A Reference Chain Approach for Live Variables

Michael P. Gerlek? Michael Wolfe, Eric Stoltz
Oregon Graduate Institute of Science & Technology
Department of Computer Science and Engineering

P.O. Box 91000
Portland, OR 97291-1000 USA
503-690-1121 x7404
fax: 503-690-1548

gerlek@cse.ogi.edu

April 16, 1994

Abstract

The classical dataflow approach to determine the set of variables that are live at some point in
a program entails using an iterative algorithm across the entire program, usually with costly bit-
vector data structures. Methods based on sparse evaluation graphs exist, but these are solved on a
per-variable basis and are also iterative. Inspired by our group’s interest in sparse representations
of use-def and def-use reference chains, we are investigating still another approach.

In this paper, we present an algorithm for determining liveness of variables based on upwards
exposed use information at control flow branch points, analogous to the collection of reaching def-
inition information in the popular Static Single Assignment form. We demonstrate the use of our
technique with two applications, building interference graphs and eliminating dead code, and show
that this new reference chain approach has important advantages over previous methods.

Keywords: dataflow analysis, static single assignment, sparse evaluation graph, slotwise analysts, live
variables, interference graph, dead code elimination

*This research was supported by ARPA under grant F3062-92-C-135.

1 Introduction

A variable v at some point p in a program is considered live at p if v may be used along some control
flow path from p, that is if v has an upwards ezposed use [1]. If v is used nowhere after p, then v is
dead at p. This determination of the set of live variables at any point in a program, called live variables
analysis, is used by compilers in order to perform such analyses as the construction of interference graphs
for register assignment (if two variables are both live at p they cannot share a register and are said to
interfere) and such optimizations as dead code elimination (if v is defined at p but not subsequently
used, i.e. v is dead after p, the defining statement may be removed).

Live variables analysis 1s a textbook backwards dataflow problem, and the standard solution requires
an 1terative algorithm. For each basic block b in a program, two sets are computed: the set of variables
defined prior to being used in b, def,, and the set of variables used prior to any definition, use,. To
compute which variables are live at the entry and exit to b, the following equations are used to combine
the information at & with the information of the blocks following b:

inp = usep U (outy, — defy)
out, = U ng
s€succ(b)

The computation of the in and out sets is iterated until convergence.’

Although this solution usually works well in practice, there are two drawbacks. First, the algorithm
is iterative in nature. While the number of iterations for liveness analysis is small in most cases, other
similar dataflow problems may iterate more times or may require more expensive equations to be solved
at each block. In most cases, iteration is needed only for certain regions of the program. We are
interested in solutions that will correspondingly minimize (or eliminate completely) the costs of this
iterative approach.

The second drawback i1s the amount of storage required by the algorithm. Four sets must be stored
for each block in the program, resulting in % 32-bit words of space if using bit-vectors, where V is the
number of blocks and S the number of symbols in the program. If the bit-vectors are sparse, this is
not an efficient technique; Choi et al note that “compiler writers generally acknowledge bit-vectors are
overly consumptive of space” [3]. A preferable approach would be to take advantage of the definition/use
information already within the program, avoiding the space required for the def and use sets.

Our research group’s interest in the advantages of reference chains (representations of factored use-
def and def-use chains [4]) has led to the investigation of an alternative to the iterative approach. This
paper presents a solution to the live variables problem which uses A-operators to merge upwards exposed
reference information at branch points in the control flow graph. The idea is derived from the traditional
Static Single Assignment (SSA) form in which ¢-operators are placed at flow graph confluence points
to merge multiple reaching definitions [5].

By using the information embedded within the flow graph at the A-operators, we avoid the need
for the in and out sets: at each block, the relevant information is determined by the confluence of the
upwards exposed references determined by the A-operators. As we will show, liveness analysis does
not require explicit computation of these sets for such applications as interference graph construction
and dead code elimination (and in fact improves the elimination algorithm). While our technique is
admittedly slower and requires an equivalent amount of space as compared to the iterative bit-vector
approach, it represents a first sparse graph solution to the live variables problem.

In the remainder of this section, we present some perspective and background material, relating our
work to sparse evaluation graphs and the classical SSA form. In the next two sections, we present an

1We will assume the reader is familiar with these concepts; details may be found in most compiler texts [1, 2].

algorithm to construct the reference chains and an algorithm to compute liveness using them. In section
4 we show how to construct an interference graph from these chains and discuss other applications such
as dead code elimination. In section 5 we present a performance analysis based on our implementations
of these algorithms. We conclude in section 6 with some remarks on the implications of this work.

1.1 Sparse Graph Representations

Several alternative methods of dataflow analysis have recently been suggested, attempting to address
the drawbacks of the traditional approach.

Sparse Evaluation Graphs. In practice, many nodes in a flow graph may not contribute to
the final solution. In live variables analysis, for example, a given variable will be used or defined only
in a small number of places in the program. Sparse evaluation graphs represent a subset of the flow
graph for a particular problem, connecting only the nodes effecting the solution [3]. A standard solver
is then applied to the reduced graph and the solution 1s mapped back to the original flow graph. Sparse
evaluation graphs do not present a new solution technique as such but rather minimize the cost of the
standard ones. The problem with these sparse graphs is that the dataflow problem must be solved
per variable, requiring construction of a separate sparse graph for each variable. An open question is
whether the cost of constructing n sparse graphs and solving n small problems is less than the cost of
solving n (possibly vectorizable) problems simultaneously.

Static Single Assignment Form. SSA form is used to capture reaching definition information at
points in the program [5]. The program is augmented with ¢-operators which merge reaching definitions
at flow graph confluence points. Uses are then linked to the unique reaching definition so that in this
form the information (reaching definitions) is available only where required. SSA-based algorithms use
these links in the program essentially like sparse evaluation graphs. SSA form only provides def-use
links and cannot be used to solve all dataflow problems, as opposed to the general sparse evaluation
graph mechanism: for example, while SSA form can be used to detect dead code, it cannot be used to
construct interference graphs.

Slotwise Analysis. For dataflow problems requiring only a binary lattice (Tand L), there are
only three interesting transfer functions that can occur at a node: either the node will have a known
value of Tor L, or the node will propagate the solution of a predecessor node (for forwards problems)
[6]. Slotwise analysis proceeds by first processing nodes with constant solutions. For nodes with the
propagate transfer function, those that are reached by any nodes whose solution is L will have L as
their solution. The remaining nodes will have T as their solution. The solution at a constant node does
not depend on input from its predecessor, making the problem strictly monotonic, i.e. the solution at
any point can only be lowered. The solution can be determined in one pass over the graph. Similar to
sparse evaluation graphs, the slotwise approach is also performed “per variable”.

The method we present here combines aspects of all of these approaches. Using A-chains, the dataflow
problem is solved on a sparse graph similar to SSA form, where liveness information is only represented
at the points in the flow graph where it is needed. The dataflow problem is solved using a slotwise
approach, where the A-operators correspond to the nodes in the sparse graph. The solutions for all
variables can be determined simultaneously, however, using an embedded graph rather than separate
graphs.

2 Lambda Chain Construction

We begin by defining the framework for our representation and some necessary terms and concepts.
A program is represented as a control flow graph (CFG), Gepg = (V, E, Entry, Exit), where V is
a set of nodes representing basic blocks in the program and FE is a set of edges representing sequential

control flow. Entry and Erit are distinguished nodes representing the unique entry and exit points in
the program; we assume all nodes are reachable from Entry and all nodes reach Ezit. We also assume
the placement of the so-called technical edge from Entry to Erit, needed for control dependence relations
[7]. We denote an edge in the CFG from node X to Y as X — Y. The set Pred(X) represents the
predecessors of X in the CFG, that is the set of all nodes v € V' such that v — X. The set Suce(X)
similarly represents the successors of X in the CFG.

Each block contains a list of operations or statements, denoted Ops(v). Without loss of generality,
we will assume each operation to be either a use (fetch), a definition (store), or a A-operator for some
symbol s € S where S is the set of all symbols in the program. We denote the type of some operation
t as type(t) € {use,def, A} and the symbol it references as symbol(t) € S. If symbol(t) = s for some ¢,
then t references s.

Our technique uses the concepts of post-dominator and post-dominance frontier, which correspond
to the concepts of dominator and dominance frontier but for the reverse of the control flow graph.
Briefly, if for some nodes X,Y € V| Y appears on every path from X to Exit, then Y post-dominates
X, written Y pdom X. If Y pdom X and Y # X, then Y strictly post-dominates X, written Y spdom
X. The immediate post-dominator of X, ipdom(X), is the closest strict post-dominator of X. The
post-dominator tree contains the set of nodes V', connected by edges such that Y — X in the tree iff
ipdom(Y) = X.

The post-dominance frontier of a node Y, PDF(Y) C V, is the set of nodes X such that ¥ post-
dominates a successor of X but does not strictly post-dominate X:

PDF(Y) ={X | (35S € Suce(X))(Y pdomS) A =(Y spdom X)}
The iterated post-dominance frontier of Y, PDFT(Y), is the limit of the sequence

PDF'(Y) = PDF(Y)
PDF'(Y) = PDF(Y UPDF'~'(Y))

The set PDFT(Y) is computed via a worklist algorithm, and is equivalent to the iterated join set of the
reverse control flow graph; we will rely on this in the following algorithms, and the reader is encouraged
to refer to the seminal papers by Cytron et al for details [7, 5].

As an example, consider the following program:

i=0
while (p) do
if (q) then
i=1i+1
endif
endwhile

For clarity, we will make the basic blocks explicit and consider only references to i, distinguishing them
by subscripting:

[+)) (5,
L
)

Figure 1: CFG for example program

LO:
L1i: io =
L2: if (...) goto L7
L3: if (...) then
L4: = iy
i2 =
L5: endif
L6: goto L2
L7:
L8:

The corresponding control flow graph is shown in Figure 1 (note the placement of the technical edge
0 — 8) and the immediate post-dominators and post-dominance frontier sets are given in Table 1. For
reference, the def, use, in, and out sets are also shown.

2.1 Chaining Algorithm

There are two phases involved in converting a program to the A-chain form: the placement phase, which
places the A-operators at branch points in the CFG, where upwards exposed reference information must
be combined, and the chaining phase, which creates the links (chains) from each A-operator to its
upwards exposed references. The algorithms for these two phases are directly adapted from the SSA

v | ipdomof v | PDF(v) | def, | use, | in, | outy,
0 8

1 2 0 1

2 7 0,2 1 1
3 5 2 1 1
4 5 3 1 1 1
5 6 2 1 1
6 2 2 1 1
7 8 0

8

Table 1: Post-dominator and liveness for example program

construction algorithms of Cytron et al [7].

In the placement phase, each symbol in the program is processed separately as in SSA. First, a
worklist is initialized to the set of blocks containing at least one reference to the symbol. A block w
is selected from the worklist, and a A-operator is appended to the list of operations of each block in
the post-dominance frontier of w. Each block in the frontier is added to the worklist, creating the
iterated post-dominance frontier set. This process iterates until the worklist 1s empty and all necessary
A-operators have been placed.

In the chaining phase, the arguments to A-operators must be set such that each A-operator is “linked”
to the upwards exposed references of its symbol; the Ad-operators, placed at CFG merge points, represent
the combining of this information exposed along the outgoing paths. For each successor of the block a
A-operator is placed in, the A-operator has exactly one link, initially empty (¢). These links are now
filled in to point to the upwards exposed reference of the A-operator’s symbol. The blocks in the CFG
are visited in a bottom-up order (we use the post-dominator tree), saving the most current reference to
each symbol at each referencing operation. When the top of the block is reached, links in the A-operators
of predecessors of the current block are set to point to the current, ¢.e. upwards exposed, reference.

Consider the example from above. The worklist is initialized to blocks 1 and 4; since PDF+(1) U
PDF*(4) = {0,2,3}, a A-operator is placed at the end of each of these three blocks.

LO: iz = A(o,0)

L1i: io =

L2: if (...) goto L7
ig = Ao, 0)

L3: if (...) then
ig = Ao, o)

L4: = iy
i2 =

L5: endif

L6: goto L2

L7:

L8:

In the second phase, the current reference is initially . The CFG is traversed in the order {8, 7, 2,
1,6, 5,4, 3, 0}. Starting with block 8, the A-operator in predecessor block 0 has its second link set to

o. At block 7, predecessor 2 has its second link set to ¢. Visiting block 2 next, the current reference is
set to ig. At block 1, the current reference is set to ig and the old reference to ig is saved. The first
link of the A-operator in predecessor block 0 is set to ig. We must return down the post-dominator
tree: in block 1 the current reference is restored to i4. The process continues at block 2 by visiting its
other child, block 6. After all blocks have been visited and all links have been processed, the resulting
program 1s:

LO: iz = /\(io,o)
Li: ig =
L2: if (...) goto L7
i4 = /\(i5,0)
L3: if (...) then
ig = A(ig,11)
L4: =14
i2 =
L5: endif
L6: goto L2
L7:
L8:

Algorithm 1 Lambda Chain Construction

Given: V, the set of basic blocks in the program,
FErit, the exit block, and
S, the set of symbols in the program,
Do: insert A-operators and create the corresponding chains

We will use several data structures. For each block v € V, two fields are used: v.InWork, the symbol for
which block v was last inserted into the worklist, and v. Added, the symbol for which block v last had a
A-operator added. For each operation t € Ops(v),Yv € V, one field is used: t.Save, the operation that
was the last reference for symbol(t). For each symbol s € S| two fields are used: s.UpErpRef, the set
of blocks containing upwards exposed references to s, and s. CurrRef, the operation that is the current
reference to s.
procedure Construct_Chains(V, Erit, S)
Place Lambdas(V, 5)
Set_Links(Ezit)
endprocedure
The code for procedures Place_Lambdas and Set_Links are shown in Figures 2 and 3. Note that at line
15 of Place_Lambdas, the links for the new A-operator are assumed to be empty. The post-dominance
frontiers are assumed to have already been created. a

2.2 Correctness

The proof of correctness for A-chain construction can be directly adapted from the original SSA con-
struction proofs by Cytron et al [7]. In the SSA ¢-placement algorithm, a ¢-operator for symbol s
is placed at the iterated dominance frontier? of the set of blocks containing assignments to s. In the

2 Technically, the iterated join set is used; the iterated dominance frontier is proved equivalent.

G W N =

procedure Place_Lambdas(V, S)
for v € V do
v.InWork =0
v.Added = 0
endfor
Worklist = 0

for s € S do
for w € s.UpEzpRef do
Worklist = Worklist U {w}
w.InWork = s
endfor
while Worklist # 0 do
remove some w from Worklist
for p € PDF(w) do
if p.Added # s then
append a A-operator for s at end of Ops(p)
p.Added = s
if p.InWork # s then
WorkList = WorkList U {p}

p.InWork = s
endif
endif
endfor
endwhile
endfor
endprocedure

Figure 2: Algorithm for inserting A-operators

G W N =

= =

13:
14:

15:
16:
17:
18:

= O W 00N,

procedure Set_Links(v)
for t € Ops(v) in reverse order do
s = symbol(t)
t.Save = s.CurrRef
s.CurrRef =t
endfor

for p € Pred(v) do
for ¢t € Ops(p) where type(t)= A do
s = symbol(t)
set corresponding A-argument to s. CurrRef
endfor
endfor

for p € PDomChild(v) do
Set_Links(p)
endfor

for t € Ops(v) in forward order do
s = symbol(t)
s.CurrRef = t.Save
endfor
endprocedure

Figure 3: A-operator Linking Algorithm

Place_Lambdas algorithm, we have replaced the notion of dominator with post-dominator and ex-
tended the set of blocks containing assignments to s with the set of blocks containing references to
s.

Similarly, our procedure Set_Links performs the same task as the SSA SEARCH procedure. For
each successor at a branch point in the CFG, a link of a A-operator at that CFG node is set to the
upwards exposed reference along that path, as the links of ¢-operators are set to the corresponding
reaching definitions along incoming branches.

By this reasoning, Construct_Chains inserts A-operators at precisely those points where dataflow
information must be represented. In the Static Single Assignment form, a ¢-operator represents the
set of the reaching definitions of some variable at that CFG confluence point. In our representation for
liveness analysis, a Ad-operator represents the set of upwards exposed references for some variable at that
CFG branch point.

3 Liveness

Once the A-operators have been placed and their links set, as described in Section 2, the in and out
live sets may be determined for each block in the program. This is accomplished by traversing the flow
graph and adding and deleting variables from the live set at each operation.

3.1 Liveness Algorithm

The CFG is traversed in bottom-up order, starting at the exit block. At the bottom of Ezit, the set of
live variables is @), corresponding to outg.;;. The operations in the block are visited in reverse lexical
order, modifying the live set at each point as needed: at a use the variable is added to the live set, if
not already live, and at a definition the variable is removed from the live set, 7.e. it goes dead. At the
top of the block, the live set is precisely the ingqq: set.

The live set is carried to the next block to be visited, and the process of visiting each operation is
repeated. At each A-operator site, however, 1t must be determined whether the operator represents a use
or a definition of its variable; this is a function of the nature of the links of the A-operator. Intuitively,
a A-operator may be viewed as a placeholder, representing a “forwarding” of liveness information from
some other point in the flow graph.

A simple lattice framework is used, with each operation assigned a lattice value representing its effect
on its symbol. In this lattice,

T

|
L

the value T represents “dead” and L represents “live”. All definitions and uses are assigned lattice
values of T and L, respectively. The lattice value of each A-operator is initially set to T. When a
A-operator is encountered in the reverse-order visit of operations, its links are examined. Each link may
be undefined (o), implying no upwards exposed reference of the symbol along that path, or it may point
to a use, a definition, or another A-operator for the symbol. The lattice value of a A-operator is set to
be the meet (M) of the lattice values of its links (where an undefined link is assigned a lattice value of
T). This value determines the A-operator’s effect on the live set, that is whether it should be treated as
a use (L) or a definition (T).

If the links of a A-operator all point to uses or definitions or are undefined, this is straight-forward.
If one or more of the links is to another A-operator, another technique is needed, since the lattice value
of the second A-operator must be determined before it can be used. In general, the second A-operator

10

may lead to still other A-operators or may even have a link back to the first A-operator, creating a cycle.
Such is the case in the example from the previous section. The lattice value of the A-operator defining
ig in block 2 is the meet of T and the lattice value of the A-operator in block 3. In terms of liveness
information, this corresponds to the fact that i is dead outside the loop and its liveness is not known
inside the loop.

A demand-driven technique is used to assure that all Ad-operators are assigned lattice values before
some other A-operator requires them. The lattice value of each link of a A-operator encountered during
the bottom-up traversal of the flow graph is evaluated using Tarjan’s well-known algorithm for detecting
strongly connected components (SCCs) in directed graphs [8]. This algorithm has the important property
that each component in the graph is visited and processed only after each of its descendants have been
visited and processed. Tarjan’s algorithm is applied to an abstraction of the program, the A-graph,
Gy = (V, E), where V is the set of operations (uses, definitions, and A-operators) in the program and
E is the set of links from each A-operator to other operations.

When the lattice value of a A-operator is required, Tarjan’s algorithm is used to “search” the A-
graph, starting at that root, and assign lattice values to all A-operators the root “depends” on for its
solution. When a component is identified, the nodes within it (a set of operations) are assigned a lattice
value based on the lattice value of all the successors of the SCC. Note that no iteration is required to
determine the lattice value of the cycle; the lattice value of each node in the component is set to the
meet of the set of successors of the component.3

In Figure 4 we show the A-graph for the example program, with the lattice value to the right of the
nodes. To determine the lattice value of the A-operator at block 3 (ig), for example, the cycle assumes
the meet of the undefined second link of the A-operator of ig (T) and the first link of the A-operator of
ig to the use of i4, L. The meet, L, signifies 1 is live in the cycle, and therefore live at the bottom of

blocks 2 and 3.

Algorithm 2 Liveness

Given: Ezit, the exit block in V
Do: determine liveness at each block

The algorithm is shown in Figure 5. The set Live is initialized to §§ and it is invoked as Liveness(Exrit,
Live). The bottom-up walk is performed as a recursive traversal of the post-dominator tree.

Note that the sets in and out for each block, required by the iterative dataflow algorithm, are not
explicitly computed. When the loop at line 1 has processed all the A-operators (and not yet processed
any other operations), Live is precisely out,. When line 21 is reached, Live is precisely in,. a

3.2 Correctness

Correctness of the liveness algorithm can be shown by induction. The solution (the out set) is trivially
correct at the Exit block (Live = }). We will show (informally) that at each block subsequently visited,
the correct out set is computed.

At the end of some block v, the set Live is determined by the state of the Live set at the top some
block w that is a descendant in the flow graph, corresponding to the in,, set. The operations in v serve
to add and remove symbols from the live set.

3This is an example of a cluster partitionable [9] or uniformly monotonic [10] problem. We omit details due to space
limitations.

11

i3=A(1i0, *)

i4=A(i5,*)

i5=A(il,14)

Figure 4: A-graph for example program

12

e e e e e e
D ~N O U WwN = O

]
o

21:
22:
23:

24:
25:
26:
27:
28:
29:
30:

© W0 N U WN =

-
©

procedure Liveness(v, Live)
for t € Ops(v) in reverse order do
if type(t)= X then
if t. Visited = false then
set t.Lattice using Tarjan’s alg on the A-graph
t. Visited = true
endif
endif
t.Marked = false
s = symbol(t)
case t.Lattice
1:if s ¢ Live then
Live = Live U {s}
t.Marked = true
endif
T:if s € Live then
Live = Live — {s}
t.Marked = true
endif
endcase
endfor

for p € PDomChild(v) do
Liveness(p, Live)
endfor

for t € Ops(v) in forward order do
s = symbol(t)
case t.lattice
L:if t. Marked then Live = Live — {s}
T:if t. Marked then Live = Live U {s}
endcase
endfor
endprocedure

Figure 5: Liveness Algorithm

13

If v 1s not immediately post-dominated by w, however, other blocks may contribute to the live set of
v. That is, if v has more than one successor, the set Live must be modified to account for the presence of
A-operators. For each successor of v, each A-operator in v will have one link to the subsequent reference
(if any) of its variable along the path containing that successor. If the subsequent reference is a use,
a definition, or no reference, the lattice value 1s set accordingly. If the subsequent reference is another
A-operator, the A-graph will form a tree whose leaves are a use or a definition or are undefined (recall
that by the algorithm used, cycles are effectively collapsed to a single A-operator). Thus, irrespective of
the flow graph, the lattice values inherited by the A-operator will reflect the upwards exposed references
of the symbol; there can be no other intervening references to the symbol in the program, by the
construction in section 2.

The Live set is now modified by each use, definition, and A-operator in the block. At the top of the
block, the Live set is carried to the next block in the post-dominator tree. When returning to block v,
only those operations that affected the Live set are undone, so that at the bottom of v the Live set is
precisely equal to what it started as.

4 Applications of Liveness

4.1 Interference Graph Construction

Most modern compilers perform register assignment with graph coloring algorithms [1, 11]. An inter-
ference graph is constructed, such that Grg = (S, E), where S is the set of symbols in the program and
E is a set of edges such that (r,s) € E iff r interferes with s, that is, if » and s are simultaneously live
at any point in the program. The nodes in the graph are then “colored”, where each color assignment
represents a mapping from a symbol (node) to a physical register.

Traditionally, live variable analysis is performed to compute the set of variables live out at each
block. Then, as a separate pass, interferences are determined for each block. This is accomplished by
first initializing a set Live with the set out and then visiting each operation in the block in reverse order.
At each use of some symbol s in the block, s is added to Live. At each definition of s, s is marked as
interfering with all variables currently in Live and s is removed from Live.

The algorithm presented in the previous section to compute liveness is easily modified to construct
interference graphs in the same pass.

Algorithm 3 Interference Graph Construction

Given: FEit, the exit block in V
I, initialized to I;; = 0,Vs,t € S

Do: determine the liveness at each block and
compute the interferences

The algorithm is the same as Figure 5, with the addition of a line after line 11:
11.1 if t.Type # A then I = 1, VI € Live

The interference graph is represented as a (symmetric) matrix I, such that I,; = 1 if symbol r interferes
with symbol s and 1. = 0 otherwise. 0O

4.2 Dead Code Elimination

An assignment to a variable that is not subsequently used is termed dead code [1]. Dead (or useless) code
usually occurs as a result of compiler optimization: a branch condition may be determined to be constant,

14

code motion might effectively copy but not move computations, etc. Dead code elimination is an
important optimization that is always beneficial and may be required several times during compilation.

The usual method for performing elimination is to visit the operations in each block, updating the
live set as for traditional interference graph construction. When a definition of some symbol s is reached
such that s is not in the live set, the definition and its right-hand side are removed. This will not account
for the impact of the liveness of the variables on the removed right-hand side, however. Consider this
case:

Li1: y=1

if (cond) then
L2: xX=y+2
L3: endif

where out; = {y} and outy = outs = (). The assignment to x can be eliminated because it is not live
after block 2, but the assignment to y cannot be eliminated: the set out; does not reflect the elimination.
Good dead code detection requires dynamic live information of the sort provided by our approach to
liveness.

Algorithm 4 Dead Code Elimination

Given: FEit, the exit block in V
Do: determine the liveness at each block and
eliminate dead code

The algorithm is the same as Figure 5, with line 18 changed and two lines added:

18 else
18.1 if t. Type # X then remove this def and its associated rhs
18.2 endif

O

4.3 Other Uses of Liveness Information

Liveness information may be used by a compiler for a few other relatively minor purposes; as these other
problems are also amenable to our technique, they are included here for the sake of completeness.

Uninitialized variables: In most languages; the use of a variable prior to its definition is either an
incorrect program or will result in undefined behavior. Such uses are easily detected if a (local) variable
is live at Entry.

“Intent” determination: It may be useful to determine the type of usage of each formal parameter
in a procedure — is it defined but not used, used but not defined, or both used and defined?* This
information might be used when performing, for example, interprocedural constant propagation: if a
variable known to be constant is passed as a reference parameter to some procedure that uses but does
not define it, the variable will not be killed at the call site.

In certain cases the needed information may be determined trivially by the parser; in general, how-
ever, after any transformations have been applied by an optimizing compiler, full dataflow analysis is
needed.

4This type of information may be reflected in some languages, such as the INTENT attribute in Fortran 90 [12].

15

5 Experimental Results

Three areas are of interest: the effects of the traditional, bit-vector iterative approach to liveness, the
effects of our A-chain method, and a time/space comparison of the two. In this section, we present
experimental data in these areas. We will show that while the A-chain algorithm for live variable
analysis is no faster than the traditional method, it is still a competitive alternative.

The algorithms for constructing A-chains, determining liveness, and constructing the interference
graph have been implemented in Nascent, a prototype high-performance, restructuring Fortran 90/HPF
compiler. The programs used to collect the data were taken from two well-known benchmark suites, the
Perfect Club [13] and the Rice Compiler Evaluation Suite (RICEPS). Each of these suites is made up
of several Fortran 77 programs, representative of actual workloads found in high performance, scientific
computation environments. Over 100,000 lines of source code are included.

Table 2 characterizes these suites. For each program, as well as for the entire suites, the total number
of lines, program units (subroutines), basic blocks, and (referenced) symbols is given. The actual number
of uses and definitions of all the symbols is also given. The data presented in this section was collected
after an intermediate “lowering” phase within Nascent, so compiler temporary variables are included in
the symbol counts. Variables used as subroutine arguments may be counted as uses and definitions at
the call site, depending on the nature of the argument. Input/output statements were ignored, and no
other optimizations were performed.

5.1 Data for the Traditional Approach

The iterative, bit-vector method for computing liveness information requires four sets be computed and
and stored at each block in the program: the in, out, use, and def sets. In Table 3 the number of bits
required (in thousands) per set is shown for each program. For the entire Perfect suite, this works out
to about 300K 32-bit words of storage required for all four sets. The next four columns show that, of
these four sets, the in and out sets are sparse. The table shows the percentage of the vectors actually
used, about one percent for the entire suites. Approximately 40% of the bits in the in and out sets
are used, however. Since no optimizations were performed, these densities are only an approximation.
Application of transformations such as conversion to Static Single Assignment form or optimizations
such as common subexpression elimination may decrease the number of live symbols relative to the total
number of symbols.

The time required for convergence of the the solution is also shown in Table 3. Less than four
iterations are required for computing the sets, on average, and never more than eight.

5.2 Data for the A-chain Approach

The space required for the A-chain method, relative to the number of symbols in the program, is shown
in Table 4. Note that if a symbol is referenced (used or defined) only at the Entry block, it will require
no A-operators. For this reason, the number of referenced symbols requiring A-operators in the entire
Perfect and RiCEPS suites is 25351 and 21130, respectively, slightly lower than the total number of
referenced symbols, 26027 and 21624. The table shows the number of references per symbol using
the larger number and A-operators created per symbol using the smaller. On average, the ratios are
close: slightly more than five references per symbol, and the space required by the A-operators tracks
the number of references to the symbol. A histogram of the number of references (or A-operators) per
symbol yields a curve with a long tail, but, as indicated, 95% of the cases were at most only few times
larger than the average.

16

program lines | units | blocks syms uses defs
ADM 6105 97 2694 3945 13701 4290
ARC2D 3964 39 1638 2316 11615 2790
BDNA 3977 43 2093 2386 9335 3395
DYFESM 7608 55 1189 999 2419 1006
FLO52Q 1986 28 1468 1863 7482 2791
MDG 1238 16 458 804 2410 910
MG3D 2812 28 1350 1422 9203 2488
OCEAN 4343 36 1277 1224 3832 1909
QCD 2327 35 1294 759 3222 1189
SPEC77 3885 65 2890 2224 9109 3093
SPICE 18521 128 7428 6803 30131 | 11579
TRACK 3784 32 970 887 3224 979
TRFD 485 7 537 395 1051 546
Perfect 61035 609 | 25286 | 26027 | 106734 | 36965
BOAST 8067 58 5810 5004 20980 6318
CCM 23556 145 5432 6405 24067 8202
HYDRO 13049 36 1250 1861 5758 2236
LINPACK 797 11 334 283 1112 484
QCD 2353 34 1274 926 3588 1470
SIMPLE 1313 8 521 581 2935 792
SPHOT 1144 7 431 390 1509 540
TRACK 3735 34 959 901 3254 969
WANALI1 2109 11 2161 1552 5173 2779
WAVE 7520 92 3371 3712 15828 4685
RiCEPS 63643 463 | 21543 | 21624 84204 | 28475

Table 2: Sample benchmark programs

17

space % of vector used iterations
program 107 bits | use | def mn out | avg | maz
ADM 174 | 4.0 | 2.2 | 40.7 | 40.7 | 3.5 7
ARC2D 135 | 3.2 | 1.8 | 27.5 | 279 | 3.9 5
BDNA 192 | 2.2 | 1.4 | 345 | 346 | 3.5 6
DYFESM 35 | 4.7 | 2.8 | 37.1 | 37.7 | 3.5 6
FLO52Q 142 | 2.3 | 1.6 | 37.7 | 379 | 3.8 5
MDG 35 | 3.3 | 2.1 | 51.0 | 51.0 | 3.8 6
MG3D 150 | 2.2 | 1.5 | 19.5 | 19.8 | 3.5 7
OCEAN 233 | 1.1 | 0.7 | 45.5 | 45.5 | 3.1 6
QCD 58 | 3.1 | 1.9 | 39.5 | 39.9 | 3.6 8
SPEC77 165 | 29 | 1.6 | 57.5 | 57.8 | 3.6 6
SPICE 1070 | 1.5 | 0.9 | 42.0 | 42.0 | 3.1 7
TRACK 44 | 3.2 | 1.9 | 45.1 | 45.1 | 3.4 6
TRFD 41 | 1.8 | 1.2 | 23.6 | 24.0 | 5.0 6
Perfect 2475 | 2.1 | 1.3 | 40.0 | 40.1 | 3.5 8
BOAST 932 | 1.4 | 0.7 | 34.8 | 349 | 44 6
CCM 824 | 1.5 | 0.9 | 33.5 | 33.6 | 3.0 6
HYDRO 150 | 2.0 | 1.3 | 37.7 | 37.8 | 3.2 5
LINPACK 15| 40| 2.6 | 329 | 329 | 3.2 4
QCD 76 | 2.5 | 1.7 | 41.6 | 41.7 | 3.5 8
SIMPLE 83 | 1.4 | 0.8 | 44.3 | 444 | 3.1 5
SPHOT 8 | 1.0 | 0.6 | 40.5 | 40.6 | 3.3 7
TRACK 45 | 3.2 | 1.9 | 45.1 | 45.0 | 3.3 6
WANALI1 2285 | 0.2 | 0.1 | 42.7 | 42.8 | 4.0 8
WAVE 342 | 2.1 | 1.2 | 29.3 | 29.3 | 3.0 5
RiCEPS 4839 | 0.9 | 0.5 | 38.5 | 386 | 3.3 8

Table 3: Traditional method data

18

refs/sym A/sym
Program avg | 95% | avg | 95%
ADM 4.6 16 | 3.6 9
ARC2D 6.2 20 | 3.6 10
BDNA 5.3 18 | 3.6 10
DYFESM 3.4 12 | 3.3 12
FLO52Q 5.5 17 | 3.9 11
MDG 4.1 13 | 3.0 7
MG3D 8.2 26 | 5.9 20
OCEAN 4.7 15 | 3.6 10
QCD 5.8 21 | 4.8 13
SPEC77 5.5 17 | 4.0 10
SPICE 6.1 19 | 8.7 29
TRACK 4.7 14 | 6.0 27
TRFD 4.0 13 | 4.6 11
perfect 5.5 18 | 5.3 17
BOAST 5.5 16 | 6.8 21
CCM 5.0 15 | 4.4 12
HYDRO 4.3 11 | 4.2 10
LINPACK | 5.6 20 | 3.2 9
QCD 5.5 19 | 4.4 12
SIMPLE 6.4 17 | 3.8 9
SPHOT 5.3 15 | 8.4 29
TRACK 4.6 14 | 5.9 27
WANALI1 5.1 8 | 8.7 12
WAVE 5.5 17 | 4.3 12
riceps 5.2 15 | 5.3 17

Table 4: A-chain data

19

The total number of A-operators created for the Perfect suite can be found by multiplying the number
of A-operators per symbol by the number of symbols, yielding approximately 134,000 A-operators. The
amount of space required to implement a A-operator in a compiler’s intermediate form is obviously
implementation dependent, but the best case would be one word per operator, resulting in 130K words.
This is of the same order of magnitude as in the traditional algorithm (300K).

To determine liveness, the method we have outlined requires processing strongly connected compo-
nents in the A-graph. We have found that on average slightly more than 40 percent of the A-operators
in the benchmarks were part of such a component; the percentages ranged from a low of 7 to a high of
75, and most were clustered between 30 and 50 percent. The component sizes ranged from 2 to 8, with
an average of 4.2.

5.3 Comparative Performance

We next consider the speed of the iterative, bit-vector algorithm and the speed of different implemen-
tations of the A-chain algorithm. The implementations were written with equivalent consideration for
performance and extensive optimization was left to the compiler (gce version 2.5.8, -02). The experi-
ments were run on three Sun SPARC computers: A, an 80MHz IPX workstation with 32MB; B, a 40MHz
Classic workstation with 48MB; and C, a SPARCcenter 2000 server.

The implementation of the liveness algorithm presented in section 3 uses a recursive procedure to do
the traversal of the post-dominator tree. The traditional liveness computation 1s easily implemented as
an iterative procedure, however. Similarly, either a bit-vector or a linked list may be used in maintaining
the Live set in the A-chain algorithm. (The traditional algorithm uses bit-vectors for the four sets since
the operations required by the dataflow equations “vectorize” as logical operations.) We found that,
on the SPARC, the choice of iterative/recursive traversal and bit-vector/linked-list sets generally varied
execution times for the interference graph construction by 10 to 20%, with the iterative linked-list
approach performing the best.

The traditional algorithm for interference graph construction has three steps:

e init: compute the use and def sets
e [ive: compute the in and out sets
e ifg: compute the interference graph
The A-chain algorithm also has three steps:
e place: insert A-operators
e chain: set the links for the A-operators
e ifg: compute liveness and the interference graph

In addition, both methods require some overhead in our implementation to allocate storage for the data
structures used. The traditional algorithm performs less work than the A-chain algorithm, and ultimately
performs faster. In comparing the two initial phases of both methods, the traditional algorithm requires
few iterations, performing simple operations at each block, whereas the A-chain algorithm requires
considerably more time to place the A-operators for each symbol and then traverse the tree, maintaining
the current reference to each symbol and setting links. In comparing the interference graph phase, the
A-chain algorithm uses a complex flow graph traversal method and requires two passes through each
block (going up and going down). The traditional algorithm visits blocks in any order, relying on the
static out sets, and requires only one pass. (Note the time to compute the post-dominance frontier is

20

Perfect RiCEPS

A B C A B C

Traditional 72 137 68 123 225 115
et 3 5 2 3 5 2
liveness 1 2 <1 2 <1 <1
ifg 43| 96 | 44| 70| 154 | 72
overhead 25 34 22 48 64 39
Lambda 119 190 123 197 306 206
placement 18 25 14 22 29 22
chaining 8 11 5 7 9 4
ifg 58 116 77 98 192 131
overhead 35 38 28 71 75 48
Ratio 1.65 | 1.39 | 1.81 | 1.60 | 1.36 | 1.79

Table 5: Times for traditional and A-chain methods

not considered for the A-chain algorithm because PDF sets are useful for other analyses (e.g. control
dependence) and in any case will account for less than one percent of the total compilation time.)

Table 5 presents the time (in seconds) for each of these six phases, plus the overhead required. The
total time for each method and the performance ratio are also shown. The data i1s presented for two
runs, one for all of the programs in both suites (granularity precludes accurate per-program timing).
The experiments were run on all three platforms, yielding different performance ratios as a result of
the large amount of memory required by the algorithms and the very different memory configurations
in each machine. The overall time required using A-chains is roughly 60% greater than the traditional
algorithm.

6 Conclusions

We have presented a new technique for determining liveness based on reference chains. The technique
is of interest in four respects: (1) a sparse SSA-like representation is used which embeds the necessary
definition/use information within the program at the only the points required; (2) liveness is not de-
termined for each variable separately, but instead allows the solution of all variables in one pass; (3)
the liveness of variables is dynamically computed, rather than storing sets each block in the flow graph,
improving the precision of optimizations such as dead code elimination; and (4) liveness is determined
without iteration, taking advantage of the partitionable nature of the dataflow problem.

The algorithms to compute the A-chains and construct the interference graph were implemented in
a compiler and shown to be competitive with the textbook dataflow approach in both space and time.
While this new method does require more computation, its use by other analyses and optimizations may
amortize the cost.

There are three areas that remain to be examined. Most importantly, the relationship between
the ¢-operators for reaching definitions in the Static Single Assignment form and our A-operators for
upwards exposed references suggests that this style of analysis — capturing dataflow information at join
and branch control flow points — may provide a complete basis for a set of dataflow problems. The
algorithms we have presented here provide evidence for this.

Second, in this paper we have considered the liveness property of variables, a backwards dataflow
problem. A related problem is that of busy or anticipatable expressions: an expression e is said to be

21

busy (very busy) at point p if e may (will) be used after p [1]. The use of operators similar to A-operators,
using expressions instead of variables, may be investigated.

Finally, the characteristics of the A-operators inserted should be examined. In particular, A-operators

whose lattice value does not contribute to the solution need not be inserted. It remains to be seen if this
can be determined during construction and how much benefit it would provide. A somewhat related
question of great importance to optimizing compilers is whether A-chains can be dynamically updated
to reflect transformations within the program.

References

(1]
(2]
(3]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley,
Reading, MA, 1986.

Charles N. Fischer and Richard J. LeBlanc, Jr. Crafting a Compiler. Benjamin-Cummings, Menlo Park,
CA, 1988.

Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse data flow evaluation
graphs. In Conf. Record 18th Annual ACM Symp. Principles of Programming Languages, pages 55—66,
Orlando, Florida, January 1991.

Eric Stoltz, Michael P. Gerlek, and Michael Wolfe. Extended SSA with factored use-def chains to support
optimization and parallelism. In Proc. of 27th Annual Hawaii International Conference on System Sciences,
pages 43-52, January 1994.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing Static Single Assignment form and the control dependence graph. ACM Trans. on Programming
Languages and Systems, 13(4):451-490, October 1991.

Dhananjay M. Dhamdhere, Barry K. Rosen, and F. Kenneth Zadeck. How to analyze large programs
efficiently and informatively. In Proc. ACM SIGPLAN ’92 Conference on Programming Language Design
and Implementation, pages 212-223, San Francisco, June 1992.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth Zadeck. An efficient method
of computing static single assignment form. In Conf. Record 16th Annual ACM Symp. on Principles of
Programming Languages, pages 25-35, Austin, TX, January 1989.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146-160, June 1972.

Frank Kenneth Zadeck. Incremental data flow analysis in a structured program editor. In Proc. SIGPLAN
84 Symp. on Compiler Construction, pages 132-143, Montreal, Canada, June 1984.

Michael Wolfe, Michael P. Gerlek, and Eric Stoltz. Demand-driven data flow analysis. (unpublished), 1994.

Preston Briggs. Register allocation via graph coloring. PhD Dissertation COMP TR92-183, Rice Univ.,
Dept. Computer Science, April 1992.

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold .. Wagener. Fortran
90 Handbook. McGraw-Hill Book Company, New York, NY, 1992.

George Cybenko, Lyle Kipp, Lynn Pointer, and David Kuck. Supercomputer performance evaluation and
the Perfect Benchmarks. In International Conference on Supercomputing, pages 254 — 266, March 1990.

22

