
Processor Virtualization and Migration for PVM

Steve W� Otto�

Abstract

This paper describes research underway to de�ne and develop the next generation of
PVM �Parallel Virtual Machine�� Future versions of PVM will be modular and open so
as to allow interoperability with other packages� such as distributed scheduling systems�

We concentrate on one aspect of the work� providing virtualization of processors and
transparent migration mechanisms within the message�passing programming model�
Work migration is a key ingredient to allow good scheduling on a large� busy system�
Two migration systems will be described� The �rst is Migratable PVM �MPVM�� which
allows transparent migration at process granularity amongst homogeneous groups of
processors� The system is functional and has run realistic applications� The second
system is a multi�threaded version of PVM� where threads are disjoint and do not
share data spaces� This again allows transparent migration� Local communication
speeds and context�switch times are improved over process�level MPVM� Performance
�gures and semantic restrictions of both packages are given�

� Introduction

Concurrent processing applications are evolving into large� complex systems� with many
interacting sub�tasks whose resource requirements often di�er widely� At the same time�
computing environments are becoming more versatile� typically consisting of multiproces�
sors� vector supercomputers� and graphics engines� in addition to general purpose work�
stations� E�ectively harnessing this heterogeneous collection of resources� and enabling
the most e�ective use of specialized capabilities� requires a supporting �systems� software
architecture that presents a virtual Concurrent Processing Environment �CPE� to the user�

The PVM �Parallel Virtual Machine� system virtualizes a heterogeneous collection of
computers into a distributed�memory� message�passing� parallel computer �	� 
�� PVM
allows concurrent processing on heterogeneous systems interconnected by fast networks
and has demonstrated the technical and economic viability of this computing model� Its
simplicity and robustness have encouraged the development of a large number of PVM
applications� and the list of PVM users is long and growing rapidly� PVM spans network
computers� cluster computers� and tightly�coupled massively�parallel processors �MPPs��
Groups at the University of Tennessee� Oak Ridge National Laboratory� Carnegie Mellon
University� and Oregon Graduate Institute have begun research to enhance the functionality
of PVM� with emphasis on� migration capability and interfaces to distributed schedulers
and resource managers
 tools for program development and performance monitoring
 and
a new interface adding multimedia and visualization capabilities to PVM ���� Some of this
functionality will be extended to include MPI� the standardized message�passing interface
����

�Dept of Computer Science and Engineering� Oregon Graduate Institute of Science � Technology� �����

NW Walker Road� P� O� Box ������ Portland OR �	���
����� otto�cse�ogi�edu

	



	 Otto

��� An Open Framework

The new version of PVM will form the �kernel� of the CPE� Rather than build all the
above capabilities directly into the kernel� we take a modular approach� Once interfaces
are de�ned between the modules of the CPE� the prototype environment can coexist with
related software systems from other research groups or vendors� The distributed scheduler�
for example� will be a separate module with a well�de�ned interface to the CPE kernel� We
plan to provide a simple� default scheduler� but one could use others� This �open�systems�
approach addresses heterogeneity at the system software level as well as at the operating
system and hardware levels� Figure � illustrates the overall architectural framework by
identifying the generic modules that we expect to exist in a CPE� the interfaces among
them� and the interfaces to other system components such as the operating system and �le
system�

VS
(AVS)

monitor

WS
(X)

OS
(UNIX)

FS
(NFS)

Perf Dbase
CPE Kernel

(PVM)Profiler and
Debugger

(Xpvm)

(DQS)

Distributed Scheduler

Server
Authentication

(Prospero)

System load

Fig� �� The software architecture of the CPE� This diagram shows the main modules of

a CPE as large boxes and the de�ned interfaces between them as lines� The smaller boxes such

as VS �visualization system� are existing modules that we cannot modify� Note that this picture

illustrates the software architecture and not processes � several of the modules here are distributed

and correspond to many executing processes�

��� The CPE as Middleware

The CPE kernel is �middleware� ���� providing a well�de�ned� virtual environment through
which concurrent applications access system resources� Besides message passing� the CPE
kernel also provides its own process control abstractions� internal interfaces to other CPE
modules� and external interfaces to the operating system� �le system� windowing system and
visualization environment� An important goal of the CPE kernel is to provide a consistent



Processor Virtualization and Migration for PVM �

single�system image to concurrent applications in a heterogeneous distributed execution
environment�

PVM currently de�nes a simple interface for message�passing and process control�
but lacks some of the functionality desired for the CPE kernel� and leaves certain
interfaces unde�ned� For example� PVM currently encourages applications to directly
access operating system and �le system facilities� and consequently does not provide a
single system image to applications �e�g�� �le names are location dependent�� Similarly� the
CPE kernel will export an explicit scheduling interface such that resource allocation can be
done globally rather than on a per application basis�

Due to the severe constraints of portability across operating systems� creating e�cient
and functional middleware such as the CPE is a challenge� See ��� for some thoughts on
what operating systems should provide to support such systems�

��� Distributed Scheduler and Authentication

Current PVM includes many process creation and management tasks that are more properly
left to a separate scheduling system� The CPE kernel will give up some of this functionality
to the scheduler� Users may add to or delete from the pool of hosts on which a concurrent
application is to execute only by negotiating with the scheduler� Since the scheduler has
the necessary global information required to make sensible resource allocation and job
management decisions� migration decisions are also made by it�

Distributed schedulers in a large�scale heterogeneous environments require additional
functionality to access resources in multiple administrative domains� Rather than build
authentication and accounting functionality directly into the scheduler� however� we will
use existing systems such as the Prospero resource manager ���� �	��

� Migration

Processor virtualization is an attractive goal because it frees application programmers from
the burden of managing physical processor location and availability� Virtual processors
�VPs� allow programmers to think solely in terms of the parallelism within their application�
Processor virtualization also improves system resource utilization because it allows systems
software to transparently adapt to changes in processor availability� preemption� and load
imbalance� Support for dynamic reallocation is useful in large multicomputers and essential
in shared workstation environments� The remainder of this paper describes two processor
virtualization and migration systems that we have built�

The �rst system� Migratable PVM �MPVM�� uses Unix processes as its virtual
processors �as does conventional PVM� and allows the transparent migration of these
processes ���� The processes of a PVM application can be suspended on one workstation
and subsequently resumed on another workstation without any help from the application
program� The package is source�code compatible with PVM requiring no more than
re�compilation and re�linking of PVM applications� Migration events are initiated and
controlled by a global scheduler that is external to the application�

The second system� UPVM� is a virtual processor package that supports multi�threading
and transparent migration for PVM applications ���� The virtual processors are called User
Level Processes �ULPs� and can be thought of as light�weight� Unix�like processes that are
independently migratable� UPVM also supports a source�code compatible PVM interface
often requiring no modi�cation to the application source�



Fig� �� MPVM migration� Illustrated are the stages involved in migrating VP� from host� to

host��

The migration protocol used in MPVM can be divided into four major stages� the
migration event
 message �ushing
 VP state transfer
 and restart �see Figure 	��

�� Migration event� The migration of a process is triggered by a migration event� This
event indicates that processes executing on the host where the event occurred must
be migrated to other hosts� This migration event causes the GS to send a migrate
message to the MPVM daemon �mpvmd� on the to�be�vacated�machine �host� in
the �gure�� The migrate message contains information regarding which process to
migrate and where�

	� Message �ushing� The mpvmd� upon receipt of the migrate message� initiates a
message �ushing protocol to ensure that� �� the migrating process has received all
messages sent to it prior to migration� and 	� no message is sent to the migrating
process for the duration of the migration� This is done by sending a �ush message
to all other processes informing them of the impending migration� The �ush message
is acknowledged and from then onwards� a send to the migrating process blocks the
sending process�

�� VP state transfer� After �ushing the messages� the migrating process is ready to



Processor Virtualization and Migration for PVM �

migrate� To accomplish this� a �skeleton� process is started at the destination host�
This process has exactly the same code as that of the migrating process �that is� they
were executed from the same executable �le�� A TCP connection is created between
the migrating process and the skeleton through which the state of the migrating
process is transferred� The skeleton� upon receipt of the state information� assumes
it as its own and continues execution accordingly� At this point the skeleton process
becomes the migrated process for all practical purposes �VP�� in the �gure��

�� Restart� Before the migrated process can rejoin the application execution� it must
make itself known to the mpvmd on the new host� and send out a restart message to
the other processes� This restart message accomplishes two things� First� it unblocks
processes blocked on a send to the migrated process� Second� it informs the other
processes of its new tid making sure that subsequent messages will be sent correctly�
Though the process does these things� the application programmer need not concern
herself with this protocol� The protocol is done by mpvmd and by signal handlers
that are transparently linked into the application�

A few more observations are worth noting here� Initiation of the migration is
asynchronous with respect to the process to be migrated� That is� a process could be
made to migrate at virtually any point of its execution� The only restriction at present
is that processes cannot migrate if they are currently executing in the MPVM run�time
library� and the amount of time spent in the library is limited� Secondly� the migration of
a process does not necessarily stop the entire parallel application� Only processes sending
a message to the migrating process are blocked� Finally� the application executes as if the
migration never occurred� This makes MPVM transparent to the application program�

MPVM was �rst implemented for HP�PA workstations running the HP�UX operating
system� Subsequently� the system was ported to the SPARC architecture running SUNOS
��X� The implementation tries to be machine�independent� The migration mechanism�
however� is somewhat machine and operating system dependent� We have attempted to
limit the dependence on the OS by using generic features found in most versions of Unix
��� ���� As long as a process can take a snap�shot of its register context and determine the
extents of its writable data� heap� and stack space at run�time� porting is not di�cult�

Implementing the migration mechanism outside the operating system impacts MPVM�s
capacity to be completely migration transparent to the application programmer� Because
we aren�t modifying the underlying operating system� state information such as process IDs
and pending signals cannot be preserved on migration� Additional limitations involve� the
use of IPC mechanisms �that is� sockets� shared memory� etc�� used outside the MPVM run�
time library� timers� process creation functions such as fork�� and exec��� memory mapped
�les� and shared libraries� The application programmer must be cautious regarding the
use of these facilities with MPVM� A PVM application that does not rely on the above�
mentioned limitations should only need re�compilation and re�linking for it to run under
MPVM�

MPVM supports a limited form of heterogeneity in that tasks can be started on hosts
of di�erent architectures� However� an MPVM task can only migrate to another migration
compatible host� A migration compatible host is one that has similar� if not the same�
characteristics of the machine the MPVM task is migrating from� The problem stems
from the fact that non�compatible hosts de�ne process state di�erently and there is no
straightforward way of translating this state from one non�compatible host to another�




 Otto

��� MPVM Performance

The overhead incurred by an application running normally �no migration� with MPVM can
be attributed to three things� One� whenever the application does a call into the MPVM
library� �ags have to be set to avoid potential re�entrancy problems when trying to migrate a
process while it is executing within the library� Second� there�s an overhead associated with
tid re�mapping� Finally� there is an overhead incurred due to a re�implementation of the
pvm recv�� call� This was necessary to accommodate the case of migrating a process that is
blocked in the pvm recv�� routine� These factors cause a minor increase in message�passing
times for MPVM versus PVM�

Obtrusiveness is de�ned as the time it takes from when a migrate message is received
to the time the work is actually removed from the machine� Table � gives a summary of
measurements taken while migrating PVM opt� using various data sizes� The raw TCP
column in the table shows timing results of raw data transfer through the network� This
provides us with a lower bound on achievable process migration performance�

Table �

This table shows the obtrusiveness and migration cost for migrating a PVM opt slave VP for

various data sizes� The Raw TCP column provides us a measure of the lower bound at which we

can migrate processes� The fourth column gives the ratio of the obtrusiveness time to the raw TCP

time�

Data size Raw TCP Obtrusiveness Ratio Migration Time
��
 MB ��	� sec ���� sec ��� ���� sec

��	 ���� 	��� ���
 ����
��� ���	 ���	 ���� 
���
	��� ����� �	��	 ��	� �����

The di�erence between the raw TCP and obtrusiveness times is due to message �ushing�
starting up the skeleton process on the target host� and setting�up the TCP connection�
For large data� the ratio of obtrusiveness time to the raw TCP transfer time approaches
����

Migration cost measures the time it takes from when a migration event is received to
when the migrated process rejoins the parallel computation from another host� This time
is equivalent to the obtrusiveness time plus the restart time�

� User�level Process PVM �UPVM�

UPVM is a package that supports multi�threading and transparent migration for PVM ap�
plications ���� Though the MPVM package gives a transparent migration capability� UPVM
provides a set of �smaller� entities than processes to migrate� allowing load redistribution
at a �ner granularity� Context switching and on�processor �local� communication times are
also greatly improved over MPVM�

UPVM de�nes a new VP abstraction� having some of the characteristics of a thread
and some of a process� called a User Level Process �ULP�� Like a thread� a ULP de�nes a
register context and a stack� However� ULPs di�er from threads in that they also de�ne a
private data and heap space �threads share memory with one another�� ULPs di�er from
processes in that their data and heap space is not protected from other ULPs of the same
application� That is� ULPs do not de�ne a private protection domain�

�PVM opt is a parallel� neural
net training application�



Processor Virtualization and Migration for PVM �

stack

TextTextText

ULP0

ULP1

ULP2

ULP3

ULP4

Process virtual address space

user
code

UPVM
lib

data

heap

Fig� �� Address space layout of the UPVM system� There is one UPVM process per host per

application� ULPs of an application are assigned distinct virtual address regions	 reserved across all

participating processes�

From the application programmer�s perspective� ULPs look much like operating system
processes� By convention� ULPs only communicate with each other via message passing�
Consequently� existing message�based� parallel applications that use processes can use
ULPs with little modi�cation� There are potentially many ULPs per process and they
are scheduled by the UPVM library� When a ULP blocks on a message receive� it is de�
scheduled and a runnable ULP� if available� is scheduled� Message passing between ULPs
on the same process is handled in an e�cient manner by the UPVM library� while messages
that are destined for ULPs on other processes use a di�erent mechanism�

The fact that each ULP has its own data� stack� and heap signi�cantly simpli�es the
migration protocol� Since all the state of a ULP is in well�de�ned locations �unlike threads��
it is easy for the system to �nd and transfer ULP state� A potential problem with migration
concerns pointers in the application program� That is� if a ULP is relocated to a di�erent
place in the address space of a process� pointers might have to be modi�ed� To eliminate the
need for this� the mapping of a ULP to a set of virtual addresses is made unique across all
the processes of the application� For example� consider an application that is decomposed
into � ULPs across � processes� one process per host �see Figure ��� If ULP� is allocated
a virtual address region V� on host�� then V� is also reserved for ULP� on all the other
hosts� even though it is not present on them�

The migration protocol of UPVM goes through four major stages similar to those for
MPVM� These are described below�

�� Migration event� The GS sends a migration message directly to the process containing
the ULP to be migrated� The process is interrupted� and the register state of the
ULP to be migrated is captured�

	� Message �ushing� To ensure that no messages are dropped during migration� we send a
�ush message to all processes and receiving an acknowledgment� The acknowledgment
signi�es that all messages in transit �for this ULP� have been received� In contrast
to MPVM where messages are temporarily blocked� future messages to the ULP are
sent directly to the new� target host�

�� VP state transfer� The ULP state �including unreceived messages� is transferred to
the target UPVM process� This is done using conventional PVM� The target UPVM



� Otto

process places the ULP in its allotted virtual address region� Message queues are also
modi�ed so that pairwise in�order message delivery is preserved�

�� Restart� The ULP is placed in the appropriate scheduler queue so that it will
eventually execute�

UPVM runs on HP�PA workstations running the HP�UX operating system� Porting
UPVM to a new architecture is a substantial task� For example� the procedure calling
conventions of the OS need to be understood� These conventions determine the general
and �oating point registers that must be saved and restored in a ULP context switch� Also�
since ULPs are laid out in distinct regions of a process virtual address space� the virtual
memory layout� as de�ned by the OS� must be understood�

As with MPVM� migration under UPVM is not completely transparent to the
application programmer� Developing applications in UPVM has the same restrictions as
that of MPVM in the use of the operating system interface� In addition� there are two more
restrictions� One is that only SPMD�style applications are currently supported � SPMD
leads to many simpli�cations for UPVM� Secondly� multiple ULPs reside within a single
process by dividing the process� virtual address space among all the ULPs� This puts a
limit on the number of ULPs that could be created depending on the memory requirements
�data� stack� and heap� of each ULP�

UPVM has the same restricted heterogeneous support as MPVM� That is� migration
can only occur between migration�compatible hosts�

To evaluate the performance of the UPVM package� we give the results of micro�
benchmarks for context switch� local communication� and remote communication� The goal
is to measure the costs of the primitive operations provided by UPVM� All experiments
were conducted on two HP series ������	� workstations that were otherwise idle� connected
over a ��Mb�sec Ethernet� Each of the workstations has a PA�RISC ��� processor� 
� MB
main memory� and is running the HP�UX ���� operating system�

The context switch benchmark measures the time taken for one VP �an OS process or
ULP� to yield to another of the same kind� For comparison purposes� the cost of executing
a null procedure call on the HP�UX workstation is ��
� micro�seconds� Table 	 gives the
context switch cost of ULPs and OS processes� both in absolute time and as a ratio to null
procedure call cost�

Table �

Context switch costs �absolute and relative to null procedure call time� for UPVM�

Type Cost �micro�seconds� Ratio
ULP switch ���� ����
UNIX switch ������ �����


Isolating the process context switch cost in a portable manner is extremely di�cult�
since there is no equivalent of a yield�to�another�process system call on UNIX� Our solution
to this problem was to use Ousterhout�s context switch benchmark ����� In this case� we
calculate half the time taken by two UNIX processes to alternately read and write one
byte from a pair of pipes� This implies that the UNIX process switch cost given in Table 	
includes the cost of reading and writing one byte from a pipe in addition to the true process
switch costs� However� even if we consider only half of the observed process switch costs�
the ULP switch is still more than an order of magnitude faster�

The local communication benchmark measures the round�trip message communication



Processor Virtualization and Migration for PVM �

cost between two VPs� The benchmark is compiled with the PVM library and then with
UPVM� yielding two di�erent executables� In the case of PVM� the local communication
cost measured is between two UNIX processes on the same node� In the case of UPVM� the
cost measured is between two ULPs that are executing within the same UNIX process� The
numbers in Table � are half the round�trip cost� We assume that this closely approximates
the one�way communication cost� The local communication cost of UPVM is around an
order of magnitude better than that of PVM�

Table �

Local communication costs for UPVM�

Message size�bytes� PVM�ms� UPVM�ms�
� ���� ���	

���� ���� ����
����� 
��� ����
������ ����
 ����

Since UPVM uses PVM for remote communication� we expected a marginal increase
in the cost of the remote communication� This increase is visible in Table �� which shows
that UPVM costs are about ��� �� �� and �� higher for �K� ��K and ���K message sizes
respectively�

Table �

Remote communication costs for UPVM�

Message size�bytes� PVM�ms� UPVM�ms�
� 	�
� 	���

���� ���� ����
����� ����
 ���
�
������ ������ ��
��


Finally� Table � shows the costs for migration of ULPs� As was the case for MPVM�
the �gures are fairly close �
������ to the raw TCP speeds available on the �� MB�sec
ethernet link used for the experiment��

Table �

Migration time as a function of data size for UPVM�

Data Size �MB� Time �sec�
�	� ����
�� ����
��� ����
	�� ����

Acknowledgements

Jeremy Casas wrote the MPVM system and Ravi Konuru implemented UPVM� I thank
them and the other members of our research group� Jonathan Walpole� Robert Prouty�

�Note that �data size� is de
ned di�erently here than for the MPVM experiment � there� it meant the

total size of the data set� here it means the per ULP size�



�� Otto

Khaled Al Saqabi� Dan Clark� and Jon Inouye� for helpful discussions� Adam Beguelin�
Jack Dongarra� Al Geist� Robert Manchek� and Jonathan Walpole made key contributions
to the overall design of the Concurrent Processing Environment�

References


	� A� L� Beguelin� J� J� Dongarra� A� Geist� R� J� Manchek� S� W� Otto� and J� Walpole� PVM

Experiences	 current status and future direction� in Supercomputing�
� Proceedings� 	

��
pp� ������


�� A� L� Beguelin� J� J� Dongarra� A� Geist� R� J� Manchek� and V� S� Sunderam� Heterogeneous
network computing� in Sixth SIAM Conference on Parallel Processing� 	

��


�� P� Bernstein� Middleware
 An architecture for distributed system services� Tech� Rep� CRL
����
Cambridge Research Lab� Digital Equipment Corp�� March 	

�� Submitted for publication�


�� A� P� Black and J� Walpole� Objects to the rescue�� tech� rep�� Oregon Graduate Institute of
Science � Technology� May 	

�� Position paper for SIGOPS 	

� European Workshop�


�� J� Casas� R� Konuru� S� W� Otto� R� Prouty� and J� Walpole� Adaptive load migration systems
for PVM� tech� rep�� March 	

�� Submitted to Supercomputing �
��


�� J� J� Dongarra� A� Geist� R� J� Manchek� and V� S� Sunderam� Integrated PVM framework
supports heterogeneous network computing� Computers in Physics� �	

���


�� M� P� I� Forum�MPI
 A message�passing interface standard� computer Science Dept� Technical
Report CS�
������ University of Tennessee� Knoxville� TN� April 	

�� �To appear in the
International Journal of Supercomputer Applications� Volume �� Number ���� 	

���


�� R� Konuru� J� Casas� S� W� Otto� R� Prouty� and J� Walpole� A user�level process package
for PVM� in 	

� Scalable High�Performance Computing Conference� IEEE� May 	

�� To
appear�



� M� Litzkow� M� Livny� and M� Mutka� Condor 
 a hunter of idle workstations� in Proceedings
of the �th International Conference on Distributed Computing Systems� San Jose� CA� June
	
��� IEEE� pp� 	���			�


	�� M� Litzkow and M� Solomon� Supporting checkpoint and process migration outside the unix
kernal� in Usenix Winter Conference� 	

��


		� B� C� Neuman� Prospero
 A tool for organizing Internet resources� Electronic Networking�
Research� Applications and Policy� � �	

���


	�� B� C� Neuman and S� Rao� Resource management for distributed parallel systems� in Proceed�
ings of the �nd Internationational Symposium on High Performance Distributed Computing�
July 	

��


	�� J� K� Ousterhout� Why aren�t operating systems getting faster as fast as hardware�� in
Proceedings of the Summer 	

� USENIX Conference� Anaheim� CA� June 	

�� pp� ����
����


