
Induction and Synthesis for Automatic Program Transformation��

Fran�coise Bellegarde�
Oregon Graduate Institute of Science � Technology

PO Box ����� Portland� Oregon� USA
������������

bellegar	cse
ogi
edu

The transformational approach to the development of programs is attractive for writing
small components of large software systems� In this approach� developing a software com�
ponent consists simply of writing an initial� possibly ine�cient� but correct program P� and�
then� in transforming P� into a sequence of programs P�� P�� � � � � Pn to get a new� semantically
equivalent program Pn which is more e�cient� The transformation phase� to be e�ective� must
be automated so that it is not necessary to be an expert in transformation strategies to use
the transformational approach for software design� In our work� induction� synthesis and gen�
eralization are used as mechanisms for an automated system for transformation of functional
programs� Synthesis of a new program version is done by a completion procedure ��	� The
programs in the sequence P�� P�� � � � � Pn are presented by a terminating� constructor�based and
orthogonal 
rst�order rewrite system� For example� the transformation strategies that are au�
tomated are� fusion or deforestation �eliminating useless intermediate data structures� tupling
�consolidation of similar control structures and accumulator introduction �recursion elimina�
tion� Presently� the following mechanisms control or enhance the completion procedure�

�� There is a mechanism for suggesting strategies which is accomplished by automatically
introducing new functions� called eurekas in the fold�unfold methodology ��	 �previously these
new functions had to be introduced through the insight of a clever user� Consider� for ex�
ample� that the transformation step Pi to Pi�� performs deforestation of a term t in Pi� The
transformation consists in looking for a set of rewrite rules S that reduce t to a term t� free
of intermediary data structures� The mechanism for suggesting strategies is able to propose a
left�hand side s of a rule in S which encompasses t and which contains no useless data struc�
tures� The right�hand side is built with a new functional symbol h which has as arguments all
the variables in s� Rules in S are called synthesis rules�

A synthesis rule triggers completion process� The completion synthesizes the constructor�
based rules� forming a complete de
nition of the function corresponding to the new functional
symbol h�

�� There is a mechanism to control the production of critical pairs during completion�
For example� during a deforestation� the control mechanism rejects critical pairs between a

�The work reported here is supported in part by a contract with Air Force Materiel Command �F�����R���	�


�



constructor�based rule and a synthesis rule that do not substitute a constructor�term in an
inductive position of the new symbol h� The control guarantees the termination of completion�

�� There is a mechanism for suggesting induction lemmas during the synthesis� For exam�
ple� associativity laws facilitate recursion removal synthesis� and endomorphisms or distribu�
tivity laws facilitate fusion synthesis� In such cases� the suggestion mechanism is followed by
a proof or a disproof of the lemma� If the proof succeeds� the result can be exploited by the
synthesis� If the proof fails� it knows that the transformation cannot be done and the eureka
can be rejected�

There is a problem when the suggestion is incomplete� For example� recursion removal is
often achieved by 
nding an identity� But we don�t know if this identity exists or not� If the
identity does not exist� the narrowing technique will search forever for it� Future work could
solve this problem in some cases� possibly by utilizing techniques presented in ��	�

Fortunately most induction lemmas do not need to be known completely� Suppose a fu�
sion synthesis 
nds the critical pair� h�x �� xs � length�x�flat�xs� an interesting lemma
is flat�x�y � flat�x�flat�y� However suggesting the completion to synthesize a func�
tion k such that length�x�u � k�x� length�u is enough to get what we want� h�x ��
xs � k�x� h�xs� In such cases� the rules synthesized for k by the completion are not quite
constructor�based but are generalizable to constructor�based rules�

�� Cleaning mechanisms follow the synthesis� They build a constructor�based rewrite sys�
tem from the rewrite system issued from the synthesis� Cleaning uses deletion� generalization�
normalization� and specialization techniques�

�� Finally the order in which strategies are chosen matters� Therefore� a hybrid mechanism
to suggest how to combine strategies is required�

It can be proved that the process preserves the termination of a constructor�based orthog�
onal rewrite system� We guarantee that each distinct synthesis terminates� Moreover� we also
guarantee that the process does not call for an in
nite number of syntheses�

Related approaches to automating elimination of useless intermediate data structures are
the deforestation algorithm proposed by Wadler ��	 and the extended deforestation algorithm
proposed by Chin ��	� Also an automatic way to implement deforestation inside the Haskell�s
compiler has been shown in ��	� By using completion� as a tool for synthesis� our transformation
system is not restricted to the deforestation strategy and is able to automate transformations
for a larger class of programs than the above algorithms�

References

��	 J� Arsac and Y Kodrato�� Some techniques for recursion removal from recursive functions�
ACM Transaction on Programming Languages and Systems� ������������� �����

��	 R� M� Burstall and J� Darlington� A Transformation System For Developing Recursive
Programs� Journal of the Association for Computing Machinery� ��� pages ������ �����

��	 W� N� Chin� Safe Fusion of Functional Expressions� Proc� of the Conference on Lisp and

Functional Programming� San Francisco� �����

��	 N� Dershowitz� Completion and its Applications� Resolution of Equations in Algebraic

Structures�� �� pages ������ Academic Press� �����

��	 A� Gill� J� Launchbury and S�L� Peyton Jones� A short cut to Deforestation�Proc� of the �th
Conf� on Functional Programming Languages and Computer Architecture� Copenhagen�
pages �������� June �����

��	 P� Wadler� Deforestation� Transforming programs to eliminate trees� ESOP���� LNCS ����
�����

�Presently our prototype automates deforestation and tupling�

�


