Defunctionalization of Typed Programs

Jeffrey M. Bell and James Hook™
Oregon Graduate Institute of Science & Technology |

August 25, 1994

Abstract

In a 1972 paper, Reynolds outlined a method for removing higher-order functions from a func-
tional language program by representing functional values as data and interpreting the represen-
tations as needed. This transformation is known as defunctionalization. This paper describes a
defunctionalization algorithm extended to operate over a significant portion of core Standard ML
syntax. The algorithm addresses issues not addressed in Reynolds’s presentation or subsequent
examples. The most significant extension is that the algorithm operates on a statically typed lan-
guage. The algorithm also addresses issues such as a method for representing function values as
ML datatype values, function values “shared” by more than one higher-order function, local decla-
rations, and expressions with multiple alternates (such as case expressions). We have implemented

the algorithm as a critical part of a larger program transformation system.

1 Introduction

1.1 Higher-Order Functions and Their Elimination

Higher-order functions (HOFs) are either
1. functions with arguments that are themselves functions
2. functions that return function values

Map functions are common examples of HOFs of the first sort, and curried functions are examples
of the second sort.

Defunctionalization [Rey72], firstification [Nel91], and higher-order removal [CD93] are meth-
ods for eliminating higher-order functions from a program, while preserving the semantics of the
program. It is desirable to eliminate higher-order functions from a program because some program
transformations which improve program efficiency can only be performed on first-order programs
(i.e. functional programs without higher-order functions).

Higher-order functions of the second sort can be simply eliminated from a program via un-

currying. The uncurrying transformation ensures that every function call includes values for all

*The authors are supported in part by a grant from the NSF (CCR-9101721) and by a contract with Air Force
Material Command (F19628-93-C-0069).
PO Box 91000, Portland, Oregon 97291-1000, USA; email: {bell,hook}@cse.ogi.edu

arguments to the function, and that function declarations include all necessary parameters. If
a value for one of a function’s arguments is not available at a call site, a lambda abstraction is
constructed at the call site, supplying the function with all its arguments.

Higher-order functions of the first sort are not so easily eliminated from a program. Thus, this
research focuses on Hors with function-valued parameters. We will call such a parameter a Hop
(for “higher-order parameter”).

Reynolds presents defunctionalization via a specific example. This is also true in other presen-
tations of the method [BJ82, Sch85a, Sch85b, Sch88, Wan85]. Thus there are many details left out
of these presentations, and there are theoretical issues not addressed in the presentations. Imple-
mentation details include the choice of a representation for function values, a method for detecting
HorFs and Hops, handling Hops that are used by more than one Hor, and handling expressions
with multiple alternates (such as case expressions). Theoretical issues include polymorphic HoFs,
local declarations, and function values contained in data structures.

Reynolds’s defunctionalization is the basis for Sestoft’s closure analysis, which is used for glob-
alization [Ses89], control-flow analysis [Shi88, Shi91] and binding-time analysis [Bon90]. The fun-
damental difference between our approach and closure analysis is that we construct first-order
datatypes that characterize exactly the structure of each higher-order value, whereas closure anal-
ysis has one large, implicitly recursive type allowing arbitrary structures to be represented.

Characterizing the structure of higher-order values exactly facilitates subsequent transforma-
tions. Bellegarde and Hook use the data structures calculated by defunctionalization as the basis for
a series of program transformations that rewrite a higher-order, monad-based definition of de Bruijn
substitution into the standard, efficient first-order implementation using arithmetic operations for
index manipulation [BH93]. In that derivation the form of defunctionalization presented here re-
veals that natural numbers can encode the higher-order function values. It is not clear how this
could have been accomplished with an untyped closure analysis.

Firstify, the implementation of this defunctionalization algorithm, has been used together with
Schism[Con92], to automatically perform the specialization and defunctionalization transformations
presented in Bellegarde and Hook[BH93].

1.2 Hor Elimination via Specialization

Chin and Darlington [CD93] have developed a HOF elimination algorithm based on fold/unfold
rules that uses specialization. The following example demonstrates the algorithm. The program
below contains a HOF called map, which applies a function to each argument in a list. After its
definition, map is called with the function increment.

fun map f Nil = Nil
| map f Cons(z,xs) = Cons(f x,map f xs)

fun addone | = map tncrement |

After specialization, the call to map is unfolded to the body of map, specialized with respect to

the HoP used. The resulting program is:

fun map f Nil = Nil
| map f Cons(xz,zs) = Cons(f x,map f xs)

fun addone Nil = Nil
| addone Cons(z,xs) = Cons(increment z,addone xs)

Note that map is not modified. However, since it is no longer called, it can safely be eliminated
from the program.

This method is limited. Only higher-order functions whose functional arguments are variable-
only can be specialized with this approach. A functional argument in a recursive call to a higher-
order function is variable-only if the argument is an identifier. Functional arguments in non-
recursive function calls are all variable-only. If a functional argument in a recursive call to a
higher-order function is not variable-only, the algorithm will go into an infinite loop trying to
specialize the function.

For an example of a Hop that is not variable-only, consider the definition of the map_with_policy
function introduced by Hook, Kieburtz and Sheard[HKS92]:

fun map_with_policy Z f (Var z) = Var(f z)
| map_with_policy 7 f (Abst) = Abs (map_with_policy Z (Z f) t)
| map_with_policy 7Z f (App (t,t')) = App (map_with_policy 7 f 1,
map_with_policy 7 f)

This function maps a sequence of functions defined by the functional Z and the function f over a
term in the lambda calculus. In the recursive call in the Abs case, the second HoP is not variable-

only, and so specialization fails to give a first order program.

1.3 Reynolds’s Defunctionalization Method

Reynolds outlined a more general method for eliminating higher-order functions known as defunc-
tionalization [Rey72]. The key to this method is representing Hoprs as data values. When Hops
are transformed into data values, higher-order functions become first order, since they no longer
have functions as arguments. However, applications of the HoPs need to be modified, since a data
value cannot be applied as a function. This is accomplished by creating an “apply” function for
each Hop of a Hor. The apply function is called wherever the HoP was applied in the original
Hor. The apply function takes as arguments the data value representing the Hop and all the
arguments to the Hop. The apply function dispatches based on the Hop encoding, and applies the
appropriate function to the remaining arguments.
The following example illustrates Reynolds’s defunctionalization method.
fun map f Nil = Nil
| map f Cons(z,xs) = Cons(f x,map f xs)

fun addone | = map increment |

fun subone | = map decrement |

If the program is defunctionalized using strings containing the function name as the representation
of function values, the following program is the result.

fun apply_map (function_rep, function_arg) =
case function_arg of
“increment” = increment function_arg
| “decrement” = decrement function_arg

fun map’ f Nil = Nil
| map’ f Cons(z,xzs) = Cons(apply-map(f,x),map’ f s)

fun addone | = map' “increment” [
fun subone | = map’ “decrement” |

Reynolds’s method is more powerful than the specialization method of Chin and Darlington
because it is not limited to variable-only Hops. However, a defunctionalized program is only
pseudo first-order [CD93] because it still mimics the runtime characteristics of the original higher-
order program. Chin and Darlington’s method produces more efficient implementations. Therefore,
when either method is applicable, specialization is preferable to defunctionalization.

1.4 TImplementing Defunctionalization

This research is an attempt to produce an automated defunctionalization system for a typed func-
tional language. This required the identification and resolution of the issues and details listed in
Section 1.1. Firstify, the result of this effort, is a fully automated implementation of Reynolds’s
method.

Although in this presentation we limit ourselves to monomorphic functions, our implementa-
tion works with polymorphic functions as well. Alternative methods for defunctionalization of
polymorphic HOFs is an issue we are currently exploring.

In this paper we discuss the algorithm developed for the implementation of Firstify. Included
is our method for representing function values as data (Section 2), an overview of the algorithm

(Section 3), and a description of the implementation (Section 4) .

2 Representing Function Values

Critical to the algorithm is the choice of data representation for function values.

Functions passed as Hops are assumed to be in one of two forms at the HoOF call site—a simple
identifier or a lambda abstraction. We assume that lambda abstractions are limited to the following
form:

Ap.fl..,p, ...)

Where f is a function, p is a pattern, and p is the expression equivalent of p. This assumption is
guaranteed by the uncurrying transformation described above.

2.1 Representing Function Identifiers

FEach function passed as a HOP is represented with a constructed value in a datatype (known as a
Hor datatype). Fach identifier passed as a HoPp is represented by a nullary constructor that merely
encodes the name of the function. For example, consider the following HOF call site where the first
value in the pair passed to high is the Hop.

val z = high (f,z)

The identifier f would be represented by a nullary constructor, resulting in the following trans-

formed declaration.

val z = high (P_f-1_of-high,)

2.2 Representing Lambda Abstractions

In the spirit of Reynolds’s presentation, each lambda abstraction passed as a HOP is represented by
a constructor with the domain being a product of type variables, each type variable representing a
variable in the abstraction that is free in the context of the abstraction but bound in the context
of some surrounding function. The lambda abstraction is represented at the call site by applying
the constructor to these variables. Variables that are free in the abstraction but not bound in the
context of a surrounding function are defined at a more outer scope than the surrounding function,
and thus do not need to be represented in the datatype. For an example, consider the following
HoF call site.

fun call_high x = high (Az.g(x,y,%),0)

In the lambda abstraction, # and y are free variables. However, only z is bound in the context
of call high. Thus, the only value that needs to be a constructor argument is . The lambda

abstraction would be represented by a constructor with argument z, as follows.
fun call_high © = high (P_Lambdal_1_of_high x,0)

The Hop datatype for representing the two calls to high presented is as follows.

datatype type_1_of_high =
P_f 1_of high
| P_Lambdal_1_of high of T where 7 is the type of the argument to call_high

Note that if we use a polymorphic datatype parameterized with a type variable for the type of z, we
do not need to determine what the type of z is. This technique is in fact used in the implementation.

2.3 Interpreting the Representations

Apply functions have two parameters—the representation of a function (a value in the Hop
datatype) and the argument! to that function.

An apply function interprets function representations to apply the appropriate function to the
argument for that function. Interpreting representations of function identifiers is trivial. Represen-
tations of lambda abstractions are interpreted by evaluating the body of the abstraction, modified
as follows:

!For simplicity we will assume that each higher-order function has a single argument.

e Each variable value stored in the constructor representing the abstraction is substituted into
the abstraction body as appropriate.

¢ The argument to the represented function is substituted into the abstraction body as appro-

priate.

The apply function corresponding to the datatype shown in the previous section is:

fun apply_1_of_high (function_rep, function_arg) =
case function_rep of
P_f_1_of high = function_arg
| P_Lambdal_1_of-high x = g(x,y, function_arg)

2.4 Introduction of Recursive Datatypes

Suppose a lambda abstraction HOP is used in a recursive call, and the abstraction references the

formal Hop. For example:

fun high f = ... high (M. ... f ...) ...

According to the technique described above, f must be encapsulated in the datatype value that
represents the abstraction. However, in this case we know the type of f—it is a value in the

datatype we wish to create! Thus, the datatype representing Hops of high must be recursive.

datatype type_1_of_high =
P_Lambdal_1_of_high of type_1_of_high

When a HoP datatype is recursive, the corresponding apply function is either recursive or mutually
recursive with another function in the transformed program.

Note that in this example, f is not a variable-only parameter, and so Chin and Darlington’s
method would not be able to make this function first-order.

2.5 Shared Hoprs and HoF Sets

Higher-order functions share HoPs if both HOFs are passed the same HopP. One way for HOFs to
share Hops is if one HOF passes a HOP to another HOF via a function call. A collection of HoFs
that share Hops is known as a HOF set.

When a datatype and apply function are created by Firstify, they each correspond to a HoOF
set, rather than a single HOF as has been implied by the examples. This is because in a typed
language the representation of all HoPs passed to every HOF in a HOF set must have the same

type.

3 The Defunctionalization Algorithm

The defunctionalization algorithm is shown in Figure 2, and the types and functions used in the

algorithm are shown in Figure 1.

hof_set : function_id list
A HoF set. Values of type function_id uniquely identify a function in the source program.

add_annotations : declaration list — declaration [ist
Annotates a program with type information.

find_hof : declaration list — function_id maybe
Searches for an untransformed HOF in a program. HOFs are detected by examining type annota-
tions. If one is found, returns just the function identification. Otherwise returns nothing.

transform_hof : declaration list — function_id — hof_set — declaration list * hof_set
Transforms the body of a HOF. If other HOFs are detected which share a Hop with this HOF, they
are appended to the HOF set.

transform_hof_calls : declaration list — function_id — hof_set — declaration list x hof_set
Transforms all calls to a Hor. If other HOFs are detected which share a Hop with this HoF, they
are appended to the HOF set.

Figure 1: Types and functions used in the defunctionalization algorithm

fun defunctionalize_hof program nil = program
| defunctionalize_hof program (current_hof :: hof_set) =
let val (program’, hof_set’) =
transform_hof program current_hof hof_set
val (program”, hof_set”") =
transform_hof_calls program’ current_hof hof_set
in
defunctionalize_hof program' hof_set”
end

fun defunctionalize program =
case find_hof (add_annotations program) of
nothing = program
| just hof-id = defunctionalize (defunctionalize_hof program [hof-id])

Figure 2: The defunctionalization algorithm

Defunctionalize_hof defunctionalizes a single HOF by transforming the body of the HoF and all
calls to the HOF. During these transformations other HOFs in the same HOF set might be detected.
The function is called recursively on each of these HoFs until no more Hors with shared Hops are
found.

Defunctionalize performs defunctionalization on a program by annotating the program, finding
a HoF and calling defunctionalize_hof on that Hor. The function is recursive, and terminates when
no more untransformed HoFs are found. Note that the program is re-annotated after each Hor
set is processed, since the transformations will change the types of declarations.

4 The Implementation

Firstify is our implementation of the above algorithm. In the implementation, type annotation
is not performed. Only the types of identifiers declared at the top level are determined. If the
input program does not contain local declarations, this is sufficient information to defunctionalize
most higher-order functions. However, some Hors with Hops that are themselves HOFs cannot be
defunctionalized without more comprehensive type annotations.

Firstify operates on Standard ML programs which meet the following criteria:

o All functions are uncurried such that each function has only one argument (possibly a tuple)
and all function call sites are fully uncurried. This criterion can be met via the A transfor-
mation of Chin and Darlington[CD93].

¢ The program contains no let declarations. This criterion can be met by lambda lifting[Joh85].
The algorithm has been extended to let declarations, but this is not currently reflected in the
implementation.

e The only lambda abstractions occur as Hops. This criterion can be met by lambda lifting
and the A transformation of Chin and Darlington.

e No functions are contained in datatype values. A solution to this limitation has not yet been

developed.

5 Future Work

Future work on the implementation includes eliminating or weakening the assumptions about the
input to Firstify. 1t is particularly desirable to extend Firstify as follows:

e Perform type annotation, as described above.

o Weaken the assumption about uncurrying to the assumption that all function declarations
and function calls include all arguments to the function, but the arguments are not necessarily

contained in a tuple.

o Extend Firstify to handle the module system of Standard ML. Presumably Firstify would

then operate on signatures and structures rather than lists of declarations.

Future work on the algorithm includes the following:

¢ Extend the algorithm to handle functions “contained” in datatype values. It appears that
constructors of such datatypes can be treated “just like” HoFs and defunctionalized as such.
We have not, however, worked on the details of this transformation, as this case does not
arise in our use of Firstify.

¢ Extend the algorithm to handle polymorphism. Currently the implementation deals with
polymorphic higher-order functions with type specialization. Other possibilities are being
investigated. Polymorphism is particularly troublesome when a polymorphic HOF is used as
a parameter to another HoF. The implementation currently works with Hops that are HOFs,
but only if they are monomorphic.

A full description of the implementation, including other minor restrictions on program input,
the extension to let declarations, and the treatment of polymorphic higher-order functions can be
found in [Bel94].

6 Summary

We have outlined an algorithm for eliminating higher-order functions from a typed functional
language. The algorithm is an extension of Reynolds’s defunctionalization method. This research
addresses features of functional programming languages not explicitly addressed in Reynolds’s
paper or other references. These features include types, local declarations, and multiple alternate
statements. This work also elaborates on implementation details, including detection of higher-
order functions, function values that are “shared” by several higher-order functions, and higher-
order functions with higher-order parameters. The algorithm has been implemented and is in use
as a critical part of a source-to-source program transformation system for Standard ML.

7 Acknowledgements

The authors wish to thank Francoise Bellegarde, Olivier Danvy, and Tim Sheard for their useful
comments.

References

[Bel94] Jeffrey M. Bell. An implementation of Reynold’s defunctionalization method for a modern
functional language. Master’s thesis, Oregon Graduate Institute of Science & Technology,
January 1994.

[BHO93] Francoise Bellegarde and James Hook. Monads, indexes, and transformations. In TAP-
SOFT °93: Theory and Practice of Software Development, volume 668 of LNCS, pages
314-327. Springer-Verlag, 1993. A page was omitted from the proceedings, it may be
obtained via ftp from ftp.cse.ogi.eduin the file pub/pacsoft/papers/tapsoft.dvi.

[BJ82] Dines Bjgrner and Cliff B. Jones. Formal Specification and Software Development, pages
277-280. Prentice-Hall, 1982.

[Bon90] A. Bondorf. Automatic autoprojectin of higher order recursive equations. In N. Jones,
editor, ESOP ’90, volume 432 of LNCS, pages 70-87. Springer-Verlag, May 1990.

[CDY3]

[Con92]

[HKS92]

[Joh85]

[Nel91]
[Rey72]

[Sch85a]

[Sch85b]

[Sch&8]

[Ses89]

[Shiss]

[Shio1]

[Wan8&5]

Wei-Ngan Chin and John Darlington. Higher-order removal: A modular approach. Un-
published work, 1993.

Charles Consel. The Schism Manual, version 2.0. Technical report, Department of Com-
puter Science and Engineering, Oregon Graduate Institute, 1992.

James Hook, Richard Kieburtz, and Tim Sheard. Generating programs by reflection. Tech-
nical Report 92-015, Department of Computer Science and Engineering, Oregon Graduate
Institute, July 1992.

Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. Lecture
Notes in Computer Science, 201:190-203, 1985.

George C. Nelan. Firstification. PhD thesis, Arizona State University, December 1991.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of the 25th ACM National Conference, pages 717-740. ACM, 1972.

David A. Schmidt. Detecting global variables in denotational specifications. ACM Trans-
actions on Programming Languages and Systems, 7(2):299-310, April 1985.

David A. Schmidt. An implementation from a direct semantics definition. Lecture Notes
in Computer Science, 217:222-235, 1985.

David A. Schmidt. Detecting stack-based environments in denotational definitions. Seci-
ence of Computer Programming, 11(2):107-131, December 1988.

Peter Sestoft. Replacing function parameters by global variables. In Functional Pro-
gramming Languages and Computer Architecture, pages 39-53. ACM Press, September
1989.

Olin Shivers. Control-flow analysis in Scheme. In Proc. of the SIGPLAN 88 Conference
on Programming Language Design and Implementation, pages 164-174. ACM Press, June
1988.

Olin Shivers. The semantics of Scheme control-flow analysis. In Proc. of the Symp. on
Partial Fvaluation and Semantics-Based Program Manipulation, pages 190-198. ACM
Press, June 1991.

Mitchell Wand. From interpreter to compiler: A representational derivation. Lecture
Notes in Computer Science, 217:306-324, 1985.

10

