
Sparse Data�Flow Analysis for DAG Parallel Programs �

Eric Stoltz and Michael Wolfe

Department of Computer Science and Engineering
Oregon Graduate Institute of Science � Technology

P�O� Box �����
Portland� OR ��	��
����
���� ���
��	� ext� ����

fstoltz�mwolfeg�cse�ogi�edu

October ��� ����

Abstract

We contrast abstract �ow of control in a sequential program environment which uses a
control �ow graph �CFG� to the abstraction of execution order within DAG parallelism using
a simple precedence graph �PG�� We note that often the analogous concepts are duals of each
other with regard to universal and existential quanti�ers�

We are studying sparse data��ow analysis techniques� which include methods of placing
operators at con�uence points to merge the �ow of information� While the placement of
merge operators is well�known for CFGs �at the iterated dominance frontier of nodes with
non�identity transfer functions�� we determine and prove correct placement points for merge
operators within a PG in the case of reaching de�nitions� We also show how to conservatively
implement the placement of parallel merge operators in an e	cient manner with respect to
the reaching de�nitions problem�

� Flow of Information within Sequential Programs

��� An Abstract Representation

To describe control �ow of sequential programs� the abstraction of the Control Flow Graph
�CFG� is used� The CFG summarizes potential paths of control through the program� Formally�
the CFG is a graph G � �V�E�Entry�Exit�� where V is a set of nodes representing basic blocks
in the program� E is a set of edges representing sequential control �ow in the program� and
Entry and Exit are nodes representing the unique entry point into the program and the unique
exit point from the program� The CFG has been the most common intermediate representation
for program �ow analysis for a number of years �	�
��

Data��ow analysis is a method of collecting information about a program� such as reaching
denitions� dominance� or live variables �	� 	��� The rst two examples of data��ow analysis�

�Supported in part by NSF grant CCR�������� and a grant from Intel Corporation and the Oregon Advanced

Computing Institute�

	

reaching denitions and dominance� are forward data��ow problems� since the �ow of information
is in the same direction as control �ow� Live variable analysis is an example of a backward
data��ow problem� since the information at the end of each basic block is dependent upon the
information at the entry of control �ow successors� Thus� with backward data��ow problems
information �ows in the direction opposite that of control �ow� A transfer function at each
node summarizes the data��ow e�ect about the desired information at that node� A typical
method of extracting information from the CFG is to iterate a set of data��ow equations until
the information available at each point �typically the beginning and end of each control �ow
node� has converged� For this paper� we will focus on the forward �ow of information�

When paths of control within the CFG converge at a con�uence node �a node with more
than one predecessor�� data��ow analysis needs to merge the incoming information from each of
its data��ow predecessors� Merging information at these points can lose precision� but may be
unavoidable when attempting to keep the quantity of stored information to a minimum� When
a con�uence node in the CFG is reached� exactly one of the predecessors of that node will have
just been executed� An important problem is to prevent quadratic growth of information� which
can occur with reaching denitions� In the case of a CFG where n denitions and n uses are
separated by a con�uence node� n� reaching denition chains are generated to connect each
denition to its possible uses� This problem has been discussed in detail elsewhere ��� ���

In this paper we focus on the reaching de�nitions problem as a running example of a forward
data��ow problem� for each use �or fetch� of a variable� what are the possible denition points
that reach this use� In particular� the rest of this section examines the notion of killing data��ow
information within sequential control �ow graphs� while the next section looks at representation
and execution order for parallel precedence graphs� Section � reviews sparse data��ow represen�
tations� methods for merging reaching information within sequential graphs� and where to place
merge operators to accomplish this task� Section � examines these questions for parallel prece�
dence graphs� identifying the minimal set of nodes at which to place parallel merge operators�
given a set of nodes� S� we present a new concept� the meet of S� dened in terms of reachability
and when iterated is shown to be equal to that minimal set� We also provide an e�cient method
for parallel merge operator placement� proving that it is a safe� albeit conservative� technique�
Finally� Section � summarizes and discusses future directions�

��� The Dominance Relation and Shields

Information �reaching denitions� for our running example� along a straight�line path in a CFG
can be killed by another denition for the same variable� If nodes X and Y both lie along a
straight�line path with X preceding Y � and both dene variable v� then the denition at Y kills
any denitions at X � Note that �degeneratively� in this case� every path to Y passes through
X � Although non�killing denitions of variables exist� such as assignments to indexed variables
or arbitrary procedure parameters passed by reference� we do not discuss these concepts in this
paper �except for special pseudo�assignment merge operators explained later��

The ideas of the preceding paragraph are now formalized� Within a CFG� node B dominates
node C if every path from Entry to C must pass through B� and is written as B dom C� If
every path from A to C must pass through B� we say that B shields A from C� or that B �
shield�A�C�� We note that B dom C is just a particular instance from the set of shields for Entry
and C� where B � shield�Entry�C� �� B dom C�

�

� � �

Parallel Sections

Section A

� � �

Section B� Wait�A�

� � �

Section C

� � �

End Parallel Sections

� � �

�a�

 Entry

Exit

B

A C

(b)

Figure �

Shielding is important when dealing with the �ow of information in a CFG� since B �
shield�A�C� means that B can kill any information generated from A on all paths to C� In
particular� any denition of v within B prevents all denitions of v in A from reaching C� It
is not our intent to closely examine the properties of shielding in this paper� but to highlight
concepts pertaining to the �ow of information in a sequential �ow graph which have analogous
concepts within the context of parallel execution order�

� Parallel Execution Order

A precedence graph is an abstraction which imposes order of execution among its nodes� Prece�
dence graphs can easily be used to express DAG parallelism ��� by using Wait clauses to enforce
constraints between section nodes� A precedence graph is also a simplied� special case of a Par�
allel Program Graph �	�� which only contains synchronization edges� with the synchronization
condition that all code in a node completes before beginning execution of any successor�

For the purposes of this paper� we deal with DAG parallelism �a subset of task parallelism
����� specically explicit parallel sections fashioned after the Parallel Sections construct �		��
which is similar to the cobegin�coend syntax of Brinch Hansen ���� An example is shown in
Figure 	�a�� where Section B� Wait�A� means that all code in Section A must complete before
the code in Section B may begin�

��� An Abstract Representation

The ordering of sections is arranged within a precedence graph �PG�� an abstract representation
which dictates what sections may execute in what order� Formally� a PG is a directed graph

�

P � � VP � EP �EntryP �ExitP �� where VP is a set of nodes� each representing a section in a
parallel block� EP is the set of edges which represent wait�dependence arcs �corresponding to
the Wait syntax described above�� and EntryP and ExitP are the co�begin and co�end nodes�
respectively� We will always show the Entry node in a PG� but will often omit the Exit node�
since for purposes of illustration only a partial representation of the PG is usually needed� and
the Exit node is seldom a factor concerning the forward �ow of information �which we focus on
in this paper� through the PG� The wait�dependence arcs impose a partial order upon the nodes
of a PG� If there is no partial order between two sections� they may execute in any order relative
to each other � perhaps in parallel� An example precedence graph is shown in Figure 	�b�� where
sections A and C �and� possibly� B and C� might execute concurrently�

We note that a PG must be acyclic� since any cycles would create a deadlock� A section
node of a PG �uses� or �denes� a variable if any of the code within that section uses or denes
that variable�

A con�uence node in a PG has quite di�erent semantics than that in a sequential CFG�
While precisely one of the predecessors at a con�uence node in a CFG will be executed� all
predecessors of a con�uence node in the PG must execute before con�uence node itself executes�
Essentially� a con�uence node is waiting upon all its predecessors� so they must all execute before
the con�uence node executes� When paths meet within a PG� information might also merge� It
is important to note that it is possible that merging information could be in con�ict � since all
predecessors are executed� we could have multiple denitions of the same variable� for instance�

We also note an important property of precedence graphs � they are insensitive to transitive
edges� This will become clear when we look at how information �ows between section nodes in
a precedence graph � with respect to the reaches relation for denitions�

��� The Reaches Relation for De�nitions Within a PG

When does node B wait for node A� When there is path in the precedence graph from A to
B� i�e�� if A can reach B� then B waits upon A� Since any path from A to B is su�cient�
it now becomes clear why the addition of transitive edges to a precedence graph adds no new
information� In fact� the transitive reductiony of a precedence graph contains the smallest number
of vertices and edges which captures all the information of the original graph�

De�nition � �Reaching De�nitions Within a PG�� Within a PG� a de�nition of v at
section node X reaches section node Y if no path from X to Y contains a de�nition of v� except
at X or Y�

Kill information is computed quite di�erently within a PG as opposed to a CFG ���� In
a PG� a denition of v in node A is killed before reaching node C if any path from A to C

passes through node B� where B contains a denition of v� We note that the shield and reaches
relations are duals of each other with respect to killing data��ow information�

CFG Information from A can be killed by B before reaching C if all paths from A to C pass
through B�

yThe transitive reduction of graph G is any graph G� with the same vertices as G	 but with as few edges as

possible	 such that the transitive closure of G� is equal to the transitive closure of G�

�

PG Information from A can be killed by B before reaching C if any path from A to C passes
through B�

It is important to contrast two uses of the term �reaches�� On the one hand we speak of
path reachability� here� A reaches B in a graph if there exists a path from A to B� On the other
hand� we will often be referring to reaching denitions� which is concerned with the �ow of a
particular type of information through a graph� In this case path reachability is not su�cient�
denitions �or� more generally� data��ow information� can be killed along paths in a graph due
to non�identity transfer functions� Most of the time the meaning is clear from context� but when
not� we will attempt to be explicit concerning usage�

� Merging Information in a CFG

At what points in the CFG do we need to merge information� Certainly not at all con�u�
ence nodes� since there may not be any �interesting� nodes along either branch leading to the
con�uence node� where �interesting� nodes are those with non�identity transfer functions for a
given data��ow problem� We dene merge nodes as nodes at which information converges from
more than one predecessor� which are equivalent to the meet nodes of sparse evaluation graphs
���� these identify nodes which merge data��ow information� as opposed to con�uence nodes in a
control��ow graph� Information is merged at these nodes in a sparse intermediate representation
by inserting a merge operator to collect the information from each data��ow predecessor�

For reaching denitions� merge operators �known as ��functions� for variable v need to be
placed at the iterated join of the set of interesting nodes ���� In this case� interesting nodes are
those in which there is a denition to v� The join of two nodes is dened as follows�

De�nition � The join of nodes X and Y � J�X�Y� �

n
Z j �ZX � ZY with ZX � Z and ZY � Z� paths pX � X

�
� ZX and pY � Y

�
� ZY � pX � pY � �

o

The join of a set of nodes� S� denoted J�S�� is dened to be the union of the pairwise joins
�X� Y � S� i�e�� J�S� �

�
X�Y �S

J�X �Y �� The iterated join� J��S�� is dened as the limit of

increasing sequences of nodes dened by�

J��S� � J�S�

J��S� � J�S 	 J��S��

Ji���S� � J�S 	 Ji�S��

The e�ect of a ��function for reaching denitions is that it acts as a killing denition for all
other denitions which reach that con�uence node �the merge operator collects the reaching def�
initions at that point�� A ��function also represents a use for the reaching denitions along each
incoming control �ow edge via its arguments� Thus� all reaching denitions can be discovered
by traversing the links associated with each ��function argument�

For reaching denitions� the iterated join of the set of nodes with non�identity transfer
functions for variable v is the correct placement for ��function since it insures the following
properties�

�

Entry

v=

v= = v

= v

Q

R

S T

Z

v=

W

X

Y

v=

v= φ

φ

5

1
2 3

1

4

5

Figure �

 each join point K for v collects �directly or indirectly� all reaching denitions of v at K�

 each variable use of v at CFG node A will have a single reaching denition� That is� in
the set D � S 	 J��S�� nodes which contain variable denitions or join points of v� there
exists exactly one element E � D� such that E dom A and E � shield�d� A��d � D�

Calculating the iterated join of S� J��S�� may seem expensive� but it has been shown ��� to
be equal to the iterated dominance frontier of S� The dominance frontier �DF� of a node X is
all nodes Z such that X does not strictly dominate Z� but X dominates some predecessor of Z�
Again� DF�S� �

�
X�S

DF�X �� and DF� is dened as above for J�� For the relation DF��S� �

J��S� to hold� the Entry node of the CFG must be in S� which is a reasonable assumption for
imperative� sequential programs� one that implies that all variables used get dened along any
possible path through the program�

We present an example in Figure �� Killing denitions of v occur at S � fQ� S� Tg� DF��S� �
fWg� and DF��S� � DF��S� � fW�Y g� Thus� ��functions are placed at W and Y � creating v�
and v��

We note thatW � shield�S�Z� since any killing denition of v placed atW would prevent any
denitions at S �or T � from reaching Z� This example also illustrates the properties of DF��S��
First� we see that the ��function at W directly collects the two reaching denitions of v �v� and

�

v�� which reach this con�uence point� The ��function at Y directly collects the denition from
Q� v�� but indirectly collects v� and v� via v�� the ��function at W � All reaching denitions are
preserved either directly or indirectly� but the denition chains are now linearized� Second� each
use of v now has exactly one reaching denition� The use of v at X is reached by the denition
from Q� Q dom X � and� vacuously in this instance� Q � shield�d�X��d� D� The use of v at Z
is reached by v�� the ��function at Y � Here� Y dom Z� and Y � shield�d� Z��d � fQ � S �T �Wg�

Considering the problem of merging information within a data��ow framework in general� it
su�ces to merge information at the iterated dominance frontier of the interesting nodes ����

For reaching denitions� ��functions are placed at DF��S�� where S is the set of all denition
sites for each variable ���� A ��function has an argument for each control �ow predecessor� thus
coalescing all denitions which reach that node into a single denition� In this way� linearity of
reaching denitions is achieved� In the case alluded to in Section 	� with n denitions separated
from n uses of a variable by a merge� a ��function would be placed at the merge to collect all n
denitions� Each of the n uses would then get their denition from the ��function� resulting in
only �n denition chains� pruned from the original n��

� Merging Information in a Precedence Graph

��� Interesting nodes and Merge Nodes within a PG

At what points in a PG do we need to merge information� We need to merge information at
the precedence section nodes in which information rst comes together� However� as opposed to
sequential control �ow� a variable may not be dened along every path which reaches a con�uence
point� as long as it is dened along some path which reaches a use for that variable� a denition
for that variable will be available� This important distinction suggests that identifying merge
points as the iterated dominance frontier of interesting nodes in the PG may not be correct� To
see why� examine Figure ��a�� using our running example of reaching denitions� If v is only
dened at node X � then any use of v at W � Z� or A will have that denition available� since
X will always have been executed before any of these other sections execute� But the DF��X�
� fW�Z�Ag� clearly a merge node is not necessary when only a single denition of a variable
reaches any point� Since a precedence graph guarantees execution of all predecessors� we need
not be concerned about a denition of v �owing from node Y � Since Y does not dene v� it does
not contribute to the reaching denitions of v for the other nodes�

To see where merge operators are needed in a PG� rst examine Figure ��b�� in which v is
dened in sections X and Y � while used in section A� Since both denitions reach A without
either killing the other� a merge operator is needed at A� However� we need merge only two
denitions� even though there are three predecessors� Thus� a merge function for a PG only
needs arguments for predecessors with denitions which reach the con�uence node along that
path� This highlights another major di�erence between sequential and parallel merges� therefore
we will use a new operator� the ��function� as the merge operator for reaching denitions within
the PG �	��� The ��function is similar to the ��function in that it acts as a non�killing denition
in terms of data��ow analysis� but it is also a use for all denitions which reach the ��function
via its arguments� By collecting multiple reaching denitions the ��function linearizes denition
chains within a PG in the same manner as the ��function within a CFG�

To identify precisely where to place parallel merge operators in a PG we begin with an

�

Entry

X Y

W Z

A

 (a)

X Y

(b)

Entry

Zv= v=

= v

A

Figure �

important denition�

De�nition � The meet of nodes X and Y � M�X�Y� �

n
Z j �ZX � ZY with ZX � Z and ZY � Z� and � paths pX � X

�
� ZX � pY � Y

�
� ZY � pX � pY � �

o

We note that the meet of two nodes is the dual denition to join� as it uses a universal
quantier as opposed to the existential quantier of join� For a set of nodes S� M�S� is dened
in the usual pairwise manner� M�S� �

�
X�Y �S

M�X �Y �� We also dene M��S� as the limit of

increasing sequences analogous to that used for join and dominance frontier�

M��S� � M�S�

M��S� � M�S 	M��S��

Mi���S� � M�S 	Mi�S��

The denition of Join �Denition �� and the basis of work to place ��functions ���� is a well�
known concept� Although in a CFG J��S� � J�S� �	��� the dual denition of join for PGs� meet�
does not possess this property� Consider Figure ��a�� Let S� fX�Yg� Then M�S� � fW�Zg� in
fact� A �� M�S�� but A �M�S 	M�S�� � M�X�Y�W�Z� � fW�Z�Ag�

The meet of two nodes possesses one of the important properties which characterize nodes
in a PG� it is una�ected by transitive edges� To prove this claim� we rst formalize the concept
of a transitive edge as follows�

De�nition 	 Edge E	 X � Y added to graph G is a transitive edge if �Z � G � X
�
� Z

�
� Y �

�

We now show that the central concept of PGs� path reachability� is unaltered in the presence
of transitive edges�

Theorem � Path reachability in a PG is una
ected by transitive edges�

Proof	
Consider PG G�� consisting of G plus transitive edge E � X � Y � Since all edges in G exist in
G�� if A reached B in G� A reaches B in G�� Now� let A reach B in G�� but assume that A does

not reach B in G� Then path p�� A
�
� B in G� must include E� else no distinction is possible

between paths in G and G�� Thus� p� must be of the form A
�
� X � Y

�
� B� By Denition ��

X
�
� Z

�
� Y in G� Thus� path p�� A

�
� X

�
� Z

�
� Y

�
� B exists in G� By contradiction� we

have demonstrated equivalence of path reachability between G and G��

We next demonstrate that the meet of a set of nodes is also una�ected in the presence of
transitive edges�

Theorem � The meet relation is insensitive to transitive edges�

Proof	
We use G and G� as dened in the proof of Theorem 	� except that E is any transitive edge
added to G� We rst show that for nodes X and Y � M�X �Y � in G is equal to M�X �Y � in G� by
means of double inclusion�

	� Let Z � M�X� Y � in G� We show that Z � M�X� Y � in G�� By Denition � for meet� the
intersection of all pairs of paths in G from X and Y to predecessors of Z is empty� Now
consider G�� which includes edge E� A� B� Assume Z � M�X� Y � in G� but Z �� M�X� Y �

in G�� Then� in G� there exists node V such that V
�
� Z with X

�
� V and Y

�
� V � If

no path from X
�
� V or Y

�
� V passes through A� then V does not exist� since the only

di�erence between G and G� is edge E� Thus� without loss of generality� at least X � and
perhaps Y � has a path to V which passes through A� But from A� no nodes are reachable
in G� that were not reachable in G� as Theorem 	 demonstrated� Hence� if V exists in G�

it exists in G� since its existence is predicated upon reachability� We conclude that since
V does not exist in G it cannot exist in G�� By contradiction� Z � M�X� Y � in G��

�� Let Z � M�X� Y � in G�� By Denition � the intersection of all pairs of paths from X and
Y to predecessors of Z is empty in G�� Since the edges in G are a subset of the edges in G��
any pair of paths from X and Y to predecessors of Z which exists in G exists in G�� and
is empty in G� by assumption� Thus� that pair of paths is empty in G� and Z � M�X� Y �
in G�

Now consider the M�S�� where S is a set of nodes� Since M�S� �
�

X�Y �S

M�X �Y �� we apply the

property just proved to each pair X� Y to obtain the desired result for S� M�S� in G equals M�S�
in G��

Given a set of interesting nodes S� merge operators for PGs need to be placed at the iterated
meet of S� In terms of reaching denitions� given a variable v and a set S� where S is the

Entry

 N

v =

v =

v =A C

B

Figure 	

set of section nodes in a PG which dene v� ��functions need to be placed at M��S�� where a
��function for v at section node A collects all denitions of v that reach A� That is� there is
an argument of the ��function for each predecessor of A that has a denition of v reaching A�
Figure � shows the case where even though an edge exists from a denition of v �in node A� to
the con�uence node N � the ��function placed at N will only collect the denitions from nodes
B and C� That is because the denition at A gets killed by the denition at B in this PG� In
this case� S� fA�B�Cg� and M�S� � M��S� � fNg� but we note that the edge A � N is a
transitive edge and M�B�C� � fNg�

We will rst prove that it is su�cient to place ��functions at M��S�� Since Srepresents
nodes with non�identity transfer functions� this result holds for data��ow problems in general by
extending Denition 	 for reaching denitions to kill information for other data��ow problems�
The concept of iterated meet is a renement of the ��function placement method suggested
earlier �	��� in that the iterated meet is smaller and� in fact� the minimal set�

How do ��functions a�ect reaching denitions in a PG� If node N is reached by ��function s
and s is reached by denition d �where s collects d as a ��argument�� then d reaches N indirectly
via a ��function� In general� it may be that one or more ��functions lie on the path from d to
N � In that case� d reaches N indirectly via a ��chain� Thus� a denition or ��function in a PG
which reaches node N in the sense of Denition 	 is called a direct reaching denition� whereas
a denition which reaches node N via a ��chain is called an indirect reaching denition�

We now prove the following important results� that placing ��functions at the iterated meet
of the set of nodes which dene a variable maintains the properties of �	� unique reaching
denitions� ��� collects all denitions �directly or indirectly� which before ��function placement
could reach each node� and ��� is the minimal set at which to place such merge operators�

Theorem � In a PG� with ��functions for v placed at M��S�� all uses of v within node N will
be reached �in the sense of De�nition �� by exactly one de�nition �including ��functions� of v�

Proof	
Let G be a PG before placing ��functions� and G� be the same graph after ��function placement�

	�

Within G� let the set of nodes with denitions of v be S� S� S be the set of nodes in S which
have denitions which reach N � and T S be the set of nodes in S with paths that reach N �

EXISTENCE� We rst show that any use which had at least one reaching denition in G has
at least one reaching denition in G�� Since S

� �� �� let A � S� in G� Then all paths pA � A
�
� Z�

with Z � N � contain no denitions of v �except at A�� For all pA in G� � if the denition of v
in A does not directly reach N � then there must be at least one ��function along some pA� In
this case� at least one ��function reaches N �

UNIQUENESS� We consider cases�
�i� Only one W � S� reaches N �j S� j � 	�� In this case� the denition in W kills any other

denitions which may exist in nodes of T � Then� �t	� t� � T � �pt��t	
�
� N � pt�� t�

�
� N �

W � pt� � pt� Thus� N �� M�T �� and more generally� no node on any pW �W
�
� N � M�T �

�except� perhaps� W �� Repeating this argument� no node in any pW � fWg � M��T �� Thus� in
G� only the denition of v in W reaches N � since no additional denitions ���functions� created
in G� can directly reach N �
�ii� Multiple denitions of v reachN from S�� withN � M��S�� Then a ��function will be placed
at the beginning of node N in G� � and uses of v within N will be reached by that ��function�
�iii� Multiple denitions of v reach N from S�� with N �� M��S�� Assume N is reached by
more than one denition from members of fS	 M��S�g� Call this set R�� Then either �a� N �
M�R��� which contradicts our assumption� or �b� �A�B � R� M�A�B� is non�empty �since A
and B reach N�� and we call the set of all elements of M�R�� which have paths that reach N R��
Repeating this process� we note that R must converge at R� since Rn�� is always composed of
nodes closer to N � along the paths from nodes in R� to N � than the nodes in Rn� If the set R�

consists of exactly one node �it can�t be zero by the existence proof� we have a contradiction of
assumption� and if it contains more than one node �which can�t include N by assumption� R has
not converged� A contradiction is again reached as long as G contains a nite number of nodes�

Thus� in all cases� we have shown that in G� precisely one reaching denition will exist for
each use which had at least one reaching denition in G�

Theorem 	 Within a PG� with ��functions placed at M��S�� any use of v at node N will be
reached directly or indirectly by all de�nitions of v which reached N before placing ��functions�

Proof	
Let G be a PG before placing ��functions� and G� be the same graph after ��function placement�
We consider two cases�
�i� Only one denition of v reachesN in G� This case is handled similarly to case �i� in Theorem ��
and the single denition which reached N in G will reach N in G��
�ii� Multiple denitions of v reach N in G� All denitions for v from node A which reach N in
G reach N indirectly in G� via a ��chain� To show this� consider all paths p from A to N in
G� By Denition 	 no paths from A to N in G contain denitions of v� Since� by assumption� a
denition of v in G� does not reach N from A� by Denition 	 there must exist a denition along
some path from A to N which did not exist in G� That denition can only be a ��function� If
there is just one ��function along the path then it collects all denitions which reach it� and that
��function will now reach N � resulting in the denition of v reaching N indirectly� If there is
more than one ��function along any path from A to N � the argument is repeated� By induction�
a denition of v in A will reach N via a ��chain� Thus� we have shown that reachability of all
denitions is maintained when placing ��functions�

		

We now show that the M��S� is the minimal set at which to place merge operators� which
will hold in the specic case of ��functions�

Theorem
 Within a PG� for a set of nodes S which de�ne v� M��S� is the smallest set at
which to place ��functions in order to insure unique reaching de�nitions at all nodes�

Proof	
Given S for variable v� consider any element N � M��S�� Let N � Mj�S�� for the minimum
j � 	� Then �X� Y � Mj���S� �where M��S� � S� such that all pairs of paths from X and Y

to predecessors of N are empty� Since X and Y contain denitions of v �either assignments to
v or ��functions for v�� the denitions at X and Y �or� perhaps� a later denition of v within
some node along one of these disjoint paths� both reach N � Thus� by removing the ��function
for v at N � any use of v within N would be reached by multiple denitions�

��� Depth��rst Renaming

Computing the iterated meet seems somewhat impractical from its denition� Again� referring
to the reaching denitions problem within a CFG� after placing ��functions a technique known
as renaming transforms each variable denition into a unique name and each use into the name
of its unique reaching denition ���� The method employed to perform this renaming is depth�
rst� in that it recursively traverses the dominator tree in a depth�rst order� keeping a stack
of current denitions for each variable� The key property that this renaming scheme satises is
that at each node the correct �current� denition �an original denition or ��function� of each
variable is the most recent denition on the depth�rst path to this node from Entry� i�e�� the
denition on top of the denition stack ��� Lemma 	��� In fact� a depth�rst traversal of any
spanning tree of the CFG will also satisfy this property� Unfortunately� a depth�rst traversal
of the nodes of a PG will not satisfy this key property with merge operators at M��S�� For

Entry

BA

C

x = y =

= x

= y

Figure

instance� in Figure �� no ��function is needed at node C for either x or y� since only one denition
of each variable reaches node C �in the sense of Denition 	�� Suppose the depth�rst traversal
of the PG visits node C after node A� when visiting node C� the current denition of variable x
will be the denition in A� but the current denition of variable y will be wrong�

	�

In order to use a depth�rst renaming algorithm� we introduce additional ��functions as
placeholders �	�� 	��� The renaming algorithm described in this earlier work visits the PG nodes
in a depth�rst traversal of a spanning tree that satises topological ordering� and identies and
removes these spurious ��functions� In fact� we place ��functions at the iterated dominance
frontier� the next section proves that this is a safe approximation to the iterated meet�

��� E�cient Implementation

What method can be used which is relatively e�cient and yet correctly propagates information
between section nodes of a PG� We need to look more closely at how information �ows between
nodes in a PG� keeping in mind that a precedence graph has di�erent semantics compared to a
CFG�

Since information �owing through the PG is described in terms of reachability� we have found
the concept of reaching frontier useful� This concept describes reachable nodes in a PG in a way
that is analogous to the dominance frontier for nodes within a CFG�

De�nition
 The reaching frontier of X� RF�X� �

fZ j X reaches a predecessor of Z� but X does not reach all predecessors of Zg

The reaching frontier of a set S� RF�S�� is dened to be the union of the reaching frontiers of
all elements of S� i�e�� RF�S� �

�
X�S

RF �X�� The iterated reaching frontier� RF��S�� is dened

similarly to that for join� meet� and dominance frontier� The reaching frontier is used to relate
important properties between the meet and dominance frontier� To implement the placement of
operators which merge information within a PG� we would like to show that M��S� RF��S�
 DF��S��

How are the meet and reaching frontier related� The analogous relations in sequential CFGs�
join and dominance frontier� are shown to be equal when iterated� with the provision that Entry
� S� However� Entry adds no information to either the meet or the reaching frontier in a PG�
M�Entry � X� � � �X since Entry reaches all nodes� and thus there is always a path from Entry
to any node on any path from X � Also� RF�Entry � � �� since Entry reaches all predecessors of
all nodes�

We can also show that RF��S� �� M��S�� Simply choose the set T � fX �Entryg� Then
M�T� � �� so M��T� � �� while RF�T� clearly may not be empty� We now show that in general
M��S� RF��S��

Theorem � M��S� RF��S�

Proof	 Let Z � M�S�� Then there is a node X � S such that X has a path that reaches a
predecessor of Z� but X cannot reach all predecessors of Z or else there would be no path from
any other node that did not intersect some path from X to each predecessor of Z �which would
imply that Z �� M�S��� So� we have Z � RF�X� and Z � RF�S��
Finally� M�X� RF�X� �� M��X� RF��X��

We also show that DF�S� is not in general a subset or superset of RF�S�� In Figure ��
DF�X� � fA�Zg� but RF�X� � fZg� since it reaches all predecessors of A� It�s also easy to nd

	�

Entry

X Y

W Z

A

Figure �

a graph where X reaches a predecessor of Z but does not dominate any predecessor of Z� so Z
� RF�X�� but Z �� DF�X��

Next� we show that the iterated dominance frontier is a superset of the iterated reaching
frontier on all graphs�

Theorem � DF��S� � RF��S�

Proof	
It has been shown ��� Lemma �� that for any node Z that X reaches� some node Y � fX

	DF��X�g dominates Z� Now� for any node Z that X reaches� if Z is in RF�X�� then Z is in
DF��X�� this is because some node in DF��X� must dominate Z� Choose a path p from X to
Z� Let Y be the last node on p in fX 	 DF��X�g� Y must dominate Z� If Y is not Z� then Y
dominates all predecessors of Z� so there is a path from Y to all predecessors of Z� thus there is
a path from X to all predecessors of Z� and Z is not in RF�X��

Thus� DF��X� � RF�X�� Thus� DF��S� � RF�S�� RF��S� � RF�S 	 RF�S�� RF�S
	 DF��S�� DF��S 	 DF��S�� � DF��S�� By induction� DF��S� � RF��S��

In general RF��X� �� DF��X�� Although DF��X� � RF��X�� the converse is not neces�
sarily true� Consider Figure �� DF�X�� fB�Zg� and DF��X� � DF��X� � fB�Z�Xg� How�
ever� RF�X� � fBg� and RF��X� � RF��X� � fB�Xg� Thus� by counterexample� RF��X�
�� DF��X��

But� we note that the above example contains a cycle� We are interested in placing ��
functions in a PG� which we know to be acyclic� And� in a DAG� we next show that RF��S� �
DF��S��

Theorem In a DAG� RF��S� � DF��S�

Proof	 Given a DAG� we demonstrate two preliminary lemmas�

	�

X

Z

Entry

B

Figure �

 Lemma � RF��S� � DF�S��

Let X � S and let Z be in DF�X�� Then X dom A� a predecessor of Z� X dom B� some
other predecessor of Z� since X dom Z� If X does not reach B� then Z is in RF�X�� So
assume that X reaches B�

We now show that on some path from X to B� there exists a C such that C is in RF�X��
Since X dom B� consider a path from entry to B such that X is not on the path �there
must be at least one such path�� Let C be the rst node on this path that X can reach
�C may be B�� Then since X can reach C� but not the predecessor of C on this path� C
is in RF�X��

Next� note that C cannot reach A� Else� we would have the path Entry � C � A

�which cannot go through X since the graph is acyclic� which does not pass through X �
contradicting the fact that X dom A�

But� this means that Z is in RF�C�� since C reaches Z through B� but cannot reach A�
We already know that C is in RF�X�� so we have shown that Z is in RF��X��

 Lemma � RF��S� � DF��S��

Given Lemma 	� we know that RF��X� � DF�X�� So� RF��S� � DF�S�� DF��S� �
DF�S 	 DF�S�� RF��S 	 RF��S� � � RF��S�� By induction� DF��S� RF��S��

Lemma � together with Theorem � gives us our result�

Since M��S� RF��S� DF��S� �with RF��S� � DF��S� in a DAG�� we have shown
that merging information within a PG at the DF��S� is a safe approximation for the somewhat
smaller set of M��S�� However� for the common depth�rst implementations which use renaming�
such as ��functions for reaching denitions within PGs� placing merge operators at DF��S� may
well be necessary for correct propagation of information� as discussed above� Another paper �	��
has shown that placing ��functions at these points does correctly propagate reaching denitions�
albeit through placeholder ��functions at times�

	�

How conservative is the use of DF��S� as an approximation for M��S�� First� if there is only
one member of S� then M��S� will be empty� while DF��S� will usually not be empty� Second�
DF��S� assumes a denition lies along all possible paths� Thus� in the case of Figure � where
S� fA�Cg� M�S� � M��S� � fEg� while DF�S� � includes D� Third� M��S� is insensitive to
transitive edges� while DF��S� is not� Again� examine Figure �� where DF��S� � fD�E� Fg�
A ��function is only needed at E� but the insensitivity to transitive edges of DF��S� adds node
F to its set�

Entry

= v

v=A B C

 D

E

F

v=

Figure

However� extra ��functions are safe� since they only pass along the information collected at
those points� Thus� merging information at the DF� of the set of interesting nodes within a PG
has been shown to be a safe method� and is relatively e�cient since it can be performed with
the same complexity as that for ��function placement and the techniques employed for sparse
evaluation graphs ����

� Conclusions and Extensions

In this paper we have contrasted the order of execution within a DAG parallel environment which
uses precedence graphs to that of control �ow graphs for sequential programs� Further� we have
discovered the minimal set of points in precedence graphs to merge information� However� this
set is currently infeasible to implement since depth�rst renaming schemes� such as those used for
implementing SSA form� require a larger set of con�uence nodes� notably the iterated dominance
frontier of a set of nodes� We have also shown that using the iterated dominance frontier is a
safe and reliable alternative�

	�

Future work includes looking more closely at the ideas of shielding as it relates to sequential
control �ow graphs� and studying other problems which must merge the �ow of information
within parallel precedence graphs�

Finally� we mention the open question� are there other renaming schemes� not depth�rst
based� which could e�ciently make use of the iterated meet� if it could be e�ectively calculated�

References

�	� A� V� Aho� R� Sethi� and J� D� Ullman� Compilers	 Principles� Techniques� and Tools�
Addison�Wesley� Reading� MA� 	
���

��� Per Brinch Hansen� Operating Systems Principles� Automatic Computation� Prentice�Hall�
	
���

��� Jong�Deok Choi� Ron Cytron� and Jeanne Ferrante� Automatic construction of sparse data
�ow evaluation graphs� In Conf� Record ��th Annual ACM Symp� Principles of Program�
ming Languages� pages ������ Orlando� Florida� January 	

	�

��� Jong�Deok Choi� Ron Cytron� and Jeanne Ferrante� On the e�cient engineering of ambitious
program analysis� IEEE Transactions on Software Engineering� ������	���		�� February
	

��

��� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and F� Kenneth Zadeck�
E�ciently computing Static Single Assignment form and the control dependence graph�
ACM Trans� on Programming Languages and Systems� 	�������	��
�� October 	

	�

��� Ron Cytron� Michael Hind� and Wilson Hsieh� Automatic generation of DAG parallelism�
In Proc� ACM SIGPLAN �� Conf� on Programming Language Design and Implementation�
pages ������ Portland� OR� June 	
�
�

��� Fox et al� Common runtime support for high�performance parallel languages� In Proceedings
of Supercomputing ��� pages �������� Portland� OR� November 	

��

��� Dirk Grunwald and Harini Srinivasan� Data �ow equations for explicitly parallel programs�
In Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming�
pages 	�
�	��� San Diego� California� May 	

�� ACM Press�

�
� Matthew S� Hecht� Flow Analysis of Computer Programs� North Holland� New York� 	
���

�	�� Steven S� Muchnick and Neil D� Jones� editors� Program Flow Analysis	 Theory and Appli�
cations� Prentice�Hall� 	
�	�

�		� Parallel Computing Forum� PCF Parallel Fortran extensions� Fortran Forum� 	�����
September 	

	� �special issue��

�	�� Vivek Sarkar and Barbara Simons� Parallel program graphs and their classication� In Utpal
Banerjee� David Gelernter� Alexandru Nicolau� and David A� Padua� editors� Languages and
Compilers for Parallel Computing� number ��� in Lecture Notes in Computer Science� pages
��� � ���� Springer�Verlag� 	

��

	�

�	�� Harini Srinivasan� James Hook� and Michael Wolfe� Static single assignment for explicitly
parallel programs� In Conf� Record ��th Annual ACM Symp� Principles of Programming
Languages� pages 	����� Charleston� SC� January 	

��

�	�� Eric Stoltz� Harini Srinivasan� James Hook� and Michael Wolfe� Static Single Assignment
form for explicitly parallel programs� Theory and practice� submitted for publication� August
	

��

�	�� Michael Wolfe� J� � J� ACM Sigplan Notices� �
�����	���� July 	

��

	�

