
1

Gang Scheduling in Heterogenous Distributed Systems

Khaled Al-Saqabi, Steve W. Otto and Jonathan Walpole1

Abstract ⎯ This paper presents an algorithm for scheduling parallel applications in

large-scale, multiuser, heterogeneous distributed systems. The approach is primarily tar-

geted at systems that harvest idle cycles in general-purpose workstation networks, but is

also applicable to clustered computer systems and massively parallel processors. The

algorithm handles unequal processor capacities, multiple architecture types and dynamic

variations in the number of processes and available processors. Scheduling decisions are

driven by the desire to minimize turn around time while maintaining fairness among com-

peting applications. For efficiency, the virtual processors (VPs) of each application are

gang scheduled on some subset of the available physical processors.

Index Terms⎯ Scheduling, distributed systems, heterogeneity, process migration, con-

current processing, idle cycle stealing.

1. INTRODUCTION

Recent years have witnessed rapid advances in the performance of commodity micro-processor

and network hardware. From a parallel computing perspective, one significant impact of these

advances is that general purpose computer networks are already becoming viable platforms for

running high performance parallel applications [1-6]. The Parallel Virtual Machine (PVM), P4,

Linda and others [5] are examples of software systems that support such functionality.

While the problem of scheduling parallel applications on distributed computing systems is

already well-explored [1], most existing approaches focus on dedicated, homogeneous environ-

ments, such as massively parallel processors (MPPs). From a scheduling perspective, general pur-

pose computer networks differ from MPPs in two key respects: (a) they are usually composed of

heterogeneous processors, and (b) individual processors are usually owned by a specific user or

1. Khaled Al-Saqabi is with the University of Kuwai, and is on sabbatical at the Oregon Graduate Institute, Portland, OR
97006; e-mail saqabi@cse.ogi.edu.
Steve Otto and Jonathan Walpole are with the Department of Computer Science and Engineering, Oregon Graduate
Institute, Portland, OR 97006; e-mail: otto@cse.ogi.edu, walpole@cse.ogi.edu.

2

group of users. Both of these characteristics add significant complexity to the scheduling problem.

Heterogeneity complicates the scheduling problem in several ways. First, different processors

can have unequal processing capacities and hence an even distribution of work among the avail-

able processors will not usually result in correct load-balancing. Second, variations in architecture

and instruction set among the available processors impose hard constraints on the choice of tar-

gets for creating new virtual processors (VPs) or migrating existing ones.

The concept of ownership further complicates the scheduling problem because allocation deci-

sions made by the scheduler may be dynamically invalidated by processor owners. In workstation

networks, for example, a processor’s availability for running parallel jobs typically depends on it

being otherwise idle [2]. When the owner of an idle processor returns to use it again it may be

necessary to invoke the scheduler to evict any currently resident VPs and reassign them to other

processors. Responsive eviction is an important requirement for unobtrusive idle cycle stealing

[7]. Consequently, scheduling decisions must be made quickly and it must be possible to migrate

VPs dynamically.2 Scheduling algorithms for environments in which ownership is an issue must

be capable of handling dynamic and independent variations in the number of available processors

and VPs.

This paper presents a scheduling algorithm which satisfies the above heterogeneity and owner-

ship constraints and allocates processing resources to parallel jobs such that the job’s turn around

time is minimized and fairness among competing jobs is maintained. For practical reasons, we do

not assume that a job’s execution time requirements are known in advance.

The remainder of the paper is organized as follows. Section 2 compares our work with existing

research in distributed scheduling. Section 3 outlines the model on which our scheduling algo-

rithm is based. The scheduling algorithm is presented in Section 4. Finally, Section 5 concludes

the paper.

2. RELATED WORK

Existing scheduling algorithms can be categorized as either shared memory multiprocessor

2. We assume the existence of a migration mechanism that is capable of migrating VPs among equivalent processor
architectures at any stage during their execution [8-10]. However, we also assume that such a mechanism is heavy-
weight and should not be invoked frequently.

3

approaches [11, 12] or distributed systems approaches [1, 13, 14]. This paper is concerned with

distributed systems approaches. Distributed systems approaches can be subdivided into

approaches for homogeneous or heterogeneous environments. Most existing research falls into

the homogeneous category in which all processors are assumed to be equivalent in terms of pro-

cessing capacity and architectural characteristics. This paper addresses heterogeneous environ-

ments. Finally, schedulers can be further categorized according to whether they make allocation

decisions statically or dynamically. Static approaches map VPs onto processors based on a set of

characteristics defined at job submission time. These characteristics include, for example, the

number of VPs in the job and the number and configuration of the available processors. Dynamic

approaches do not require a priori knowledge of the system or application characteristics. Instead,

the scheduler adapts to changes by dynamically re-mapping VPs to processors.

The algorithm presented in this paper addresses the problem of how to reassign VPs to proces-

sors dynamically in a heterogeneous distributed environment. That is, we are concerned primarily

with the question of how to choose a good mapping following a change in the number of VPs or

processors. The main motivation for this work is the development of a real-world distributed

scheduler for use in our migratable PVM system [10]. This paper does not directly address the

problem of distributing the scheduling algorithm itself. However, many of the ideas, discussed

below, for distributing the scheduling decision are applicable to our scheduling algorithm.

Most existing dynamic homogeneous scheduling approaches target load-balancing as the main

motivation for dynamic reassignment and differ according to their accuracy and the amount of

processor load information they exchange [15]. Zhou’s algorithm [16] balances load by periodi-

cally requiring each processor to inform other processors of load changes. The scheduler is

invoked whenever a new VP is submitted. If the local load is below a threshold value Th1 the VP

is executed locally. Otherwise the least loaded node in the system is examined. If its load is less

than the local load by at least a threshold Th2, then the VP is scheduled on that processor. Other-

wise, it is executed locally. Four heuristics, presented by Xu [17], reduce the overhead of this

scheme at the expense of accuracy, by allowing either neighboring processors or all processors in

the system to contribute to the setting and adjustment of the threshold values for a given node.

Kremien et al [18] improve the scalability and stability of Zhou’s algorithm by subdividing the

4

system into domains and only exchanging load information among processors in the same

domain.

Ahmad’s algorithm [19] is a compromise between the centralized and the distributed load bal-

ancing. System processors are assigned to independent symmetric regions, called spheres. In each

sphere, a processor equadistant from all other processors is selected as the scheduler for that

sphere. Cumulative load information for each sphere is exchanged among the independent sched-

ulers. Using local threshold values, as well as cumulative load figures from other spheres, a task is

either scheduled locally where submitted, or transferred to a less loaded sphere. Simulation results

indicate an improvement in average response time compared with the fully distributed version of

the same balancing algorithm.

Suen [20] proposed a balancing algorithm and communication protocol which improve average

response time and reduce communication overhead. Each processor communicates its load

directly to only N1/2 of the N processors in the system. Each processor has two sets of processors,

its sending set and its receiving set, that it sends to and receives from respectively. The sets are

constructed such that load balancing information is propagated either directly or indirectly to all

processors in the system. Other researchers [21] capitalize on multi access local area networks in

order to implement the search for the minimum/maximum loaded node in constant time, regard-

less of the number of processors on the network.

Finally, Willebeek-LeMair [22] presented four scheduling policies: (i) sender/receiver initiated

distribution which performs balancing based on information from neighboring processors. (ii)

Hierarchical balancing methods which organize systems into a hierarchy of subsystems within

which balancing is performed. (iii) The Gradient model which guides migration between over-

loaded and under loaded nodes through a proximity gradient which eventually transfers load from

heavily to lightly loaded regions, and (iv) The Dimension Exchange method which first requires a

synchronization phase, then balancing is performed iteratively.

More centralized, static approaches to scheduling in heterogeneous environments are supported

in the Load Sharing Facility (LSF), Utopia, [23], Distributed Queuing System (DQS) [24], and

Prospero Resource Manager (PRM) [25]. These systems are widely used in practice, and support

the mapping of VPs to processors at job submission time. However, they do not support the con-

5

cept of dynamic migration. Consequently, they are more appropriate for dedicated, or otherwise

idle, environments than for continual use in general purpose multiuser networks.

Condor [7] is the only system we are aware of that supports dynamic heterogeneous scheduling.

However, it is oriented towards scheduling single VP jobs in distributed systems. We believe that

research is underway to integrate Condor with PVM in order to schedule parallel applications.

However, details of the scheduling algorithm used were not available at the time of writing.

In this paper, we present an algorithm for scheduling parallel applications in multiuser heteroge-

neous systems. The scheduler is invoked dynamically to reassign VPs to processors when proces-

sors become available, are reclaimed by their owners, and when VPs are created and destroyed. In

the current version of the algorithm, scheduling decisions are made on a single processor. Further

work to distribute the scheduler is underway, but is outside the scope of this paper.

3. MODEL

To illustrate the basic principles underlying our scheduling algorithm, we start out by presenting

a simplified model in which all processors are of the same architecture and equal processing

power. The complete algorithm presented in Section 4 extends this model to heterogeneous envi-

ronments.

The scheduler is invoked in response to four kinds of event: processor_exit, new_processor,

new_VP and VP_exit. A processor_exit event occurs, for example, when a processor is reclaimed

by its owner and all its VPs must be migrated to other processors. The effect of a processor_exit is

to remove the processor from the pool of processors managed by the scheduler. A new_processor

event is the inverse of a processor_exit event. In other words, it is an event that signals the addi-

tion of a new processor to the pool of processors managed by the scheduler. A new_VP event

occurs when an application creates a new VP. A VP_exit occurs when an application terminates a

VP. In the remainder of the paper we refer to the collection of VPs belonging to the same applica-

tion as a job.

At any point in time, the state of the system can be illustrated using a two-dimensional alloca-

tion map in which one dimension represents the available processors and the other represents

time. Each entry in the allocation map is either occupied by one or more VPs of a job, in which

6

case the corresponding processor is assigned to that job during that time slice, or it is free, in

which case the corresponding processor is unused during that time slice. For example, Figure 1

represents the state of a system with six processors and eight jobs. The VPs of job J1 are allocated

time slice T1 on all processors, whereas jobs J2 and J3 are assigned to disjoint subsets of the

available processors during time slice T2. Figure 1 also shows that processors P5 and P6 are free

during time slices T3 and T4.

Using this model, a processor_exit event corresponds to the removal of a row from the alloca-

tion map, and a new_processor event corresponds to the addition of a row to the allocation map. A

new_VP event corresponds to the assignment of a new VP to an entry in the allocation map and

may cause the addition of a new column if it is the first VP of a new job. Similarly, a VP_exit

event corresponds to the removal of a VP from an entry in the allocation map and may cause the

removal of a column if none of its entries are assigned. The role of the scheduling algorithm is to

decide how to manipulate the allocation map in response to these events.

A number of assumptions influenced the design of our scheduling algorithm. First, we assume

that the VPs of a single job communicate frequently and hence will benefit from gang scheduling

[26]. Gang scheduling requires all the VPs of a single job to execute at the same time. Hence, we

use time slices that extend across processors and ensure that all the VPs of a single job are allo-

cated in the same time slice. In terms of the allocation map, this approach implies that if one VP

from a job resides in a column, all other VPs of that job must also reside in the same column. Note

that if a single job occupies multiple columns, all its VPs must be replicated in each of those col-

umns.

P1

P2
P3
P4
P5
P6

T1 T2 T3 T4 T5

.....

J1

J1
J1
J1
J1
J1

J2

J2
J3

J3
J3
J3

J4

J5
J6
J6

J7
J7
J7
J7

J8
J8
J8
J8

J8
J8

Figure 1. Model for gang scheduling multiple jobs on a set of processors.

Processors

Time-slices

7

When a new_VP event occurs a processor must be selected as the target for executing the newly

created VP. Similarly, when a processor_exit event occurs the scheduler must select new proces-

sors as targets for migration of the displaced VPs. If no free processors are present in the required

time slices, the scheduler may choose to assign the new or displaced VPs to one or more of the

other processors assigned to the same job. In the following discussion we refer to this procedure

as doubling up.

If VPs are doubled up on a processor it may be possible to double up on several other proces-

sors, hence freeing processors, without further impacting the turn around time of the job. For

example, consider a processor_exit event on processor P1 in Figure 1. If we place two VPs of job

J1 on processor P2 in time slice T1 the net effect will be to double the turn around time for job

J13. Taking job J1’s VPs from processors P5 and P6 and placing them on P3 and P4 will not fur-

ther increase the turn around time, but it will free up processors P5 and P6 in time slice T1. These

processors could then be used by other jobs. We refer to this concept as compressing the job’s pro-

cessor set.

On a new_processor event the scheduler must determine whether to migrate existing VPs to the

new processor. Similarly, on a VP_exit event the scheduler must decide whether to use the result-

ing free capacity for other jobs. From the discussion in the previous paragraph it can be seen that

both processor_exit and new_VP events can also cause processors to be freed through compres-

sion. Therefore, all four scheduling events can potentially cause the scheduler to consider migrat-

ing existing VPs to new processors. We refer to the migration of existing VPs as expanding a job’s

processor set.

Since the value of expanding a job’s processor set depends on the relationship between the cost

of migration and the remaining execution time of the job, and since we assume no fore knowledge

of a job’s execution time, it is impossible to know whether expansion will be worthwhile. For

example, if the remaining execution time for a job was very small and the migration cost was very

high, the speed up resulting from expansion would not amortize the migration cost. Therefore, we

take the following simplistic approach: if a job can not be speeded up through expansion we do

not change its current allocation. If the job can be speeded up we assume that it will run for long

3. This example assumes an initial ssignment of one VP per processor for job J1.

8

enough to offset the migration cost.

Compression and expansion are relatively straight forward in homogeneous environments, but

become complex in heterogeneous environments where processors have unequal processing

capacity and incompatible architectures. The discussion so far has assumed a homogeneous envi-

ronment. The algorithms presented in the next section extend this basic approach to heteroge-

neous environments with the following characteristics. First, the architecture types and relative

processing capacities of all processors are known. In practice, we would obtain an estimate of the

processing capacity by periodically running a simple benchmark on each processor and passing

the results to the scheduler. Second, the choice of target processors for VP migration and the cre-

ation of new VPs is constrained by architecture type.

4. THE SCHEDULING ALGORITHM

The overall scheduling algorithm comprises three basic algorithms: the Minimum Turn Around

Time (MTAT) algorithm, the Compression algorithm, and the Expansion algorithm. These basic

algorithms are employed in handling all four scheduling events. The MTAT algorithm determines

the minimum turn around time for the job, Tmin, assuming that it is maximally distributed across

the set of available processors in a single time-slice. The Compression algorithm then attempts

to achieve Tmin using a smaller set of processors in the same time slice. The result of the

Compression algorithm is an allocation of VPs to processors that yields the minimum turn around

time using the smallest number of processors. However, before the job is allocated to that set of

processors in a new time slice, the Expansion algorithm is used to explore the use of existing free

space in the allocation map. The result of the Expansion algorithm, specifically, the processor set

containing suitable free space, is then passed back to the MTAT algorithm to calculate an alterna-

tive completion time for the job. If the job can be completed faster using existing free space, the

Compression algorithm is called to attempt to compress the new set of processors, and the job is

assigned to those processors during the appropriate time slice(s). Otherwise, the job is allocated a

new time slice.

The advantage of this approach is that it is both efficient and fair in that it searches first for solu-

tions that minimize the turn around time of the submitted job without impacting existing jobs, and

Φ

Φmin

9

then falls back on solutions that continue to minimize the turn around time for the submitted job

but impact all jobs equally. The relationship between these algorithms is illustrated in Figure 2.

4.1. The Minimum Turn Around Time (MTAT) Algorithm

The MTAT algorithm has two stages. The first stage determines the ideal load distribution

across the set of available processors. The second stage modifies this load distribution to take into

account constraints imposed by VP granularity.

To distribute load fairly requires some knowledge of the relative processing capacity of each of

the available processors. Let be the set of all the processors in the system4. The relative

processing capacity ai of a processor Pi is defined with respect to the slowest processor in

as follows:

Let be the set of currently available processors such that . The fraction

4. Note that some of these processors may not be available to the scheduler at any particular time

MTAT
Algorithm

Calculate
Tmin for

Job

Compression
Algorithm

Calculate
Φmin

Tmin

Allocate job and update

Find suitable
free space

Tfree Tmin≤

Tfree > Tmin

Allocate
a new

time slice

new time slice

Expansion
Algorithm

MTAT
Algorithm

Calculate
Tfree for free
processors

processors

the allocation map

Figure 2. Relationships among the basic scheduling algorithms.

space
in free

Φtotal

Φtotal

ai =
Capacity (slowest processor in Φtotal)

Capacity (Pi)

Φ Φ Φtotal⊆

10

represents the portion of the system’s currently available processing capacity contributed by pro-

cessor i. If X is the number of VPs in a job, then the real number xi of the job’s VPs that should be

assigned to processor i is:

(1)

where α is the job’s minimum possible turn around time. Note that this turn around time assumes

that load can be balanced exactly equally among the available processors in . This assumption is

generally not valid when the number of VPs is independent of the number of processors and their

processing capacity. Therefore, the second stage of the MTAT algorithm must calculate a real-

world distribution that takes into account VP granularity. To achieve this goal, xi must be forced

to an integer value. In other words, a real-world solution can not assign fractions of a VP to a pro-

cessor.

The result of making xi an integer will be an increase in the turn around time for the job since

one or more of the processors will become a bottleneck. Let Ti be the completion time for the por-

tion of the job assigned to processor Pi. The real-world minimum turn around time for the job is:

The second stage of the MTAT algorithm determines the allocation of VPs to processors that

minimizes Tmin. This algorithm has the following five steps:

1. For each processor, determine a lower bound on the number of VPs that can be allocated

to it in an optimal solution:

, . (2)

2. Calculate the number of VPs, Diff, left unallocated following step 1:

ai

ai
i∀ Φ∈
∑

xi X
ai

ai
i∀ Φ∈
∑

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

aiα= =

Φ

Tmin Max
i∀ Φ∈

Ti{ }=

x̃

x̃i xi= i∀ Φ∈

11

3. For each processor, determine the effect on overall turn around time of the job, called Drag,

that would result from allocating an additional VP to that processor:

, . (3)

4. Order the processors in based on Drag and select the Diff lowest processors. Allocate one

of the remaining VPs to each of those processors. Let be the final allocation of VPs to

processor i and Tif be the completion time for those VPs on processor i. Then

 and

5. For any , if Dragi = Dragj and with , then assign VPs to j

before assigning them to i. This step biases the selection towards the minimum number of

processors.

Example 1: Consider a job with X = 20. Let the relative processing capacity of the available pro-

cessors {ai} = {10, 1, 4, 3}. Then:

{xi} = {ai } = {11.11, 1.111, 4.444, 3.333}

{ } = {11, 1, 4, 3}

and

Step 4 of the MTAT algorithm yields {Dragi} = {0.089, 0.889, 0.139, 0.222}. Thus the extra VP

is allocated to processor 1 and . Consequently, the completion times on

Diff X x̃i
i∀ Φ∈
∑−=

Drag i

xi xi−()

ai
= i∀ Φ∈

Φ

x̃if

Tif α
x̃if xi−()

ai
+= Tmin Max

i∀ Φ∈
Tif{ }=

i j, Φ∈ x̃i 0=() x̃j≠ Diff 0≠

α X

ai∑
20
18

1.111= = =

α

x̃i

Diff X x̃i∑− 1= =

x̃if{ } 12 1 4 3, , ,{ }=

12

each processor {Tif} are {1.2, 1, 1, 1} and the overall turn around time Tmin for the job is 1.2.

We now show that the MTAT algorithm yields an assignment of VPs to processors that results in

the minimum turn around time for a job.

Lemma 1: Equation 1 represents the lower bound turn around time for a job on .

Proof: Equation 1 distributes VPs evenly to the processors in based on their relative process-

ing power. Hence all processors complete their work in exactly time units. Moving

work from one processor to another can only increase the completion time for the receiving pro-

cessor and hence for the complete job. ❑

Since we assume that a VP can not execute on more than one processor at the same time, it is

necessary to run the remainder of the MTAT algorithm if Equation 1 results in the assignment of a

non-integer number of VPs to any processor.

Theorem 1: The MTAT algorithm finds the minimum turn around time for integer VP assign-

ments.

Proof: From Lemma 1, the lower bound on Tmin is . The first step of the MTAT algorithm

(Equation 2) starts with the VP assignments needed to achieve and rounds them down to the

nearest integer. Since this first step either reduces or leaves unchanged the amount of work at each

processor, all processors will complete in or less time units. Since Step 1 reduces the load at

each processor by at most one VP, the number of VPs remaining to be assigned will be smaller

than the number of processors. Since the MTAT algorithm computes the slow-down that would be

caused by adding a VP to each processor in turn, and then selects the processors that will contrib-

ute least to the slow-down, it finds the assignment resulting in the minimum value for Tmin. ❑

The above description of the MTAT algorithm assumes that all processors are architecturally

equivalent. That is, it assumes that any of the VPs of a job can be executed on any processor. In

reality, system heterogeneity will impose restrictions on where VPs can execute. These restric-

tions arise for two reasons: (a) when a new VP is spawned an executable image may not exist for

all processor architectures, and (b) dynamic VP migration can usually only take place between

processors with equivalent architectures because of the difficulty in translating state information

relating to the VP’s current context from one processor architecture to another. Consequently, the

Φ

Φ

xi ai⁄ α=

α

α

α

13

MTAT algorithm must be extended to deal with disjoint pools of processors with equivalent archi-

tecture.

The basis for extending the MTAT algorithm is simple: call it once of each architecture pool and

return the largest turn around time as Tmin. The complete algorithm is as follows: let Z be the set

of distinct architecture types represented in the set of available processors Φ, let Φz be the set of

available processors of architecture type z, let Xz be the number of VPs of a job that are restricted

to architecture type z and let Tz be the minimum turn around time of a job on Φz. Then Tmin = max

(Tz, ∀z ∈Z), where Tz = MTAT (Xz, Φz).

Theorem 2: The heterogeneous MTAT algorithm returns the minimum turn around time for a

job on a heterogeneous set of processors.

Proof: Since the largest turn around time in each architecture pool defines a lower bound on

Tmin, and since, by Theorem 1, the MTAT algorithm finds the smallest turn around time for each

architecture pool, the heterogeneous MTAT algorithm finds the minimum turn around time for the

job on the heterogeneous processor set.❑

The worst case complexity of the MTAT algorithm is , where nz is the number of pro-

cessors of a given architecture available to the scheduler.

4.2. The Compression Algorithm

Although the MTAT algorithm yields the minimum possible turn around time, further work is

required to determine the minimum set of processors that are necessary in order to

achieve Tmin (see Example 2).

Example 2: Consider an environment with 3 processors where X = 4 and a1 = a2 = a3 = 1 (i.e.,

the processors are homogenous). In this case, = 4/3; {xi} = {ai } = {1.33, 1.33, 1.33},

 = {1, 1, 1} and Diff = 4 - 3 = 1. Since Drag ={0.67, 0.67, 0.67}, the remaining VP can be

granted to any of the three processors, yielding . Note, however, that the same value

for Tmin can be obtained using only two processors, each with two VPs (see Figure 3). Although

the MTAT algorithm yields the minimum possible turn around time, it does not necessarily yield

the minimum possible

Θ Znz()

Φmin Φ⊆

α α

x̃

Tmin 2=

Φ

14

.

The Compression algorithm compresses the set , while maintaining Tmin, in the following way:

1. Calculate an upper bound on the VP assignment at each processor in a solution that

continues to maintain Tmin:

If the VP assignment at any processor exceeds the completion time at that processor

will exceed Tmin and the solution will not be valid.

2. Identify the processors that can not have an integer number of VPs assigned in a solution

that meets Tmin and do not consider them further. In other words, find the set of processors

 such that .

3. If the total processing capacity (available at complete VP granularity) on all the processors

in exceeds the number of VPs in the job then attempt to reallocate VPs to free up as

many processors as possible. To achieve this goal, first construct the set of processors

that have enough excess capacity to accommodate one or more additional VPs. Then visit

ai

xi

1 1 1

4/3

ai 1 1 1

4/3
α

After applying the MTAT algorithm

ai 1 1 1

2
1 1

ai 1 1 1

2
1 1

Ti Tmin1
2 α>=

Φ

xif

More optimal solution

ai 1 1 1

2xif

ai 1 1

2Ti

Φmin.

Free processor

Tmin2
Tmin1

2, Φmin Φ⊂= =

Figure 3. Optimizing the solution of Example 2.

Φ

ximax

ximax
Tminai= , i∀ Φ∈

ximax

Φmin Φ⊆ Φmin Φ { i ximax
− 0}= =

Φmin

ΦT

15

all processors in order of increasing VP allocation and attempt to redistribute their VPs to

the processors in until the free capacity is insufficient to free up a processor. The

details of this step are as follows:

if then

for all processors Pi in

if then add Pi to

construct by sorting on the number of VPs assigned to Pi

for all processors Pi in

if then

for all processors Pj in

reallocate VPs from Pi to Pj

if Pi has no more VPs then remove Pi from

until Pi has no more VPs or Pj has no more capacity

reinsert Pj in

We now show that the Compression algorithm yields the set with the smallest number of

processors.

Lemma 2: The Compression algorithm is necessary for yielding the set with the smallest

number of processors that can achieve Tmin.

Proof: Example 2, illustrates a counter example in which the MTAT algorithm produces a solu-

tion with more processors than necessary.

Lemma 3: The Compression algorithm is sufficient for yielding the set with the smallest

number of processors that can achieve Tmin.

ΦT

ximax
X>

i Φmin∈∀
∑

free ximax
X−∑=

Φmin

ximax
xif− 1≥ ΦT

Φ
sorted

Φmin

Φ
sorted

xif free≤

free free xif−=

ΦT

Φmin

Φ
sorted

Φmin

Φmin

Φmin

16

Proof: The Compression algorithm assigns an upper bound on the allocation of VPs to

processors such that all processors complete in less than or equal to Tmin time units. This step

guarantees that the job’s completion time following the Compression algorithm will not exceed

that of the MTAT algorithm. The Compression algorithm then identifies all processors that can

accommodate additional whole VPs without exceeding (i.e., those for which)

and inserts them in the set . All processors are then added to the list which is sorted

according to the number of VPs allocated to that processor. Since the processors with the fewest

VPs are visited first, and if it is not possible to redistribute all the VPs xif of the current processor

to the set of processors without exceeding , then it is not possible to redistribute all the

VPs of any subsequent processor to without exceeding . The algorithm terminates at this

point and hence the minimum number of processors needed to achieve Tmin has been selected.❑

Theorem 3: The Compression algorithm yields the set with the smallest number of pro-

cessors that can achieve Tmin.

Proof: Lemmas 2 and 3 show that the Compression algorithm is necessary and sufficient.❏

Example 3: Consider a job with X = 9 and a = {4, 2, 1}. The minimum ideal turn around time

is (9/7) = 1.2857. The MTAT algorithm yields = {all}, and Tmin = 3/2. Figure 4-a illustrates the

effects of the MTAT algorithm. Figure 4-b illustrates the effects of the Compression algorithm.:

The description of the Compression algorithm assumes that all processors are architecturally

equivalent. The algorithm can be extended to deal with disjoint pools of processors with equiva-

ximax

ximax
ximax

xif− 1≥

ΦT Φsorted

ΦT ximax

ΦT ximax

Φmin

α

Φ

ai’s 4 2 1
. . .

xi = αai

x̃i

D rag i

α̃i

5.1428 1.28572.5714

5 2 1

0.21428 0.21428 0.7143

5 2+1= 3 1

5/4 3/2 1

x̃if

Diff 1= TminMTAT
3/2=

Figure 4-a. The MTAT algorithm applied to Example 3.

17

lent architecture by calling it once for each architecture pool and returning the union of the mini-

mum processor sets. The algorithm is as follows: let Z be the set of distinct architecture types

represented in the set of available processors Φ, let Φz be the set of available processors of archi-

tecture type z, let Xz be the number of VPs of a job that are restricted to architecture type z and let

Φmin be the smallest set of processors on which the job can achieve Tmin in the heterogeneous

environment. Then Φmin = ∪ (Φzmin, ∀z ∈Z), where Φzmin = Compress (Xz, Φz, Tz) and Tz =

MTAT (Xz, Φz).

Theorem 4: The heterogeneous Compression algorithm returns the minimum set of processors

needed to achieve Tmin in the heterogeneous environment.

Proof: The minimum set of processors needed to achieve Tmin in the heterogeneous environ-

ment must be no greater than the set of processors needed to achieve Tmin on each architecture

pool. The Compression algorithm returns the minimum set of processors needed to achieve Tz on

each architecture pool z, where Tz ≤ Tmin. Therefore, the processor set Φzmin is no larger than nec-

essary for any architecture. Since the heterogeneous Compression algorithm returns the union of

Φzmin for only the required architecture types, it returns the minimum set of processors needed to

achieve Tmin. ❏

The worst case complexity of the Compression algorithm is Θ (Znz log nz) where nz is the num-

ber of processors of a given architecture available to the scheduler.

4.3. The Expansion Algorithm

The goal of the Expansion algorithm is to incorporate the job into an existing schedule contain-

ai’s 4 2 1
. . .

ximax
6 3 1.5

ximax 6 3 1

(i=1) (i=2) (i=3)

x3max
free= = 1, thus

xif 6 3

Figure 4-b. The Compression algorithm applied to Example 3.

18

ing other jobs. Using the model described earlier, it can achieve this goal either by allocating

empty entries in the allocation map or by extending the allocation map with an additional time

slice. The criterion for deciding when to allocate a new time slice is as follows. The MTAT algo-

rithm indicates the minimum turn around time Tmin for the job using all available processors. If

the job were scheduled in a new time slice its turn around time would be Tmin/τ where τ is the

number of time slices. A new time slice will only be allocated if this turn around time can not be

equalled or beaten using existing free space in the allocation map.

The purpose of the Expansion algorithm is to search for patterns of usable free space in the allo-

cation map that satisfy the gang scheduling constraints discussed earlier. There are many different

algorithms that could be used to discover such space, each of which makes a different trade-off of

complexity for accuracy. An accurate algorithm would guarantee to find all possible combinations

of usable space in the allocation map at the expense of high complexity. Other algorithms reduce

complexity and hence run faster at the cost of missing some potentially good solutions. The over-

all design of our scheduling algorithm is such that the Expansion algorithm can be easily replaced

to match the needs of a particular environment5. The Expansion algorithm outlined below is a

compromise between complexity and accuracy and searches for regular patterns of free space.

Definition: A pattern is a collection of empty slots in the allocation map. A pattern is a regular

pattern if the following condition is met: let the set denote the processors where the pattern of

empty slots reside. Also, let this pattern span the set of time slices . Then, the pattern of vacant

slots is a regular pattern if all the slots resulting from the cross product are in the pattern.

Any pattern can be decomposed into regular patterns. For example, see Figure 5, any collection

of vacant slots forming a row or a column is a regular pattern. Some of the regular patterns that

can be derived from the pattern shown in Figure 5 are: {S0, S1, S2, S3, S4, S5}, {S1, S2, S4, S5,

S9, S10}, {S1, S2, S4, S5, S9, S10, S15, S16},....etc.

The Expansion algorithm only considers regular patterns of free space. Specifically, it searches

the allocation map for the largest regular pattern, uses the MTAT algorithm to compute the turn

around time for the job using the processors in that regular pattern, and then compares the result

5. For example, a small system may favor accuracy over complexity by using an algorithm that finds all possible combi-
nations of free space.

Φp

τ

Φp τ×

19

with the original result from the MTAT algorithm that specifies the turn around time for the job

using a new time slice. If the regular pattern results in a faster turn around time then the proces-

sors that it contains are passed as input to the Compression algorithm and the resulting minimal

processor set is assigned to the job during the time slices contained in the pattern. Otherwise, a

new time slice is added and the Compression algorithm is used on the full processor set to deter-

mine the final assignment.

The details of the Expansion algorithm are as follows.

Let E be the set of all columns (time slices) in the allocation map that contain empty

entries and let Ei be the set of empty entries in column i.

For (all columns Coli ∈ E)

widthi = 1

For (all columns Colj ∈E where j ≠ i)

if (Ei ⊆ Ej) then

widthi = widthi + 1

Size (Patterni) =

Return max (size (Patternl),).

The worst case complexity of the Expansion algorithm is where represents the

number of time slices and Φ is the number of processors. Note that the algorithm presented above

does not necessarily find all regular patterns. We chose to avoid a more exhaustive approach due

p1
p2

p7
p8
p9

p3
p4
p5
p6

t1 t2 t3 t4 t5 t6 t7 t8 t9

S0

S1
S2

S3

S4
S5

S6
S7

S8
S9
S10

S11S12

S13

S14

S15
S16
S17
S18
S19

Figure 5. Regular patterns of empty space in the allocation map

ak
k∀ Ei∈
∑() widthi

Coll∀ E∈

Θ Φτ2() τ

20

to its complexity. Instead, our algorithm searches for column-oriented solutions, i.e., those that

contain the maximum available parallelism in at least one of the time slices. The penalty for tak-

ing this approach is that we run the risk of missing some usable patterns that contain only subsets

of the empty entries from all columns.

Since we do not yet have experience with running the Expansion algorithm in real-world sys-

tems, and since insufficient trace data on VP and processor behavior exists, we designed the

scheduling algorithm with the Expansion algorithm as a repluggable component. This approach

should facilitate future real-world and simulation-based comparisons of different algorithms.

4.4. Handling Scheduling Events

The three algorithms outlined above constitute the heart of the scheduling algorithm. This sec-

tion illustrates their use in handling initial job submissions and each of the dynamic scheduling

events (new_processor, new_VP, processor_exit and VP_exit).

4.4.1. Job submission

The submission of a new job invokes the MTAT, Expansion, and Compression algorithms as

illustrated in Figure 2. First, the MTAT algorithm is used to estimate the job’s turn around time

Tmin that would result from the use of a new time slice. The Expansion algorithm is then used to

find the largest regular pattern of free entries in the allocation map, and the MTAT algorithm is

used again to estimate the job’s turn around time Tfree using that pattern. If Tfree is smaller than or

equal to Tmin it is not necessary to allocate a new time slice since the job will run at least as fast

using existing free capacity. In either case, the job’s minimum turn around time may be attainable

using a subset of the processors originally considered. Therefore, it is necessary to run the Com-

pression algorithm to determine the final allocation. Finally, the allocation map is updated to

include the new job.

4.4.2. Handling new_processor and VP_exit events

The algorithms for handling new_processor and VP_exit events are very closely related because

both events have a similar effect on the allocation map: they both lead to an increase in the num-

ber of free entries. The scheduler’s response to both types of event is to attempt to use the free

entries to speed up existing jobs. It runs the Expansion algorithm to determine the largest regular

pattern of free entries. Then it selects a job and uses the MTAT algorithm to determine whether

21

the job can utilize the new entries. If so, the Compression algorithm is used to attempt to com-

press the job’s processor allocation, the job is reallocated and the allocation map is updated to

reflect the newly allocated and freed entries. The scheduler repeats the procedure for other jobs

until either no free entries remain or all jobs have been visited. In order to maintain fairness

among jobs, the scheduler manages its jobs in a queue and starts with a new job for each event.

Figure 6 summarizes the scheduling algorithm.

From the scheduler’s point of view, the only distinction between the VP_exit and

new_processor events is that VP_exit may cause a complete column of the allocation map to

become empty, in which case the scheduler will remove it.

4.4.3. Handling new_VP and processor_exit events

The relationship between the new_VP and processor_exit events is similar to that between the

new_processor and VP_exit events discussed in the previous section. Both events have the effect

of consuming space in the allocation map. The scheduler’s response to both events is to (a) call

the MTAT algorithm to recompute the minimum turn around time for the affected jobs on the

available processors and (b) call the Compression algorithm to recalculate the minimum proces-

Figure 6. Summary of the scheduling algorithm

Input events

{new_processor, VP_exit} {new_VP, processor_exit}

Run MTAT & Compression
algorithms for affected

jobs on their current
processor set

New
free space
available?

wait for
next event

Run Expansion
& MTAT

for next job

Speedup
possible?

Update allocation map no

yes

no

yes

any
jobs
left?

yes

no

Update allocation map

Compress

22

sor allocation. If after running the Compression algorithm the number of free entries in the alloca-

tion map increases, the scheduler attempts to expand other jobs using the approach described in

the previous section.

The main distinction between the processor_exit and new_VP events, from the scheduler’s

point of view, is that the processor_exit event causes a complete row to be removed from the allo-

cation map.

5. CONCLUSION

We have presented an algorithm for dynamically scheduling parallel jobs in heterogeneous dis-

tributed systems. The algorithm, which is based on gang scheduling, supports environments in

which processors can have unequal processing capacities and incompatible architecture types, and

is dynamic in the sense that it handles the creation and deletion of both processors and VPs during

the execution of a job. These characteristics make the algorithm applicable to systems ranging

from massively parallel processors to multi-user networks of heterogeneous workstations.

The algorithm is modular in design, allowing the use of a variety of expansion policies. This

approach allows the behavior of the scheduler to be tailored for different environments. For exam-

ple, a scheduler for a small system might be required to reorganize its assignment of VPs to pro-

cessors on every scheduling event in order to maintain the optimal assignment at all times. This

approach quickly becomes infeasible in larger systems because (a) migration overhead increases

with the frequency and scope of reorganization, which increase with system size, and (b) the com-

plexity of calculating the optimal assignment increases rapidly with increases in system size. Con-

sequently, schedulers with heuristic expansion policies are more suitable for larger systems,

whereas schedulers with optimal expansion policies are suitable for small systems. The algorithm

proposed here provides the flexibility to support a wide range of different systems by implement-

ing its expansion policy as a replacable module.

A number of issues remain to be solved. The first, and most important, task for future research is

to distribute the allocation map such that scheduling decisions can be made asynchronously at dif-

ferent sites. This extension will greatly improve the scalability of the algorithm. Second, we

would like to explore the behavior of different allocation policies, particularly those that utilize

information about past behavior for processors and VPs. We believe that such information would

23

be relatively easy to gather in real-world environments and would significantly improve the

scheduler’s allocation decisions. Finally, we are implementing a real-world scheduler based on

this algorithm. We plan to release this scheduler as part the migratable PVM (MPVM) system

which is currently under development at OGI [10].

6. REFERENCES

[1] T. L. Casavant and J. G. Kuhl, “A Taxonomy of Scheduling in General-purpose Distributed Comput-

ing systems,” IEEE Trans. Software Engineering, Vol. 14, no. 2, pp. 141-154, Feb. 1988.

[2] M. W. Mutka, “Estimating Capacity for Sharing in a Privately Owned Workstation Environment,”

IEEE Trans. Software Engineering, Vol. 18, no. 4, pp. 319-328, April 1992.

[3] V. S. Sunderam, “PVM: A Framework for Parallel Distributed Computing,” Concurrency: Practice

& Experience, Vol. 2(4), pp. 315-339, December 1990.

[4] G. A. Geist, and V. S. Sunderam, “Network Based Concurrent Computing on the PVM system,” Con-

currency: Practice & Experience, Vol. 4(4), pp. 293-311, June 1992.

[5] C. C. Douglas, T. G. Mattson, and M. H. Schultz, “Parallel Programming Systems for Workstation

Clusters,” Tech. Rep. 975, Dep. Comput. Sci., Yale University, August 1993.

[6] R. Konuru, J. Casas, R. Prouty, S. Otto, and J. Walpole, “A User Level Process Package for PVM,”

Proceedings of the Scalable High Performance Computing Conference, pp 48-55, May 1994.

[7] M. K. Litzkow, M. Livney, M. W. Mutka, “Condor- A Hunter of Idle Workstations,” Proceedings the

Eighth International Conference on Distributed Computing Systems, pp. 104-111, San Jose, CA,

June 1988.

[8] F. Douglas, and J. Ousterhout, “Process Migration in the Sprite Operating System,” Proceedings the

Seventh International Conference on Distributed Computing Systems, pp. 18-25, Berlin, West Ger-

many, September 1987.

[9] J. M. Smith, “A survey of Process Migration Mechanisms,” ACM Oper. Syst. Review, Vol. 22, No. 3,

pp. 28-40, July 1988.

[10] J. Casas, R. Konuru, S. Otto, R. Prouty, J. Walpole, “Adaptive Load Distribution Systems for

PVM,” to appear as a contributed paper in Supercomputing ‘94 Proceedings.

[11] C. Maccann, R. Vaswani, and J. Zahorjan, “A Dynamic Processor Allocation Policy for Multipro-

gramming Shared Memory Multiprocessors,” ACM Transactions on Computer Systems, Vol. 11, No.

2, pp.146-178, May 1993.

[12] A. Tucker, and A. Gupta, “Process Control and Scheduling Issues in Multiprogrammed Shared

Memory Multiprocessors,” Proceedings of the 12th Symposium on Operating System Principles, pp.

159- 166, Dec. 1989.

24

[13] D. L. Eager, E. D. Lazowaska, and J. Zahorajan, “Adaptive Load Sharing in Homogenous Distrib-

uted Systems,” IEEE Trans. Software Engineering, Vol. 12, no. 5, pp. 662-675, May 1986.

[14] Y. Belhamissi, and M. Jegado, “Scheduling in Distributed Systems: Survey and Questions,” Tech.

Report 1478, IRISA/INRIA, Rennes cedex, France, June 1991.

[15] O. Kremien, and J. Kramer, “Methodical Analysis of Adaptive Load Sharing Algorithms,” IEEE

Transaction. on Parallel and Distributed Systems, Vol. 3, No. 6, pp. 747-760, November 1992.

[16] S. Zhou, “A Trace Driven Simulation Study of Dynamic Load Balancing,” IEEE Trans. Software

Engineering, Vol. 14, No. 9, pp. 1327-1341, September 1988.

[17] J. Xu, and K. Hwang, “Dynamic Load Balancing for Parallel Program Execution on a message

Passing Multicomputer,” Proceedings of the Second IEEE Symposium on Parallel and Distributed

Processing, pp. 402-406, 1990.

[18] O. Kremien, J. Kramer, and J. Magee, “Scalable, Adaptive Load Sharing for Distributed Systems,”

IEEE Parallel and Distributed Technology, Vol. 1, No. 3, pp. 62-70, August 1993.

[19] I. Ahmad, and A. Ghafoor, “A Semi Distributed Load Balancing Scheme for Massively Parallel

Multicomputer Systems,” IEEE Trans. Software Engineering, Vol. 7, No. 10, pp. 987-1004, October

1991.

[20] T. T. Suen, and J. S. Wong, “Efficient Task Migration Algorithm for Distributed Systems,” IEEE

Tran. on Parallel and Distributed Systems, Vol. 3, No. 4, pp. 488-499, July 1992.

[21] K. Baumgartner, and B. Wah, “Gammon: A load Balancing Strategy for Local Computer System

with Multiaccess Networks,” IEEE Trans. Computers, Vol. 38, No. 8, pp.1098-1109, Aug. 1989.

[22] M. H. Willebeek-LeMair, and A. P. Reeves, “Strategies for Dynamic Load Balancing on Highly

Parallel Computers,” IEEE Tran. on Parallel and Distributed Systems, Vol. 4, No. 9, pp. 979-993,

September 1993.

[23] S. Zhou, J. Wang, X. Zheng, and P. Delisle, “Utopia: A load Sharing Facility for Large, Heteroge-

neous Distributed Computer Systems,” Tech. Report 257, Computer Systems Research Institute,

University of Toronto, Canada, April 1992.

[24] T. Green, and J. Snyder, “DQS, A distributed Queuing System,” Florida State University, March

1993.

[25] B. C. Neumann, and S. Rao, “Resource Management for Distributed Parallel Systems,” Proceedings

of the Second International Symposium on High Performance Distributed Computing, Spokane,

July 1993.

[26] D. L. Black, “Scheduling Support for Concurrency and Parallelism in the Mach Operating System,”

IEEE Computer, Vol. 23, No. 5, pp. 35-43, May1990.

