)Q@flat(y). However suggesting the completion to synthesize a func-
tion k such that length(z@u) — k(x,length(u)) is enough to get what we want: h(z :
xs) — k(z,h(xs)). In such cases, the rules synthesized for & by the completion are not quite
constructor-based but are generalizable to constructor-based rules.

(4) Cleaning mechanisms follow the synthesis. They build a constructor-based rewrite sys-
tem from the rewrite system issued from the synthesis. Cleaning uses deletion, generalization,
normalization, and specialization techniques.

(5) Finally the order in which strategies are chosen matters. Therefore, a hybrid mechanism
to suggest how to combine strategies is required.

It can be proved that the process preserves the termination of a constructor-based orthog-
onal rewrite system. We guarantee that each distinct synthesis terminates. Moreover, we also
guarantee that the process does not call for an infinite number of syntheses.

Related approaches to automating elimination of useless intermediate data structures are
the deforestation algorithm proposed by Wadler [6] and the extended deforestation algorithm
proposed by Chin [3]. Also an automatic way to implement deforestation inside the Haskell’s
compiler has been shown in [5]. By using completion! as a tool for synthesis, our transformation
system is not restricted to the deforestation strategy and is able to automate transformations
for a larger class of programs than the above algorithms.

References

[1] J. Arsac and Y Kodratoff. Some techniques for recursion removal from recursive functions.
ACM Transaction on Programming Languages and Systems, 4,(2):295-322, 1982.

[2] R. M. Burstall and J. Darlington. A Transformation System For Developing Recursive
Programs. Journal of the Association for Computing Machinery, 24, pages 44-67, 1977.

[3] W. N. Chin. Safe Fusion of Functional Fxpressions. Proc. of the Conference on Lisp and
Functional Programming, San Francisco, 1992.

[4] N. Dershowitz. Completion and its Applications. Resolution of Fquations in Algebraic
Structures,, 2, pages 31-86, Academic Press, 1988.

[5] A. Gill, J. Launchbury and S.L. Peyton Jones. A short cut to Deforestation. Proc. of the 6th
Conf. on Functional Programming Languages and Computer Architecture, Copenhagen,
pages 223-232, June 1993.

[6] P. Wadler, Deforestation: Transforming programs to eliminate trees. ESOP’88. LNCS 300,
1988.

! Presently our prototype automates deforestation and tupling.

