Sparse Data-Flow Analysis for DAG Parallel Programs *

Fric Stoltz and Michael Wolfe

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology
P.O. Box 91000
Portland, OR 97291-1000
(503) 690-1121 ext. 7404
{stoltz,mwolfe}@cse.ogi.edu

October 14, 1994

Abstract

We contrast abstract flow of control in a sequential program environment which uses a
control flow graph (CFQG) to the abstraction of execution order within DAG parallelism using
a simple precedence graph (PG). We note that often the analogous concepts are duals of each
other with regard to universal and existential quantifiers.

We are studying sparse data-flow analysis techniques, which include methods of placing
operators at confluence points to merge the flow of information. While the placement of
merge operators is well-known for CFGs (at the iterated dominance frontier of nodes with
non-identity transfer functions), we determine and prove correct placement points for merge
operators within a PG in the case of reaching definitions. We also show how to conservatively
implement the placement of parallel merge operators in an efficient manner with respect to
the reaching definitions problem.

1 Flow of Information within Sequential Programs

1.1 An Abstract Representation

To describe control flow of sequential programs, the abstraction of the Control Flow Graph
(CFQG) is used. The CFG summarizes potential paths of control through the program. Formally,
the CFG is a graph G = <V, F, Entry, Exit>, where V is a set of nodes representing basic blocks
in the program, F is a set of edges representing sequential control flow in the program, and
Entry and Ezit are nodes representing the unique entry point into the program and the unique
exit point from the program. The CFG has been the most common intermediate representation
for program flow analysis for a number of years [1, 9].

Data-flow analysis is a method of collecting information about a program, such as reaching
definitions, dominance, or live variables [1, 10]. The first two examples of data-flow analysis,

*Supported in part by NSF grant CCR-9113885 and a grant from Intel Corporation and the Oregon Advanced
Computing Institute.

reaching definitions and dominance, are forward data-flow problems, since the flow of information
is in the same direction as control flow. Live variable analysis is an example of a backward
data-flow problem, since the information at the end of each basic block is dependent upon the
information at the entry of control flow successors. Thus, with backward data-flow problems
information flows in the direction opposite that of control flow. A transfer function at each
node summarizes the data-flow effect about the desired information at that node. A typical
method of extracting information from the CFG is to iterate a set of data-flow equations until
the information available at each point (typically the beginning and end of each control flow
node) has converged. For this paper, we will focus on the forward flow of information.

When paths of control within the CFG converge at a confluence node (a node with more
than one predecessor), data-flow analysis needs to merge the incoming information from each of
its data-flow predecessors. Merging information at these points can lose precision, but may be
unavoidable when attempting to keep the quantity of stored information to a minimum. When
a confluence node in the CFG is reached, exactly one of the predecessors of that node will have
just been executed. An important problem is to prevent quadratic growth of information, which
can occur with reaching definitions. In the case of a CFG where n definitions and n uses are
separated by a confluence node, n? reaching definition chains are generated to connect each
definition to its possible uses. This problem has been discussed in detail elsewhere [4, 5].

In this paper we focus on the reaching definitions problem as a running example of a forward
data-flow problem: for each use (or fetch) of a variable, what are the possible definition points
that reach this use? In particular, the rest of this section examines the notion of killing data-flow
information within sequential control flow graphs, while the next section looks at representation
and execution order for parallel precedence graphs. Section 3 reviews sparse data-flow represen-
tations, methods for merging reaching information within sequential graphs, and where to place
merge operators to accomplish this task. Section 4 examines these questions for parallel prece-
dence graphs, identifying the minimal set of nodes at which to place parallel merge operators:
given a set of nodes, §, we present a new concept, the meet of S, defined in terms of reachability
and when iterated is shown to be equal to that minimal set. We also provide an efficient method
for parallel merge operator placement, proving that it is a safe, albeit conservative, technique.
Finally, Section 5 summarizes and discusses future directions.

1.2 The Dominance Relation and Shields

Information (reaching definitions, for our running example) along a straight-line path in a CFG
can be killed by another definition for the same variable. If nodes X and Y both lie along a
straight-line path with X preceding Y, and both define variable v, then the definition at Y kills
any definitions at X. Note that (degeneratively, in this case) every path to Y passes through
X. Although non-killing definitions of variables exist, such as assignments to indexed variables
or arbitrary procedure parameters passed by reference, we do not discuss these concepts in this
paper (except for special pseudo-assignment merge operators explained later).

The ideas of the preceding paragraph are now formalized. Within a CFG, node B dominates
node C if every path from FEntry to C' must pass through B, and is written as B dom C. If
every path from A to €' must pass through B, we say that B shields A from C, or that B €
shield(A,C'"). We note that B dom C'is just a particular instance from the set of shields for Entry
and C', where B € shield(Entry,C') = B dom C.

Parallel Sections
Section A

Section B, Wait(A)
Section C

End Parallel Sections

poss

Exit

() (b)

Figure 1

Shielding is important when dealing with the flow of information in a CFG, since B €
shield(A,C') means that B can kill any information generated from A on all paths to C. In
particular, any definition of v within B prevents all definitions of v in A from reaching C'. It
is not our intent to closely examine the properties of shielding in this paper, but to highlight
concepts pertaining to the flow of information in a sequential flow graph which have analogous
concepts within the context of parallel execution order.

2 Parallel Execution Order

A precedence graph is an abstraction which imposes order of execution among its nodes. Prece-
dence graphs can easily be used to express DAG parallelism [6] by using Wait clauses to enforce
constraints between section nodes. A precedence graph is also a simplified, special case of a Par-
allel Program Graph [12] which only contains synchronization edges, with the synchronization
condition that all code in a node completes before beginning execution of any successor.

For the purposes of this paper, we deal with DAG parallelism (a subset of task parallelism
[7]), specifically explicit parallel sections fashioned after the Parallel Sections construct [11],
which is similar to the cobegin-coend syntax of Brinch Hansen [2]. An example is shown in
Figure 1(a), where Section B, Wait(A) means that all code in Section A must complete before
the code in Section B may begin.

2.1 An Abstract Representation

The ordering of sections is arranged within a precedence graph (PG), an abstract representation
which dictates what sections may execute in what order. Formally, a PG is a directed graph

P = < Vp, Ep, Entryp, Fxitp >, where Vp is a set of nodes, each representing a section in a
parallel block, Fp is the set of edges which represent wait-dependence arcs (corresponding to
the Wait syntax described above), and Fniryp and Ezitp are the co-begin and co-end nodes,
respectively. We will always show the Fniry node in a PG, but will often omit the Fzit node,
since for purposes of illustration only a partial representation of the PG is usually needed, and
the Fzit node is seldom a factor concerning the forward flow of information (which we focus on
in this paper) through the PG. The wait-dependence arcs impose a partial order upon the nodes
of a PG. If there is no partial order between two sections, they may execute in any order relative
to each other — perhaps in parallel. An example precedence graph is shown in Figure 1(b), where
sections A and C' (and, possibly, B and ') might execute concurrently.

We note that a PG must be acyclic, since any cycles would create a deadlock. A section
node of a PG “uses” or “defines” a variable if any of the code within that section uses or defines
that variable.

A confluence node in a PG has quite different semantics than that in a sequential CFG.
While precisely one of the predecessors at a confluence node in a CFG will be executed, all
predecessors of a confluence node in the PG must execute before confluence node itself executes.
Essentially, a confluence node is waiting upon all its predecessors, so they must all execute before
the confluence node executes. When paths meet within a PG, information might also merge. It
is important to note that it is possible that merging information could be in conflict — since all
predecessors are executed, we could have multiple definitions of the same variable, for instance.

We also note an important property of precedence graphs — they are insensitive to transitive
edges. This will become clear when we look at how information flows between section nodes in
a precedence graph — with respect to the reaches relation for definitions.

2.2 The Reaches Relation for Definitions Within a PG

When does node B wait for node A7 When there is path in the precedence graph from A to
B, ie., if A can reach B, then B waits upon A. Since any path from A to B is sufficient,
it now becomes clear why the addition of transitive edges to a precedence graph adds no new
information. In fact, the transitive reduction’ of a precedence graph contains the smallest number
of vertices and edges which captures all the information of the original graph.

Definition 1 (Reaching Definitions Within a PG.) Within a PG, a definition of v at
section node X reaches section node Y if no path from X to Y contains a definition of v, except
at X or Y.

Kill information is computed quite differently within a PG as opposed to a CFG [8]. In
a PG, a definition of v in node A is killed before reaching node C' if any path from A to C
passes through node B, where B contains a definition of v. We note that the shield and reaches
relations are duals of each other with respect to killing data-flow information:

CFG Information from A can be killed by B before reaching C' if all paths from A to C' pass
through B.

'The transitive reduction of graph G is any graph G’ with the same vertices as G, but with as few edges as
possible, such that the transitive closure of G’ is equal to the transitive closure of G.

PG Information from A can be killed by B before reaching C' if any path from A to C' passes
through B.

It is important to contrast two uses of the term “reaches”. On the one hand we speak of
path reachability; here, A reaches B in a graph if there exists a path from A to B. On the other
hand, we will often be referring to reaching definitions, which is concerned with the flow of a
particular type of information through a graph. In this case path reachability is not sufficient;
definitions (or, more generally, data-flow information) can be killed along paths in a graph due
to non-identity transfer functions. Most of the time the meaning is clear from context, but when
not, we will attempt to be explicit concerning usage.

3 Merging Information in a CFG

At what points in the CFG do we need to merge information? Certainly not at all conflu-
ence nodes, since there may not be any “interesting” nodes along either branch leading to the
confluence node, where “interesting” nodes are those with non-identity transfer functions for a
given data-flow problem. We define merge nodes as nodes at which information converges from
more than one predecessor, which are equivalent to the meet nodes of sparse evaluation graphs
[3]; these identify nodes which merge data-flow information, as opposed to confluence nodes in a
control-flow graph. Information is merged at these nodes in a sparse intermediate representation
by inserting a merge operator to collect the information from each data-flow predecessor.

For reaching definitions, merge operators (known as ¢-functions) for variable v need to be
placed at the iterated join of the set of interesting nodes [5]. In this case, interesting nodes are
those in which there is a definition to v. The join of two nodes is defined as follows:

Definition 2 The join of nodes X and Y, J(X,Y) =
{Z|E|ZX,ZY with Zx — Z and Zy — Z, paths px X 5 7x and py :Y@Zy,pXﬂpy :(Z)}

The join of a set of nodes, S, denoted J(S), is defined to be the union of the pairwise joins
VX,V € 8, ie., J(S) = U J(X,Y). The iterated join, J¥(8), is defined as the limit of
Xyes
increasing sequences of nodes defined by:

JHS) = J(S)
J2(S) = J(SUI(S)
JHHS) = J(SUT(S))

The effect of a ¢-function for reaching definitions is that it acts as a killing definition for all
other definitions which reach that confluence node (the merge operator collects the reaching def-
initions at that point). A ¢-function also represents a use for the reaching definitions along each
incoming control flow edge via its arguments. Thus, all reaching definitions can be discovered
by traversing the links associated with each ¢-function argument.

For reaching definitions, the iterated join of the set of nodes with non-identity transfer
functions for variable v is the correct placement for ¢-function since it insures the following
properties:

Figure 2

e cach join point K for v collects (directly or indirectly) all reaching definitions of v at K.

e cach variable use of v at CFG node A will have a single reaching definition. That is, in
the set D = SUJ*T(S), nodes which contain variable definitions or join points of v, there
exists exactly one element F € D, such that F dom A and F € shield(d, A)Vd € D.

Calculating the iterated join of &, JT(8), may seem expensive, but it has been shown [5] to
be equal to the iterated dominance frontier of S. The dominance frontier (DF) of a node X is
all nodes Z such that X does not strictly dominate Z, but X dominates some predecessor of Z.
Again, DF(S) = U DF(X), and DF* is defined as above for J*. For the relation DFT(S) =

XeS
J*(S) to hold, the Entry node of the CFG must be in &, which is a reasonable assumption for

imperative, sequential programs, one that implies that all variables used get defined along any
possible path through the program.

We present an example in Figure 2. Killing definitions of v occur at S = {Q, S, T}. DF'(S) =
{W}, and DF?(8) = DFT(S) = {W,Y}. Thus, ¢-functions are placed at W and Y, creating vy
and vs.

We note that W € shield(S,7) since any killing definition of v placed at W would prevent any
definitions at S (or T') from reaching Z. This example also illustrates the properties of DF*(S).
First, we see that the ¢-function at W directly collects the two reaching definitions of v (vz and

vs) which reach this confluence point. The ¢-function at Y directly collects the definition from
@, v1, but indirectly collects vy and v3 via vy, the ¢-function at W. All reaching definitions are
preserved either directly or indirectly, but the definition chains are now linearized. Second, each
use of v now has exactly one reaching definition. The use of v at X is reached by the definition
from Q. @ dom X, and, vacuously in this instance, Q) € shield(d, X)Vd € D. The use of v at Z
is reached by vs, the ¢-function at Y. Here, Y dom Z, and Y € shield(d, Z)Vd € {Q, S, T, W}.

Considering the problem of merging information within a data-flow framework in general, it
suffices to merge information at the iterated dominance frontier of the interesting nodes [3].

For reaching definitions, ¢-functions are placed at DF1(S), where S is the set of all definition
sites for each variable [5]. A ¢-function has an argument for each control flow predecessor, thus
coalescing all definitions which reach that node into a single definition. In this way, linearity of
reaching definitions is achieved. In the case alluded to in Section 1, with n definitions separated
from n uses of a variable by a merge, a ¢-function would be placed at the merge to collect all n
definitions. Each of the n uses would then get their definition from the ¢-function, resulting in
only 2n definition chains, pruned from the original n?.

4 Merging Information in a Precedence Graph

4.1 Interesting nodes and Merge Nodes within a PG

At what points in a PG do we need to merge information? We need to merge information at
the precedence section nodes in which information first comes together. However, as opposed to
sequential control flow, a variable may not be defined along every path which reaches a confluence
point; as long as it is defined along some path which reaches a use for that variable, a definition
for that variable will be available. This important distinction suggests that identifying merge
points as the iterated dominance frontier of interesting nodes in the PG may not be correct. To
see why, examine Figure 3(a), using our running example of reaching definitions. If v is only
defined at node X, then any use of v at W, Z, or A will have that definition available, since
X will always have been executed before any of these other sections execute. But the DF*(X)
= {W, Z, A}; clearly a merge node is not necessary when only a single definition of a variable
reaches any point. Since a precedence graph guarantees execution of all predecessors, we need
not be concerned about a definition of v flowing from node Y. Since Y does not define v, it does
not contribute to the reaching definitions of v for the other nodes.

To see where merge operators are needed in a PG, first examine Figure 3(b), in which v is
defined in sections X and Y, while used in section A. Since both definitions reach A without
either killing the other, a merge operator is needed at A. However, we need merge only two
definitions, even though there are three predecessors. Thus, a merge function for a PG only
needs arguments for predecessors with definitions which reach the confluence node along that
path. This highlights another major difference between sequential and parallel merges; therefore
we will use a new operator, the ¥-function, as the merge operator for reaching definitions within
the PG [13]. The t-function is similar to the ¢-function in that it acts as a non-killing definition
in terms of data-flow analysis, but it is also a use for all definitions which reach the ¥-function
via its arguments. By collecting multiple reaching definitions the t-function linearizes definition
chains within a PG in the same manner as the ¢-function within a CFG.

To identify precisely where to place parallel merge operators in a PG we begin with an

@ ®

Figure 3

important definition:

Definition 3 The meet of nodes X and Y, M(X,Y) =
{Z|VZX,ZY with Zx — Z and Zy — Z, and V paths px : X = Zx, py :Y@Zy,pXﬂpy:(Z)}

We note that the meet of two nodes is the dual definition to join, as it uses a universal
quantifier as opposed to the existential quantifier of join. For a set of nodes §, M(S) is defined

in the usual pairwise manner: M(S) = U M(X,Y). We also define MT(S) as the limit of
XYes
increasing sequences analogous to that used for join and dominance frontier:

MY S) = M(S)
M3(S) = M(SuUMY(S))
MHLS) = M(SUM(S))

The definition of Join (Definition 2, and the basis of work to place ¢-functions [5]) is a well-
known concept. Although in a CFG JT(8) = J(8) [15], the dual definition of join for PGs, meet,
does not possess this property. Consider Figure 3(a). Let S= {X,Y}. Then M(S) = {W,Z}; in
fact, A € M(S), but Ae M(SUM(S)) = M(X,Y,W,2) = {W,Z,A}.

The meet of two nodes possesses one of the important properties which characterize nodes
in a PG: it is unaffected by transitive edges. To prove this claim, we first formalize the concept
of a transitive edge as follows:

Definition 4 Fdge E: X — Y added to graph G is a transitive edge if 37 € G5 X 5 7 Ly,

We now show that the central concept of PGs, path reachability, is unaltered in the presence
of transitive edges.

Theorem 1 Path reachability in a PG is unaffected by transitive edges.

Proof:

Consider PG G/, consisting of G plus transitive edge £/ : X — Y. Since all edges in G exist in
G, if A reached B in G, A reaches B in G'. Now, let A reach B in G’, but assume that A does
not reach B in G. Then path p;: A % B in G’ must include E, else no distinction is possible
between paths in G and G’. Thus, p; must be of the form A 5 X — Y 5 B. By Definition 4,
X575 viG. Thus, path p: A S5 X 5 7 £ Y 5 B exists in G. By contradiction, we
have demonstrated equivalence of path reachability between G and G’. |l

We next demonstrate that the meet of a set of nodes is also unaffected in the presence of
transitive edges.

Theorem 2 The meet relation is insensitive to transitive edges.

Proof:

We use G and G’ as defined in the proof of Theorem 1, except that F is any transitive edge
added to G. We first show that for nodes X and ¥, M(X,Y) in G is equal to M(X,Y) in G’ by
means of double inclusion.

1. Let Z € M(X,Y) in G. We show that Z € M(X,Y) in G'. By Definition 3 for meet, the
intersection of all pairs of paths in G from X and Y to predecessors of Z is empty. Now
consider G', which includes edge F: A — B. Assume Z € M(X,Y) in G, but Z ¢ M(X,Y)

in G'. Then, in G’ there exists node V such that V &5 Z with X 5 V and Y 5 V. If
no path from X 5 V or Y 5 V passes through A, then V does not exist, since the only
difference between G and G’ is edge . Thus, without loss of generality, at least X, and
perhaps Y, has a path to V' which passes through A. But from A, no nodes are reachable
in G’ that were not reachable in G, as Theorem 1 demonstrated. Hence, if V exists in G’
it exists in G, since its existence is predicated upon reachability. We conclude that since
V does not exist in G it cannot exist in G’. By contradiction, Z € M(X,Y) in G".

2. Let Z € M(X,Y) in G'. By Definition 3 the intersection of all pairs of paths from X and
Y to predecessors of Z is empty in G'. Since the edges in G are a subset of the edges in G/,
any pair of paths from X and Y to predecessors of Z which exists in G exists in G’, and
is empty in G’ by assumption. Thus, that pair of paths is empty in G, and Z € M(X,Y)
in G.

Now consider the M(S), where § is a set of nodes. Since M(S) = U M(X,Y), we apply the
X,yes

property just proved to each pair X, Y to obtain the desired result for S: M(S) in G equals M(S)

in G'. 1

Given a set of interesting nodes &, merge operators for PGs need to be placed at the iterated
meet of §. In terms of reaching definitions, given a variable v and a set &, where § is the

<
n

Figure 4

set of section nodes in a PG which define v, t-functions need to be placed at M (S), where a
1-function for v at section node A collects all definitions of v that reach A. That is, there is
an argument of the i-function for each predecessor of A that has a definition of v reaching A.
Figure 4 shows the case where even though an edge exists from a definition of v (in node A) to
the confluence node N, the -function placed at N will only collect the definitions from nodes
B and C'. That is because the definition at A gets killed by the definition at B in this PG. In
this case, S= {4, B,C}, and M(S) = M+(S) = {N}, but we note that the edge A — N is a
transitive edge and M(B, (') = {N}.

We will first prove that it is sufficient to place ¥-functions at MT(S). Since Srepresents
nodes with non-identity transfer functions, this result holds for data-flow problems in general by
extending Definition 1 for reaching definitions to kill information for other data-flow problems.
The concept of iterated meet is a refinement of the -function placement method suggested
earlier [13], in that the iterated meet is smaller and, in fact, the minimal set.

How do #-functions affect reaching definitions in a PG? If node N is reached by -function s
and s is reached by definition d (where s collects d as a i-argument), then d reaches N indirectly
via a t-function. In general, it may be that one or more -functions lie on the path from d to
N. In that case, d reaches N indirectly via a ©¥-chain. Thus, a definition or ¥-function in a PG
which reaches node N in the sense of Definition 1 is called a direct reaching definition, whereas
a definition which reaches node N via a 1-chain is called an indirect reaching definition.

We now prove the following important results: that placing ¥-functions at the iterated meet
of the set of nodes which define a variable maintains the properties of (1) unique reaching
definitions, (2) collects all definitions (directly or indirectly) which before 1-function placement
could reach each node, and (3) is the minimal set at which to place such merge operators.

Theorem 3 In a PG, with 1-functions for v placed at M (S), all uses of v within node N will
be reached (in the sense of Definition 1) by exactly one definition (including -functions) of v.

Proof:
Let G be a PG before placing ¥-functions, and Gy, be the same graph after 1)-function placement.

10

Within G, let the set of nodes with definitions of v be §, &' C § be the set of nodes in § which
have definitions which reach N, and 7 C &S be the set of nodes in & with paths that reach V.

EXISTENCE. We first show that any use which had at least one reaching definition in G has
at least one reaching definition in G,. Since S'# 0, let A € S’ in G. Then all paths p4 : A 5> Z,
with Z — N, contain no definitions of v (except at A). For all p4 in Gy, if the definition of v
in A does not directly reach NV, then there must be at least one ¥-function along some p4. In
this case, at least one ¥-function reaches .

UNIQUENESS. We consider cases:
(7) Only one W € & reaches N (] &' | = 1). In this case, the definition in W kills any other
definitions which may exist in nodes of 7. Then, Vi1,12 € T, dps:tl % N, pyo: 2 % N,
W € pu N pg Thus, N ¢ M(T), and more generally, no node on any pw:W £ N ¢ M(T)
(except, perhaps, W). Repeating this argument, no node in any py - {W} € M* (7). Thus, in
Gy only the definition of v in W reaches N, since no additional definitions (y-functions) created
in Gy can directly reach N.
(ii) Multiple definitions of v reach N from &', with N € M*(S). Then a ¢-function will be placed
at the beginning of node N in Gy, and uses of v within N will be reached by that i-function.
(iii) Multiple definitions of v reach N from &', with N ¢ M*(S). Assume N is reached by
more than one definition from members of {SU MT(8)}. Call this set R;. Then either (a) N €
M(Ry), which contradicts our assumption, or (b) VA, B € Ry M(A, B) is non-empty (since A
and B reach N), and we call the set of all elements of M(R;) which have paths that reach N Rs.
Repeating this process, we note that R must converge at R4 since R,y is always composed of
nodes closer to N, along the paths from nodes in Ry to N, than the nodes in R,,. If the set R4
consists of exactly one node (it can’t be zero by the existence proof) we have a contradiction of
assumption, and if it contains more than one node (which can’t include N by assumption) R has
not converged. A contradiction is again reached as long as G contains a finite number of nodes.

Thus, in all cases, we have shown that in Gy precisely one reaching definition will exist for
each use which had at least one reaching definition in G. 1

Theorem 4 Within a PG, with -functions placed at M*(S), any use of v at node N will be
reached directly or indirectly by all definitions of v which reached N before placing ¥ -functions.

Proof:

Let G be a PG before placing ¥-functions, and Gy, be the same graph after 1)-function placement.
We consider two cases:

(7) Only one definition of v reaches N in G. This case is handled similarly to case (i) in Theorem 3,
and the single definition which reached N in G will reach N in Gy.

(77) Multiple definitions of v reach N in G. All definitions for v from node A which reach N in
G reach N indirectly in Gy via a 1-chain. To show this, consider all paths p from A to NV in
G. By Definition 1 no paths from A to N in G contain definitions of v. Since, by assumption, a
definition of v in G does not reach N from A, by Definition 1 there must exist a definition along
some path from A to N which did not exist in G. That definition can only be a i-function. If
there is just one i-function along the path then it collects all definitions which reach it, and that
w-function will now reach N, resulting in the definition of v reaching N indirectly. If there is
more than one i-function along any path from A to N, the argument is repeated. By induction,
a definition of v in A will reach N via a t-chain. Thus, we have shown that reachability of all
definitions is maintained when placing v-functions. |l

11

We now show that the M*(S) is the minimal set at which to place merge operators, which
will hold in the specific case of ¢-functions.

Theorem 5 Within a PG, for a set of nodes & which define v, M (S) is the smallest set at
which to place ¥-functions in order to insure unique reaching definitions at all nodes.

Proof:

Given S for variable v, consider any element N € M*(S). Let N € M/(S), for the minimum
§ > 1. Then 3X,Y € M/71(8) (where M°(S) = S) such that all pairs of paths from X and ¥
to predecessors of N are empty. Since X and Y contain definitions of v (either assignments to
v or P-functions for v), the definitions at X and Y (or, perhaps, a later definition of v within
some node along one of these disjoint paths) both reach N. Thus, by removing the 1-function
for v at N, any use of v within IV would be reached by multiple definitions. |

4.2 Depth-first Renaming

Computing the iterated meet seems somewhat impractical from its definition. Again, referring
to the reaching definitions problem within a CFG, after placing ¢-functions a technique known
as renaming transforms each variable definition into a unique name and each use into the name
of its unique reaching definition [5]. The method employed to perform this renaming is depth-
first, in that it recursively traverses the dominator tree in a depth-first order, keeping a stack
of current definitions for each variable. The key property that this renaming scheme satisfies is
that at each node the correct “current” definition (an original definition or ¢-function) of each
variable is the most recent definition on the depth-first path to this node from Entry, i.e., the
definition on top of the definition stack [5, Lemma 10]. In fact, a depth-first traversal of any
spanning tree of the CFG will also satisfy this property. Unfortunately, a depth-first traversal
of the nodes of a PG will not satisfy this key property with merge operators at M*(S). For

Figure 5

instance, in Figure 5, no ¢-function is needed at node C for either z or y, since only one definition
of each variable reaches node C' (in the sense of Definition 1). Suppose the depth-first traversal
of the PG visits node C' after node A; when visiting node C', the current definition of variable z
will be the definition in A, but the current definition of variable y will be wrong.

12

In order to use a depth-first renaming algorithm, we introduce additional ¢-functions as
placeholders [13, 14]. The renaming algorithm described in this earlier work visits the PG nodes
in a depth-first traversal of a spanning tree that satisfies topological ordering, and identifies and
removes these spurious -functions. In fact, we place -functions at the iterated dominance
frontier; the next section proves that this is a safe approximation to the iterated meet.

4.3 Efficient Implementation

What method can be used which is relatively efficient and yet correctly propagates information
between section nodes of a PG? We need to look more closely at how information flows between
nodes in a PG, keeping in mind that a precedence graph has different semantics compared to a
CFG.

Since information flowing through the PG is described in terms of reachability, we have found
the concept of reaching frontier useful. This concept describes reachable nodes in a PG in a way
that is analogous to the dominance frontier for nodes within a CFG.

Definition 5 The reaching frontier of X, RF(X) =
{Z | X reaches a predecessor of Z, but X does not reach all predecessors of Z}

The reaching frontier of a set S, RF(S), is defined to be the union of the reaching frontiers of
all elements of S, i.e., RF(S) = U RF(X). The iterated reaching frontier, RE*(S), is defined

XeS
similarly to that for join, meet, and dominance frontier. The reaching frontier is used to relate

important properties between the meet and dominance frontier. To implement the placement of
operators which merge information within a PG, we would like to show that M*(S) C RFT(S)
C DF*(S).

How are the meet and reaching frontier related? The analogous relations in sequential CFGs,
join and dominance frontier, are shown to be equal when iterated, with the provision that Entry
€ §. However, Fntry adds no information to either the meet or the reaching frontier in a PG.
M(Entry , X) = () VX since Entry reaches all nodes, and thus there is always a path from Entry
to any node on any path from X. Also, RF(Entry) =), since Entry reaches all predecessors of
all nodes.

We can also show that RF*(S) # M*(S). Simply choose the set T = {X,Enitry}. Then
M(T) = 0, so MT(T) = 0, while RF(T) clearly may not be empty. We now show that in general
Mt (S) C RFT(S).

Theorem 6 M"(S)C RF(S)

Proof: Let Z € M(S). Then there is a node X € & such that X has a path that reaches a
predecessor of Z, but X cannot reach all predecessors of Z or else there would be no path from
any other node that did not intersect some path from X to each predecessor of Z (which would
imply that Z ¢ M(S)). So, we have Z € RF(X) and Z € RF(S).

Finally, M(X) C RF(X) = M (X) C RFt(X). 1

We also show that DF(S) is not in general a subset or superset of RF(S). In Figure 6,
DF(X)={A,Z}, but RF(X) = {7}, since it reaches all predecessors of A. It’s also easy to find

13

Entry

©
|

A

[
W Tz
\ L/

Figure 6

&)

a graph where X reaches a predecessor of Z but does not dominate any predecessor of 7, so Z
€ RF(X), but Z ¢ DF(X).

Next, we show that the iterated dominance frontier is a superset of the iterated reaching
frontier on all graphs.

Theorem 7 DFt(S) D RFT(S)

Proof:

It has been shown [5, Lemma 4] that for any node 7 that X reaches, some node Y € {X
UDF*(X)} dominates Z. Now, for any node Z that X reaches, if Z is in RF(X), then Z is in
DF*(X); this is because some node in DF*(X) must dominate Z. Choose a path p from X to
Z. Let Y be the last node on p in {X UDF*(X)}; Y must dominate Z. If Y is not Z, then Y
dominates all predecessors of Z, so there is a path from Y to all predecessors of Z; thus there is
a path from X to all predecessors of Z, and Z is not in RF(X).

Thus, DFT(X) D RF(X). Thus, DFt(S) O RF(S). RF*(S) = RF(S U RF(S)) C RF(S
U DF*(S)) € DFT(S UDF*(S)) = DFT(S). By induction, DF(S) 2 RF+(S). 1

In general RFY(X) # DFT(X). Although DF*(X) D RF*(X), the converse is not neces-
sarily true. Consider Figure 7. DF(X)= {B,Z}, and DF?*(X) = DF*(X) = {B,Z,X}. How-
ever, RF(X) = {B}, and RF?*(X) = RF*(X) = {B,X}. Thus, by counterexample, RFT(X)
2 DFT(X).

But, we note that the above example contains a cycle. We are interested in placing -
functions in a PG, which we know to be acyclic. And, in a DAG, we next show that RFT(S) =
DFT(S).

Theorem 8 In a DAG, RF'(S) = DFt(S)

Proof: Given a DAG, we demonstrate two preliminary lemmas.

14

Figure 7

e Lemma 1 RF'(S) D DF(S).

Let X € § and let Z be in DF(X). Then X dom A, a predecessor of Z. X dom B, some
other predecessor of 7, since X dom Z. If X does not reach B, then 7 is in RF(X). So
assume that X reaches B

We now show that on some path from X to B, there exists a C' such that C'is in RF(X).
Since X dom B, consider a path from entry to B such that X is not on the path (there
must be at least one such path). Let C' be the first node on this path that X can reach
(C' may be B). Then since X can reach C', but not the predecessor of C' on this path, C
is in RF(X).

Next, note that C' cannot reach A. Else, we would have the path Entry — C — A
(which cannot go through X since the graph is acyclic) which does not pass through X,
contradicting the fact that X dom A.

But, this means that 7 is in RF(C), since C' reaches Z through B, but cannot reach A.
We already know that C'is in RF(X), so we have shown that Z is in RFT(X). 1

e Lemma 2 RFY(S) 2 DFt(S).

Given Lemma 1, we know that RFT(X) 2 DF(X). So, RFT(S) 2 DF(S). DFQ(S) =
DF(S U DF(S)) C RFT(S U RF*(S)) = RFT(S). By induction, DFT(S) C RF1(S). |

Lemma 2 together with Theorem 7 gives us our result. [

Since M*(S) C RF*(S) C DF*(S) (with RET(S) = DF*(S) in a DAG), we have shown
that merging information within a PG at the DF*(S) is a safe approximation for the somewhat
smaller set of MT(S). However, for the common depth-first implementations which use renaming,
such as ¢-functions for reaching definitions within PGs, placing merge operators at DFT(S) may
well be necessary for correct propagation of information, as discussed above. Another paper [14]
has shown that placing #-functions at these points does correctly propagate reaching definitions,
albeit through placeholder i-functions at times.

15

How conservative is the use of DFT(S) as an approximation for M*(8)? First, if there is only
one member of S, then M*(S) will be empty, while DF*(S) will usually not be empty. Second,
DFT(S) assumes a definition lies along all possible paths. Thus, in the case of Figure 8 where
S={A,C}, M(8) = MT(8) = {F}, while DF(S) = includes D. Third, MT(S) is insensitive to
transitive edges, while DF*(S) is not. Again, examine Figure 8, where DFT(S) = {D, F, F}.
A ¢-function is only needed at F, but the insensitivity to transitive edges of DFT(S) adds node
F to its set.

Entry

Figure 8

However, extra -functions are safe, since they only pass along the information collected at
those points. Thus, merging information at the DFY of the set of interesting nodes within a PG
has been shown to be a safe method, and is relatively efficient since it can be performed with
the same complexity as that for ¢-function placement and the techniques employed for sparse
evaluation graphs [3].

5 Conclusions and Extensions

In this paper we have contrasted the order of execution within a DAG parallel environment which
uses precedence graphs to that of control flow graphs for sequential programs. Further, we have
discovered the minimal set of points in precedence graphs to merge information. However, this
set is currently infeasible to implement since depth-first renaming schemes, such as those used for
implementing SSA form, require a larger set of confluence nodes, notably the iterated dominance
frontier of a set of nodes. We have also shown that using the iterated dominance frontier is a
safe and reliable alternative.

16

Future work includes looking more closely at the ideas of shielding as it relates to sequential
control flow graphs, and studying other problems which must merge the flow of information
within parallel precedence graphs.

Finally, we mention the open question: are there other renaming schemes, not depth-first
based, which could efficiently make use of the iterated meet, if it could be effectively calculated?

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

[2] Per Brinch Hansen. Operating Systems Principles. Automatic Computation. Prentice-Hall,
1973.

[3] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. Automatic construction of sparse data
flow evaluation graphs. In Conf. Record 18th Annual ACM Symp. Principles of Program-
ming Languages, pages 55—-66, Orlando, Florida, January 1991.

[4] Jong-Deok Choi, Ron Cytron, and Jeanne Ferrante. On the efficient engineering of ambitious
program analysis. [IEEE Transactions on Software Engineering, 20(2):105-114, February
1994.

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing Static Single Assignment form and the control dependence graph.
ACM Trans. on Programming Languages and Systems, 13(4):451-490, October 1991.

[6] Ron Cytron, Michael Hind, and Wilson Hsieh. Automatic generation of DAG parallelism.
In Proc. ACM SIGPLAN ’89 Conf. on Programming Language Design and Implementation,
pages 54-68, Portland, OR, June 1989.

[7] Fox et al. Common runtime support for high-performance parallel languages. In Proceedings
of Supercomputing 93, pages 752-757, Portland, OR, November 1994.

[8] Dirk Grunwald and Harini Srinivasan. Data flow equations for explicitly parallel programs.
In Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 159-168, San Diego, California, May 1993. ACM Press.

[9] Matthew S. Hecht. Flow Analysis of Computer Programs. North Holland, New York, 1977.

[10] Steven S. Muchnick and Neil D. Jones, editors. Program Flow Analysis: Theory and Appli-
cations. Prentice-Hall, 1981.

[11] Parallel Computing Forum. PCF Parallel Fortran extensions. Fortran Forum, 10(3),
September 1991. (special issue).

[12] Vivek Sarkar and Barbara Simons. Parallel program graphs and their classification. In Utpal
Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua, editors, Languages and

Compilers for Parallel Computing, number 768 in Lecture Notes in Computer Science, pages
633 — 655. Springer-Verlag, 1993.

17

[13] Harini Srinivasan, James Hook, and Michael Wolfe. Static single assignment for explicitly
parallel programs. In Conf. Record 20th Annual ACM Symp. Principles of Programming
Languages, pages 16-28, Charleston, SC, January 1993.

[14] Eric Stoltz, Harini Srinivasan, James Hook, and Michael Wolfe. Static Single Assignment
form for explicitly parallel programs: Theory and practice. submitted for publication, August
1994.

[15] Michael Wolfe. J* = J. ACM Sigplan Notices, 29(7):51-53, July 1994.

18

