
ASTRE� Towards A Fully Automated Program Transformation

System

F� Bellegarde�

Paci�c Software Research Center
Oregon Graduate Institute of Science � Technology

� Introduction

It has often been said that functional programs are constructed using functions as pieces� Data
structures such as lists and trees are the glue to hold them together� This compositional style of
programming produces many intermediate data structures� One way to circumvent this problem
is to perform fusion or deforestation on programs� Deforestation algorithms �elimination of
useless intermediate data�structures� ��� 	
� do not recognize that an expression contains two
or more functions that consume the same data structure� These functions can be put together
in a tuple as a single function that traverses the data structure only once� This tactical is
usually called two�loops fusion or two�loops tupling since it is implemented by using a tupling
technique� It has been pointed out by Dershowitz ��� that an fold�unfold methodology �� can be
controlled by a completion procedure� Following this idea� the transformation system Astre ���
is based on completion procedures�

� The Astre System

The transformational approach to the development of programs is attractive for writing small
components of large software systems� This approach� to be e�ective� must be fully automated
so that it is not necessary to be an expert in transformation strategies to use the transfor�
mational approach for software design� A prototype of a fully automated mode of Astre is
a component of the tool suite that support a Method for Software Design for Reliability and
Reuse developed in the Paci�c Software Research Center �	�� The tool suite provides a transla�
tion of ML programs into a rewrite system input of Astre� It includes an implementation of the
Chin and Darlington�s specialization algorithm ���� for conversion to �rst�order� The result is
always an orthogonal �left�linear and non�overlapping� constructor�based �a constructor�based
system of equalities is similar to set of de�nition equalities with pattern�matching arguments
in functional programming� rewrite system R�� In Astre� synthesis by completion is used as a

�The author was supported by a contract with Air Force Materiel Command �F�������	�C�

����

	



Id� astre�tex�v ��� �����	
��� ���
��� bellegar Exp bellegar �

mechanism to transform R� into a sequence of orthogonal� terminating and constructor based
rewrite systems R�� R�� � � � � Rn to get a new� semantically equivalent ML program Pn which is
more e�cient� Astre translates Rn into a ML program where functions are presented by a set
of mutually recursive functions with pattern�matching arguments� A fully automatic version of
Astre automatizes deforestation and two�loops fusion strategies� A semi�automatic mode au�
thorizes the user to input laws to facilitate a deforestation� Number of issues occur to automate
the synthesis process�

� Generation of useless critical pairs is the major drawback for using completion in its
application to synthesis� Astre arefully controls the production of critical pairs hence
ensuring termination of the completion ����

� Astre controls the orientation of the critical pairs into rules as required by the trans�
formation strategy� It guarantees that termination is preserved for a constructor�based
orthogonal rewrite system ����

� Furthermore� given a tactical for transformation� Astre ensures the termination of the
sequence of syntheses from the source rewrite system R� into the succession of synthesized
rewrite systems R�� R�� � � � ����

� Synthesis rules introduce a new function to synthesize� In the fold�unfold methodology
synthesis rules are called de�nition rules or eurekas rules because they are introduced
through the insight of a clever user� Mechanisms to generate automatically a synthesis
rule for deforestation and two�loops fusion strategies are presently implemented in Astre�

� Moreover a set rewrite rules �inductive theorems of R� can be input to the synthesis
process in the semi�automatic mode� These laws usually facilitate the process in the
fold�unfold method�

However� we have noticed that most of the situations that requires laws in a deforestation
can be simply handled by introducing additional synthesis rules like length�append�x� y�� �
h�x� length�y��� Such a synthesis rule helps the symbol length to go down to consume a
term that substitutes the variable y as well as the inductive law length�append�x� y�� �
append�length�x�� length�y�� can do� This technique does not work for pushing length to go
down towards the inductive variable x� If this is needed the deforestation fails� Let us compare
the results given by the fully automatic version of Astre and the semi�automatic mode on the
following example�

� Examples

The pencil and paper transformation of the functional program is presented by S� Thompson ����
The problem solved by this program is stated as follows by S� Thompson�

Given a �nite list of numbers� �nd the maximum value for the sum of a �contiguous�
sublist of the list�



Id� astre�tex�v ��� �����	
��� ���
��� bellegar Exp bellegar �

Numbers can be positive as well as negative integers� Let us begin with the quadratic in
the length of the list �rst�order ML program in Figure 	� where I plus� and I max are library

fun My append My nil x � x

j My append �C �x� xs�� y � �C�x�My append xs y���
fun map cons x My nil � My nil

j map cons x �C �y� ys�� � �C�C �x� y��map cons x ys���
fun frontlists My nil � C�My nil�My nil�

j frontlists �C �x� xs�� � My append �map cons x �frontlists xs��
�C�My nil�My nil���

fun sublists My nil � C�My nil�My nil�
j sublists �C �x� xs�� � My append �map cons x�frontlists xs�� �sublists xs��

fun sum My nil � 

j sum �C�x� xs�� � I plus x �sumxs��

fun map sum My nil � My nil
j map sum �C �x� xs�� � �C�sum x�map sum xs���

fun fold max �C �x�My nil�� � x

j fold max �C�x� C�y� z��� � I max x �fold max �C�y� z����
fun maxsub�x� � fold max �map sum�sublists�x����

Figure 	� Source Program

functions� The automatic mode of Astre yields the result presented in Figure � in 		���s� Astre
performs nine syntheses from which seven successful deforestations� one additional synthesis
to help deforestation� and one two�loops fusion� One deforestations fails� It corresponds to an
attempt to eliminate the intermediary list produced by A sym� and consumed by A sym� �
in the de�nition of A sym�� Astre does not consider for deforestation an intermediary list
produced by a recursive call like A sym� and consumed by A sym�� Such situations are more
relevant to a derecursion tactical and are the sources of failure in the absence of laws� Except
these two compositions� the program in Figure � is completely deforested� In other words�
there is no other intermediary lists produced by a function and consumed by another one�
Run�time di�erence between the source and the transformed program are not signi�cative�
Recall that the goal of a deforestation in not to improve the run�time but only elimination of
useless intermediate data structures without loss of run�time e�ciency� However� if� using the
semi�automatic mode� the user cleverly provides the following inductive laws at the level of the
second synthesis�

map sum �A sym	 x y z� � My append �map plus x �map sum y�� �map sum z�

fold max �My append x y� � I max �fold max x� �fold max y�

fold max �map plus x y� � I plus x �fold max y�



Id� astre�tex�v ��� �����	
��� ���
��� bellegar Exp bellegar �

fun A sym	 x	 �C �x�� x��� x� � C��C�x	� x���� �A sym	 x	 x� x���
j A sym	 x� My nil x	 � x	�

fun sum My nil � 

j sum �C �x	� x��� � I plus x	 �sumx���

fun A sym� x	 My nil x� � C��C�x	�My nil��� x��
j A sym� x	 �C �x�� x��� x� � A sym	 x	 �A sym� x� x�

�C�My nil�My nil��� x��
fun A sym� x	 �C �x�� x��� � I max x	 �A sym� �sum x�� x��

j A sym� x	 My nil � x	�
fun A sym� x	 x� �C �x�� x��� x � I max x	

�A sym� �I plus x� �sum x��� x� x� x�
j A sym� x	 x� My nil x� � A sym� x	 x��

fun A sym� 	 x	 �C �x�� x��� x� x � A sym� �I plus x	 �sum x��� x	 x� x�
j A sym� 	 x	 My nil x� x� � x��

fun A sym x	 My nil x� x� � A sym� �I plus x	 
� x�
j A sym x	 �C �x�� x��� x� x � A sym� 	 x	

�A sym� x� x� �C�My nil �My nil��� x� x�
fun A sym� My nil � ��C�My nil �My nil��� 
�

j A sym� �C �x	� x��� � let �u� v� � A sym� x� in ��A sym� x	 x� u��
�A sym x	 x� u v�� end�

fun maxsub x	 � second �A sym� x	��

Figure �� Fully Automatic Output

where map plus is de�ned by�

map plus x My nil � My nil

map plus x �C�y� ys�� � My append �I plus x y� �mapplus ys�

Astre outputs�

fun A sym� My nil � �
� 
�
j A sym� �C�x	� x��� � let �u� v� � A sym� x� in

��I max �I plus x	 u� 
��
�I max �I plus x	 u� v�� end�

fun maxsub x	 � second �A sym� x	��

after three deforestations and one two�loops fusion� No deforestation fails� Moreover� the laws
allow to improve the complexity� The program is linear in the length of the list� Thompson�s



Id� astre�tex�v ��� �����	
��� ���
��� bellegar Exp bellegar 

pencil and paper�s transformation gives the same result modulo the two�loops fusion�

fun maxfrontMy nil � 

j maxfront �C�x� y�� � bimax 
 �I plus x �maxfront y���

fun maxsubMy nil � 

j maxsub �C �x� y�� � max �maxsub y� �I plus x �maxfront y���

� Conclusion

Astre has achieved its initial goal� it is fully automatic for deforestation and two�loops fusion
of functional programs� Other fully automatic algorithms for deforestation does not include
two�loops fusion� They reject all deforestations that necessitate laws but Astre can perform
most of them using additional synthesis� Moreover they do not extend easily to include laws
or other strategies� The limitation of Astre is the termination obligation of the input rewrite
system� Also Astre does not process easily a large amount of rules� The present prototype has
been used so far up�to 

 rules input� At this size� it becomes intractable to perform all the
syntheses� We plan to automatize derecursion tactical and automatic insertion of laws ��� in a
near future�

References

�	� J� Bell et al� Software Design for Reliability and Reuse� A proof�of�concept demonstration�
Technical report� Department of Computer Science and Engineering� Oregon Graduate
Institute� 	���� To be presented at the Tri�Ada conference in November�

��� F� Bellegarde� Program Transformation and Rewriting� In Proceedings of the fourth
conference on Rewriting Techniques and Applications� volume ��� of LNCS� pages ����
���� Springer�Verlag� 	��	�

��� F� Bellegarde� A transformation system combining partial evaluation with term rewriting�
In Higher Order Algebra� Logic and Term Rewriting �HOA 	
��� volume �	� of LNCS�
pages �
��� Springer�Verlag� September 	����

��� F� Bellegarde� Termination issues in automated syntheses� Submitted to RTA�� Septem�
ber 	����

�� R� M� Burstall and J� Darlington� A Transformation System for Developing Recursive
Programs� Journal of the ACM� ��������� 	����

��� W� Chin� Safe Fusion of Functional Expressions II� Further Improvements� Journal of
Functional Programming� 		�	��
� 	����

��� W� Chin and J� Darlington� Higher�Order Removal� A modular approach� Unpublished
work� 	����



Id� astre�tex�v ��� �����	
��� ���
��� bellegar Exp bellegar �

��� N� Dershowitz� Completion and its Applications� In Resolution of Equations in Algebraic
Structures� Academic Press� New York� 	����

��� S� Thompson� Type Theory and Functional Programming� Addison Wesley� 	��	�

�	
� P� Wadler� Deforestation� Transforming Programs to eliminate trees� In Proceedings of the
second European Symposium on Programming ESOP	��� volume �

 of LNCS� Springer�
Verlag� 	����


