ASTRE: Towards A Fully Automated Program Transformation
System

F. Bellegarde®
Pacific Software Research Center
Oregon Graduate Institute of Science & Technology

1 Introduction

It has often been said that functional programs are constructed using functions as pieces. Data
structures such as lists and trees are the glue to hold them together. This compositional style of
programming produces many intermediate data structures. One way to circumvent this problem
is to perform fusion or deforestation on programs. Deforestation algorithms (elimination of
useless intermediate data-structures) [6, 10] do not recognize that an expression contains two
or more functions that consume the same data structure. These functions can be put together
in a tuple as a single function that traverses the data structure only once. This tactical is
usually called two-loops fusion or two-loops tupling since it is implemented by using a tupling
technique. It has been pointed out by Dershowitz [8] that an fold-unfold methodology [5] can be
controlled by a completion procedure. Following this idea, the transformation system Astre [2]
is based on completion procedures.

2 The Astre System

The transformational approach to the development of programs is attractive for writing small
components of large software systems. This approach, to be effective, must be fully automated
so that it is not necessary to be an expert in transformation strategies to use the transfor-
mational approach for software design. A prototype of a fully automated mode of Astre is
a component of the tool suite that support a Method for Software Design for Reliability and
Reuse developed in the Pacific Software Research Center [1]. The tool suite provides a transla-
tion of ML programs into a rewrite system input of Astre. It includes an implementation of the
Chin and Darlington’s specialization algorithm [7]. for conversion to first-order. The result is
always an orthogonal (left-linear and non-overlapping) constructor-based (a constructor-based
system of equalities is similar to set of definition equalities with pattern-matching arguments
in functional programming) rewrite system Rg. In Astre, synthesis by completion is used as a

*The author was supported by a contract with Air Force Materiel Command (F19628-93-C-0069).

Id: astre.tex,v 1.1 1994/08/17 21:58:44 bellegar Exp bellegar 2

mechanism to transform Rg into a sequence of orthogonal, terminating and constructor based
rewrite systems Ry, Rs, ..., R, to get a new, semantically equivalent ML program F, which is
more efficient. Astre translates R, into a ML program where functions are presented by a set
of mutually recursive functions with pattern-matching arguments. A fully automatic version of
Astre automatizes deforestation and two-loops fusion strategies. A semi-automatic mode au-
thorizes the user to input laws to facilitate a deforestation. Number of issues occur to automate
the synthesis process.

o Generation of useless critical pairs is the major drawback for using completion in its
application to synthesis. Astre arefully controls the production of critical pairs hence
ensuring termination of the completion [4].

e Astre controls the orientation of the critical pairs into rules as required by the trans-
formation strategy. It guarantees that termination is preserved for a constructor-based
orthogonal rewrite system [4].

e Furthermore, given a tactical for transformation, Astre ensures the termination of the
sequence of syntheses from the source rewrite system Rg into the succession of synthesized
rewrite systems Ry, Ra, ... [4].

e Synthesis rules introduce a new function to synthesize. In the fold-unfold methodology
synthesis rules are called definition rules or eurekas rules because they are introduced
through the insight of a clever user. Mechanisms to generate automatically a synthesis
rule for deforestation and two-loops fusion strategies are presently implemented in Astre.

e Moreover a set rewrite rules (inductive theorems of R) can be input to the synthesis
process in the semi-automatic mode. These laws usually facilitate the process in the

fold-unfold method.

However, we have noticed that most of the situations that requires laws in a deforestation
can be simply handled by introducing additional synthesis rules like length(append(z,y)) —
h(z,length(y)). Such a synthesis rule helps the symbol length to go down to consume a
term that substitutes the variable y as well as the inductive law length(append(z,y)) =
append(length(x),length(y)) can do. This technique does not work for pushing length to go
down towards the inductive variable x. If this is needed the deforestation fails. Let us compare
the results given by the fully automatic version of Astre and the semi-automatic mode on the
following example.

3 Examples

The pencil and paper transformation of the functional program is presented by S. Thompson [9].
The problem solved by this program is stated as follows by S. Thompson:

Given a finite list of numbers, find the maximum value for the sum of a (contiguous)
sublist of the list.

Id: astre.tex,v 1.1 1994/08/17 21:58:44 bellegar Exp bellegar 3

Numbers can be positive as well as negative integers. Let us begin with the quadratic in
the length of the list first-order ML program in Figure 1. where [_plus, and Lmaz are library

fun My_append My_nil x = =z

| My-append (C(z,2s))y = (C(z, My-append zs y));
fun map_cons x My_nil My_nil

| map_cons x (C(y,ys)) (C(C(z,y), map_cons ys));
fun frontlists My_nil C(My-nil, My_nil)

| frontlists (C'(z,zs)) = My_append (map_cons x (frontlists xs))
(C(My-nil, My_nil));
fun sublists My_nil = C(My-nil, My_nil)

| sublists (C(z,zs)) My_append (map_cons x(frontlists xs)) (sublists xs);

fun sum My_nil = 0
| sum (C(z,zs)) = ILplus z (sumxs);
fun map_sum My_nil = My_nil
| map_sum (C(x,zs)) = (C(sum z, map_sum zs));
fun fold_-maz (C(x, My_nil)) = =z
| fold_max (C(2,C(y,2))) = Lmaz z (fold-maz (C(y,z2)));
fun mazsub(z) = fold_maz(map_sum(sublists(x)));

Figure 1: Source Program

functions. The automatic mode of Astre yields the result presented in Figure 2 in 11.29s. Astre
performs nine syntheses from which seven successful deforestations, one additional synthesis
to help deforestation, and one two-loops fusion. One deforestations fails. It corresponds to an
attempt to eliminate the intermediary list produced by A_sym3 and consumed by A_sym2_1
in the definition of A_symsb. Astre does not consider for deforestation an intermediary list
produced by a recursive call like A_sym3 and consumed by A_sym1. Such situations are more
relevant to a derecursion tactical and are the sources of failure in the absence of laws. Except
these two compositions, the program in Figure 2 is completely deforested. In other words,
there is no other intermediary lists produced by a function and consumed by another one.
Run-time difference between the source and the transformed program are not significative.
Recall that the goal of a deforestation in not to improve the run-time but only elimination of
useless intermediate data structures without loss of run-time efficiency. However, if, using the
semi-automatic mode, the user cleverly provides the following inductive laws at the level of the
second synthesis:

map_sum (A_syml z y z) = My_append (map_plus x (map_sum y)) (map_sum z)
fold_mazx (My_append z y) = I.maz (fold-mazx z) (fold_maz y)
fold_mazx (map_plus x y) = I_plus x (fold_-max y)

Id:

fun

fun

fun

fun

fun

fun

fun

fun

fun

where map_plus is defined by:

Astre outputs:

astre.tex,v 1.1 1994/08/17 21:58:44 bellegar Exp bellegar

A_syml 21 (C(22,23)) 24

| A_syml 22 My_nil z1
sum My_nil

| sum (C(x1,22))

A_sym3 x1 My_nil x2

| A_sym3 x1 (C(22,23)) 24

A_sym6 21 (C(22,23))
| A_sym6 a1 My_nil
A_sym4 21 22 (C(23,24)) 25

| A_sym4 x1 22 My_nil 23
A_sym2_1 21 (C(22,23)) 24 x5
| A_sym2_1 x1 My_nil 22 23
A_symb x1 My_nil x2 z3

| A_symb 21 (C(22,23)) x4 25

A_sym8 My_nil
| A_sym8 (C(z1,22))

mazxsub x1

fun A_symd My_nil
| A_sym4 (C(z1,22))

fun mazsub z1

C((C(z1,22)),(Asym]l 21 23 z4))

zl;

0

Lplus z1 (suma2);

C((C(z1, Mynil)), 22)

A_syml z1 (A_sym3 x2 x3

(C(My-nil, My_nil))) z4;

Lmaz 21 (A_sym6 (sum z2) x3)

zl;

Imax x1

(A_sym4 (Lplus 22 (sum 23)) 22 x4 z5)
A_symb6 z1 x3;

A_symd (Lplus z1 (sum 22)) 21 23 24
x3;

A_sym6 (Lplus 21 0) 22

A_sym2_1 z1

(A_sym3 22 23 (C(My_nil, My_nil))) x4 x5;
((C(Mynil, My_nil)),0)

let (u,v)= A_sym8 22 in ((A_sym3 z1 22 u),
(A_symb5 21 22 u v)) end;

second (A_sym8 z1);

Figure 2: Fully Automatic Output

map_plus x My_nil = My_nil
map_plus = (C(y,ys)) = My_append (I_plus = y) (mapplus ys)

(0,0)

let (u,v) = A_sym4 22 in
((Lmaz (I_plus z1 u) 0),
(ILmaz (I_plus 1 u) v)) end;
second (A_sym4 z1);

after three deforestations and one two-loops fusion. No deforestation fails. Moreover, the laws
allow to improve the complexity. The program is linear in the length of the list. Thompson’s

Id: astre.tex,v 1.1 1994/08/17 21:58:44 bellegar Exp bellegar 5

pencil and paper’s transformation gives the same result modulo the two-loops fusion.

fun mazfrontMy_nil = 0
| mazfront (C(z,y)) = bimax 0 (I_plus x (max front y));
fun mazsubMy_nil = 0
| mazsub (C(z,y)) = max (mazsuby) (I_plus x (mazfront y));

4 Conclusion

Astre has achieved its initial goal: it is fully automatic for deforestation and two-loops fusion
of functional programs. Other fully automatic algorithms for deforestation does not include
two-loops fusion. They reject all deforestations that necessitate laws but Astre can perform
most of them using additional synthesis. Moreover they do not extend easily to include laws
or other strategies. The limitation of Astre is the termination obligation of the input rewrite
system. Also Astre does not process easily a large amount of rules. The present prototype has
been used so far up-to 500 rules input. At this size, it becomes intractable to perform all the
syntheses. We plan to automatize derecursion tactical and automatic insertion of laws [3] in a
near future.

References

[1] J. Bell et al. Software Design for Reliability and Reuse: A proof-of-concept demonstration.
Technical report, Department of Computer Science and Engineering, Oregon Graduate
Institute, 1994. To be presented at the Tri-Ada conference in November.

[2] F. Bellegarde. Program Transformation and Rewriting. In Proceedings of the fourth
conference on Rewriting Techniques and Applications, volume 488 of LNCYS, pages 226—
239. Springer-Verlag, 1991.

[3] F. Bellegarde. A transformation system combining partial evaluation with term rewriting.
In Higher Order Algebra, Logic and Term Rewriting (HOA ’93), volume 816 of LNCS,
pages 40-58. Springer-Verlag, September 1993.

[4] F. Bellegarde. Termination issues in automated syntheses. Submitted to RTA95, Septem-
ber 1994.

[5] R. M. Burstall and J. Darlington. A Transformation System for Developing Recursive
Programs. Journal of the ACM, 24:44-67, 1977.

[6] W. Chin. Safe Fusion of Functional Expressions II: Further Improvements. Journal of
Functional Programming, 11:1-40, 1994.

[7] W. Chin and J. Darlington. Higher-Order Removal: A modular approach. Unpublished
work, 1993.

Id: astre.tex,v 1.1 1994/08/17 21:58:44 bellegar Exp bellegar 6

[8] N. Dershowitz. Completion and its Applications. In Resolution of Fquations in Algebraic
Structures. Academic Press, New York, 1988.

[9] S. Thompson. Type Theory and Functional Programming. Addison Wesley, 1991.

[10] P. Wadler. Deforestation: Transforming Programs to eliminate trees. In Proceedings of the

second Furopean Symposium on Programming FSOP’88, volume 300 of LNCS. Springer-
Verlag, 1988.

