
A Reference Chain Approach for Live Variables

Michael P� Gerlek�� Michael Wolfe� Eric Stoltz
Oregon Graduate Institute of Science � Technology
Department of Computer Science and Engineering

P�O� Box �����
Portland� OR ��	��
���� USA

���
��
��	� x����

fax� ���
��
����
gerlek�cse�ogi�edu

April �� ����

Abstract

The classical data�ow approach to determine the set of variables that are live at some point in
a program entails using an iterative algorithm across the entire program� usually with costly bit�
vector data structures� Methods based on sparse evaluation graphs exist� but these are solved on a
per�variable basis and are also iterative� Inspired by our group�s interest in sparse representations
of use�def and def�use reference chains� we are investigating still another approach�

In this paper� we present an algorithm for determining liveness of variables based on upwards
exposed use information at control �ow branch points� analogous to the collection of reaching def�
inition information in the popular Static Single Assignment form� We demonstrate the use of our
technique with two applications� building interference graphs and eliminating dead code� and show
that this new reference chain approach has important advantages over previous methods�

Keywords� data�ow analysis� static single assignment� sparse evaluation graph� slotwise analysis� live
variables� interference graph� dead code elimination

�This research was supported by ARPA under grant F��������C���	

�

� Introduction

A variable v at some point p in a program is considered live at p if v may be used along some control
�ow path from p� that is if v has an upwards exposed use ���� If v is used nowhere after p� then v is
dead at p� This determination of the set of live variables at any point in a program� called live variables
analysis� is used by compilers in order to perform such analyses as the construction of interference graphs
for register assignment 	if two variables are both live at p they cannot share a register and are said to
interfere
 and such optimizations as dead code elimination 	if v is de�ned at p but not subsequently
used� i�e� v is dead after p� the de�ning statement may be removed
�
Live variables analysis is a textbook backwards data�ow problem� and the standard solution requires

an iterative algorithm� For each basic block b in a program� two sets are computed� the set of variables
de�ned prior to being used in b� def

b
� and the set of variables used prior to any de�nition� useb� To

compute which variables are live at the entry and exit to b� the following equations are used to combine
the information at b with the information of the blocks following b�

inb � useb � 	outb � def
b

outb �
�

s�succ�b�

ins

The computation of the in and out sets is iterated until convergence��

Although this solution usually works well in practice� there are two drawbacks� First� the algorithm
is iterative in nature� While the number of iterations for liveness analysis is small in most cases� other
similar data�ow problems may iterate more times or may require more expensive equations to be solved
at each block� In most cases� iteration is needed only for certain regions of the program� We are
interested in solutions that will correspondingly minimize 	or eliminate completely
 the costs of this
iterative approach�
The second drawback is the amount of storage required by the algorithm� Four sets must be stored

for each block in the program� resulting in V S

� ��bit words of space if using bit�vectors� where V is the
number of blocks and S the number of symbols in the program� If the bit�vectors are sparse� this is
not an e�cient technique� Choi et al note that �compiler writers generally acknowledge bit�vectors are
overly consumptive of space� ��� A preferable approach would be to take advantage of the de�nition�use
information already within the program� avoiding the space required for the def and use sets�
Our research group�s interest in the advantages of reference chains 	representations of factored use�

def and def�use chains ���
 has led to the investigation of an alternative to the iterative approach� This
paper presents a solution to the live variables problem which uses ��operators to merge upwards exposed
reference information at branch points in the control �ow graph� The idea is derived from the traditional
Static Single Assignment 	SSA
 form in which ��operators are placed at �ow graph con�uence points
to merge multiple reaching de�nitions ����
By using the information embedded within the �ow graph at the ��operators� we avoid the need

for the in and out sets� at each block� the relevant information is determined by the con�uence of the
upwards exposed references determined by the ��operators� As we will show� liveness analysis does
not require explicit computation of these sets for such applications as interference graph construction
and dead code elimination 	and in fact improves the elimination algorithm
� While our technique is
admittedly slower and requires an equivalent amount of space as compared to the iterative bit�vector
approach� it represents a �rst sparse graph solution to the live variables problem�
In the remainder of this section� we present some perspective and background material� relating our

work to sparse evaluation graphs and the classical SSA form� In the next two sections� we present an

�We will assume the reader is familiar with these concepts� details may be found in most compiler texts �� ��

�

algorithm to construct the reference chains and an algorithm to compute liveness using them� In section
� we show how to construct an interference graph from these chains and discuss other applications such
as dead code elimination� In section � we present a performance analysis based on our implementations
of these algorithms� We conclude in section � with some remarks on the implications of this work�

��� Sparse Graph Representations

Several alternative methods of data�ow analysis have recently been suggested� attempting to address
the drawbacks of the traditional approach�

Sparse Evaluation Graphs� In practice� many nodes in a �ow graph may not contribute to
the �nal solution� In live variables analysis� for example� a given variable will be used or de�ned only
in a small number of places in the program� Sparse evaluation graphs represent a subset of the �ow
graph for a particular problem� connecting only the nodes e�ecting the solution ��� A standard solver
is then applied to the reduced graph and the solution is mapped back to the original �ow graph� Sparse
evaluation graphs do not present a new solution technique as such but rather minimize the cost of the
standard ones� The problem with these sparse graphs is that the data�ow problem must be solved
per variable� requiring construction of a separate sparse graph for each variable� An open question is
whether the cost of constructing n sparse graphs and solving n small problems is less than the cost of
solving n 	possibly vectorizable
 problems simultaneously�

Static Single Assignment Form� SSA form is used to capture reaching de�nition information at
points in the program ���� The program is augmented with ��operators which merge reaching de�nitions
at �ow graph con�uence points� Uses are then linked to the unique reaching de�nition so that in this
form the information 	reaching de�nitions
 is available only where required� SSA�based algorithms use
these links in the program essentially like sparse evaluation graphs� SSA form only provides def�use
links and cannot be used to solve all data�ow problems� as opposed to the general sparse evaluation
graph mechanism� for example� while SSA form can be used to detect dead code� it cannot be used to
construct interference graphs�

Slotwise Analysis� For data�ow problems requiring only a binary lattice 	�and �
� there are
only three interesting transfer functions that can occur at a node� either the node will have a known
value of �or �� or the node will propagate the solution of a predecessor node 	for forwards problems

���� Slotwise analysis proceeds by �rst processing nodes with constant solutions� For nodes with the
propagate transfer function� those that are reached by any nodes whose solution is � will have � as
their solution� The remaining nodes will have � as their solution� The solution at a constant node does
not depend on input from its predecessor� making the problem strictly monotonic� i�e� the solution at
any point can only be lowered� The solution can be determined in one pass over the graph� Similar to
sparse evaluation graphs� the slotwise approach is also performed �per variable��
The method we present here combines aspects of all of these approaches� Using ��chains� the data�ow

problem is solved on a sparse graph similar to SSA form� where liveness information is only represented
at the points in the �ow graph where it is needed� The data�ow problem is solved using a slotwise
approach� where the ��operators correspond to the nodes in the sparse graph� The solutions for all
variables can be determined simultaneously� however� using an embedded graph rather than separate
graphs�

� Lambda Chain Construction

We begin by de�ning the framework for our representation and some necessary terms and concepts�
A program is represented as a control �ow graph 	CFG
� GCFG � hV�E�Entry�Exiti� where V is

a set of nodes representing basic blocks in the program and E is a set of edges representing sequential

control �ow� Entry and Exit are distinguished nodes representing the unique entry and exit points in
the program� we assume all nodes are reachable from Entry and all nodes reach Exit� We also assume
the placement of the so�called technical edge from Entry to Exit� needed for control dependence relations
���� We denote an edge in the CFG from node X to Y as X � Y � The set Pred�X� represents the
predecessors of X in the CFG� that is the set of all nodes v � V such that v � X� The set Succ�X�
similarly represents the successors of X in the CFG�
Each block contains a list of operations or statements� denoted Ops�v�� Without loss of generality�

we will assume each operation to be either a use 	fetch
� a de�nition 	store
� or a ��operator for some
symbol s � S where S is the set of all symbols in the program� We denote the type of some operation
t as type�t� � fuse� def� �g and the symbol it references as symbol�t� � S� If symbol	t
 � s for some t�
then t references s�
Our technique uses the concepts of post�dominator and post�dominance frontier� which correspond

to the concepts of dominator and dominance frontier but for the reverse of the control �ow graph�
Brie�y� if for some nodes X�Y � V � Y appears on every path from X to Exit� then Y post�dominates
X� written Y pdom X� If Y pdom X and Y �� X� then Y strictly post�dominates X� written Y spdom
X� The immediate post�dominator of X� ipdom�X�� is the closest strict post�dominator of X� The
post�dominator tree contains the set of nodes V � connected by edges such that Y � X in the tree i�
ipdom	Y
 � X�
The post�dominance frontier of a node Y � PDF 	Y
 � V � is the set of nodes X such that Y post�

dominates a successor of X but does not strictly post�dominate X�

PDF 	Y
 � fX j 		S � Succ	X

	Y pdomS

 �	Y spdomX
g

The iterated post�dominance frontier of Y � PDF�	Y
� is the limit of the sequence

PDF � 	Y
 � PDF 	Y

PDF i	Y
 � PDF 	Y � PDF i�� 	Y

The set PDF�	Y
 is computed via a worklist algorithm� and is equivalent to the iterated join set of the
reverse control �ow graph� we will rely on this in the following algorithms� and the reader is encouraged
to refer to the seminal papers by Cytron et al for details ��� ���
As an example� consider the following program�

i � �

while �p� do

if �q� then

i � i � �

endif

endwhile

For clarity� we will make the basic blocks explicit and consider only references to i� distinguishing them
by subscripting�

�

8

2

3

4

5

6

7

0

1

Figure �� CFG for example program

L��

L�� i� �

L	� if �� � �� goto L

L�� if �� � �� then

L�� � i�
i	 �

L� endif

L�� goto L	

L
� � � �

L��

The corresponding control �ow graph is shown in Figure � 	note the placement of the technical edge
�� �
 and the immediate post�dominators and post�dominance frontier sets are given in Table �� For
reference� the def� use� in� and out sets are also shown�

��� Chaining Algorithm

There are two phases involved in converting a program to the ��chain form� the placement phase� which
places the ��operators at branch points in the CFG� where upwards exposed reference information must
be combined� and the chaining phase� which creates the links 	chains
 from each ��operator to its
upwards exposed references� The algorithms for these two phases are directly adapted from the SSA

�

v ipdom of v PDF�v� def
v

usev inv outv
� �
	
 � i

 � ��
 i i
�
 i i
� � i i i

 �
 i i
�

 i i
� � �

�

Table �� Post�dominator and liveness for example program

construction algorithms of Cytron et al ����
In the placement phase� each symbol in the program is processed separately as in SSA� First� a

worklist is initialized to the set of blocks containing at least one reference to the symbol� A block w

is selected from the worklist� and a ��operator is appended to the list of operations of each block in
the post�dominance frontier of w� Each block in the frontier is added to the worklist� creating the
iterated post�dominance frontier set� This process iterates until the worklist is empty and all necessary
��operators have been placed�
In the chaining phase� the arguments to ��operators must be set such that each ��operator is �linked�

to the upwards exposed references of its symbol� the ��operators� placed at CFG merge points� represent
the combining of this information exposed along the outgoing paths� For each successor of the block a
��operator is placed in� the ��operator has exactly one link� initially empty 	�
� These links are now
�lled in to point to the upwards exposed reference of the ��operator�s symbol� The blocks in the CFG
are visited in a bottom�up order 	we use the post�dominator tree
� saving the most current reference to
each symbol at each referencing operation� When the top of the block is reached� links in the ��operators
of predecessors of the current block are set to point to the current� i�e� upwards exposed� reference�
Consider the example from above� The worklist is initialized to blocks � and �� since PDF�	�
 �

PDF�	�
 � f�� �� g� a ��operator is placed at the end of each of these three blocks�

L�� i� � �	�� �

L�� i� �

L	� if �� � �� goto L

i� � �	�� �

L�� if �� � �� then

i � �	�� �

L�� � i�

i	 �

L� endif

L�� goto L	

L
� � � �

L��

In the second phase� the current reference is initially � The CFG is traversed in the order f�� �� ��
�� �� �� �� � �g� Starting with block �� the ��operator in predecessor block � has its second link set to

�

�� At block �� predecessor � has its second link set to �� Visiting block � next� the current reference is
set to i�� At block �� the current reference is set to i� and the old reference to i� is saved� The �rst
link of the ��operator in predecessor block � is set to i�� We must return down the post�dominator
tree� in block � the current reference is restored to i�� The process continues at block � by visiting its
other child� block �� After all blocks have been visited and all links have been processed� the resulting
program is�

L�� i� � �	i�� �

L�� i� �

L	� if �� � �� goto L

i� � �	i� �

L�� if �� � �� then

i � �	i�� i�

L�� � i�

i	 �

L� endif

L�� goto L	

L
� � � �

L��

Algorithm � Lambda Chain Construction

Given� V � the set of basic blocks in the program�
Exit� the exit block� and
S� the set of symbols in the program�

Do� insert ��operators and create the corresponding chains

We will use several data structures� For each block v � V� two �elds are used� v�InWork� the symbol for
which block v was last inserted into the worklist� and v�Added� the symbol for which block v last had a
��operator added� For each operation t � Ops	v
� �v � V� one �eld is used� t�Save� the operation that
was the last reference for symbol�t�� For each symbol s � S� two �elds are used� s�UpExpRef� the set
of blocks containing upwards exposed references to s� and s�CurrRef� the operation that is the current
reference to s�

procedure Construct Chains�V � Exit� S�
Place Lambdas�V � S�
Set Links�Exit�

endprocedure
The code for procedures Place Lambdas and Set Links are shown in Figures � and � Note that at line
� of Place Lambdas� the links for the new ��operator are assumed to be empty� The post�dominance
frontiers are assumed to have already been created� �

��� Correctness

The proof of correctness for ��chain construction can be directly adapted from the original SSA con�
struction proofs by Cytron et al ���� In the SSA ��placement algorithm� a ��operator for symbol s
is placed at the iterated dominance frontier� of the set of blocks containing assignments to s� In the

�Technically the iterated join set is used� the iterated dominance frontier is proved equivalent

�

procedure Place Lambdas�V � S�
�� for v � V do
�� v�InWork � �
�� v�Added � �
�� endfor
�� Worklist � �

�� for s � S do
�� for w � s�UpExpRef do
	� Worklist � Worklist � fwg

� w�InWork � s

��� endfor
��� while Worklist �� � do
��� remove some w from Worklist
��� for p � PDF�w� do
��� if p�Added �� s then
��� append a ��operator for s at end of Ops�p�
��� p�Added � s
��� if p�InWork �� s then
�	� WorkList � WorkList � fpg
�
� p�InWork � s
��� endif
��� endif
��� endfor
��� endwhile
��� endfor

endprocedure

Figure �� Algorithm for inserting ��operators

�

procedure Set Links�v�
�� for t � Ops�v� in reverse order do
�� s � symbol�t�
�� t�Save � s�CurrRef
�� s�CurrRef � t
�� endfor

�� for p � Pred�v� do
�� for t � Ops�p� where type�t�� � do
	� s � symbol�t�

� set corresponding ��argument to s�CurrRef
��� endfor
��� endfor

��� for p � PDomChild�v� do
��� Set Links�p�
��� endfor

��� for t � Ops�v� in forward order do
��� s � symbol�t�
��� s�CurrRef � t�Save
�	� endfor

endprocedure

Figure � ��operator Linking Algorithm

�

Place Lambdas algorithm� we have replaced the notion of dominator with post�dominator and ex�
tended the set of blocks containing assignments to s with the set of blocks containing references to
s�
Similarly� our procedure Set Links performs the same task as the SSA SEARCH procedure� For

each successor at a branch point in the CFG� a link of a ��operator at that CFG node is set to the
upwards exposed reference along that path� as the links of ��operators are set to the corresponding
reaching de�nitions along incoming branches�
By this reasoning� Construct Chains inserts ��operators at precisely those points where data�ow

information must be represented� In the Static Single Assignment form� a ��operator represents the
set of the reaching de�nitions of some variable at that CFG con�uence point� In our representation for
liveness analysis� a ��operator represents the set of upwards exposed references for some variable at that
CFG branch point�

� Liveness

Once the ��operators have been placed and their links set� as described in Section �� the in and out
live sets may be determined for each block in the program� This is accomplished by traversing the �ow
graph and adding and deleting variables from the live set at each operation�

��� Liveness Algorithm

The CFG is traversed in bottom�up order� starting at the exit block� At the bottom of Exit� the set of
live variables is � corresponding to outExit� The operations in the block are visited in reverse lexical
order� modifying the live set at each point as needed� at a use the variable is added to the live set� if
not already live� and at a de�nition the variable is removed from the live set� i�e� it goes dead� At the
top of the block� the live set is precisely the inExit set�
The live set is carried to the next block to be visited� and the process of visiting each operation is

repeated� At each ��operator site� however� it must be determined whether the operator represents a use
or a de�nition of its variable� this is a function of the nature of the links of the ��operator� Intuitively�
a ��operator may be viewed as a placeholder� representing a �forwarding� of liveness information from
some other point in the �ow graph�
A simple lattice framework is used� with each operation assigned a lattice value representing its e�ect

on its symbol� In this lattice�

�
j
�

the value � represents �dead� and � represents �live�� All de�nitions and uses are assigned lattice
values of � and �� respectively� The lattice value of each ��operator is initially set to �� When a
��operator is encountered in the reverse�order visit of operations� its links are examined� Each link may
be unde�ned 	�
� implying no upwards exposed reference of the symbol along that path� or it may point
to a use� a de�nition� or another ��operator for the symbol� The lattice value of a ��operator is set to
be the meet 	u
 of the lattice values of its links 	where an unde�ned link is assigned a lattice value of
�
� This value determines the ��operator�s e�ect on the live set� that is whether it should be treated as
a use 	�
 or a de�nition 	�
�
If the links of a ��operator all point to uses or de�nitions or are unde�ned� this is straight�forward�

If one or more of the links is to another ��operator� another technique is needed� since the lattice value
of the second ��operator must be determined before it can be used� In general� the second ��operator

��

may lead to still other ��operators or may even have a link back to the �rst ��operator� creating a cycle�
Such is the case in the example from the previous section� The lattice value of the ��operator de�ning
i� in block � is the meet of � and the lattice value of the ��operator in block � In terms of liveness
information� this corresponds to the fact that i is dead outside the loop and its liveness is not known
inside the loop�
A demand�driven technique is used to assure that all ��operators are assigned lattice values before

some other ��operator requires them� The lattice value of each link of a ��operator encountered during
the bottom�up traversal of the �ow graph is evaluated using Tarjan�s well�known algorithm for detecting
strongly connected components 	SCCs
 in directed graphs ���� This algorithmhas the important property
that each component in the graph is visited and processed only after each of its descendants have been
visited and processed� Tarjan�s algorithm is applied to an abstraction of the program� the ��graph�
G� � hV�Ei� where V is the set of operations 	uses� de�nitions� and ��operators
 in the program and
E is the set of links from each ��operator to other operations�
When the lattice value of a ��operator is required� Tarjan�s algorithm is used to �search� the ��

graph� starting at that root� and assign lattice values to all ��operators the root �depends� on for its
solution� When a component is identi�ed� the nodes within it 	a set of operations
 are assigned a lattice
value based on the lattice value of all the successors of the SCC� Note that no iteration is required to
determine the lattice value of the cycle� the lattice value of each node in the component is set to the
meet of the set of successors of the component��

In Figure � we show the ��graph for the example program� with the lattice value to the right of the
nodes� To determine the lattice value of the ��operator at block 	i
� for example� the cycle assumes
the meet of the unde�ned second link of the ��operator of i� 	�
 and the �rst link of the ��operator of
i to the use of i�� �� The meet� �� signi�es i is live in the cycle� and therefore live at the bottom of
blocks � and �

Algorithm � Liveness

Given� Exit� the exit block in V

Do� determine liveness at each block

The algorithm is shown in Figure �� The set Live is initialized to and it is invoked as Liveness�Exit�
Live�� The bottom�up walk is performed as a recursive traversal of the post�dominator tree�
Note that the sets in and out for each block� required by the iterative data�ow algorithm� are not
explicitly computed� When the loop at line � has processed all the ��operators 	and not yet processed
any other operations
� Live is precisely outv� When line 	� is reached� Live is precisely inv� �

��� Correctness

Correctness of the liveness algorithm can be shown by induction� The solution 	the out set
 is trivially
correct at the Exit block 	Live �
� We will show 	informally
 that at each block subsequently visited�
the correct out set is computed�
At the end of some block v� the set Live is determined by the state of the Live set at the top some

block w that is a descendant in the �ow graph� corresponding to the inw set� The operations in v serve
to add and remove symbols from the live set�

�This is an example of a cluster partitionable ��� or uniformly monotonic ���� problem
 We omit details due to space
limitations

��

λ(i0,*)i3=

λ

λ

i4= (i5,*)

i5= (i1,i4)

i0=

i2=

=i1

T

T

T

T

T

T

T

T

Figure �� ��graph for example program

��

procedure Liveness�v� Live�
�� for t � Ops�v� in reverse order do
�� if type�t�� � then
�� if t�Visited � false then
�� set t�Lattice using Tarjan�s alg on the ��graph
�� t�Visited � true

�� endif
�� endif
	� t�Marked � false

� s � symbol�t�
��� case t�Lattice
��� �� if s �� Live then
��� Live � Live � fsg
��� t�Marked � true

��� endif
��� �� if s � Live then
��� Live � Live � fsg
��� t�Marked � true

�	� endif
�
� endcase
��� endfor

��� for p � PDomChild�v� do
��� Liveness�p� Live�
��� endfor

��� for t � Ops�v� in forward order do
��� s � symbol�t�
��� case t�lattice
��� �� if t�Marked then Live � Live � fsg
�	� �� if t�Marked then Live � Live � fsg
�
� endcase
��� endfor

endprocedure

Figure �� Liveness Algorithm

�

If v is not immediately post�dominated by w� however� other blocks may contribute to the live set of
v� That is� if v has more than one successor� the set Live must be modi�ed to account for the presence of
��operators� For each successor of v� each ��operator in v will have one link to the subsequent reference
	if any
 of its variable along the path containing that successor� If the subsequent reference is a use�
a de�nition� or no reference� the lattice value is set accordingly� If the subsequent reference is another
��operator� the ��graph will form a tree whose leaves are a use or a de�nition or are unde�ned 	recall
that by the algorithm used� cycles are e�ectively collapsed to a single ��operator
� Thus� irrespective of
the �ow graph� the lattice values inherited by the ��operator will re�ect the upwards exposed references
of the symbol� there can be no other intervening references to the symbol in the program� by the
construction in section ��
The Live set is now modi�ed by each use� de�nition� and ��operator in the block� At the top of the

block� the Live set is carried to the next block in the post�dominator tree� When returning to block v�
only those operations that a�ected the Live set are undone� so that at the bottom of v the Live set is
precisely equal to what it started as�

� Applications of Liveness

��� Interference Graph Construction

Most modern compilers perform register assignment with graph coloring algorithms ��� ���� An inter�
ference graph is constructed� such that GIG � hS�Ei� where S is the set of symbols in the program and
E is a set of edges such that 	r� s
 � E i� r interferes with s� that is� if r and s are simultaneously live
at any point in the program� The nodes in the graph are then �colored�� where each color assignment
represents a mapping from a symbol 	node
 to a physical register�
Traditionally� live variable analysis is performed to compute the set of variables live out at each

block� Then� as a separate pass� interferences are determined for each block� This is accomplished by
�rst initializing a set Live with the set out and then visiting each operation in the block in reverse order�
At each use of some symbol s in the block� s is added to Live� At each de�nition of s� s is marked as
interfering with all variables currently in Live and s is removed from Live�
The algorithm presented in the previous section to compute liveness is easily modi�ed to construct

interference graphs in the same pass�

Algorithm � Interference Graph Construction

Given� Exit� the exit block in V
I� initialized to Ist � �� �s� t � S

Do� determine the liveness at each block and
compute the interferences

The algorithm is the same as Figure �� with the addition of a line after line ���
���� if t�Type �� � then Isl � �� �l � Live

The interference graph is represented as a 	symmetric
 matrix I� such that Irs � � if symbol r interferes
with symbol s and Irs � � otherwise� �

��� Dead Code Elimination

An assignment to a variable that is not subsequently used is termed dead code ���� Dead 	or useless
 code
usually occurs as a result of compiler optimization� a branch condition may be determined to be constant�

��

code motion might e�ectively copy but not move computations� etc� Dead code elimination is an
important optimization that is always bene�cial and may be required several times during compilation�
The usual method for performing elimination is to visit the operations in each block� updating the

live set as for traditional interference graph construction� When a de�nition of some symbol s is reached
such that s is not in the live set� the de�nition and its right�hand side are removed� This will not account
for the impact of the liveness of the variables on the removed right�hand side� however� Consider this
case�

L�� y � �

if �cond� then

L	� x � y � 	

L�� endif

where out� � fyg and out� � out� � � The assignment to x can be eliminated because it is not live
after block �� but the assignment to y cannot be eliminated� the set out� does not re�ect the elimination�
Good dead code detection requires dynamic live information of the sort provided by our approach to
liveness�

Algorithm 	 Dead Code Elimination

Given� Exit� the exit block in V
Do� determine the liveness at each block and

eliminate dead code

The algorithm is the same as Figure �� with line �� changed and two lines added�
�� else

���� if t�Type �� � then remove this def and its associated rhs
���	 endif

�

��� Other Uses of Liveness Information

Liveness information may be used by a compiler for a few other relatively minor purposes� as these other
problems are also amenable to our technique� they are included here for the sake of completeness�

Uninitialized variables
 In most languages� the use of a variable prior to its de�nition is either an
incorrect program or will result in unde�ned behavior� Such uses are easily detected if a 	local
 variable
is live at Entry�

�Intent� determination
 It may be useful to determine the type of usage of each formal parameter
in a procedure � is it de�ned but not used� used but not de�ned� or both used and de�ned�� This
information might be used when performing� for example� interprocedural constant propagation� if a
variable known to be constant is passed as a reference parameter to some procedure that uses but does
not de�ne it� the variable will not be killed at the call site�
In certain cases the needed information may be determined trivially by the parser� in general� how�

ever� after any transformations have been applied by an optimizing compiler� full data�ow analysis is
needed�

�This type of information may be re�ected in some languages such as the INTENT attribute in Fortran �� ����

��

� Experimental Results

Three areas are of interest� the e�ects of the traditional� bit�vector iterative approach to liveness� the
e�ects of our ��chain method� and a time�space comparison of the two� In this section� we present
experimental data in these areas� We will show that while the ��chain algorithm for live variable
analysis is no faster than the traditional method� it is still a competitive alternative�
The algorithms for constructing ��chains� determining liveness� and constructing the interference

graph have been implemented in Nascent� a prototype high�performance� restructuring Fortran ���HPF
compiler� The programs used to collect the data were taken from two well�known benchmark suites� the
Perfect Club ��� and the Rice Compiler Evaluation Suite 	RiCEPS
� Each of these suites is made up
of several Fortran �� programs� representative of actual workloads found in high performance� scienti�c
computation environments� Over ������� lines of source code are included�
Table � characterizes these suites� For each program� as well as for the entire suites� the total number

of lines� program units 	subroutines
� basic blocks� and 	referenced
 symbols is given� The actual number
of uses and de�nitions of all the symbols is also given� The data presented in this section was collected
after an intermediate �lowering� phase within Nascent� so compiler temporary variables are included in
the symbol counts� Variables used as subroutine arguments may be counted as uses and de�nitions at
the call site� depending on the nature of the argument� Input�output statements were ignored� and no
other optimizations were performed�

��� Data for the Traditional Approach

The iterative� bit�vector method for computing liveness information requires four sets be computed and
and stored at each block in the program� the in� out� use� and def sets� In Table the number of bits
required 	in thousands
 per set is shown for each program� For the entire Perfect suite� this works out
to about ��K ��bit words of storage required for all four sets� The next four columns show that� of
these four sets� the in and out sets are sparse� The table shows the percentage of the vectors actually
used� about one percent for the entire suites� Approximately �� of the bits in the in and out sets
are used� however� Since no optimizations were performed� these densities are only an approximation�
Application of transformations such as conversion to Static Single Assignment form or optimizations
such as common subexpression eliminationmay decrease the number of live symbols relative to the total
number of symbols�
The time required for convergence of the the solution is also shown in Table � Less than four

iterations are required for computing the sets� on average� and never more than eight�

��� Data for the ��chain Approach

The space required for the ��chain method� relative to the number of symbols in the program� is shown
in Table �� Note that if a symbol is referenced 	used or de�ned
 only at the Entry block� it will require
no ��operators� For this reason� the number of referenced symbols requiring ��operators in the entire
Perfect and RiCEPS suites is ���� and ����� respectively� slightly lower than the total number of
referenced symbols� ����� and ������ The table shows the number of references per symbol using
the larger number and ��operators created per symbol using the smaller� On average� the ratios are
close� slightly more than �ve references per symbol� and the space required by the ��operators tracks
the number of references to the symbol� A histogram of the number of references 	or ��operators
 per
symbol yields a curve with a long tail� but� as indicated� �� of the cases were at most only few times
larger than the average�

��

program lines units blocks syms uses defs
ADM �	� ��
��� ��� 	���	 �
��

ARC
D ���� �� 	���
�	� 		�	
���
BDNA ���� ��
���
��� ��� ���
DYFESM ���� 		�� ���
�	� 	���

FLO
Q 	���
� 	��� 	��� ���

��	
MDG 	
�� 	� �� ���
�	� �	�
MG�D
�	

� 	�� 	�

 �
��
���

OCEAN ���� �� 	
�� 	

� ���
 	���
QCD
�
� � 	
�� �� �

 		��
SPEC�� ��� �
���

� �	�� ����

SPICE 	�
	 	
� ��
� ���� ��	�	 		��
TRACK ���� �
 ��� ��� �

� ���
TRFD �� � �� �� 	�	 ��

Perfect �	�� ���

��
��
� 	����� ����
BOAST ���� � �	� ���
���� ��	�
CCM
�� 	� ��
 ���
���� �
�

HYDRO 	���� �� 	
� 	��	 ��

��

LINPACK ��� 		 ���
�� 			
 ���
QCD
�� �� 	
�� �
� ��� 	���
SIMPLE 	�	� �
	 �	
�� ��

SPHOT 		�� � ��	 ��� 	�� ��
TRACK ��� �� �� ��	 �
� ���
WANAL	
	�� 		
	�	 	
 	��
���

WAVE �
� �
 ���	 ��	
 	�
� ���
RiCEPS ����� ���
	��
	�
� ��
��
���

Table �� Sample benchmark programs

��

space � of vector used iterations

program 	�� bits use def in out avg max
ADM 	�� ���
�
 ���� ���� �� �
ARC
D 	� ��
 	��
��
��� ���

BDNA 	�

�
 	�� ��� ���� �� �
DYFESM � ���
�� ���	 ���� �� �
FLO
Q 	�

�� 	�� ���� ���� ���

MDG � ���
�	 	�� 	�� ��� �
MG�D 	�
�
 	� 	�� 	��� �� �
OCEAN
�� 	�	 ��� �� �� ��	 �

QCD � ��	 	�� ��� ���� ��� �
SPEC�� 	�
�� 	�� �� ��� ��� �
SPICE 	��� 	� ��� �
�� �
�� ��	 �

TRACK �� ��
 	�� ��	 ��	 ��� �
TRFD �	 	�� 	�

���
��� �� �
Perfect
��
�	 	�� ���� ���	 �� �

BOAST ��
 	�� ��� ���� ���� ��� �
CCM �
� 	� ��� ��� ���� ��� �
HYDRO 	�
�� 	�� ���� ���� ��

LINPACK 	 ���
�� �
�� �
�� ��
 �

QCD ��
� 	�� �	�� �	�� �� �
SIMPLE �� 	�� ��� ���� ���� ��	
SPHOT �� 	�� ��� ��� ���� ��� �

TRACK � ��
 	�� ��	 ��� ��� �
WANAL	

� ��
 ��	 �
�� �
�� ��� �
WAVE ��

�	 	�

���
��� ���

RiCEPS ���� ��� �� ��� ���� ��� �

Table � Traditional method data

��

refs	sym �	sym

Program avg �� avg ��
ADM ��� 	� ��� �
ARC
D ��

� ��� 	�

BDNA �� 	� ��� 	�
DYFESM ��� 	
 ��� 	

FLO
Q � 	� ��� 		

MDG ��	 	� ��� �
MG�D ��

� ��
�
OCEAN ��� 	 ��� 	�

QCD ��
	 ��� 	�
SPEC�� � 	� ��� 	�
SPICE ��	 	� ���
�

TRACK ��� 	� ���
�
TRFD ��� 	� ��� 		
perfect � 	� �� 	�

BOAST � 	� ���
	
CCM �� 	 ��� 	

HYDRO ��� 		 ��
 	�
LINPACK ��
� ��
 �

QCD � 	� ��� 	

SIMPLE ��� 	� ��� �
SPHOT �� 	 ���
�

TRACK ��� 	� ��
�
WANAL	 �	 � ��� 	

WAVE � 	� ��� 	

riceps �
 	 �� 	�

Table �� ��chain data

��

The total number of ��operators created for the Perfect suite can be found by multiplying the number
of ��operators per symbol by the number of symbols� yielding approximately ������ ��operators� The
amount of space required to implement a ��operator in a compiler�s intermediate form is obviously
implementation dependent� but the best case would be one word per operator� resulting in ��K words�
This is of the same order of magnitude as in the traditional algorithm 	��K
�
To determine liveness� the method we have outlined requires processing strongly connected compo�

nents in the ��graph� We have found that on average slightly more than �� percent of the ��operators
in the benchmarks were part of such a component� the percentages ranged from a low of � to a high of
��� and most were clustered between � and �� percent� The component sizes ranged from � to �� with
an average of ����

��� Comparative Performance

We next consider the speed of the iterative� bit�vector algorithm and the speed of di�erent implemen�
tations of the ��chain algorithm� The implementations were written with equivalent consideration for
performance and extensive optimization was left to the compiler 	gcc version ������ �O	
� The experi�
ments were run on three Sun SPARC computers� A� an ��MHz IPX workstation with �MB� B� a ��MHz
Classic workstation with ��MB� and C� a SPARCcenter ���� server�
The implementation of the liveness algorithm presented in section uses a recursive procedure to do

the traversal of the post�dominator tree� The traditional liveness computation is easily implemented as
an iterative procedure� however� Similarly� either a bit�vector or a linked list may be used in maintaining
the Live set in the ��chain algorithm� 	The traditional algorithm uses bit�vectors for the four sets since
the operations required by the data�ow equations �vectorize� as logical operations�
 We found that�
on the SPARC� the choice of iterative�recursive traversal and bit�vector�linked�list sets generally varied
execution times for the interference graph construction by �� to �� � with the iterative linked�list
approach performing the best�
The traditional algorithm for interference graph construction has three steps�

� init� compute the use and def sets

� live� compute the in and out sets

� ifg� compute the interference graph

The ��chain algorithm also has three steps�

� place� insert ��operators

� chain� set the links for the ��operators

� ifg� compute liveness and the interference graph

In addition� both methods require some overhead in our implementation to allocate storage for the data
structures used� The traditional algorithmperforms less work than the ��chain algorithm� and ultimately
performs faster� In comparing the two initial phases of both methods� the traditional algorithm requires
few iterations� performing simple operations at each block� whereas the ��chain algorithm requires
considerably more time to place the ��operators for each symbol and then traverse the tree� maintaining
the current reference to each symbol and setting links� In comparing the interference graph phase� the
��chain algorithm uses a complex �ow graph traversal method and requires two passes through each
block 	going up and going down
� The traditional algorithm visits blocks in any order� relying on the
static out sets� and requires only one pass� 	Note the time to compute the post�dominance frontier is

��

Perfect RiCEPS
A B C A B C

Traditional �
 	�� �� 	
�

 		
init �
 �

liveness 	
 �	
 �	 �	
ifg �� �� �� �� 	� �

overhead
 ��

 �� �� ��

Lambda 		� 	�� 	
� 	�� ���
��
placement 	�
 	�

�

chaining � 		 � � �
ifg � 		� �� �� 	�
 	�	
overhead � ��
� �	 � ��

Ratio 	�� 	��� 	��	 	��� 	��� 	���

Table �� Times for traditional and ��chain methods

not considered for the ��chain algorithm because PDF sets are useful for other analyses 	e�g� control
dependence
 and in any case will account for less than one percent of the total compilation time�

Table � presents the time 	in seconds
 for each of these six phases� plus the overhead required� The

total time for each method and the performance ratio are also shown� The data is presented for two
runs� one for all of the programs in both suites 	granularity precludes accurate per�program timing
�
The experiments were run on all three platforms� yielding di�erent performance ratios as a result of
the large amount of memory required by the algorithms and the very di�erent memory con�gurations
in each machine� The overall time required using ��chains is roughly �� greater than the traditional
algorithm�

� Conclusions

We have presented a new technique for determining liveness based on reference chains� The technique
is of interest in four respects� 	�
 a sparse SSA�like representation is used which embeds the necessary
de�nition�use information within the program at the only the points required� 	�
 liveness is not de�
termined for each variable separately� but instead allows the solution of all variables in one pass� 	

the liveness of variables is dynamically computed� rather than storing sets each block in the �ow graph�
improving the precision of optimizations such as dead code elimination� and 	�
 liveness is determined
without iteration� taking advantage of the partitionable nature of the data�ow problem�
The algorithms to compute the ��chains and construct the interference graph were implemented in

a compiler and shown to be competitive with the textbook data�ow approach in both space and time�
While this new method does require more computation� its use by other analyses and optimizations may
amortize the cost�
There are three areas that remain to be examined� Most importantly� the relationship between

the ��operators for reaching de�nitions in the Static Single Assignment form and our ��operators for
upwards exposed references suggests that this style of analysis � capturing data�ow information at join
and branch control �ow points � may provide a complete basis for a set of data�ow problems� The
algorithms we have presented here provide evidence for this�
Second� in this paper we have considered the liveness property of variables� a backwards data�ow

problem� A related problem is that of busy or anticipatable expressions� an expression e is said to be

��

busy 	very busy
 at point p if e may 	will
 be used after p ���� The use of operators similar to ��operators�
using expressions instead of variables� may be investigated�
Finally� the characteristics of the ��operators inserted should be examined� In particular� ��operators

whose lattice value does not contribute to the solution need not be inserted� It remains to be seen if this
can be determined during construction and how much bene�t it would provide� A somewhat related
question of great importance to optimizing compilers is whether ��chains can be dynamically updated
to re�ect transformations within the program�

References

�	� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers� Principles
 Techniques
 and Tools� Addison�Wesley�
Reading� MA� 	����

�
� Charles N� Fischer and Richard J� LeBlanc� Jr� Crafting a Compiler� Benjamin�Cummings� Menlo Park�
CA� 	����

��� Jong�Deok Choi� Ron Cytron� and Jeanne Ferrante� Automatic construction of sparse data �ow evaluation
graphs� In Conf� Record ��th Annual ACM Symp� Principles of Programming Languages� pages ����
Orlando� Florida� January 	��	�

��� Eric Stoltz� Michael P� Gerlek� and Michael Wolfe� Extended SSA with factored use�def chains to support
optimization and parallelism� In Proc� of �th Annual Hawaii International Conference on System Sciences�
pages ���
� January 	����

�� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and F� Kenneth Zadeck� E�ciently
computing Static Single Assignment form and the control dependence graph� ACM Trans� on Programming
Languages and Systems� 	������	����� October 	��	�

��� Dhananjay M� Dhamdhere� Barry K� Rosen� and F� Kenneth Zadeck� How to analyze large programs
e�ciently and informatively� In Proc� ACM SIGPLAN �� Conference on Programming Language Design
and Implementation� pages
	
�

�� San Francisco� June 	��
�

��� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and Kenneth Zadeck� An e�cient method
of computing static single assignment form� In Conf� Record ��th Annual ACM Symp� on Principles of
Programming Languages� pages
��� Austin� TX� January 	����

��� R� Tarjan� Depth��rst search and linear graph algorithms� SIAM J� Comput�� 	�
��	���	��� June 	��
�

��� Frank Kenneth Zadeck� Incremental data �ow analysis in a structured program editor� In Proc� SIGPLAN
��� Symp� on Compiler Construction� pages 	�
�	��� Montreal� Canada� June 	����

�	�� Michael Wolfe� Michael P� Gerlek� and Eric Stoltz� Demand�driven data �ow analysis� �unpublished�� 	����

�		� Preston Briggs� Register allocation via graph coloring� PhD Dissertation COMP TR�
�	��� Rice Univ��
Dept� Computer Science� April 	��
�

�	
� Jeanne C� Adams� Walter S� Brainerd� Jeanne T� Martin� Brian T� Smith� and Jerrold L� Wagener� Fortran
�� Handbook� McGraw�Hill Book Company� New York� NY� 	��
�

�	�� George Cybenko� Lyle Kipp� Lynn Pointer� and David Kuck� Supercomputer performance evaluation and
the Perfect Benchmarks� In International Conference on Supercomputing� pages
� �
��� March 	����

��

