Termination Issues in Automated Syntheses

F. Bellegarde®
Pacific Software Research Center
Oregon Graduate Institute of Science & Technology

Abstract

Synthesis by completion is used for a fully automated system for program transfor-
mation. In the paper, we present a set of transition rules for a full automation of a
sound and terminating synthesis process which preserves orthogonality and termination
of a constructor-based rewrite system.

Motivation

The transformational approach to the development of programs is attractive for writing small
components of large software systems. In this approach, developing a software component
consists simply of writing an initial, possibly ineflicient, but correct program Fy and then, in
transforming Py into a sequence of programs Py, Py, ..., P, to get a new, semantically equiv-
alent program P, which is more efficient. The transformation phase, to be effective, must
be fully automated so that it is not necessary to be an expert in transformation strategies
to use the transformational approach for software design. In our work, synthesis is used as
a mechanism for an automated system for transformation of functional programs: Astre. A
prototype of this system is a component of the tool suite that support a Method for Soft-
ware Design for Reliability and Reuse developed in the Pacific Software Research Center [2].
The underlying methodology is folding-unfolding [9]: Synthesis of a new program version is
done by a completion procedure [13, 14, 3]. The programs in the sequence Py, Py,..., P, are
presented by a terminating, constructor-based and orthogonal first-order rewrite system. The
transformation strategies that are automated are: fusion or deforestation (elimination of useless
intermediate data structures), and two-loops fusion or tupling (consolidation of similar control
structures) [8, 9, 22].

Number of issues occur to automate the synthesis process. Mechanisms are needed to control
or enhance the completion procedure. For example, a mechanism to control the production of
critical pairs during the completion process is required to maintain a reasonable performance.
Generation of useless critical pairs is the major drawback for using completion in its application
to synthesis [21]. In our case, a careful control prevents divergence of the completion. In this

*The author was supported by a contract with Air Force Materiel Command (F19628-93-C-0069).

paper, we consider the termination issues that arise by using rewriting techniques for this fully
automatic transformational approach: Termination of the completion process that performs a
synthesis is one of them. Another issue is the preservation of the termination of the rewrite
system during the synthesis. Usually, termination of a rewrite system during its completion
is ensured by using a reduction ordering to prove termination of the rewrite system and to
orient the critical pairs. As noticed by Dershowitz in [14], it is the production of critical pairs,
conveniently oriented into constructor-based rules for defining a synthesized symbol which
permits a completion process to perform a synthesis. A reduction ordering may not always be
appropriate to orient the critical pairs in the way required by the synthesis. Our fully automatic
process does not use a reduction ordering for the synthesis. It controls the orientation of the
critical pairs into rules as required by the transformation strategy. So doing, there is a potential
danger to loose the termination of the rewrite system since preservation of the termination of
the source program is not guaranteed in general by a fold-unfold method [19]. However we prove
that termination is indeed preserved by our process for a constructor-based orthogonal rewrite
system. Furthermore, given a tactical for transformation, it is necessary to guarantee the
termination of the sequence of syntheses from the source rewrite system Fp into the succession
of synthesized rewrite systems Py, Py,.... This problem is not trivial. What we call in the
paper a chain of syntheses (sequence of syntheses originated from one synthesis) can be related
to overlap closures (backward and forward closures) [16, 17], or to a surreduction process [15].

The control mechanism for the production and the orientation of the critical pairs is de-
velopped in Section 1. Termination of the synthesis process as well as the preservation of the
termination of the rewrite system is proved in Section 2. In Section 3, we give a sufficient
condition to prevent a tactical to ask for an infinite number of syntheses.

Preliminaries

Let F' be a set of function symbols and V' be a set of variables, T'(F, V') is the set of terms with
symbols in F and variables in V. V() is the set of all the variables occurring in ¢. A position or
occurrence within a term ¢ is represented as a finite sequence w of positive integers describing
the path from the root of ¢ to the root of the subterm at that position, denoted by t|,. The
position of the root of a term ¢ is €. The operator . denotes the concatenation of two positions.
The notation ¢ = C[s] emphasizes that the term ¢ contains s as subterm in the context u. A
term ¢ is said to be linear if no variable occur more than once in ¢. Variable-free terms are
called ground terms. We only consider well-typed terms.

A rewrite rule is an ordered pair of terms, written as [— r, where V(r) C V(I). A rule
[— ris left-linearif | is linear, it is right-linear if r is linear. If V(1) = V(r), the rule is variable
preserving. A rewrite system is a set of rewrite rules.

The rewriting relation is denoted as —. The relations on terms —~
converse of the relation — between two terms. We write — g, . —Rg, for the composition of the
two relations —pg, and —p,. The transitive closure of the relation — is denoted as —T and

L or — denote the

its reflexive and transitive closure denoted as —*.
The rewrite system R is terminating if and only if there is no infinite sequence of terms

t1,t2,..., such that t{ —g ts —pr Termination of rewrite systems is ensured when R is
contained into a well-founded ordering closed under context and substitutions called a reduction
ordering. The ordering that are used in practice are simplification orderings that contains
the subterm ordering and the embedding we denote by <I. Path orderings are simplification
orderings built from a well-founded ordering on the function symbols called a precedence.

A rewrite system is overlapping if there exists an overlap between left-hand sides of two
rules ¢ — d and [— r, i.e. if there exists a position w in G/(!) such that [|, and ¢ are unifiable
with the most general unifier o (the two rules are renamed so that they have disjoint set of
variables). A eritical pair is the identity o(l[w — o(d)]) = o(r) where t[w — u] denotes the
replacement in t of the subterm at position w by u.

An othogonal rewrite system is a left-linear and non-overlapping rewrite system. A rewrite
system is constructor-based! if all proper subterms of its left-hand sides have only free con-
structor symbols and variables. The roots of left-hand sides are defined symbols. C and D
denote respectively the set of constructors and the set of defined symbols. A constructor term
is a member of T(C,V). Ry is the set of all the rules [— r of a constructor-based rewrite
system R where the root of [is f. Ry is complete if every f(t1,1s,...,1,) where ¢; are ground
constructor terms is R-reducible.

The inductive positions of a defined symbol f are the positions of constructors in the left-
hand sides of R;. This way the function append defined by:

append([],z) — z append(x :: xs,y) — x :: append(xs, y)
has inductive position 1 and the function fib defined by:

Jib(0) =0 : . .
Fib(S(0) — (o) TIS@)) = fib(z) + fib(5(x))

has inductive position 1 and 1.1. Let t = C[f(t1,%2,...,t,)]. A variable z located in a construc-
tor term t; at an inductive position of f is called a surreductive variable of t relative to f. For
example z is a surreductive variable (relative to fib) in the term fib(s(x)). A surreductive term
is a term f(t1,%2,...,t,) with constructor terms at inductive positions, and with at least one
surreductive variable. When R is complete, there exists a well-typed instance by constructor
terms of any surreductive term f(¢y,1s,...,%,) which is Rg-reducible. If p is a position of a
surreductive variable z relative to f in a term ¢, and p.u is an inductive position greater or
equal than p, then u is a surreductive position associated to x. For example 1 is a surreductive
position of z in the term fib(s(x)).

We suppose the reader familiar with the fold-unfold method [9]. It consists of 6 rules,
namely Definition, Instantiation, Unfolding, Folding, Abstraction, and Law. These rules intro-
duce new identities that are equational consequences of existing identities. Dershowitz [14] has
shown how the combination of Instantiation and Folding is enabled by critical pair generation.
Unfolding and Law are simplifications by rewriting. Definition is the introduction of a synthesis

'A constructor-based system of equalities is similar to set of definition equalities with pattern-matching
arguments in functional programming.

rule by the user, Abstraction is used for a tupling tactic. We implement the tupling strategy by
using three additional functional symbols (reserved symbols), fst, snd, and pair for the theory

Pair: fst(pair(z,y)) =z, snd(pair(z,y)) =y.

1 Study of the synthesis

We assume that the first-order functional program is presented by a constructor-based orthog-
onal and terminating rewrite system R. In this section, we describe the synthesis process.
Synthesis rules introduce a new function whose functional symbol (synthesized symbol) is a
fresh functional symbol (a symbol that does not occur in R). We denote them by h, ho, hq,

1.1 Synthesis rules

In the fold-unfold methodology synthesis rules are called definition rules or eurekas rules be-
cause they are introduced through the insight of a clever user. Mechanisms to generate au-
tomatically synthesis rules and to foresee inductive positions of the corresponding synthesized
symbols for deforestation and two-loops fusion strategies are presently implemented in Astre.
These mechanisms are described in [5]. In this paper, we do not address this problem. We
simply consider that a set of synthesis rules SR is input to the synthesis process and we assume
that the inductive positions of the synthesized symbols are known. Synthesis rules are rewrite
rules used for folding, therefore, we better have R U SR terminating.

Let us guess what a synthesis rule can be. It is a rewrite rule s — C[h(t1,12,...,t,)].
The synthesis symbol h does not occur in the left-hand side s since the rule introduces h.
The context C' is here to accommodate the tupling strategy where two synthesis rules s; —

fst(h(t1,t2,...,t,) and sy — snd(h(t1,1tq,...,1,) are necessary to introduce a synthesized
symbol of co-arity 2. The context C'is either fst or snd. For example:
sum(z) — fst(hq(z)) (1)
length(z) — snd(hq(z)) (2)
introduce the synthesis of a function hy; which computes the pair of the sum and the length of
a list. For other strategies, one rule s — h(z1,22....,2,) is enough. For example:
length(append(z,y)) — ha(z,y). (3)

A synthesis rule is always right-linear since we want the synthesis to return left-linear rules
for definition of h. The synthesis rule must be variable preserving since we want to orient a
rule of the definition of & in the opposite direction. Essentially, the synthesis process computes
critical pairs between a rule in R and a synthesis rule, and, later, between a rule of R and such
a synthesis critical pair. For example a critical pair of the rule 3 with a rule append([],z) — =
gives the critical pair (length([]),h([])) which is turned in a rule A([]) — length([]) of Ry.
This computation put constructors at, and only at, surreductive positions of the left-hand side
of the synthesis critical-pair C[h(o(21),0(22),...,0(z,))]. This is the key to the termina-
tion and soundness of the synthesis process. For example, suppose a synthesis critical pair is

(append(append(z,y),length(z)),h(x,y, 7)), where 1 is the unique inductive position of h. The
critical pair with a rule length(]]) — 0 is not considered for the synthesis.

A more sophisticated synthesis rule is s — h(#1,t2,...,t,) where some ; are terms instead
of variables. For example:

length(append(z,y)) — ha(x,length(y)) (4)

It is introduced to force a top symbol length to go down in a term so that it consumes a non
inductive variable y. These synthesis rules are introduced automatically to force a folding.
For example, the rule 4 is introduced to reduce the right-hand side of the rule h(z :: 2s) —
length(append(x, flatten(xs))) so that folding by rule 3 is possible. The result is the rule:
h(z 2 xs) — ha(z,h(xs)). This is automatized very easily and is a good substitute for the
inductive law length(append(z,y)) — append(length(z),length(y)). Notice that the term ¢;
which is not a constructor term (here length(z)) is embedded in s. As we will see later, this
embedding ensures S R-termination.

A synthesis rule is said to be collapsing if it reduces a left-hand side of R. For example the
two synthesis rules 1 and 2 are collapsing. For the synthesis process to begin, it is necessary
than at least one synthesis critical pair (or a collapse) with R exists. Consider the following
example. Assume that 1 and 3 are not inductive position of h. There is no synthesis critical pairs
between R and the synthesis critical pair (append(append(z,y),length(z)), h(z,y,z)) since the
surreductive variables # and z in the left-hand side are not surreductive variables of h(z,y, 2).
Since a synthesis rule must generate synthesis critical pairs, its left-hand side s must contain a
surreductive subterm whose surreductive variables are also surreductive variables of its right-
hand side C[h(t1,13,...,t,)].

There is a difficulty when we have two synthesis rules sy — C[h(t1,12,...1,)] and 53 —
Clh(t1,tq,...t,)]. For clarity, it is always possible to rename the right-hand sides so that they
are identicals. Tupling synthesis critical pairs must come by pairs. In other words, when we get
one critical pair with one right-hand side, we want to be to get the twin critical pair with the
same right-hand side (modulo renaming). For that, it is sufficient that the same substitutions
apply for the overlaps between R and the two tupling rules that give synthesis critical-pairs.
In other words, it is sufficient that the surreductive positions in s; and s of the surreductive
variables in C[h(tq1,13,...,t,)] are the same. For example in the rules 1 and 2 the left-hand
sides sum(z) and length(z) have the same surreductive positions associated to z.

Also, tupling synthesis rules are often collapsing. In this case they rather not match the
same rules of R since, in this case, the process we describe later will not find twin collapsing
pairs. For example f(z,y,z) — fst(h(z)), and f(z,z,y) — snd(h(z)) where 2 and 3 are not
inductive positions of f reduce both the left-hand sides of R;.

Let us now define a synthesis rule:

Definition 1 A right linear, variable preserving rule (s, C[h(t1,t2,...,t,)]) where h does
not occur in s is a synthesis rule for h if:

1. Orthogonality: Let z be a variable of C[h(t1,tz,...,t,)]. All the occurrences of x as a
surreductive variable of s have the same surreductive positions.

2. Existence: There exists one surreductive subterm in s whose surreductive variables are
also surreductive variables of C[h(t1,1q,...,t,)].

3. Tupling: C is either empty or C = fst (or snd). In the later case, both rules s; —
[st(h(ty,ta, ..., 1)), and sy — snd(h(ty,ts,...,t,))) are elements of SR (modulo a re-
naming). Moreover surreductive positions in sy and sy of the surreductive variables of
Cl(h(t1,ta,...,t,)] are the same. Also, sy and sy must not match the same rules in R.

4. S R-termination: Fuvery t; which is not a constructor term is embedded into s,
5. Generalization: For a non-constructor term t;, i is a non-inductive position of h.

These conditions are sufficient to prove the correctness of the synthesis. Orthogonality ensures
that the synthesis process does not creates overlapping rules. Generalization allows us to
use a simple generalization to obtain a constructor-based system from critical pairs with R
and the pairs where some t;,1 < ¢ < m are not constructor terms. The trick here is that,
in this case, the synthesis process does not change the term t; which is not a variable. In
other words, the synthesis can be done without utilizing this term. For example, suppose
that the strategy gives 1 as inductive position of hs, we would not allow a synthesis rule like
reverse(append(x,y)) — hs(reverse(x),y). For us, hs is not synthesizable since critical pairs
with R,ppend substitute 2 with a constructor term, and then, reverse(o(x)) is reduced into a
term which is not a constructor term. Then the synthesis process is insufficient, as it is now,
to derive a constructor-based definition of hs.

The synthesis process is driven by the computation the synthesis critical pairs. The synthesis
process begins to computes critical-pairs between rules of R and non-collapsing synthesis rules
s — C[h(t1,12,...,t,)]. The goal is to derive constructor-based rules for h from the synthesis
critical pairs. As we have said before, synthesis critical pairs are critical pairs between R and
a pair (s,C[h(t1,t2,...,1,)]) which put constructors at, and only at, surreductive positions of
the right-hand side C[h(t1,12,...,%,)]. Another way to tell the same thing is that the non-
surreductive variables are not instantiated.

Definition 2 Let | — 7 be a rule of R and (s,d) a synthesis rule, or, recursively, a synthesis
critical pair. A critical pair (o(s[r]),o(d)) is a synthesis critical pair if and only if for every
non-surreductive variable x € V(d), o(z) is simply a renaming.

SCP(R, F) denotes the set of synthesized critical pairs between the rewrite system R and a
set I of pairs (s, C[h(t1,t2,...,1,)]). For example, let SR = {length(append(z,y)) — ha(z,y)}
and let R,ppend and Riepgen be the following:

Length([]) - 0 append([], y)
length(z ::xs) — S(length(xs)) append(z :: xs,y)

—
—

Y
x i append(zs,y)

where S is the successor function. SCP(R,SR) contains two synthesis critical pairs:

(length([]), ha([], ¥)) (length(z :: append(zs,y)), ho(z : 2s,y))

Moreover a set of rewrite rules LR (inductive theorems of R) can be input to the synthe-
sis process. These are the laws that usually facilitate the process in the fold-unfold method.
Diverses mechanisms to introduce automatically laws in the deforestation strategy has been
explored by Chin and Bellegarde [10, 4]. The technique of rippling found in recent works [7] for
automated theorem prover provide an interesting general mechanism to generate laws and syn-
thesis rules. However, we have noticed [5] that most of the situations that requires laws in a de-
forestation can be simply handled by introducing synthesis rules s — C[h(1,%3,...,1,)] where
some of the ¢;,1 <7 < n are terms and not variables like in the rule length(append(z,y)) —
h(z,length(y)). In this paper, we do not address the problem of automatic generation of the
laws. We only consider the impact of laws on termination issues. We can now describe the
synthesis process.

1.2 Transition rules for a synthesis

We assume that RUSRU LR is terminating. In Section 2, we will see that left-linear synthesis
rules guarantee that RU SR U LR is terminating when R U LR is terminating.

The synthesis process is expressed by the set of transition rules presented in Figure 1. A
transition rule transforms a pair (R, F), where R is an orthogonal rewrite system and where £
is a set of synthesis equalities. It uses a set of synthesized rules SR which is preserved during
a synthesis. The synthesis procedure is a strategy to apply the transition rules repeatedly to
(R,SCP(R,SR)) until none is applicable. Consider the role of each transition rules.

¢ Deduce adds to I synthesized critical pairs between R and F.

¢ Collapse- R simplifies the left-hand side of a rule in R and turns it into a pair in F. This
pair has the same status than a synthesis critical pair. Collapse-R applies in tupling
strategy when the left-hand sides of a synthesized pair is of the form f(z1,z2,...,2,)
where the z; at inductive position ¢ is a variable.

¢ Unfold-Fold- F uses synthesis rules and R to simplify a left member of an equality in F.
e Laws uses inductive laws to simplify a left-member of an equality in F£.

e Delete remove any trivial equality.

¢ Fold- R simplifies right-hand sides of rules in R by a synthesis rule.

e Orient turns an equality in F into a rule of R when no synthesis critical pair can be
computed.

¢ Pair applies when h is synthesized from two pairs (s, C[h(t1,12,...,1,)]) where C'is fst
for one pair and snd for the second.

For example, let SR = {length(append(z,y)) — hz(z,y)}. The synthesis process begins with:

E=S5CP(R,SR)= {(length([]), h2([],y)), (length(z :: append(xs,y)),ho(z 2 2s,9))}

Deduce : (R, F) F (R, EU{(p.q)})
if (p.q) € SCP(R, E)

Collapse-R : (RU{(l,m)},F) F (R, EU{(r,l)})
il —p

Unfold/Fold-E: ((R,EU{(p,q)})) F(R,EU{(Y,q)})
if p —sror P

Laws : (B, EU{(p,q)}) (R EUL(Y.9)})
ifp—rLrp

Delete : (R, EU{(p,p)}) F (R, F)

Fold-R : (RU{(l,m)}, E) Fo(RU{(l,")}, E)
if r —sp 1’

Pair (RU{Cl[h(tl,tQ,...,tn)] —>81},

EU {sy — Cy[h(ty,th,...,t)]}) F (RU{h(o(ty),o(t2),...,0(ts))
— pair(o(sy),0(s2))}, F)

if SCP(R,{(s2,Co[h(t},th,....t.)]) =0, sg is (RU SR)-irreducible, where Cy = fst and Cy =

snd or the converse, and o is the more general unifier of the t;,1 < < mn.

Orient : (R, EUA{(p,q)}) F(RU{({, P} E)

if SCP(R,{(p,q)}) =0, pis RUSR-irreducible, and where (¢',p’) = (u(p), 1(q)), ¢’ is the least
generalization which substitutes every t; ¢ T(C,V),1 <i<mninq= C[h(t1,ta,...,t,)] by fresh
distincts variables

Figure 1: Synthesis transition rules

By Unfold /Fold-E three times, we get:

E={(0,ha([],9), (5(hales,y)), ha(x 2 @s,y))}

By Orient two times we get:

Ry, = {ha([l,y) = 0, hao(z i ws,y) — S(ha(@s, y))}

Another example with two collapsing rules:

~sum(z) — fst(h(z))

Sk prod(z) — snd(h(z))

sum([]) — 0 . prod([]) — 0

sum(z xs) — x+ sum(xs) Rprod : prod(x ::as) — a*prod(zs)

RSUT)’L :

foo(z) — sum(x) 4 prod(z)

Apply Collapse-R four times:

0 - — ﬁstgzg])) ’

x4 sum(xs) — fst(h(z i as : foo(z) — sum(z Toa(z
Ei = Cud(y ok s prodts)

x*prod(xs) — snd(h(z ::xs))

)~ M 55)

x A+ fst(n(xs — Jsl(h(x ::xs - foolz) — s v . "
B T S R fooa) — bz + snd(h)

v * snd(h(zs)) — snd(h(z::xs))

Apply Orient two times and Pair two times:

h([]) — pair(0,0)
h(z :: xs) — pair(z 4 fst(h(zs)), x * snd(h(zs)))
foo(z) — fst(h(z)) + snd(h(z))

When no more transition rules applies, the system R is a constructor-based orthogonal rewrite
system. Conditions we impose to the definition of the synthesis rules are sufficient to get this
result. Moreover, the transition rules are sound with the following meaning: Assuming that
f(ti,te, ... t,) —5 s where f € D, t;,1 <14 < n and s are ground constructor terms, then
fltita, ..) —=Fuucsp § Where R is the rewrite system result of the synthesis and C'SR is
the set of the collapsing synthesis rules. Sketch of a proof can be found in appendix. The result
of interest for the present paper is the termination of the synthesis process.

2 Termination of the synthesis

During a synthesis process, the rewrite system R U SR U LR must be terminating so that
reductions terminate. We do not use reduction orderings to prove termination of rewrite sys-
tems during the synthesis. We always assume termination of R U LR but we can get for free
termination of RU LR U SR when the synthesis rules are left-linear.

2.1 Study of the termination of RULRU SR

Consider the termination of S R. It contains synthesis rules as defined in Section 1. To prove its
termination, it is sufficient to take a recursive path ordering where all the functional symbols
that occurs left-hand sides s of rules in SR have a greater precedence than the synthesized
symbols h. Let us prove now that SR quasi-commute over R U LR when SR is left-linear.

Theorem 1 Let RU LR be terminating and SR be left-linear, RU LR U SR is terminating.

Proof: Let s — C[h(t1,12,...,t,)] be arulein SRand [— r bearulein RULR.
Assume a rewriting by [— r follows a rewriting by s — C[h(t1,%2,...,1,)], we have

t = u[o(s)] —sr u[Clh(o(t1),0(t2),...,0(t,))]] =r ¥

The rewriting by [— r cannot occur at the position of h in d. Therefore it
occurs either in the context w or it rewrites one of the subterms o(¢;). In the
first case, t’ can obviously be obtained by rewriting first by [— r and then by
s — C[h(t1,t2,...,t,)]. In the second case, the same can be done because ¢; occurs
only once in the linear term s of a variable preserving synthesis rule. Since RU LR
and SR are terminating and SR quasi-commutes over R U LR, RU LR U SR is
terminating [1, 18]. O

Hence, when SR is left-linear and R U LR is terminating, we are certain, without using any
reduction ordering that all the reductions terminates during the synthesis process. The syn-
thesis rules are left-linear for deforestation, tupling, and recursion removal strategies. However
some syntheses cannot be introduced by left-linear synthesis rules. For example, one might
want a synthesis rule like # + 2 — h(z). In this case, we do not get for free the termination
of RULRU SR from the termination of R U LR. It needs to be proved otherwise. Now, we
assume that R U SR U LR terminates and we prove that the synthesis process terminates.

2.2 Termination of the synthesis process

To prove that repeated applications of the transition rules always terminate, consider the triplet
(I, FE, R) where [is the finite set of all possible substitutions by constructor terms at inductive
positions of the synthesized symbols. The triplets are ordered by lexicographic extension of
well-founded orderings on the sets I, F/, and R. I is ordered by its size. The sets F and R are
ordered by a multiset extension ordering on a well-founded ordering on their ordered pairs of
terms. We order the pairs as follows: (p,q) > (p/,¢") if p > p' or p = p’ and ¢ > ¢’ where the
term order is the rewrite order defined by the terminating rewrite system RU SR U LR. We
show that each transition rule decreases lexicographically the triplet (I, £, R).

¢ Deduce decreases the size of I by pushing one constructor term in an inductive position.

¢ Collapse-R decreases the size of I by pushing one constructor term in an inductive
position.

¢ Unfold/Fold-F and Laws decreases E by rewriting a left-hand side of a pair.
¢ Delete and Orient decreases F by removing one of its pairs.

¢ Fold-R decreases R by rewriting a right-hand side of a pair.

¢ Pair and Orient decreases F.

It remains to prove that the synthesis process preserves termination of R.

10

2.3 Preservation of the termination of R

To prove the preservation of the termination of R, we need more notations on relations.

Notations on relations: Given two relations —p and —g, —r / —g is called R modulo
S and stands for the relation —% . —r . —%. Note that —p / —g and —p / —% are the same.
In the proof, we use as lemma the following result from [6].

Lemma 1 (See [6]) Let S and T be rewrite systems. Suppose S locally cooperates with T,
S UT is terminating and T is confluent. The relation (—g [(—1 U —7))T can be used to
prove termination, i.e. a rewrite system that satisfies | (—g [(—1 U «—7))T 7 for all rules
[— 7 is terminating.

The local cooperation of a system § with a system T is a kind of local confluence between rules
of 5 and T that can be tested by a criteria on critical pairs between S and T" when the system
T is variable preserving and left-linear. Therefore, if there is no overlap between S and T, and
T is left-linear and variable preserving, then S locally cooperates with T'. The proof uses also
the following lemma.

Lemma 2 Let SR be synthesis rules for a left-linear, constructor-based, and terminating
rewrite system R at the begining of the synthesis and let T = SR~ be the converse of synthesis
rules. Assume that R is terminating, then RUT is terminating.

Proof: We prove that a (R U T')-reducible term ¢ cannot be the beginning
of an infinite derivation. Let us use a mathematical induction on the number of
occurrences of & in t. Assume ¢ has no occurrences of h, we can only havet — g t' and
t’ has no occurrence of h since the left-hand sides of rules in R does not contain h.
Therefore every derivation from ¢ is a R-derivation and hence terminating. Consider
now a term ¢ which contains n occurrence of h. Consider the first occurrence of
a rewriting by T in the derivation, ¢t —% . —7 t'. the term ¢’ contains n — 1
occurrences of i since the left-hand sides of the synthesis rules does not contain h.
No infinite derivation can come from ¢’ and hence from ¢. O

Let us prove now that the synthesis process preserves the termination of K.

Proof: Let us call Ry.q the rewrite system R after applications of the transition
rule Fold-R. The result of the synthesis is Ry, q U Ry, UCSR where C'SR are the
collapsing synthesis rules. Let us prove that R;,qU R is terminating.

e There is no overlap between rules of 7" and T is terminating, therefore T is
confluent.

e There is no overlap between R and T and T is variable preserving and left-
linear since synthesis rules are variable preserving and right-linear. Therefore
R locally cooperates with 7.

o RUT is terminating by Lemma 2.

11

Consequently (—g /(—7 U <7))T can be used to prove the termination of R4 U
Rj by Lemma 1. There are two cases to consider:

1. either [— r € Ryoq then | — <% r by definition of R4, therefore
L(=r/(=zU=1)" 1 .or

2. | — r € Ry. Then it comes from a pair (r,{)in £. A pair in ' comes from a
synthesis critical pair between R and SR = T~!, or from a collapse of R by a
synthesis rule. In both cases we have | —7—pg r. Subsequent pairs in £ are
obtained by rewriting of » by SR so | —r—pgr<7% r, or by rewriting by Rt.i4
so | —=7—pR .(«<1 U(—Rr<7))"r, or by critical pair with Ry,4 which does not
change the relation. Consequently we always have: | —p /(=7 U —7)t r

This achieves the proof that Ry.q U Ry, is terminating. We now prove that Rjqq U
Ry UCSR is terminating. To prove termination, we use a result of Bachmair and
Dershowitz [1]. They have proven that if Ry/R and R2 terminates, then R1U R2
terminates. In the first part of the proof we show that (R, U Ry) C R/(TUT™Y)
gives the termination of Rs,;qU R, but it gives also termination of (R,qURy)/(1T'U
T~1). Therefore Ry,q U Ry U CSR terminates since C.SR C T~ C(TUT™!), and
C SR terminates. O

Unfortunately termination of a sole synthesis is not enough. For a given tactical, the system
automatically generates synthesis rules and run the synthesis process since no more synthesis
rules can be generated. Let us study the termination of the tactical process.

3 Tactical termination

The tactical process generates a sequence of set of synthesis rules S Rg, SRy,.... To simplify,
we consider that, each time, only one synthesis symbol is synthesized. Let us then consider
the sequence of the left-hand sides (or of the pair of the twin left-hand sides for a tupling)

805815« - -84, ...0f the synthesis rules for the synthesis of symbols kg, hq, ..., h;,.... Since there
are only a finite number of synthesis rules that can be generated from a finite set of rules, the
tactical termination problem is the same that the termination of the sequences sg, ..., 8;, Si41 - ..

where s;;1 is generated from Rj;. We call such a sequence a chain of syntheses. The tactical
process generates a new s;;q from one of the right-hand sides r; of Rj,. We call 5 the relation
between s; and r; and G the relation between r; and s;41. More precisely, s; —g r; if and only
if there exists a substitution ¢ of surreductive variables of h; by constructor terms such that
o(s:) —=hurrusk Ti- 1t is aspecial case of narrowing derivation [15]. The relation ¢ is defined by
the tactical but we can assume that it is always contained into the inverse of the encompassment
ordering. In other words, if r; —g s;11, there exists a substitution 5, and a position p such
that 7(s;41) = 74]p. A chain of syntheses C' is simply a sequence sg —g . —g $1 —5—q 2. . ..
The tactical termination is thus —g . —¢ termination.

In the following, we assume that we rename all the variables into a unique dummy constant
0. We also assume that a synthesis symbol %;,0 < j < 7 does not occur in a term s, in

12

the chain of syntheses. Therefore the terms s; are ground terms constructed on a finite set of
symbols. In this case, every infinite sequence of ground terms is self-embedding by Kruskall’s
tree theorem.

Suppose that we have a relation < on terms such that if s; < r where r is one of the
right-hand sides of the rules in Rj;,. Assume that s; < r implies that s; cannot be embedded
into a term that comes afterwards in C'. In other words, s; < r foresee a future self-embedding
in the sequence €. Then the tactical process can follow a backtracking strategy to guarantee
its termination by application of Kruskall’s tree theorem. The definition of < uses the relation
® on terms defined by f®g if and only if g occurs in one of the left-hand sides of R;.

Definition 3 We have s = f(s1,...,8n) = g(t1,t2,...,t,) = t if and only if either of the
following cases hold:

1. g®f and s; <t,1 <1< m; or
2. f=gands; <t;,1 <i<m;or
3. f(81,..ySm) S t; for some t,1 <7< n.
We now propose the following:
Proposition 1 Let s; —sr —g .(—s . —qg)")s;. If s; Qs then s; < r.

Sketch of proof: We prove that if s = f(uy,...,u,) <t and r —g .(—s
. —@)*t then s < r by induction on terms structure. Take the smallest subterm
t' = f(v1,...,v,) of t such that s<¢. Take the smallest subterm r' = g(ws, ..., w,,)
of r such that #' —¢ .(—s . —¢)*t'. Then, either f = g or g®f. Proof of s < 7" is
sufficient for proof of s < r.
e g = f: We have u; < v;,1 < i < n by definition of <. Since ' —¢ (—s . —¢
Yt and v = f(wy,...,w,), w; =g (—s . —g)*v;, 1 < i< n. Then we have
u; < v;,1 <1 <n by induction, and s < r’ by definition of <.
o g®f: We have u; < v;, 1 <i < n by definition of 4. Since 7' —¢ (—s . —¢)*t,
we also have 1’ —¢g (=g . —g) v, 1 < i < n by changing the last application
of —g. Then we have u; < r’ by induction, and s < ' by definition of <.

4 Related works and Conclusion

Fully automatized algorithms for deforestation based on a fold-unfold method are those of
Wadler [22] and more recently of Chin [10, 11]. Though this paper does not consider a partic-
ular tactical or the way we generate synthesis rules, let us observe the deforestation tactical.
Its goal is to eliminate useless data-structures. In the left-hand side of the synthesis rule, there
are functional symbols consumers of a data structure that is produced by a functional symbol
producer of the data-structure that could be eliminated. Chin and Wadler impose restrictive

13

conditions on the synthesis rules since they do not have the powerful synthesis rules with non-
constructor terms arguments of the synthesis symbol to achieve fusion with a functional symbol
f that does not produce a constructor as top symbol of the right-hand sides of the rules in Rj,.
Also, their algorithms do not integrate easily the use of laws. Only to illustrate the difficulty of
the termination problem, notice that the termination proof of Chin’s deforestation algorithm
takes four pages in [11]. Chin’s and Wadler’s algorithms are specialized towards the deforesta-
tion tactical so that it does not seem to be flexible enough to include other tacticals. The Focus
system [20] is a general system for synthesis based on rewriting techniques. However, it is not
fully automatic. We do not know a fully automatic process which supports other tacticals than
deforestation. Chin and Darlington have done a remarkable work to take account of higher-
order functional programs in [12]. An implementation of the Chin-Darlington’s specialization
algorithm is used as a preprocessor of ASTRE for input of functional programs. The actual

limitation of our technology is the termination property of the rewrite system.

In the paper, we propose a set of transition rules that describe a fully automatic synthesis
procedure for the transformation of functional programs that are presented by terminating or-
thogonal constructor-based rewrite systems. We proved that the synthesis process is sound and
that it preserves the property of the rewite system and particularly its termination. We proved
that the synthesis processis terminating and we know how to ensure termination of a chain of
syntheses. The synthesis rule conditions are satisfied for automatization of deforestation and
two-loops tupling. The set of transition rules can be completed for handling other tacticals. In
particular adding a transition rule that computes critical pairs between the synthesis rules and
a set of laws does not change the results presented in this paper.

References

[1] L. Bachmair and N. Dershowitz. Commutation, Transformation, and Termination. In Proceedings
of the eight conference on Automated Deduction, volume 230 of LNCYS, pages 5-20. Springer-Verlag,
1986.

[2] J. Bell et al. Software Design for Reliability and Reuse: A proof-of-concept demonstration. Technical
report, Department of Computer Science and Engineering, Oregon Graduate Institute, 1994. To
be presented at the Tri-Ada conference in November.

[3] F. Bellegarde. Program Transformation and Rewriting. In Proceedings of the fourth conference
on Rewriting Techniques and Applications, volume 488 of LNCY, pages 226-239. Springer-Verlag,
1991.

[4] F. Bellegarde. A transformation system combining partial evaluation with term rewriting. In
Higher Order Algebra, Logic and Term Rewriting (HOA °93), volume 816 of LNCS, pages 40-58.
Springer-Verlag, September 1993.

[5] F. Bellegarde. Automatic Synthesis by Completion. Technical Report 94023, Department of Com-
puter Science and Engineering, Oregon Graduate Institute, 1994.

[6] F. Bellegarde and P. Lescanne. Termination by Completion. Journal of Applied Algebra in Engi-
neering, Communication and Computing, 1:79-96, 1990.

[7] A. Bundy et al. Rippling: A heuristic for guiding inductive proofs. Journal of Artificial Intelligence,
62:185-253, 1993.

14

(8]
[9]

[10]

[22]

A

W.H. Burge. Recursive Programming Techniques. Addisson-Wesley, 1975.

R. M. Burstall and J. Darlington. A Transformation System for Developing Recursive Programs.

Journal of the ACM, 24:44-67, 1977.

W. Chin. Safe Fusion of Functional Expressions. Proceedings of the ACM Symposium on Lisp and
Functional Programmang, San Francisco, Ca., pages 11-20, June 1992.

W. Chin. Safe Fusion of Functional Expressions II: Further Improvements. Journal of Functional
Programming, 11:1-40, 1994.

W. Chin and J. Darlington. Higher-Order Removal: A modular approach. Unpublished work, 1993.

N. Dershowitz. Synthesis by Completion. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 208-214, Los Angeles; 1985.

N. Dershowitz. Completion and its Applications. In Resolution of Equations in Algebraic Structures.
Academic Press, New York, 1988.

M. Fay. First-order unification in an equational theory. In Proceedings of the fourth Workshop on
Automated Deduction, pages 161-167, 1979.

J. V. Guttag, D. Kapur, and D. R. Musser. On proving uniform termination and restricted termi-
nation of rewrite systems. SIAM Journal on Computing, 12(1):189-214, February 1983.

M. Hermann. Divergence des systémes de réécriture et schématisation des ensembles infinis de
termes. PhD thesis, Université de Nancy I, March 1994.

M. Munoz J.P. Jouannaud. Termination of a set of rules modulo a set of equations. In Proceedings of
the 7th Conference of Automated Deduction, volume 170 of LNCS, pages 175-193. Springer-Verlag,
1984.

L. Kott. About a transformation system: a theoretical study. In Proceedings of the 3rd Symp. on
Programmaing, 1978.

U. S. Reddy. Transformational derivation of programs using the Focus system. In ACM Symposium
on Practical Software Development Environments, pages 163-172, December 1988.

U. S. Reddy. Rewriting Techniques for Program Synthesis. In Proceedings of the third Conference
on Rewriting Techniques and Applications, volume 355 of LNCY, pages 388-403. Springer-Verlag,
1989.

P. Wadler. Deforestation: Transforming Programs to eliminate trees. In Proceedings of the second
Furopean Symposium on Programming ESOP’88, volume 300 of LNCS. Springer-Verlag, 1988.

Soundness of the transition rules

We prove that the synthesis process, as described in Section 1, preserves successful computations of
ground terms. Let (R, E') be the result of the synthesis process beginning with (R, SCP(R,SR)) and

*

let C'SR be the collapsing synthesis rules. Consider a derivation f(t1,ts,...,t,) —5 ¢ where f € D,
t;,1 <i<n and c are ground constructor terms. We prove that f(¢1,%2,...,t) —=5icsr €

15

Proof: Consider a derivation D by R towards a ground constructor term e¢. Let us
reflect the changes made to this derivation during the synthesis process and let us show
that they can be turned into a R’ derivation. We call R the evolving rewrite system during
the synthesis process. Changes to R comes either from folding a rule by a synthesis rule or
from collapsing a rule by a synthesis rule. In the first case u —pg v is replaced by u —g
u' «—gg v and in the second case u —pg v is replaced by u —cggr v’ —g v. In both cases
uw = K[C[h(s1,582,...,8,)]] where s; are grounds terms. Since ¢ is a ground constructor
term, all the terms s; at inductive positions of A can be reduced to ground constructor terms
by a derivation which commutes over these derivation steps. So, consider a derivation step:
u' = K[C[h(o(t1),0(t1),0(t2),...,0(tn))]] —sr K[C[o(s)]] = v where o(t;) at inductive
position ¢ of & is a ground constructor term. By Ezistence condition in Definition 1, there
exist synthesis critical pairs issued from overlaps between the synthesis rule and some R,.
Since ¢ disappear, one of these synthesis critical pairs in E : concerns our derivation step.
It gives: v/ —p o’ = K[C[h(c'(t)), o' (), o' (th),..., o' t))]] —r K[C[o'(s") = ¢]]. In
other words, every «—gpg step becomes a «—pg step.

Consider now an element u” «—p v. It can be folded or unfolded by a rewriting by
SR: v «—pg v/ «<—gg v or by a rewriting by R: v’ «—pg v +—g v. It remains two cases:
—p 18 turned into —g by Orient or a synthesis critical pair 1s derived changing «—pg into
—pr+<Eg. Since there are a finite number of such pairs, every step «—g is finally oriented into
—pR. Peaks —pr—pg can all be changed into valleys —% . <% by confluence of R yielding a
derivation of R towards irreducible ¢. O

16

