
Defunctionalization of Typed Programs

Je�rey M� Bell and James Hook�

Oregon Graduate Institute of Science � Technology y

August ��� �		


Abstract

In a ���� paper� Reynolds outlined a method for removing higher�order functions from a func�

tional language program by representing functional values as data and interpreting the represen�

tations as needed� This transformation is known as defunctionalization� This paper describes a

defunctionalization algorithm extended to operate over a signi	cant portion of core Standard ML

syntax� The algorithm addresses issues not addressed in Reynolds
s presentation or subsequent

examples� The most signi	cant extension is that the algorithm operates on a statically typed lan�

guage� The algorithm also addresses issues such as a method for representing function values as

ML datatype values� function values �shared� by more than one higher�order function� local decla�

rations� and expressions with multiple alternates 
such as case expressions�� We have implemented

the algorithm as a critical part of a larger program transformation system�

� Introduction

��� Higher�Order Functions and Their Elimination

Higher�order functions 
Hofs� are either

�� functions with arguments that are themselves functions

�� functions that return function values

Map functions are common examples of Hofs of the 	rst sort� and curried functions are examples

of the second sort�

Defunctionalization �Rey���� �rsti�cation �Nel���� and higher�order removal �CD��� are meth�

ods for eliminating higher�order functions from a program� while preserving the semantics of the

program� It is desirable to eliminate higher�order functions from a program because some program

transformations which improve program e�ciency can only be performed on 	rst�order programs


i�e� functional programs without higher�order functions��

Higher�order functions of the second sort can be simply eliminated from a program via un�

currying� The uncurrying transformation ensures that every function call includes values for all

�The authors are supported in part by a grant from the NSF �CCR��������	 and by a contract with Air Force
Material Command �F��
������C���
�	


yPO Box ������ Portland� Oregon ����������� USA� email� fbell�hookg�cse�ogi�edu

�



arguments to the function� and that function declarations include all necessary parameters� If

a value for one of a function
s arguments is not available at a call site� a lambda abstraction is

constructed at the call site� supplying the function with all its arguments�

Higher�order functions of the 	rst sort are not so easily eliminated from a program� Thus� this

research focuses on Hofs with function�valued parameters� We will call such a parameter a Hop


for �higher�order parameter���

Reynolds presents defunctionalization via a speci	c example� This is also true in other presen�

tations of the method �BJ��� Sch��a� Sch��b� Sch��� Wan���� Thus there are many details left out

of these presentations� and there are theoretical issues not addressed in the presentations� Imple�

mentation details include the choice of a representation for function values� a method for detecting

Hofs and Hops� handling Hops that are used by more than one Hof� and handling expressions

with multiple alternates 
such as case expressions�� Theoretical issues include polymorphic Hofs�

local declarations� and function values contained in data structures�

Reynolds
s defunctionalization is the basis for Sestoft
s closure analysis� which is used for glob�

alization �Ses���� control��ow analysis �Shi��� Shi��� and binding�time analysis �Bon���� The fun�

damental di�erence between our approach and closure analysis is that we construct 	rst�order

datatypes that characterize exactly the structure of each higher�order value� whereas closure anal�

ysis has one large� implicitly recursive type allowing arbitrary structures to be represented�

Characterizing the structure of higher�order values exactly facilitates subsequent transforma�

tions� Bellegarde and Hook use the data structures calculated by defunctionalization as the basis for

a series of program transformations that rewrite a higher�order� monad�based de	nition of de Bruijn

substitution into the standard� e�cient 	rst�order implementation using arithmetic operations for

index manipulation �BH���� In that derivation the form of defunctionalization presented here re�

veals that natural numbers can encode the higher�order function values� It is not clear how this

could have been accomplished with an untyped closure analysis�

Firstify � the implementation of this defunctionalization algorithm� has been used together with

Schism�Con���� to automatically perform the specialization and defunctionalization transformations

presented in Bellegarde and Hook�BH����

��� Hof Elimination via Specialization

Chin and Darlington �CD��� have developed a Hof elimination algorithm based on fold�unfold

rules that uses specialization� The following example demonstrates the algorithm� The program

below contains a Hof called map� which applies a function to each argument in a list� After its

de	nition� map is called with the function increment�

fun map f Nil � Nil

j map f Cons
x� xs� � Cons
f x�map f xs�

fun addone l � map increment l

After specialization� the call to map is unfolded to the body of map� specialized with respect to

the Hop used� The resulting program is�

�



fun map f Nil � Nil

j map f Cons
x� xs� � Cons
f x�map f xs�

fun addone Nil � Nil

j addone Cons
x� xs� � Cons
increment x� addone xs�

Note that map is not modi	ed� However� since it is no longer called� it can safely be eliminated

from the program�

This method is limited� Only higher�order functions whose functional arguments are variable�

only can be specialized with this approach� A functional argument in a recursive call to a higher�

order function is variable�only if the argument is an identi	er� Functional arguments in non�

recursive function calls are all variable�only� If a functional argument in a recursive call to a

higher�order function is not variable�only� the algorithm will go into an in	nite loop trying to

specialize the function�

For an example of a Hop that is not variable�only� consider the de	nition of the map with policy

function introduced by Hook� Kieburtz and Sheard�HKS����

fun map with policy Z f 
Var x� � Var 
f x�
j map with policy Z f 
Abs t� � Abs 
map with policy Z 
Z f� t�
j map with policy Z f 
App 
t� t��� � App 
 map with policy Z f t�

map with policy Z f t��

This function maps a sequence of functions de	ned by the functional Z and the function f over a

term in the lambda calculus� In the recursive call in the Abs case� the second Hop is not variable�

only� and so specialization fails to give a 	rst order program�

��� Reynolds�s Defunctionalization Method

Reynolds outlined a more general method for eliminating higher�order functions known as defunc�

tionalization �Rey���� The key to this method is representing Hops as data values� When Hops

are transformed into data values� higher�order functions become 	rst order� since they no longer

have functions as arguments� However� applications of the Hops need to be modi	ed� since a data

value cannot be applied as a function� This is accomplished by creating an �apply� function for

each Hop of a Hof� The apply function is called wherever the Hop was applied in the original

Hof� The apply function takes as arguments the data value representing the Hop and all the

arguments to the Hop� The apply function dispatches based on the Hop encoding� and applies the

appropriate function to the remaining arguments�

The following example illustrates Reynolds
s defunctionalization method�

fun map f Nil � Nil

j map f Cons
x� xs� � Cons
f x�map f xs�

fun addone l � map increment l

fun subone l � map decrement l

�



If the program is defunctionalized using strings containing the function name as the representation

of function values� the following program is the result�

fun apply map 
function rep� function arg� �
case function arg of

�increment� � increment function arg

j �decrement� � decrement function arg

fun map� f Nil � Nil

j map� f Cons
x� xs� � Cons
apply map
f� x�� map� f xs�

fun addone l � map��increment� l

fun subone l � map� �decrement� l

Reynolds
s method is more powerful than the specialization method of Chin and Darlington

because it is not limited to variable�only Hops� However� a defunctionalized program is only

pseudo �rst�order �CD��� because it still mimics the runtime characteristics of the original higher�

order program� Chin and Darlington
s method produces more e�cient implementations� Therefore�

when either method is applicable� specialization is preferable to defunctionalization�

��� Implementing Defunctionalization

This research is an attempt to produce an automated defunctionalization system for a typed func�

tional language� This required the identi	cation and resolution of the issues and details listed in

Section ���� Firstify � the result of this e�ort� is a fully automated implementation of Reynolds
s

method�

Although in this presentation we limit ourselves to monomorphic functions� our implementa�

tion works with polymorphic functions as well� Alternative methods for defunctionalization of

polymorphic Hofs is an issue we are currently exploring�

In this paper we discuss the algorithm developed for the implementation of Firstify � Included

is our method for representing function values as data 
Section ��� an overview of the algorithm


Section ��� and a description of the implementation 
Section �� �

� Representing Function Values

Critical to the algorithm is the choice of data representation for function values�

Functions passed as Hops are assumed to be in one of two forms at the Hof call site�a simple

identi	er or a lambda abstraction� We assume that lambda abstractions are limited to the following

form�

� p�f
� � � � �p� � � ��

Where f is a function� p is a pattern� and �p is the expression equivalent of p� This assumption is

guaranteed by the uncurrying transformation described above�

�



��� Representing Function Identi	ers

Each function passed as a Hop is represented with a constructed value in a datatype 
known as a

Hop datatype�� Each identi	er passed as a Hop is represented by a nullary constructor that merely

encodes the name of the function� For example� consider the following Hof call site where the 	rst

value in the pair passed to high is the Hop�

val z � high 
f� x�

The identi	er f would be represented by a nullary constructor� resulting in the following trans�

formed declaration�

val z � high 
P f � of high� x�

��� Representing Lambda Abstractions

In the spirit of Reynolds
s presentation� each lambda abstraction passed as a Hop is represented by

a constructor with the domain being a product of type variables� each type variable representing a

variable in the abstraction that is free in the context of the abstraction but bound in the context

of some surrounding function� The lambda abstraction is represented at the call site by applying

the constructor to these variables� Variables that are free in the abstraction but not bound in the

context of a surrounding function are de	ned at a more outer scope than the surrounding function�

and thus do not need to be represented in the datatype� For an example� consider the following

Hof call site�

fun call high x � high 
�z�g
x� y� z�� ��

In the lambda abstraction� x and y are free variables� However� only x is bound in the context

of call high� Thus� the only value that needs to be a constructor argument is x� The lambda

abstraction would be represented by a constructor with argument x� as follows�

fun call high x � high 
P Lambda� � of high x� ��

The Hop datatype for representing the two calls to high presented is as follows�

datatype type � of high �
P f � of high

j P Lambda� � of high of � where � is the type of the argument to call high

Note that if we use a polymorphic datatype parameterized with a type variable for the type of x� we

do not need to determine what the type of x is� This technique is in fact used in the implementation�

��� Interpreting the Representations

Apply functions have two parameters�the representation of a function 
a value in the Hop

datatype� and the argument� to that function�

An apply function interprets function representations to apply the appropriate function to the

argument for that function� Interpreting representations of function identi	ers is trivial� Represen�

tations of lambda abstractions are interpreted by evaluating the body of the abstraction� modi	ed

as follows�
�For simplicity we will assume that each higher�order function has a single argument


�



� Each variable value stored in the constructor representing the abstraction is substituted into

the abstraction body as appropriate�

� The argument to the represented function is substituted into the abstraction body as appro�

priate�

The apply function corresponding to the datatype shown in the previous section is�

fun apply � of high 
function rep� function arg� �
case function rep of

P f � of high � function arg

j P Lambda� � of high x � g
x� y� function arg�

��� Introduction of Recursive Datatypes

Suppose a lambda abstraction Hop is used in a recursive call� and the abstraction references the

formal Hop� For example�

fun high f � � � � high 
�x� � � � f � � �� � � �

According to the technique described above� f must be encapsulated in the datatype value that

represents the abstraction� However� in this case we know the type of f�it is a value in the

datatype we wish to create� Thus� the datatype representing Hops of high must be recursive�

datatype type � of high �
P Lambda� � of high of type � of high

When a Hop datatype is recursive� the corresponding apply function is either recursive or mutually

recursive with another function in the transformed program�

Note that in this example� f is not a variable�only parameter� and so Chin and Darlington
s

method would not be able to make this function 	rst�order�

��
 Shared Hops and Hof Sets

Higher�order functions share Hops if both Hofs are passed the same Hop� One way for Hofs to

share Hops is if one Hof passes a Hop to another Hof via a function call� A collection of Hofs

that share Hops is known as a Hof set�

When a datatype and apply function are created by Firstify � they each correspond to a Hof

set� rather than a single Hof as has been implied by the examples� This is because in a typed

language the representation of all Hops passed to every Hof in a Hof set must have the same

type�

� The Defunctionalization Algorithm

The defunctionalization algorithm is shown in Figure �� and the types and functions used in the

algorithm are shown in Figure ��

�



hof set � function id list

A Hof set� Values of type function id uniquely identify a function in the source program�

add annotations � declaration list � declaration list

Annotates a program with type information�

�nd hof � declaration list � function id maybe

Searches for an untransformed Hof in a program� Hofs are detected by examining type annota�
tions� If one is found� returns just the function identi	cation� Otherwise returns nothing�

transform hof � declaration list � function id� hof set� declaration list � hof set

Transforms the body of a Hof� If other Hofs are detected which share a Hop with this Hof� they
are appended to the Hof set�

transform hof calls � declaration list � function id � hof set� declaration list � hof set

Transforms all calls to a Hof� If other Hofs are detected which share a Hop with this Hof� they
are appended to the Hof set�

Figure �� Types and functions used in the defunctionalization algorithm
�

fun defunctionalize hof program nil � program

j defunctionalize hof program 
current hof �� hof set� �
let val 
program�� hof set�� �

transform hof program current hof hof set

val 
program��� hof set��� �
transform hof calls program� current hof hof set�

in

defunctionalize hof program�� hof set��

end

fun defunctionalize program �
case �nd hof 
add annotations program� of

nothing � program

j just hof id � defunctionalize 
defunctionalize hof program �hof id��

Figure �� The defunctionalization algorithm
�

�



Defunctionalize hof defunctionalizes a single Hof by transforming the body of the Hof and all

calls to the Hof� During these transformations other Hofs in the same Hof set might be detected�

The function is called recursively on each of these Hofs until no more Hofs with shared Hops are

found�

Defunctionalize performs defunctionalization on a program by annotating the program� 	nding

a Hof and calling defunctionalize hof on that Hof� The function is recursive� and terminates when

no more untransformed Hofs are found� Note that the program is re�annotated after each Hof

set is processed� since the transformations will change the types of declarations�

� The Implementation

Firstify is our implementation of the above algorithm� In the implementation� type annotation

is not performed� Only the types of identi	ers declared at the top level are determined� If the

input program does not contain local declarations� this is su�cient information to defunctionalize

most higher�order functions� However� some Hofs with Hops that are themselves Hofs cannot be

defunctionalized without more comprehensive type annotations�

Firstify operates on Standard ML programs which meet the following criteria�

� All functions are uncurried such that each function has only one argument 
possibly a tuple�

and all function call sites are fully uncurried� This criterion can be met via the A transfor�

mation of Chin and Darlington�CD����

� The program contains no let declarations� This criterion can be met by lambda lifting�Joh����

The algorithm has been extended to let declarations� but this is not currently re�ected in the

implementation�

� The only lambda abstractions occur as Hops� This criterion can be met by lambda lifting

and the A transformation of Chin and Darlington�

� No functions are contained in datatype values� A solution to this limitation has not yet been

developed�

� Future Work

Future work on the implementation includes eliminating or weakening the assumptions about the

input to Firstify � It is particularly desirable to extend Firstify as follows�

� Perform type annotation� as described above�

� Weaken the assumption about uncurrying to the assumption that all function declarations

and function calls include all arguments to the function� but the arguments are not necessarily

contained in a tuple�

� Extend Firstify to handle the module system of Standard ML� Presumably Firstify would

then operate on signatures and structures rather than lists of declarations�

Future work on the algorithm includes the following�

�



� Extend the algorithm to handle functions �contained� in datatype values� It appears that

constructors of such datatypes can be treated �just like� Hofs and defunctionalized as such�

We have not� however� worked on the details of this transformation� as this case does not

arise in our use of Firstify �

� Extend the algorithm to handle polymorphism� Currently the implementation deals with

polymorphic higher�order functions with type specialization� Other possibilities are being

investigated� Polymorphism is particularly troublesome when a polymorphic Hof is used as

a parameter to another Hof� The implementation currently works with Hops that are Hofs�

but only if they are monomorphic�

A full description of the implementation� including other minor restrictions on program input�

the extension to let declarations� and the treatment of polymorphic higher�order functions can be

found in �Bel����

� Summary

We have outlined an algorithm for eliminating higher�order functions from a typed functional

language� The algorithm is an extension of Reynolds
s defunctionalization method� This research

addresses features of functional programming languages not explicitly addressed in Reynolds
s

paper or other references� These features include types� local declarations� and multiple alternate

statements� This work also elaborates on implementation details� including detection of higher�

order functions� function values that are �shared� by several higher�order functions� and higher�

order functions with higher�order parameters� The algorithm has been implemented and is in use

as a critical part of a source�to�source program transformation system for Standard ML�

� Acknowledgements

The authors wish to thank Fran coise Bellegarde� Olivier Danvy� and Tim Sheard for their useful

comments�

References

�Bel��� Je�rey M� Bell� An implementation of Reynold
s defunctionalization method for a modern
functional language� Master
s thesis� Oregon Graduate Institute of Science ! Technology�
January �����

�BH��� Fran coise Bellegarde and James Hook� Monads� indexes� and transformations� In TAP�

SOFT �	
� Theory and Practice of Software Development� volume ��� of LNCS� pages
���"���� Springer�Verlag� ����� A page was omitted from the proceedings� it may be
obtained via ftp from ftp�cse�ogi�edu in the 	le pub�pacsoft�papers�tapsoft�dvi�

�BJ��� Dines Bj#rner and Cli� B� Jones� Formal Speci�cation and Software Development� pages
���"���� Prentice�Hall� �����

�Bon��� A� Bondorf� Automatic autoprojectin of higher order recursive equations� In N� Jones�
editor� ESOP �	�� volume ��� of LNCS� pages ��"��� Springer�Verlag� May �����

�



�CD��� Wei�Ngan Chin and John Darlington� Higher�order removal� A modular approach� Un�
published work� �����

�Con��� Charles Consel� The Schism Manual� version ���� Technical report� Department of Com�
puter Science and Engineering� Oregon Graduate Institute� �����

�HKS��� James Hook� Richard Kieburtz� and Tim Sheard� Generating programs by re�ection� Tech�
nical Report ������� Department of Computer Science and Engineering� Oregon Graduate
Institute� July �����

�Joh��� Thomas Johnsson� Lambda lifting� Transforming programs to recursive equations� Lecture
Notes in Computer Science� �������"���� �����

�Nel��� George C� Nelan� Firsti�cation� PhD thesis� Arizona State University� December �����

�Rey��� John C� Reynolds� De	nitional interpreters for higher�order programming languages� In
Proceedings of the 
�th ACM National Conference� pages ���"���� ACM� �����

�Sch��a� David A� Schmidt� Detecting global variables in denotational speci	cations� ACM Trans�

actions on Programming Languages and Systems� �
������"���� April �����

�Sch��b� David A� Schmidt� An implementation from a direct semantics de	nition� Lecture Notes
in Computer Science� �������"���� �����

�Sch��� David A� Schmidt� Detecting stack�based environments in denotational de	nitions� Sci�

ence of Computer Programming� ��
������"���� December �����

�Ses��� Peter Sestoft� Replacing function parameters by global variables� In Functional Pro�

gramming Languages and Computer Architecture� pages ��"��� ACM Press� September
�����

�Shi��� Olin Shivers� Control��ow analysis in Scheme� In Proc� of the SIGPLAN ��� Conference

on Programming Language Design and Implementation� pages ���"���� ACM Press� June
�����

�Shi��� Olin Shivers� The semantics of Scheme control��ow analysis� In Proc� of the Symp� on

Partial Evaluation and Semantics�Based Program Manipulation� pages ���"���� ACM
Press� June �����

�Wan��� Mitchell Wand� From interpreter to compiler� A representational derivation� Lecture

Notes in Computer Science� �������"���� �����

��


