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ABSTRACT

Multimedia presentations convey information not only by the output values and their
sequence, but by the timing of those outputs. However, it 1s impossible to implement
a presentation with perfect timing and it is often necessary to throw away information
because of resource limitations. As with any reproduction of a signal, the utility of a
time-based presentation depends on its fidelity to the ideal. This imprecise but intuitive
definition of quality suggests that quality specification should be an important part of a
multimedia system.

Recent operating systems and networking research has focussed on defining Qual-
ity of Service (QOS) parameters that define resource-level requirements for performance
guarantees. Our work seeks to link user perceptions of quality with these resource-level
QOS specifications. To make this link, we introduce a framework for the formal spec-
ification of a presentation in three orthogonal parts: content, view, and quality. The
formal definition of presentation quality allows the widest possible latitude for optimiz-
ing system resources and may inspire new techniques for the storage and transport of
presentation content. An architecture for translating user-level quality specifications into
service guarantees with optimal use of resources is suggested.

Keywords: Quality of Service, Resource Reservations, Real-Time Specifications, Mul-
timedia Authoring, Synchronization.

1 Introduction

Multimedia systems today support presentations with continuous-media [1, 17] such as video
and audio, as well as synthetic compositions such as slide shows and computer-generated music. We
call these time-based data types because they communicate part of their information content through
presentation timing. While a query on a database of static data types results in a static view of
(hopefully) correct data values, a query for playback of video data should result in a presentation
with a dynamically changing view. The usefulness of such presentations depends in part on the
accuracy of the timing. Because digital presentations can only approximate continuous values and
timing, playback of continuous-media is a question of quality rather than correctness. For example,
to reproduce NTSC video on a digital multimedia system a succession of frames from the video
should be presented at approximately 30 frames per second and approximately synchronized with
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accompanying audio output. Frequently, the display device will not have the same resolution as the
source data so that even the images will have to be approximations of the original content.

The previous example raises two questions: How accurate must a presentation be, and how
can we ensure that a presentation achieves that accuracy? This paper attempts to answer the first
question by giving a formal definition of presentation quality that measures both accuracy of timing
and the accuracy of output values. This definition of presentation quality can then be used to
specify user-level quality requirements. The question of how to ensure that quality requirements
are met must be answered by a multimedia system. Section 2 suggests an architecture that derives
guarantees for a QOS specification as part of an acceptance test.

QOS specifications for user requirements are still a novel concept. Network protocols have been
proposed with transport-level QOS specifications that bound delay, minimum throughput and error
rates for continuous media communications [11, 15, 17, 28, 29]. More recently, operating systems
researchers have argued that bandwidth reservations are needed in a real-time operating system to
support end-to-end QOS guarantees [3, 9, 13, 19, 21, 23, 30, 32]. Both the network and operating
systems bandwidth reservations are typically derived from the type of the data being transmitted,
with the assumption that multimedia presentations should deliver as much spatial and temporal
resolution as possible. But with current capture, compression, and storage technology, multimedia
data types can have resolution that exceeds both the output device capabilities and user requirements
for playback quality. As the resolution of the data sources increases, users should be able to sacrifice
quality in order to reduce the resource costs of playback.

Many existing multimedia systems make do without QOS-based resource reservations. For
example, personal computer systems can successfully play compressed video and audio from CD-
ROM, but are able to do so only because the application program has control of all system resources
and because the data has been carefully crafted to suit the storage device’s throughput [26]. Device
independence is possible with adaptive algorithms that adjust the playback quality to the resources
available [4, 14, 25, 31]. However, adaptive playback algorithms frequently degrade quality to an
unacceptable level when resources overloads occur. A formal definition of quality is needed to specify
which presentations are acceptable and what minimal reservations are required to avoid overloads.

This discussion leads to a number of goals for QOS specifications:

e Model user perception of quality. The value of a presentation depends on the user’s
perception of quality, while the cost of a presentation depends on resource usage. Just as
modern compression algorithms are based on human perception [16, 33], a multimedia system
can better optimize playback resources if it knows which optimizations have the least affect on
quality.

e Formal semantics. Specifications should be unambiguous. A multimedia system should be
able to prove that it can satisfy a given QOS specification through resource reservations.

e Support for complex presentations. Complex presentations can specify synchronization
between media streams that originate at independent sources and at different times [18, 26].

This paper defines a framework and a language for specifcation of presentation QOS. The
definitions are intended to be general enough to apply to any multimedia system. The framework
considers user interactions for presentation control as interruptions that require re-computation of
the presentation requirements. The next section defines our terminology in terms of an architectural
model for multimedia presentations. Sections 3 and 4 elaborate on the specification of content
and wview respectively for a presentation. We then define quality in Section 5 as a function of a
presentation’s fidelity to the content and view specification. Section 6 suggests how a formal QOS
specification can be used to optimize resource usage in a presentation. We close with a discussion
of related work in Section 7 and our conclusions in Section 8.
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Figure 1: An architecture for editing and viewing multimedia presentations.

2 Architectural Model

In our architectural model, shown in Figure 1, multimedia data comes from live sources or from
storage. A time-based media editor may be used to create complex multimedia scripts that specify
the logical content of a presentation. Video and audio data have default scripts associated with
them to specify the sample size, rate, and compression information needed for normal playback.
For simplicity, we assume that scripts are not interactive. A player is used to browse and play-
back scripts created by the editor. A user may control a player’s view parameters, such as window
size and playback rate, as well as quality parameters such as spatial and temporal resolution. The
combination of content, view, and quality specifications constitute a QOS specification. When a user
chooses to play a script, the player needs to find a presentation plan consisting of real-time tasks that
satisfy the QOS specification. A presentation plan is feasible if guarantees can be obtained from a
Resource Manager for the real-time presentation tasks that transport and transform the multimedia
data from storage or other data sources to the system outputs.

2.1 Content, View and Quality

This architecture is similar to other research systems that provide QOS guarantees based on
an admission test [25]. However, our definition of QOS is novel in that we make strong distinctions
between content, view, and quality specifications. A content specification defines a set of logical
image and audio output values as a function of time. A wview specification maps content onto a set
of physical display regions and audio output devices over a real-time interval. Quality is a measure
of how well a real-time presentation matches the ideal presentation of some content on a view and
a quality specification defines a minimum acceptable quality measure. We will refer to quality when
we mean the measurement, and QOS when we mean the combination of content, view, and quality
specifications.
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Figure 2: Timeline view of content specification for a presentation of video from a bicycle race.

By allowing independent control of content, view and quality, a multimedia system can offer
a wider range of services that take advantage of the flexibility of computer platforms. To illustrate
these services, consider the presentation of video from a bicycling race as described in Figure 2. The
first video clip refers to 5 seconds of a digital video file. The video file is named cam because 1t was
captured with the first of two cameras recording the same bicycle race. The digital video for cam1
has a resolution of 320x240 pixels. A second video file named cam2 shows another view of the cycling
and has a higher resolution of 640x480 pixels. The video presentation cuts from cami to cam?2 for
3 seconds, and then back to cami for the last 7 seconds. The audio clip file mic! contains a digital
audio soundtrack corresponding to the video clips. After selecting this content for presentation, a
user should be able to choose view parameters and quality levels independently. For example, if the
user chooses a view with a 640x480 pixel display window, but a quality specification that requires
only 320x240 pixels of resolution, then the player may be able to avoid generating the full resolution
images from cam2. The quality specification allows the user to indirectly control resource usage
independent of the content and view selections. The player can optimize resource usage so long
as the presentation exceeds the minimum quality specification. Users might also like to specify an
upper bound on cost for resource usage, but measuring costs is beyond the scope of this paper.

3 Content Specification

To make the definitions of content, view, and quality as clear as possible, this paper de-
scribes a simple scripting language with minimal functionality. The Timesynch language defines
data structures for scripts that specify non-interactive, time-based multimedia content. This sec-
tion first defines the fundamental elements of a script, and then describes composition operators for
constructing scripts of arbitrary complexity.

The content for a time-based multimedia presentation comprises a collection of logical displays
or other output types whose values are defined over a period of time. For simplicity, we discuss
only two output types: images and audio. Most state-of-the-art multimedia computing uses only
combinations of these two output types to reproduce voice, stereo sound, text, graphics, still images,
and video. Real numbers are used for the specification of logical coordinates and values to avoid
placing an artificial limit on the resolution at which content can be reproduced in a presentation.
In fact, many presentations are visualizations of continuous functions, in which case we believe it
is inappropriate for the content specification to limit resolution. The resolution of a presentation is
limited only by an actual implementation on digital outputs.

Figure 3 illustrates a recursive composition of script data structures to specify the same example
presentation from Figure 2. We briefly describe this example before explaining the data structures in
the remainder of this section. The root of the tree is a script that synchronizes the audio and video.
Both children of the root are time-shift scripts, used to make both the audio and video scripts begin
at logical time zero. The video script is a concatenation of the three video clips. Each clip references
a sub-interval of a longer video script. The leaf-nodes in this figure are scripts that specify periodic
updates to a logical device. The periodic script for audio is of type Audio with a logical output
range of [0,1). Values are 8-bit samples read from a file named mic!, where each sample represents
a real number in the range [0,256). The duration is 30 seconds and 8000 samples per second are to
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Figure 3: Script for example presentation. Values for the fields dev and wvalue are suggested
with a shorthand notation, where Image:1z4z3 means that dev.itype = Image, dev.range.v =
Range(0.0,1.0), dev.range.x = Range(0.0,4.0), etcetera. The field n shows the number of sam-
ples as a product of the duration times the sample rate.

be output. The periodic video scripts are similar except that they specify a logical aspect ratio of
4x3 and the source files cam! and cam?2 have respectively 320x240 and 640x480 samples per frame.

A Timesynch script defines values for a set of logical output over time. All scripts share the
ability to report their start time, duration, and the value specified for a logical output at any given
time. Figure 4 shows the data types used to represent a script. These types have been implemented in
the Smalltalk programming language and should be easily implemented in any other object-oriented
language.

Before describing the representation for scripts, we need to explain the notation used in Fig-
ure 4. Named fields for each data type are shown within curly braces. The type of each field 1is
indicated following a “:”. We assume basic number types Int and Real, and the parameterized
collection types Set of « and List of «. The notation (Int)->ValueSource denotes a function
that takes an Int argument and returns a ValueSource. We will use a “.” to reference a field in
a structure so that, if r is a structure of type RangeSpecs, then r.z.start refers to the start field
within the z field of . We will also write T'ype Name(f1, fa,. .., fn) to represent a structure of type
TypeN ame whose fields, in the order declared in Figure 4, have the values f1, fa, ..., fa.

A Scriptis an abstract polymorphic type, with the subtypes shown in Figure 4 that each define
a concrete representation. A Basic script specifies discrete media presentations with two fields:
dev is a LogicalOutput for the presentation and assignments i1s a set of Assignment structures
that define discrete presentation events, as illustrated in Figure 5. To make content specification
independent of view specification, the LogicalOutput structure has only an abstract device type
indicated by the field type and a logical range of values specified by the field range. The range field
is a set of real numbers that specify intervals for x, y, and value coordinates. For example, a value
v i1s 1n a range specified by a Range structure r if r.start < v < r.start + r.size. A LogicalOutput
dev with dev.type = Image is for signals that vary in # and y, where z is in dev.range.x and



Script = Basic | Periodic | Continuous
| Shift | Scale | Synch | Clip | Cat

Basic = { dev:LogicalOutput assignments:Set of Assignment }

Periodic = { dev:LogicalOutput value:(Int)->ValueSource n:Int duration:Real }
Continuous = { dev:LogicalOutput value:(Real)->ValueSource duration:Real }
Shift = { shift:Real script:Script }

Scale = { scale:Real script:Script }

Synch = { scripts:List of Script }

Clip = { start:Real end:Real script:Script }

Cat = { scripts:List of Script }

LogicalOutput = { type:DevType range:RangeSpecs }
DevType = Image | Audio

RangeSpecs = { v:Range x:Range y:Range }

Range = { start:Real size:Real }

Assignment = { value:ValueSource time:Real }
ValueSource = { f:SourceFunction range:RangeSpecs }
SourceFunction = Real | (Real,Real)->Real

Figure 4: Data types for Timesynch scripts.
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Figure 5: Semantic interpretation of a Basic script.



y is in dev.range.y. The values for a logical image output dev fall in the range dev.range.v. A
LogicalOutput dev with dev.iype = Audio is for signals that have a single value at any given point
in time and values that fall in the range dev.range.v. The fields dev.range.z and dev.range.y are
ignored for a logical audio output.

Each Assignment structure has a value field that specifies a new value for the logical output and
a time field that specifies a time for the assignment. The ValueSource structure has a field f that is
a function that returns a real number for the assignment, and a range field that specifies the range
for z, y, and value coordinates just as described for the LogicalOutput structure. For an assignment
a, the SourceFunction a.value.f must return a real number in the range a.value.range.v. For an
assignment a to a logical image output, the SourceFunction a.value.f(z,y) is defined for any z in
a.value.range.x and y in a.value.range.y.

A Basic script s specifies that the logical output s.dev at time ¢ is defined by an assignment a
in s.asstgnments if a.teme is the greatest assignment time in s that is less than or equal to ¢. Since
the range of the value may differ from the range of the logical output, we define assignments using
a scalar transformation function ¢rans with type (Real,Range,Range)->Real. The trans function
maps a value v in range r; to a new range ro:

trans(v,ry,re) = ro.start + (v — ry.start)ra.size/ry .size

If dev is a LogicalOutput and dev.iype = Audio then the value of dev specified by an Assignment
a is:

trans(a.value. f, a.value.range.v, dev.range.v)
If dev is a LogicalOutput and dev.type = Video then for all points (x,,y,) in the range specified
in a.value.range, the value of dev at the corresponding point (2 gey, Ydev) is:

trans(a.value. f(xy, Yy ), a.value.range.v, dev.range.v)
where 4., and yge, are defined by:

Tdey = trans(xy, a.value.range.x, dev.range.x)

Ydev = trans(yy, a.value.range.y, dev.range.y)

Figure 6 shows an example of the transformation from the coordinate space of the source function,
to the space of a logical image output. For simplicity, this definition for assignments to a logical
image output supports only monochrome images, although the same approach can be generalized to
specify multiple values at every point for color images.

Let the functions start(s) and duration(s) represent the start time and duration respectively
for a script s. The start time for a Basic script is the minimum of all of its assignment times. Its
duration is the difference between the greatest of all its assignment times and the start time. The
value of a logical output is undefined before it has been assigned by the script and after the script’s
end. Note that the last assignment in a script serves only as an end marker and its value is always
ignored. If a Basic script assigns multiple values to a logical output at exactly the same time,
the specification is interpreted as a non-deterministic choice between them. This interpretation is
just the limiting case of multiple assignments that are very close together, where only the value
of the last assignment persists for any duration. Although non-deterministic choice in multimedia
presentations is unusual, it does not present a problem for our definition of quality in Section 5.

Digital audio and video can be specified as a Basic script with periodic assignments to a
logical output, but the use of a separate Assignment structure for every media sample is unneces-
sary. Instead, Timesynch provides a Periodic script structure that specifies four fields: dev is a
LogicalOutput, value is a function that maps from a sample number to a ValueSource structure,
n is the number of samples, and duration is the logical duration of the script. A Periodic script s
has the same semantics as a Basic script with the following set of Assignments:

5.n
U{Assignment(s.value(i), (¢ s.duration/s.n))}
=0
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Figure 6: An example of an Assignment of values from a portion of a source matrix onto a logical
image output.

This formula constructs a set with s.n + 1 Assignments, each specifiying the ith ValueSource and
time (i - s.duration/s.n), for i = 0 to s.n.

Although both Basic and Periodic scripts assign new values to outputs at discrete points
in time, there is no reason why we can’t specify outputs that vary continuously with time. A
Continuous script s is like a Periodic script except that it does not specify the number of samples
and the function s.value is indexed with a time value instead of a sample number. A Continuous
script s may specify a different value for the logical output at every instant of the script’s duration
by using a continuous function for s.value as in the following example:

s.value(t) = ValueSource(sin(t), RangeSpecs(Range(—1,2), —, —))

This equation says that at any time ¢, the value of the logical output defined in s is sin(t).

3.1 Complex Scripts

Given some set of Basic, Periodic, and Continuous scripts that each define a single logical
output, we would like to edit these scripts to create arbitrarily complex compositions. A minimal
set of script structures is described below that support temporal cut, paste, stretching and shrinking
of content, and synchronization between logical devices. Although other features are desirable, such
as the ability to mix several logical outputs together, the complex script structures described are
sufficient for editing useful time-based multimedia presentations.

It is natural to view scripts as abstract objects that may themselves be synchronized in time.
We can express arbitrary scalar transformations of time values with scripts that represent addition
and multiplication operations. Shift and Scale scripts specify the same content as the scripts that
they reference, but over shifted and scaled logical time intervals respectively. Let value(dev, z,y,t, s)
be a function that returns the value of a logical output dev at (z,y) and logical time ¢ as defined
by a script s. For audio logical devices, we can ignore the values of  and y. A Shift script s
specifies that for all time ¢ and logical outputs dev defined in s, value(dev, z,y,t + s.shift,s) =
value(dev, x,y,t, s.seript). A Scale script s specifies that for all times ¢ and logical outputs dev
defined in s, value(dev, x,y,t - s.scale, s) = value(dev, z,y,t, s.script). Let a script s have start time
zero and duration d. Then Shift(s,t) has start time ¢ and the same duration, while Scale(s, f) has
start time zero and duration d - f.

Since we define synchronization through the time values in a script, synchronizing multiple
logical outputs amounts to a specification that their scripts refer to the same time scale. The Synch
script s has just that meaning for its children in the list s.scripts. Each child of a Synch script
specifies a disjoint set of logical outputs. We refer to a script’s logical outputs by number, according
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Figure 7: Every script defines a list of logical outputs. Logical outputs 1-5 in this complex script
are defined by the children of the root node. Outputs 1 and 2 are defined respectively by outputs 1
and 2 of the first child, where they are in turn defined by the single output of each of its children.
Output 3 is defined by output 1 of the clip script which is derived from the same Periodic script
that defines Qutput 2. Outputs 4 and 5 are defined respectively by outputs 1 and 2 of the Cat
script. Outputs 1 and 2 of the Cat script are defined in turn by each of the Cat script’s children
over disjoint time intervals.

to an in-order traversal as illustrated in Figure 7.

A common form of synchronization is concatenation in which one script immediately follows
another in time. A Cat script is semantically equivalent to a Synch script whose elements are
appropriately shifted in time:

n—1

Cat([s1,...,5n]) = Synch([s1, ..., Shift(sn, Z duration(s;))])

i=1

except that the nth logical output of each child is unified to specify the nth logical output of the
parent. For example, Figure 7 shows a Cat script with two logical outputs that are defined by each
of its children over separate intervals. Since the duration of each child of a Cat script cannot overlap,
there is no conflict between the specifications of output values.

Finally, a script Clip(s,?1,%2) represents a new set of logical outputs with start time ¢1, duration
to—11, and the same values as s over the interval [¢1,%2). Figure 7 contains a C1ip script that creates
logical output 3.

4 View Specification

The logical outputs of a content specification have both temporal and spatial proportions, like
the aspect ratio of an image, but they have no physical size or real duration. A wiew specification
allocates physical devices for logical outputs and maps logical time to a real-time clock. While the
physical devices may present an upper bound on spatial and temporal resolution, the view does
not specify presentation quality. Figure 8 shows a view specification that allocates a 200 by 150
pixel window on a monochrome (black and white) display for presentation of the bicycling script.
Although the output device clearly limits the quality of the presentation, the view does not specify
how the content is to be represented on the display. It is the presentation plan that must choose
how to resample the source and whether to use dithering to represent gray levels. The combination
of content and view specifications serve as a device independent specification of a perfect quality
presentation. In the next section, we define less-than-perfect quality based on the difference between
a presentation and this ideal specification.

The data structure for a view shown in Figure 9 has a map field that assigns logical outputs in a
script to distinct PhysicalOutputs. The mapping is represented by a list of Allocation structures,



FrameBuffer + 0
AN

(0,0)

logical output 1

N
FrameBuffer + 119

(640,480)

- Physical Output
Allocation

/ dev | FrameBuffer +| Y| * 124X
map p| range| V: 0,256 x:2,8 y:1,6

start now —‘
: Physi
rate| 1.0 Allocation ‘ ysical Output

dev | AudioDAC

/ type| Audio

p range| v: 0,256

clock| system )

Figure 8: Example of a view that allocates an 8x6 pixel window on a display device for presentation
of the bicycling video.

View = { map:List of Allocation start:Real rate:Real clock:Real }
Allocation = { 1:Int p:PhysicalOutput }

PhysicalOutput = { dev:SinkLocation type:DevType range:RangeSpecs }
SinkLocation = Location | (Real,Real)->Location

Figure 9: Data types for a view.
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each with an integer index [ for a logical output and a field p for the allocated PhysicalOutput.
A PhysicalOutput has a field dev that names the location of the physical device, a field type
that indicates whether the device handles Audio or Image outputs, and a field range that gives
the coordinate and value ranges just as described earlier for a ValueSource. We consider only
the case where Audio and Image logical outputs are mapped respectively to Audio and Image
PhysicalOutputs. The view structure also has fields for the start time, rate, and a real time clock
for a presentation. These fields map the logical times in a script to the time scale of the real-time
clock.

We refer to a pair (C, V) of a content specification script C' and a view V' as an ideal specification
of presentation output values. Let S(p,x,y,t) represent the value of a PhysicalOutput p at a
point (x,y) and time ¢ according to an ideal specification (C,V). If ¢ is the index of a logical
output defined in C', [ is the LogicalOutput structure describing that logical output, p is the
PhysicalOutput given by Vimap(i), © and y are in the range specified in p.range, and ¢ is in the
interval [V.start, V.start + duration(C)/V.rate), then:

S(p, z,y,t) = trans( value(i, #;, yi, t;, C), L.range.v, p.range.v)

where
z; = trans(z, p.range.x, l.range.x)
yi = trans(y, p.range.y, l.range.y)
t; = (t—V.start)* Virate + start(s)

This equation says that the ideal specification for a physical output p at x, y, and ¢ 1s the linear trans-
form from logical to physical ranges of the value of a content specification C' (at the corresponding
transformed coordinates). The value of S(p, #,y,t) is undefined otherwise. If p.type = Audio then
the z and y parameters can be ignored. We will adopt the convention that an Audio p has a constant
value over all points (#, y) so that we can treat both output types uniformly in the remainder of the

paper.

5 Quality Specification

We define the quality of a presentation to be the ratio of the worth! of an actual presentation
to the worth of an ideal presentation. In this section, we provide a model for computing the worth
of an actual presentation and a mechanism for specifying the worth of an ideal presentation. First,
we derive an error model for measuring the difference between ideal and actual presentations. Then,
we define mechanisms for specifying the worth of a presentation and the affect of errors. Finally, we
propose a function that computes average quality over any portion of a presentation, and syntax for
specifying constraints on that function.

5.1 Defining an error model

Quality is lowered by decreasing resolution, adding noise, or other actions that distort the
output values away from the specification. The definition of an ideal specification S(p, z,y,t) in the
last section provides an unambiguous definition of desired output values over a period of time. Since
it is possible to measure and record the actwal output values over time, we can directly compare
the actual presentation with a specification. Let P(p,x,y,t) be a function that gives the actual
value of an output p at a point (z,y) and time ¢. We can take the pointwise difference between a
presentation and a specification, E(p, z,y,t) = P(p,z,y,t) — S(p, =, y,1), as an error measurement
upon which to base our definition of quality. This simple approach is illustrated in Figure 10. During
the presentation, £(p,t,z,y) computes the error for each output, at each point and time. Where
S(p, x,y,1) is undefined, we take the error to be zero.

Unfortunately, this simple approach does not yield error values that correspond well to human
perception. The second case in Figure 10 shows that a simple startup delay produces large error

1We use the term worth instead of value because we refer to output signal levels as values.

11



value value

t1 t time t1 2 t time

Figure 10: Measuring presentation error at time ¢ when timing is perfect and when the presentation
1s delayed.

measurements. A person judging the quality of a presentation recognizes a delay in starting the
presentation, but then sees a good match after compensating for the delay. In fact, a presentation
may suffer from many errors in timing and spatial presentation, in addition to distortions in the
output values. Let us refer to a tuple (v,p, #,y,?) as an event that means value v occurs on output
p at point (#,y) and time ¢. We can capture all error in a presentation by defining a mapping from
events in presentation to corresponding ideal events in a specification. Equation 1 in Table 1 formally
defines such a mapping in terms of error functions &, £f, &P, and £P. This equation says that if a
point (z,y) at time ¢ for an output p during a presentation P corresponds to a point (z + &%, y+&7)
and time ¢ + & in a specification S, then &7 is the difference in their values. If these error functions
are zero for all outputs in a presentation, then the presentation is perfect, by definition.

It is important to note that for any presentation and its specification, there are an infinite
number of error functions &7, &£, &P and &P that satislfy Equation 1. Equation 1 does not uniquely
define these error functions, but only requires that theycompletely account for differences between
presentation and specification.

Let an error model be a set of function definitions that completely describe all possible error
between an presentation and a specification. Equation 1 is the simplest error model since each of the
error functions in it are fully orthogonal, but this error model fails to quantify the errors that a user
perceives. For example, users are sensitive to errors in audio-video synchronization. Consider the
content from Figure 3 and the view specification from Figure 8. If the video is presented b seconds
late and the audio only 3 seconds late, then the 2 second error in synchronization between the audio
and the video is even more annoying than the start-up delays.

Table 1 shows an error model that formally defines error measures for user-perceived presenta-
tion artifacts. This set of error measures includes well understood artifacts such as temporal jitter
and spatial blurring and generalizes these concepts in all dimensions. These error measures are
briefly described below.

Table 1 defines shift, rate, and jitter errors to model user perceived temporal and spatial errors.
Eshift, 1s the amount by which a presentation is seen to be behind schedule, & 44, is the rate of
change of Epift,, and &jiser, Mmeasures small timing errors not already accounted for by &;p;54,. The
same error measures are defined for # and y dimensions since Image presentations can suffer from
displacement, scaling and small distortions that are analogous to shift, rate and jitter.

Even after accounting for temporal and spatial errors, the difference between an actual pre-
sentation value and the corresponding ideal value at an infinitesimal point is not meaningful. The
problem is that humans don’t perceive independent values at infinitesimal points, but instead in-
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For each output p:

Ve, y,t: 0 = Plp,z,yt) — Sp,e+ L y+ &t + &) (1)
EL = i, + Eitver,
& = Ehip, T Eiter,
E = s+ Eitter,
P
< _ OEpife,
ratey ax
P
e o Py
ratey ay
P
o _ OE pi e,
ratey at

/// ((/‘11)7 dz dy dt = /// gfffset + gfcale “Videal T gﬁoise da dy dt
N(zy,t) N(z,y,t)

where vigear = S(p,x + &8,y + &Nt + &Py and N (z,y,t) is the neighborhood around a point (z, y,t)
defined by:
Nz, y,t) = @ ¢ )(le=2"| <&, INJy—|<E, YAt =1t] < &)}

blur, blury blury

For each pair of outputs p and ¢:

P,q _ P q
gsynch - gshiftt - gshiftt

Table 1: Example error model. All error measures are functions of #, y, and ¢, but we write &P
instead of &P (x,y,1) for easier reading.

tegrate over small display areas and time intervals. This fact is routinely exploited by graphics
algorithms that use dithering. For example, a black and white display can represent a 50% gray
tone by a pattern with every other pixel turned on. Dithering trades off spatial resolution for more
accurate average values. Let &yr, be the width of the smallest resolvable vertical stripe in a pre-
sentation. We define &y, and Epjyr, similarly. Then the interesting measure of value error is the
difference in average value over a region with dimensions Eyyr, - Estur, - Eptur, - This separates value
errors into what humans perceive as resolution loss and actual ”wrong” values.

It 1s also useful to distinguish a picture that is too bright or an audio signal that is too loud
from random noise. Table 1 defines & set,, Escate,, and Epoise, for value errors as components of
EP when averaged over the blurring intervals in each dimension.

In addition to measuring the error in reproducing a specified signal on an output, the relation-
ships between outputs carry information and should be considered an independent source of error.
For example, lip synch between the audio and video tracks of a speaker is important. Both tracks
may be reproduced perfectly except for a 1/3 second difference in start times, yet the persistent
error in lip-synch is annoying [27]. We define ng}ich to measure the synchronization error between
two outputs p, and ¢ at every point in time.

5.2 Choosing error measures

The definitions of error measures in our model are intentionally circular. The determination of
error functions is inherently ambiguous because there is no information in an output signal about the
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_ 1 _ )
wl (t) = Taration(C) p.lype = Audio

_ 1 _
wp(x, Y, t) —  area(p)-duration(C) ptype = Image

wP(zy t)wi(z,yt)l
w?(z,y,t)+wi(e,y,t)

whi(z,y,t) = p.lype = Audio, ¢.lype = Image

Figure 11: Timesynch worth functions for all p and ¢ in a view V with content specification script C
where area(p) = p.range.x.size - p.range.y.size. No worth is assigned to outputs that do not match
one of these functions.

intended correspondence with a specification. Each user perceives error in a presentation subjectively,
and may assess the error differently than another user. Let an inferpretation I be a choice of
continuous functions that satisfy an error model. There are an infinite number of interpretations
for a presentation, each with a different affect on presentation quality. What matters is that a
presentation allows an interpretation with acceptable errors. We assume that user’s are good at
recognizing the intended presentation content and that they therefore will perceive the interpretation
with the most acceptable errors. To complete a definition of quality specification then, we need to
be able to compute the affect of errors on a presentation.

5.3 Modeling the worth of a presentation

Timesynch assumes that the worth of a presentation is the sum of its parts. That is, if a
presentation is composed of parts (p1,...,pn), each with worth w(p;) in an ideal presentation, and
each is diminished in worth in an actual presentation by a factor ¢;, then the worth of the whole 1s

the sum:
n

> w(pi) - as

i=1

A worth model defines a worth function w?(x,y,t) for each output p that gives the relative
worth of that output per unit area and unit time at a point (x,y) and time ¢. If two outputs
function synergistically, as in the audio and video streams of a person talking, we include a worth
function w??(x,y,t) that gives the added worth of both streams playing together. Note that this
model allows us to specify that a given output may have worth only in combination with a second
output. Figure 11 gives an example of worth functions that assign equal worth to all outputs. This
definition of worth functions is implicit in Timesynch specifications.

5.4 Computing quality

We define quality to be the ratio of the worth of an actual presentation to the worth of an ideal
presentation. A quality function computes this ratio from the error measures of an interpretation
and has the following properties:

e Quality is one when all errors in interpretation are zero.
e Quality is monotonically decreasing with any increase in error.

e Quality is zero when all errors are maximal or infinite.

A partial quality function, ¢83(x,y, 1), gives the instantaneous ratio of actual to ideal worth for
an output or pair of outputs ps, considering only error measure m. A QOS specification must define
a partial quality function for every output or pair of outputs ps in a view and every error measure m
in the error model. For example, the following equation defines a partial quality function for every
error measure L7 (x, v, t):
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Quality
model
peri 1s
/ min | 90%
DevErrors DevErrors DevErrors DevErrors DevErrors DevErrors
PsS | N\, PS | N\ ps ps ps ps
m |/ \ m |/ \ m m m m |y
DevType DevType De\/T.ype Det/Type De\/T%/pe D?\/Type
~udio Video Alud|o Vldéo Audfo Vlldeo
Video Audio Audio Video
ErrorMeasure ErrorMeasure ErrorMeasure | ErrorMeasure | ErrorMeasure | ErrorMeasure |
shift |T [15 shift X |20 sonlt]02 | [snenfrl02 | [spmenfrl 01 | [synen[r] o2 |
Rate [T |05 Rate |X | 0.1
Jitter | T |0.001 Jitter |X |2
Blur | T|0.0001 Blur | X|4
Offset |V 11 shift |v |20
Scale |V |05 Rate |Y |[0.1
Noise [V |2 Jitter |Y |2
Blur |Y|4
Shift | T [15
Rate [T |1
Jitter |T | 0.1
Blur | T]0.03
Offset |V | 10
Scale |V [ 0.05
Noise |V | 10

Figure 12: Example quality specification. Critical error values for temporal error measures are
given in seconds. Values for spatial error measures are given in pixels, and critical error values for
value-error measures are given in value quantization levels.

e =)
ghle,yt)=e  “n (2)
If the error measure EE? is zero in an interpretation, then the partial quality function is one. As
the error increases, the partial quality decays exponentially. We call the constants CE? critical error
values. When EP?(z,y,t) = CP?, the partial quality is approximately 0.37 so we choose these critical
error values to correspond to decidedly poor quality. Figure 12 shows an example of critical error
values for all the error measures defined in Table 1.

Given an error model E, worth functions wP?® for each output or pair of outputs ps, and partial
quality functions ¢£? for the same output(s) ps and each error measure m € F, we propose a formal
definition of presentation quality as follows. The average presentation quality for a set of worth
functions in W, over z, y, and ¢ in A, according to an interpretation I is:

Yowreew S S v 0P @Y ) e p 458w,y t) de dy dt
2wrew fff_/\/ wPs (x! y V) de dy dt

where the worth functions are computed from the corresponding points in the specification: = =
r+ &y =y+ &, and ¢ =1+ &

Qavg(WaNaI): (3)

This formula computes the ratio of the actual worth for a portion of a presentation to its ideal
worth. The acutal worth, for a portion of a presentation defined by W and A, is the sum of the
actual contributions for each worth function. The contribution of each worth function w?*(x,y,1)
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Quality = { model:List of DevErrors period:Real min:Real }

DevErrors = { ps:List of DevType m:List of ErrorMeasure }

ErrorMeasure = { name:ErrorName dimension:Dimension critical:Real }
ErrorName = Shift | Rate | Jitter | Blur | Offset | Scale | Noise | Synch
Dimension = X | Y | T | V

Figure 13: Declarations for quality specification structure.

is the integral over A" of the product of w?®(z,y,t) with all partial quality functions that assess the
impact of presentation errors on output(s) ps. The ideal worth is just the sum of the integral of
each worth function over N.

A quality model supplies the error model, worth functions, partial quality functions, and the
average quality function that is used to compute presentation quality. We believe this definition
is completely general in that a quality model exists for every mapping from presentation error to
quality assessment. Conversely, a particular quality model determines a unique mapping that can
only approximate user perception. The utility of a particular choice of a quality model for an
application depends on how well it approximates user perception for the type of presentations that
occur. This paper provides an example of a quality model through the error model in Table 1,
the worth functions defined in Figure 11, the partial quality functions defined in Equation 2, and
the average quality function of Equation 3. The error model gives formal definitions for shift, rate,
Jitter, blur and other error measures that are a superset of the QOS parameters proposed by other
researchers [13, 19, 29]. Further work is needed to evaluate the utility of this quality model.

5.5 Specifying minimum quality

The framework outlined above for a quality model resulted in a definition of average quality
for a portion of a presentation. The Timesynch language offers a Quality structure that specifies a
quality model, an averaging interval and a minimum value for average quality. Figure 13 shows the
declarations for the Quality structure. The quality model is mostly implicit, with worth functions
as defined in Figure 11, partial quality function as defined in Equation 2 and average quality as
defined in Equation 3. The Quality structure has a model field that represents the error model and
critical error values for computing partial quality functions. The DevErrors structure associates a
list of device types with a list of error measures. Figure 12 illustrates how the model can associate
the singleton list of device type Audio with error measures for temporal Shift, Rate, Jitter, Blur,
and value error types Offset, Scale, and Noise. Each ErrorlMeasure is represented by its name
field, a dimension field, and a critical value for computing partial quality as defined in Equation 2.
The dimension field can be T for time or V for value, but can also be X or Y if the output is an
Image.

The meaning of a Timesynch quality specification @, for content and view specifications ' and
V, is stated as follows: there exists an interpretation I such that for all times tg, Qquvg(Wv, N, I) >
Q.min, where Wy is the set of worth functions for the view V as defined in Figure 11 and A is the
set of all points (x,y,?) with tg <t <ty + Q.period. Tt is important to note that we do not need to
actually compute the best quality measure for all possible interpretations. We only need to reason
about whether a particular presentation plan will achieve a certain quality.

6 Using Quality Specifications for Resource Reservation

A multimedia player can frequently meet a QOS specification with fewer resources than are
needed for a maximal quality presentation. Consider the bicycle racing script of Figure 3, the quality
specification in Figure 12, and a new view specification shown in Figure 14. The view represents
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Physical Output

dev | FrameBuffer +|y|* 12 +| x|
View 1| A type| Image
map 2| ~ allocation| Vv: 0,256 x: 0,640 y:0,480
start| now
rate| 4.0 \ Physical Output
] ;[ dev | AudioBuffer
clocq sysem type Audio

alocation| V: 0,256

Figure 14: View specification for playback of bicycle racing video at four times normal rate.

a user request to play the script at 4 times the normal rate. The resulting ideal specification
then calls for 120 fps of video. Fortunately, the quality specification only requires 90% average
quality over any 1 second period of the presentation. If all aspects of the presentation were perfect
except for video jitter, the quality specification would admit a presentation with average jitter
less then or equal to 0.1 second, which allows the playback algorithm to drop frames. This result
follows from Equation 3 by setting Qavq(W, N, I) greater than or equal to 90% with the following
definitions. Let W include worth functions from Figure 11 for audio output a and video output wv.
Let N = {(z,y,1)]0 <z < 640,0 < y < 480,t5 <t < tg + Q.period} and let I be an interpretation
that finds all error measures to be zero except for S;iit%iﬁt. Since the partial quality functions are
equal to one when error is zero, we get:

t+1 (480 (640 v t+1 t+1 4o
L e (%, Y, )¢ itper, (1) dz dy dt + [T wt(t)dt + [T wt(t)dt

0.9< (4)
J;H_l 0480 0640 w”(x,y,t) dr dydt + J;H_l wa(t)dt + ftt+1 wa,v(t)dt
Figure 11 defines worth functions w"(z,y,t) = m, w(t) = 11—5, and w*?(z,y,t) = 11—5 that
each integrate to % over N:
t+1 1 yideo 2
f _Q'ittert(t)dt + 13
09 S 13 1517 - 15 (5)

15
Simplifying and substituting the partial quality function from Equation 2, with the critical value for
temporal video jitter from Figure 12, we get:

H e o
0.7< e ot Idt (6)
¢

Let n be the number of frames that can be skipped in sequence from an otherwise perfect
presentation without violating the above constraint. Then, as Figure 15 shows, S;iit%iﬁt(t) s a
periodic function with period %. For a frame that is presented at the specified time t; — 11%,
interpretation I defines jitter to be zero for the 1/120 of a second duration specified for that frame.

From t; to t; + &, the presentation falls behind as the next n frames are skipped. During this
120 g

interval, S;iit%iﬁt(t) = t; —t. Since the integral of a periodic function is the same over each period,
and we assume that the period %"01 1s small relative to the one second interval for the integral, we
can approximate the last equation with:
120 ty ti1+ 155 bt
0.7 < (/ Odt +/ e~ 5T lar) (7)
n+ 1 t1——ie t1

120
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specification time

| | | | | | | | | | | | | | | | | | | | | | | | |
I I I I I I I I I I I I I I I I I I I I I I I I I
I q\ I I

presentation time

t te -
1 1" 120

Figure 15: Jitter function maps presentation times onto ideal specification.

Taking the definite integrals gives:

120 , 1 n
7< — — 0.1e712 + 0.1€"
07_71—1—1(120 0.1e + 0.1e%) (8)
which yeilds:
1 n
n < ?(123 + 120e™12)) (9)

Values of n less than or equal to 10 satisfy this specification so that a presentation plan that displays
only every tenth frame can satisfy the QOS specification.

Analysis of a QOS specification can identify a range of presentation plans that might satisfy
the specification as illustrated above. To guarantee that a particular presentation plan will satisfy
a QOS specification a player must reserve resources for storage access; decompression, mixing, and
presenting processes. The attempt to reserve resources is called an acceptance test. The acceptance
test may invoke resource reservation protocols for network and file system resources with resource-
level QOS parameters derived from the process timing requirements. If the player can not find a
presentation plan that both satisfies the QOS requirements and meets the acceptance test, then the
QOS requirements must be renegotiated.

7 Related Work

It is now well understood that time-based multimedia systems require some form of resource
guarantees for predictable performance. We consider related research in the categories of content
specification, QOS specification, scheduling mechanisms and reservation protocols.

All authoring and playback tools that we are aware of produce informal specifications of mul-
timedia presentations. The Muse system [12] was one of the earliest full-featured authoring tools
that allows multi-track timeline synchronization of media objects. Objects may also be composed
in spatial and other arbitrary dimensions. Muse provides extensive support for specifying interac-
tive navigation, both through hypermedia links and graphical controls such as scroll bars. During
non-interactive presentations, the accuracy of synchronization is determined by the playback mech-
anism and is not formally constrained. MAEstro [8] is another authoring tool that supports timeline
synchronization of objects. The salient feature of MAEstro i1s that editing and playback func-
tions are distributed among media-specific editors that may reside on remote machines. MAEstro’s
TimeLine editor is an X-windows-based program that supports both specification and playback of
multimedia compositions by dispatching messages to the other media editors, such as the Digital
Tape Recorder and the Image Editor. The TimelLine editor and the media editors rely on UNIX
timer interrupts, Sun remote procedure calls, and the Unix scheduler to achieve coarse-grained
synchronization. Xavier and Mbuild [10] are an experimental C++ class library and an editor,
respectively, that support composition of multimedia objects with “glue” in a manner similar to
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TEX. The CMIFed [24] editing and presentation environment provides some minimal support for
specification of allowed deviations in timing. These and other similar authoring and playback tools
implement best effort presentation plans and, in contrast to our approach, do not allow specification
of QOS requirements independent of content and view.

Researchers have suggested a variety of parameters for multimedia QOS specifications. Con-
tinuous media stream access is generally described by throughput and delay or jitter bounds [2, 19,
23, 29]. Hutchinson, et al. [13], suggest a framework of categories for QOS specification including
reliability, timeliness, volume, criticality, quality of perception and even cost. They provide only a
partial list of QOS parameters to show that current QOS support in OSI and CCITT standards is
severely limited. While these lists suggest many important ways to describe service categories, they
go beyond user requirements and into specification of implementation. Our definition of QOS speci-
fication excludes volume, throughput and cost values because these values are secondary and can be
derived from the combination of user requirements and system configuration. The Capacity-Based-
Session-Reservation-Protocol (CBSRP) [29] supports reservation of processor bandwidth from the
specification of a range of acceptable spatial and temporal resolutions for video playback requests.
The resolution parameters are intended only for providing a few classes of service based on resource
requirements and not for completely capturing user quality requirements. In particular, they do not
adequately specify the accuracy of image values and ignore questions of clock drift and inter-stream
synchronization.

Many researchers have demonstrated that quality can be traded for lower bandwidth require-
ments during a presentation. A variety of scaling methods may be applied to reduce the bandwidth
requirements of video streams [6, 7]. Software feedback techniques have been used to dynamically
adjust stream processing workloads to available system bandwidth [5, 22, 25, 29]. These techniques
can be used agressively by a presentation planner to reserve minimal resources for a formal QOS
specification.

Resource requirements may be derived from a presentation plan that satisfies a QOS speci-
fication. When the resource requirements are known, resource reservation protocols are needed to
guarantee predictable access. Several groups have reported reservation protocols for network re-
sources [1, 34, 35]. Processor capacity reservation has been implemented in the Real-Time Mach
operating system [20] and file systems have been developed to support reservations for continu-
ous media streams [3, 19, 23, 32]. These protocols can be used effectively within the architecture
suggested at the end of Section 6.

8 Conclusions

This paper has described a new framework for QOS specification in multimedia systems. The
primary contributions of this framework are the clear distinction between content, view and gquality
specifications, and the formal definition of presentation quality. The Timesynch language provides
relatively simple constructs for the formal specification of complex multimedia content as well as
constructs for view and quality specifications. Because every component of our QOS specifications
have an unambiguous meaning it i1s possible to prove the correctness of a presentation plan as shown
in Section 6. Furthermore, it is simple to specify quality constraints for complex compositions
because the quality specification refers only to the outputs and not to the content specification
structures.

Our formal definition of presentation quality is based on a mapping from presentation events
and values to an ideal specification. This mapping provides a completeness criteria for error mea-
surements in a QOS specification: that the error measurements completely define such a mapping.
No other definitions of QOS parameters that we are aware of satisfy this completeness criteria. The
error model of Table 1 formally defines a set of error measures that are a superset of the QOS
parameters suggested by other researchers. Because this set of measures uniquely determines the
mapping functions &F, &7, &P, and £P, we can be sure that they are complete.

The definition of quality given in Section 5 depends an interpretation that assigns a consistent
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set of functions for the error model. An important achievement of this definition is the recognition
that presentation quality is not not uniquely determined by the presentation mechanism.

We plan to validate the utility of this work by implementing a playback system that uses
these QOS specifications. We expect that it will be difficult to write tractable algorithms that find
optimal presentation plans for a given QOS specification and system configuration. Initially, we will
be content to make incremental improvements on the capabilities of existing systems. Further work
also needs to be done with human perception to determine how to improve our user model.
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