
A Practical Method

for Realizing Semantics�Based Concurrency Control

Roger Barga � Calton Pu

Department of Computer Science and Engineering

Oregon Graduate Institute

P�O� Box �����

Portland� OR �����	����

email� barga�calton�cse�ogi�edu

Wenwey Hseush

Department of Computer Science

Columbia University

New York� NY �����

November 
� ����

Abstract

Semantics�based concurrency control �SBCC� protocols promise high concurrency but their

dependency on application semantics makes them di�cult to implement in practice� In

this paper we describe a method to systematically implement and combine SBCC protocols

by modularly extending conventional on�line transaction processing �TP� systems� The

main idea is to use a semantic compatibility function to capture the added compatibility of

otherwise con�icting operations from SBCC protocols� The semantic compatibility function

and other similar extensions are added to a TP architecture that originally knows only

read�write two�phase locking� The resulting system supports the combination of a variety of

representative SBCC protocols including	 commutativity 
��� recoverability 
��� cooperative

serializability 
��� and epsilon serializability 
��� The method is explained using Gray and

Reuter
s TP architecture 
��� which is speci�c enough to map into an implementation on

commercial TP monitors such as Transarc Encina�

�



� Introduction

Most commercial on�line transaction processing �OLTP� and database management systems that

support OLTP use two�phase locking ��PL� for concurrency control� �PL guarantees serializabil�

ity ��� and in a low contention environment o	ers good performance with low overhead� Despite

the advantages of �PL
 in many applications serializability unnecessarily restricts concurrency�

This problem is exacerbated when system hardware performance grows quickly
 pushing the en�

velope imposed by data contention� One way to alleviate this bottleneck is using application

semantics in semantics�based concurrency control �SBCC� protocols �e�g�
 ��
 �
 �
 ����

Despite the promise of SBCC protocols to improve concurrency
 the lack of actual implemen�

tations has prevented the full realization of their potential� Few practical implementation details

are presented in the literature � indeed
 the bulk of the existing research in SBCC has
 for the

most part
 been directed at algorithmic development or simulation studies� In the few cases where

implementation details have been considered
 the implementation is specialized to the exclusion

of other SBCC protocols� There is an implicit assumption that each application can only use one

SBCC protocol� Yet without an understanding of how to implement and combine SBCC protocols

their potential for increased concurrency remains limited� In this paper
 we address these issues


leading to the practical and integrated implementation of several representative SBCC protocols

in a generic �PL environment�

The main contribution of this paper is the Integrated Semantics Extension �ISE� Method for

realizing SBCC protocols� The objective of the methodology is the implementation of multiple

SBCC protocols through practical extensions to a modern transaction processing �TP� archi�

tecture� There are many applications where transaction or application semantics can be used

to achieve more concurrency� We demonstrate the power of the ISE method by applying it to

two practical data semantics based concurrency control protocols
 i�e�
 commutativity and re�

coverability
 and one transaction semantics based concurrency control protocol
 i�e�
 cooperative

serializability� These SBCC protocols are then combined with support for Epsilon Serializability

�ESR� ��
 �
 ��
 a generalization and relaxation of serializability that explicitly allows a limited

amount of inconsistency�

Although we do not introduce yet another new SBCC protocol in this paper
 ISE is a signi�cant

method both for the new capabilities it o	ers and the feasibility of its practical implementation�

On the functionality side
 ISE makes it straightforward to design and add a variety of SBCC

protocols to a TP system� Furthermore and perhaps more importantly
 these protocols �and

ESR� can be used in any combination as chosen by the application designers at run�time
 at the

�ne�granularity of individual transactions� On the practical side
 ISE is described using Gray and

Reuter
s TP architecture ���� Their modular decomposition of TP systems is accepted by the

community as practical and comprehesive� For example
 most commercial TP systems
 whether

�



a TP monitor such as Tuxedo and Encina or database management systems such as Oracle

and Informix
 use two�phase locking concurrency control as they describe� Further
 virtually all

commercial systems contain all the functionality described in the architecture�

The remainder of the paper is organized as follows� In Section �
 we introduce the ISE

method and outline the TP architecture we use to discuss implementation� Section � illustrates

the application of the ISE method by applying it to a simple SBCC protocol based on operation

commutativity ���� In Section � we apply the ISE method to a more powerful SBCC protocol

based on recoverability ���
 and in Section � we apply the ISE method to an SBCC protocol based

on transaction semantics� cooperative serializability ��
 ��� In Section �
 we combine these SBCC

protocols with ESR� In Section �
 we explain the concrete implementation of SBCC protocols

described in Sections �
 �
 �
 � by a detailed mapping of extension components into the algorithms

and data structures of practical TP systems ���
 and describe the implementation of extension

components in the commercial TP system Encina� Section � concludes the paper�

� The ISE Method � A Systematic Approach

��� A General Description of ISE

Semantic information is available at several levels in the execution of a transaction� The �rst is

the data level
 where object access semantics beyond read and write are considered� Many data

objects support operations with richer semantics
 for example
 the incrementing and decrementing

of a bank account� The commutativity property of Withdraw and Deposit operations helps the

system achieve higher performance by allowing them to run concurrently
 in situations where

Read and Write could not� The second is the transaction level
 where semantics of transaction

cooperation
 dependencies
 and operation interleaving can be speci�ed as well� For example


cooperative serializability ��
 �� uses explicit semantic information to permit con�icting operations

to run concurrently
 as long as the transactions that issued the con�icting operations are in the

same cooperative transaction group� This supports collaborative work
 where the exchange of

intermediate information is desirable and necessary� A bank customer waiting for an account

balance or activity summary at an automatic teller machine would not be delayed if the request

was issued as a cooperative transaction to other transactions posting interest or auditing accounts�

Finally
 at the application level
 semantic information about the requirements of the application

that issued the transaction is another rich source of information that can be used to achieve higher

concurrency� For example
 if the application can tolerate a limited amount of inconsistency in the

result
 then this information can be used to allow con�icting operations to execute concurrently

as long as the total inconsistency is below the speci�ed limit� A bank o�cer requiring branch

�



balance information accurate to within � ���
��� could issue such a transaction during times of

peak customer activity� Other sources of semantic information exist
 and various SBCC protocols


such as chopping transactions ��� and escrow transactional method ���
 exploit them for higher

concurrency
 but their implementation is described separately ����

Fundamental to the ISE method is the notion of con�ict� incompatibility between operations

or transactions� Con�icts may be de�ned in terms of read and write ��� �abbreviated as R�W�

or as in ACTA
 using application semantic information ��
 �
 �
 ��� We observe that the basis

of many SBCC protocols is the introduction of their own notion of con�ict
 which is weaker

than R�W and so allow more concurrency� The challenge that ISE must meet is to include

systematically these new notions of con�ict in practical TP systems� This paper signi�cantly

extends our previous work on extending the classic notion of con�ict in the implementation of

divergence control algorithms ��� to support ESR� Since ESR is complementary to SBCC
 we will

show that both can be implemented through modular extensions in the de�nitions of con�icts�

SBCC protocols are usually proposed as algorithms with semantics�based operations in their

application program interface� For example
 transactions may request object access through

operation�speci�c or semantic locks� In contrast
 a conventional OLTP system only supports R�W

locks with the usual con�ict de�nition� The ISE method bridges this gap by �rst translating a

request for a higher�level primitive to an appropriate read or write lock� R�W �and W�W�

con�icts are then analyzed further using both SBCC and ESR de�nitions� Conceptually
 this is a

generalization of the extension and relaxation methodology introduced in ����

The ISE method can be summarized in three steps�

�� �Analysis� � analyze the SBCC protocol to determine how it rede�nes operation and trans�

action con�icts�

�� �Extension� � analyze the TP system to identify where modular extensions are needed
 for

example
 places where con�icts are detected and resolved� This step is facilitated by modern

modular TP monitors such as Encina�

�� �Relaxation� � represent the semantic de�nition of con�icts in a uniform manner and inte�

grate it into the TP system�

In divergence control algorithms
 the extension to the TP system is localized to the place

where R�W con�icts are detected and resolved� Understandably
 di	erent SBCC protocols may

require additional information before or after con�icts are detected� Each time such a situation

arises
 we apply the above three steps to extend and relax the TP system appropriately� In a

modular approach
 ISE touches on a few well de�ned places in the TP system being extended�

In order to discuss implementation details
 we need to establish a common understanding of the

�



TP mechanisms involved� For this purpose we have selected a generic TP architecture on which

to base our discussion�

��� Gray and Reuter�s Architecture

We have chosen Gray and Reuter
s transaction processing reference architecture ��� �abbreviated

as �GR Architecture�� as the basis of our integrated implementation� The GR Architecture is

abstract enough to allow observations on TP systems in general
 and yet it is concrete enough

to make implementation details obvious in a modern TP monitor such as Transarc
s Encina�

We share the same assumptions made by the GR Architecture such as two�phase locking ��PL�

concurrency control and write�ahead logging recovery� These assumptions are prevalent in existing

TP monitors and database management systems �DBMS��

The major features of the GR Architecture with respect to concurrency control are related to

the con�ict detection mechanism and lock acquisition in support of two�phase locking� Hence


we focus our description on the interaction among four components� a Transaction Manager
 a

Lock Manager
 a Log Manager and a Resource Manager �i�e�
 DBMS�� The relationships among

a transactional application and these four components are shown in Figure �� In a commercial

setting
 we might �nd a TP system such as Transarc Encina or Novell Tuxedo providing access

to various resource managers
 such as an Oracle or Informix relational DBMS�

Transaction

Manager

Resource

Manager
Manager

Lock

Log

Manager

Transaction Processing System

Transactional
Application

Begin_Transaction

Commit

Figure �� Components of a TP System

In the GR Architecture
 transactions are initiated by a Begin Transaction call and terminated

by either a Commit or an Abort call� When initiated each transaction is assigned a unique identi�er

�



and entered into a transaction table managed by the Transaction Manager� Each entry in the

transaction table contains the transaction identi�er
 the transaction status
 and other information�

The Lock Manager maintains a lock table which contains a lock entry for every data item on which

a lock has been requested �each request corresponds to an operation�� Two functions
 Lock and

Unlock
 are supported as the interface to the Lock Manager�

Since the Lock Manager already detects R�W con�icts
 our work is to add support for semantic

testing in order to detect semantic con�icts� To extend the GR Architecture so that it supports

SBCC protocols we �rst extend the �PL con�ict detection mechanism� The original Lock Manager

detects R�W and W�W con�icts based on syntax� Our extension to the Lock Manager will use any

available semantic information to determine if a syntactic con�ict can be allowed using semantic

information� The way to achieve this is by classifying semantically�rich operations as either read�

typed or write�typed� A read�typed operation does not change the database state and a write�typed

operation may change the database state� The GR Architecture can detect con�icts between read�

typed and write�typed operations� In our extension
 a semantic con�ict test will determine whether

two operations have a semantic con�ict� Two operations that have a read�typed�write�typed or a

write�typed�write�typed con�ict may turn out to be semantically compatible and will be allowed to

run concurrently� From now on
 the term �con�ict� will be used to denote a read�typed�write�typed

con�ict or a write�typed�write�typed con�ict�

In Sections �
 �
 �
 and �
 the application of ISE will be described at this high level of abstrac�

tion� In Section �
 we will present further details of the implementation in the GR Architecture


by describing a set of practical extensions to existing functions and data structures� The full

version of the paper ��� contains an appendix that summarizes the GR Architecture in su�cient

detail to make the presentation self�contained�

� Commutativity

For our �rst application of the ISE method
 we select a simple semantics�based protocol based on

operation commutativity
 a well known property used to determine whether operations from dif�

ferent transactions can be allowed to interleave� Commutativity requires a semantic compatibility

function that can use available semantic information to relax the notion of con�ict but requires

no other enhancements to the TP system� In this section we present a general representation

for semantic information and identify enhancements to the GR Architecture required to support

semantic compatibility testing�

�



��� Con�ict Detection and Representation

Two operations commute if the results �return value� of the operations are independent of their

execution order and changing their execution order does not a	ect the results of other operations

executed after these operations� This semantic notion of con�ict based on operation commutativity

can be de�ned as follows�

De�nition � �Commutativity and Con�ict�	 Two operations oi and oj commute if�

�� the results of the two operation sequences �oi�oj� and �oj �oi� are the same
 and

�� there does not exist any sequence of operations �s� such that ���oi�oj�� s� and ��oj �oi�� s�

have di	erent results�

If two operations do not commute then they semantically con�ict according to this de�nition of

commutativity�

In the GR Architecture
 this de�nition of con�ict cannot be tested directly� It would require

the results of operations oi and oj to be available for the test before operation execution� Instead


commutativity of operations is speci�ed in advance so the semantic speci�cation can be used

at run�time by a lock compatibility test function� The semantic speci�cation for commutativity

can depend on the accessed data object
 operation names
 parameters
 and the results of the

operations� In general
 the more complex the speci�cation
 the more overhead is incurred for the

compatibility test� Fortunately
 operation commutativity and con�ict can be e�ciently speci�ed

via a compatibility table� With a compatibility table it is possible to determine whether operations

commute through a simple table lookup
 thus allowing semantic con�icts to be e�ciently detected

at run time� In certain cases compatibility tables can be derived directly from the semantics of

the operations for a data object ���
 but typically the design of a compatibility table is a creative

process like programming� To simplify the presentation
 in this paper we consider compatibility

tables based only on operation names�

Let us examine a banking example� Assume a set of Account data objects and three operations

Deposit
 Withdraw
 and Balance that operate on an account� Deposit adds a speci�ed amount

to the account balance� Withdraw subtracts a speci�ed amount from the account balance
 if

the account balance is greater than or equal to the subtracted amount� And Balance returns

the current value of the account� The operation compatibility table is shown in Table �
 in

which columns represent operations executed and rows represent operations requested� In the

compatibility table
 an entry of SOK�CM indicates that the requested operation commutes with

the executed operation
 and an entry marked Con�ict indicates that the requested operation

con�icts with the executed operation�

�



Account Balance Deposit�Amount� Withdraw�Amount�

Balance SOK�CM Con�ict Con�ict

Deposit�Amount� Con�ict SOK�CM Con�ict

Withdraw�Amount� Con�ict SOK�CM Con�ict

Table �� Operation Compatibility based on Commutativity�

��� Capabilities Required to Support Commutativity

The Lock Manager �the code that maintains the lock table� of the original the GR Architecture

only detects con�icts between read and write operations
 using an operation compatibility table

similar to the one illustrated in Table �� A request to the Lock Manager to execute either a

read or write operation on a data object will result in a con�ict test being performed between

the operation requested and each operation active on the data object
 returning either �OK�

or �Con�ict�� This does not accommodate semantically rich operations
 such as the operations

Deposit and Withdraw for the Account data object� However
 if the operations for a data object

were �rst classi�ed as either read�typed or write�typed to re�ect the e	ect the operation will have

on the data object
 then this con�ict test could be used to detect con�icts based on the update

type of the operations� We will assume this classi�cation of operations on a data object takes

place when the data object is de�ned� For the initial operations de�ned for the Account data

object the classi�cation is as follows� Balance is read�typed
 and both Deposit and Withdraw are

write�typed�

We can extend this syntactic con�ict test further to perform semantic con�ict testing by

replacing entries in the con�ict table marked �Con�ict� with a call to the function STest
 which

performs semantic con�ict testing� For the case of operation commutativity
 the function STest

simply performs a table lookup using Table �
 allowing the Lock Manager to use the semantic

con�ict speci�cations for operation commutativity to relax the notion of con�ict� Operationally


this extends the original syntactic con�ict test to perform a two�step semantic con�ict test
 as

illustrated in Table �� The �rst step detects con�icts between operations using only the update

type �read�typed or write�typed� of the operations� If a con�ict is detected
 the second step utilizes

available semantic speci�cations to determine if the operations are semantically compatible or if

they con�ict� For example
 if a transaction was to request permission from the Lock Manager to

perform a Deposit operation while a Withdraw operation was active the semantic con�ict function

STest would return SOK�CM
 indicating that the operations were semantically compatible and

could be executed concurrently�

To summarize
 the additional capability that has been added to the original GR Architecture

to support SBCC based on operation commutativity is�

�



Operation Uncommitted Operation
Requested read write

read OK Con�ict

write Con�ict Con�ict

Table �� Syntactic Con�ict Detection�
Operation Uncommitted Operation
Requested read� typed write� typed

read� typed OK STest

write� typed STest STest

Table �� Semantic Con�ict Detection � Step One�
The function STest represents the semantic con�ict test� For operation commutativity
STest simply performs a table lookup in the operation compatibility table based on commu�
tativity� Table �� indexing with operation names and returns the value in the corresponding
entry�

�� The Lock Manager performs a two�step con�ict test
 i�e�
 the semantic con�ict function

STest will perform a compatibility table lookup whenever a syntactic con�ict is detected

during a lock request� The result from a call to STest will be either OK
 SOK�CM
 or

Con�ict�

� Recoverability

Recoverability ��� is a more powerful data semantics�based protocol used to relax the notion of

con�ict among operations� ISE builds upon the capabilities introduced in Section � for commu�

tativity
 and includes additional capabilities to track transaction dependencies and manage the

ordered commit of transactions� In this section we will outline the recoverability protocol and

introduce capabilities that will enable the TP system to track transaction commit dependencies

imposed by recoverability and manage the ordered commit of transactions�

��� Con�ict De�nition

Intuitively
 an operation ok is recoverable relative to operation oj if the value returned by ok
 and

hence the observable semantics of ok
 is independent of whether oj executed before ok� Thus
 if

transaction tk precedes transaction tj
 and tk aborts then tj is immune from cascading aborts

since the operation e	ects on tj remains the same� A requirement for serializability
 however
 is

that tj cannot commit until tk commits or aborts if tj
s e	ects on the database depends on tk�

�



Therefore
 from the database system designer
s point of view
 the commit dependency imposed by

recoverabilitymust be enforced in order to maintain database consistency� Thus
 if tj is recoverable

but not commutative relative to tk
 then the �nal state written by tj depends on tk� However


from a user
s perspective
 once tj issues Commit
 tj will commit regardless of the status of tk� The

function Commit can immediately return the status to the users
 indicating the commitment of tj


and then defer the actual commit of tj
 which makes the changes of tj durable
 until the actual

commit of tk� This type of commit is referred to as a pseudo�commit� This semantic notion of

con�ict based on operation recoverability can be de�ned formally as follows�

De�nition � �Recoverability and Con�ict�	 Operation oi is recoverable relative to operation oj

if there does not exist any sequence of operations �s� such that �s�oi�oj� and �oj �s� have di	erent

results� We say that operation oi semantically con�icts with operation oj 
 if oi is not recoverable

relative to oj �

��� Capabilities Required to Support Recoverability

The extended Lock Manager
 introduced in Section � for commutativity
 will be generalized to

support recoverability with two modi�cations� First
 the semantic compatibility function STest is

directed to use recoverability�based operation compatibility tables
 such as the one shown in Ta�

ble � for the Account data object
 to determine operation con�icts� Entries marked with SOK�RR

indicate that while there is no semantic con�ict between the two operations
 a commit dependency

must be established between the transactions that issued the recoverable operations� The function

STest will return the value found in the compatibility table but does not provide the informa�

tion required to establish commit dependencies �viz� identi�ers of transactions �TIDs� executing

operations recoverable to the operation requesting the lock�� The Lock Manager maintains the

sequence of active operations on any given data object in the lock table� This sequence is basically

an ordered list of lock requests for operations on the data object
 in which each entry includes

the identi�er �TID� of the transaction issuing the operation� Our second modi�cation to the Lock

Manager is that the function STest record the TIDs of all syntactically con�icting but recoverable

operations in the order in which they were encountered in the lock table� This provides su�cient

information to record all transaction commit dependencies imposed by recoverability� We will

now consider enhancements to the Transaction Manager so that it can utilize these dependencies

for the ordered commitment of transactions�

The purpose of tracking commit dependencies that arise from recoverable operations is to

manage the ordered commit of transactions� When a transaction ti issues the Commit command a

commit protocol is invoked to make the changes of ti permanent and to release the locks acquired

by ti� But
 for recoverability the Transaction Manager must �rst check whether ti is commit

dependent upon any transactions and
 if so
 whether all these transactions have committed or

�



Account Balance Deposit�Amount� Withdraw�Amount�

Balance OK SOK�RR SOK�RR

Deposit�Amount� Con�ict SOK�RR Con�ict

Withdraw�Amount� Con�ict SOK�RR Con�ict

Table �� Account Operation Compatibility based on Recoverability

not� If not
 then ti is blocked until all transactions that it commit�depends on are complete�

When ti is �nally allowed to commit then it enters into a writing state
 where all changes made

by ti are written into the database and all locks acquired by ti are released�

In order to realize the ordered commit of transactions we must have the means to determine

when a transaction is allowed to commit and introduce an additional state which indicates that a

transaction is �nished executing operations but waiting to commit� The means to determine when

a transaction is free to commit can be supported by having each transaction keep a list of transac�

tions that must commit before it� This list of commit predecessors �Cpred� contains the transaction

identi�ers recorded by the semantic compatibility function STest� When a transaction issues an

operation request it records all commit dependencies that arise due to recoverable operations by

appending the TIDs returned by STest to the Cpred list� Cycles in the commit dependency graph

can be detected immediately by noting that a transaction identi�er can not appear more than

once in the Cpred list� Each transaction also maintains a list of successor transactions that are

waiting for it commit
 called the Csucc list� When a transaction commits
 the commit procedure

will use the Csucc list to �notify� all waiting transactions that it has committed by removing its

TID from their Cpred list� When a transactions has an empty Cpred list it is free to commit�

During the time when a transaction is waiting for its Cpred list to empty it will be in the

pseudo�committed state� A transaction will enter the pseudo�committed state if it issues the

Commit command
 but must wait for other transactions to complete due to commit dependencies�

From the user
s perspective a transaction in the pseudo�committed state has completed� Once all

transactions on which it commit�depends on have completed
 as indicated by an empty Cpred list


the transaction enters a writing phase and makes all changes to the database durable and releases

all locks so that these changes will be visible to other transactions� After the writing phase is

complete the transaction enters the committed state�

In summary
 the additional capabilities that the GR Architecture must support in order to

realize the recoverability protocol are the following�

�� A Lock Manager
 as described in Section �
 with the function STest generalized to allow

the selection of semantics �compatibility table� that should be used to relax the notion

of con�ict� If transaction ti has selected recoverability as a SBCC method that is to be

��



used
 then STest will utilize an operation compatibility table based on recoverability� If

syntactically con�icting but recoverable operations are found
 then STest will record the

ordered list of transactions �TIDs� that must commit prior to ti�

�� The Transaction Manager stores the commit dependencies between transactions induced by

concurrent recoverable operations using the lists Cpred and Csucc
 and manages the ordered

commit of transactions�

�� The Commit procedure supports the pseudo commit state of a transaction by delaying the

actual commit of the transaction and the release of acquired locks until all requisite trans�

actions have completed �committed��

� Cooperative Serializability

We now apply the ISE method to a protocol that guarantees cooperative serializability �CoSR� ��


��� Unlike commutativity and recoverability
 CoSR uses semantic information about the coop�

eration between transactions to relax the notion of con�ict� In CoSR
 transactions can form

cooperative transaction groups
 where the transactions in a group collaborate over a set of data

objects while maintaining the consistency of the data objects� Data consistency can be maintained

only if transactions which do not belong to the transaction group are serialized with respect to

all transactions in the group� In other words
 groups of cooperative transactions become the

unit of concurrency with respect to serializability� This will require con�ict detection based on a

no�con�ict with relationship between transactions in the same cooperative group
 as well as the

tracking of dependencies between transaction groups to ensure serializability�

	�� Con�ict De�nition

We say transaction ti is a cooperative transaction of transaction tj if they are in the same group�

Given a set of cooperative transaction groups
 T 
 a transaction ti con�icts with a second transac�

tion tj
 only if ti and tj are in di	erent cooperative groups and there exists an operation oi issued

by transaction ti and a second operation oj issued by transaction tj such that oi and oj con�ict�

In CoSR
 when a transaction invokes a con�icting operation on a data object a serialization de�

pendency is established between all the transactions in their corresponding transaction groups


denoted by Ti CCOSR Tj
 indicating that transactions in cooperative group Ti must be serialized

before transactions in cooperative group Tj� A history over T is cooperative serializable
 if and

only if there are no group�con�ict cycles in the transitive�closure of the serialization graph� This

notion of CoSR�con�ict is captured in the de�nition presented below�

��



De�nition � �Cooperative Serializability �CoSR� and Con�ict�	 For two transactions ti and tj


we say that ti CoSR�con�icts with tj
 if ti�opi�object�� con�icts with tj�opj�object�� and Group�ti�

�� Group�tj�� If ti CoSR�con�icts with tj
 then a serialization dependency arises between ti and tj


and to preserve serializability every transaction in their respective transaction groups must satisfy

this serialization dependency� If the serialization dependency is violated by any transaction in the

two cooperative groups
 then serializability is also violated�

The de�nition above states that two transactions do not con�ict if they are members of the

same cooperative transaction group
 and expresses how a dependency between two transactions

which do not belong to the same cooperative group is directly established when they invoke

con�icting operations on a shared data object� This is similar to the clause in the classical

de�nition of �con�ict� serializability� It also re�ects the fact that when a cooperative transaction

establishes a dependency with another transaction
 the same dependency is established between

all the transactions in their corresponding cooperative transaction groups�

	�� Capabilities Required for Cooperative Serializability 
CoSR�

The GR Architecture does not support transaction groups� We enhance the TP interface to

indicate the initiation and completion of a cooperative transaction group
 so in addition to

Begin Transaction
 Commit and Abort commands we will use the functions Begin Group
 Commit Group

and Abort Group to manage transaction groups� Also
 we will de�ne a Join�Transaction�

Group� command which indicates the transaction is to become a member of the speci�ed trans�

action group� We now demonstrate how the data structures and functions used to implement the

Transaction Manager can be easily extended to support cooperative transaction groups�

When the command Begin Group is issued the Transaction Manager will simply create an entry

in the transaction table corresponding to the transaction group� An identi�er �TID� is assigned to

the transaction group entry and will be used as the cooperative transaction group identi�er by all

member transactions� For the Join command the Transaction Manager will record the group TID

in a new Group �eld of the transaction entry and add the TID of the member transaction to the

Members �eld of the group transaction entry� When an individual transaction in the transaction

group issues Commit it will enter the pseudo�commit state
 delaying the actual commit and release

of locks� The function for the command Commit Group will issue the Commit command for all

TIDs in the Members �eld of the transaction group entry
 actually committing each member

transaction and releasing all locks� The Abort Group command is handled similarly�

In CoSR two operations semantically con�ict only if they are issued by transactions in di	erent

cooperative groups� When a con�ict occurs between two operations CoSR requires that a con�ict

dependency be established between the transactions that issued the operations� But when a

��



transaction establishes a con�ict dependency with another transaction
 this same dependency

is established between all the transactions in their corresponding transaction groups� Instead

of maintaining con�ict dependency information for each transaction in a cooperative group we

record the con�ict dependency information only in the transaction table entry corresponding

to the group� To manage these con�ict dependencies and ensure that cycles do not occur we

generalize the transaction dependency tracking capabilities of the extended Transaction Manager


introduced in Section � for maintaining commit dependencies
 to also track serialization �con�ict�

dependencies�

Before we discuss extensions to the Lock Manager
 we must �rst consider how the compat�

ibility table for CoSR will be constructed� A CoSR compatibility table need only contain the

identi�er �TID� for each cooperative transaction group along with a list of member transaction

identi�ers �TIDs� belonging to the group� If a con�ict is detected a table lookup in the CoSR

compatibility table will reveal whether the transactions that issued the con�icting operations are

in the same cooperative group and
 hence
 semantically compatible according to CoSR� Since

cooperative transaction groups are intrinsically dynamic we must be able to construct and adjust

the CoSR compatibility table at runtime� Fortunately all the information necessary to construct

and manage the CoSR compatibility table is available to the Transaction Manager as it processes

the commands to manage transaction groups� When a transaction group is created through the

command Begin Group the Transaction Manager will create a new entry �row� in the CoSR com�

patibility table corresponding to the transaction group
 using the TID of the group as the owner

of that entry� When a transaction joins a cooperative transaction group its TID is added to the

CoSR compatibility table as a column entry
 in the row corresponding to the transaction group it

joined� Operations Commit Group and Abort Group remove all entries in the CoSR compatibility

table corresponding to the transaction group� Table � illustrates a CoSR compatibility table
 in

which a no�con�ict�with relationship exists between member transactions of the same cooperative

group�

Group TIDs Member TIDs

T�� t� t�� t���
T�� t� t��
T�� t�� t�� t��

Table �� Transaction Compatibility based on CoSR�

The semantic compatibility function STest will use the CoSR compatibility table if the trans�

action requesting the lock was initiated with COSR as a selected semantic method� STest can

index the transaction table using the TID to determine what Group the transaction belongs to�

STest will �rst determine if the operation con�icts with any active operation�s� and
 if so perform

a lookup in the CoSR compatibility table for each con�icting operation to determine if the oper�

��



ations are semantically compatible according to CoSR� If not
 then STest will record the TID of

the group in which con�icting transactions belong
 providing the necessary information to record

transaction serialization dependencies imposed by CoSR�

In summary
 the following capabilities will enable the GR Architecture to support SBCC based

on Cooperative Serializability �CoSR��

�� The function STest allows CoSR semantics to be used to relax syntactic con�ict� If trans�

action ti has been initiated with COSR semantics selected then STest will utilize the CoSR

compatibility table and
 if a con�ict is discovered
 will record the Group transactions iden�

ti�er �TIDs� of the transactions that must be serialized before ti�

�� The Transaction Manager supports the notion of a transaction group and records the trans�

action identi�ers �TIDs� of each member transaction� When an individual transaction in a

transaction group issues Commit it enters the pseudo�commit state and no locks are released�

Finally
 when the last transaction in the group issues CommitGroup the Transaction Manager

can traverse through the list of member TIDs to commit each transaction and release all

locks that were acquired by transactions in the group�

�� The Transaction Manager records con�ict dependencies between transaction groups induced

by con�icting operations on shared data objects
 and prevents cycles from occuring� If a

cycle is detected the transaction that operation requested is blocked�

	 Epsilon Serializability

This section describes the addition of Epsilon Serializability �ESR� support using the ISE method�

Due to the lack of space for a conference submission
 we omit most of explanations and show only

the de�nition and crucial tables for the combination of ESR with other SBCC protocols�

De�nition � �Epsilon Serializability �ESR� and Con�ict�	 For two transactions ti and tj
 we say

that ti epsilon�con�icts with tj if ti�operation�object�� con�icts with tj�operation�object�� and

�Safe�ti�� The safety pre�condition for transaction ti with respect to performing operation op on

data object Account is de�ned as follows�

Safe�ti� 	

�
importti 
 import inconsistency

ti
	Op�Account
 � �spec

ti
import

exportti 
 export inconsistency
ti
	Op�Account
 � �spec

ti
export

��



Where importtj and exporttj stand for the amount of inconsistency that has already been

imported and exported by transaction tj� And
 import inconsistency	Op�Account
 is de�ned as the

maximum amount of inconsistency that transaction tj can import with respect to performing op�

eration op on data object Account
 while export inconsistency	Op�Account
 is the maximum amount

of inconsistency exported by transaction tj performing operation op on data object Account�

In addition to specifying compatibility between two operations
 the compatibility table for ESR

must express information about the potential inconsistency that could be introduced by interleav�

ing operation executions� Without this information the semantic compatibility function STest

would not be possible to guarantee ESR�safeness� For example
 assume that a Balance opera�

tion is currently active and request for a Deposit operation is received� These operations con�ict

because Balance
s view of the Account data object could be corrupted� STest must be able to

perform a table lookup in the ESR compatibility table and determine if the operation interleaving

is allowed under ESR
 and
 if so
 use the value of the potential inconsistency to determine if the

ESR�safeness condition is satis�ed� As Table � shows
 the interleaving of Balance and Deposit op�

erations is allowed with a potential inconsistency equal to the amount being deposited� In general


a con�ict would have the potential increase in inconsistency equal to the di	erence between the

value of Account before the operation takes place and the value after the operation takes place�

Account Balance Deposit�Amount� Withdraw�Amount�

Balance OK Amount Amount

Deposit�Amount� Amount Con�ict Con�ict

Withdraw�Amount� Amount Con�ict Con�ict

Table �� Operation Compatibility and Inconsistency based on ESR

In summary
 the following capabilities will enable the GR Architecture to support ESR�

�� The Transaction Manager will record import and export ��specs for a transaction� En�

tries in the transaction table will be augmented with �elds to store the import and export

speci�cations and corresponding inconsistency counters�

�� The semantic compatibility function STest will utilize ESR semantics to relax syntactic

con�icts
 and if a con�ict is detected it will perform ESR�safeness testing�


 A �PL�Based Implementation of ISE

We now discuss how capabilities required for SBCC can be realized through a set of practical

extensions to a transaction processing system� Table � below
 summarizes the additional capa�

��



bilities described in Sections �� �
 and identi�es the SBCC protocols each capability supports�

Entries marked with a ��� indicate that the capability is required to implement the SBCC tech�

nique� Table � then lists the data structures and algorithms of the GR Architecture that must be

extended to support each capability� The mapping from capabilities to the data structures and

algorithms
 presented in Tables � and �
 identi�es that all changes to the GR Architecture are

centered in the Transaction Manager and the Lock Manager�

Additional Capabilites Semantics�Based Protocol
Required of GR Architecture Commutativity Recoverability CoSR ESR

Semantic con�ict testing � � � �

Transaction dependency tracking � �

Pseudo commit of transactions � �

Transaction groups �

ESR�safeness testing �

Table �� Summary of Capabilities Required for SBCC�

Using Tables � and � as speci�cations
 we describe extensions �rst to the Transaction Manager

and then to the Lock Manager
 to realize the capabilities required for SBCC� We then outline

the implementation of these extensions in the commercial TP system Encina� In describing the

required extensions and their implementation in Encina
 we wish to demonstrate the practicality

of the ISE method and illustrate how relatively simple extensions can be used to implement

SBCC in a commercial TP system� For reasons of space we can not present an detailed overview

of Encina nor elaborate on the data structures and algorithms of the GR Architecture here� The

full version of this paper ��� contains both an appendix describing Encina and an appendix which

summarizes the most important aspects of transaction management and lock acquisition in the

GR Architecture�

��� Transaction Manager Extensions

The Transaction Manager assigns a unique transaction identi�er �TID� to a transaction when

it is initiated
 creating an entry in the transaction table to record the TID and other perti�

nent information
 and tracks the transaction through its execution� The Transaction Manager

also provides the transaction application programming interface
 consisting of commands such

as Begin Transaction
 Commit
 and Abort
 and orchestrates the transaction actions associated

with these commands� We �rst describe the additional information we will require the Transac�

��



Extensions to GR Architecture

Capabilities Data Structure Algorithm

Semantic con�ict testing � Compatibility Table�s� � Lock Function

� Lock Table Entry � STest Function

Transaction dependency tracking � Transaction Table entry � Depends�on Function

Pseudo commit of transactions � Transaction Table entry � Commit Function

Transaction groups � Transaction Table entry � Begin Group Function

� Commit Group Function

� Abort Group Function

� Join Function

ESR�safeness testing � Transaction Table entry � ESR safe Function

Table �� Data Structures and Algorithms in the GR Architecture extended to support capabilities�

tion Manager to record for each transaction
 then discuss enhancements to the functions of the

Transaction Manager which make use of this additional information�

The data structure of interest that is managed by the Transaction Manager is called the

transaction table� Among other things
 each entry in the transaction table contains a list of the

operations performed by the transaction
 its transaction identi�er �TID�
 status
 and pointers to

the lock entries related to this particular transaction� For a transaction tj we add the following

�elds to its entry in the transaction table�

SBCC List of SBCC methods that are to be applied in semantic compatibility testing�

C pred List of identi�ers �TIDs� of the transactions that must commit before tj �

C succ List of TIDs of the transactions that are waiting for tj to commit�

Group The TID of the group to which tj belongs�

Members List of TIDs of the transactions that are members of the group represented by tj �

S pred List of TIDs of the transactions that must be serialized before tj �

S succ List of TIDs of the transactions that must be serialized after tj �

Import�limit The ��speci�cation limit on the inconsistency that tj can import �read��

Export�limit The ��speci�cation limit on the inconsistency that tj can export �write��

Import The amount of inconsistency that tj has already imported�

Export The amount of inconsistency that tj has already exported�

��



These extensions to the data structures of the Transaction Manager are summarized in Figure ��

The interface of the Begin Transaction command is extended to accept optional param�

eters for the selection of SBCC methods that are to be used during transaction processing�

Begin Transaction���CM�RC�COSR��ESR� Import�limit� Export�limit	�
 where the pre�x

� � indicates an optional parameter� If the parameter ESR is selected then the values for the

transactions import and export � �speci�cation are stored in the appropriate �elds of the transac�

tions entry in the transaction table� The list of selected SBCC methods that are to be used will

be utilized by the Lock Manager in requesting locks on behalf of the transaction�

Lock Hash Table

Lock Table

Tid - 2003

idT

Table
Transaction

C_pred:
C_succ:
Group:
Members:

S_pred:
S_succ:

Withdraw(412,75)
Deposit(003,75)

SBCC: CC,ESR
Lock List: Account_412,...

Import-limit: 100
Export-limit: 0
Import: 0
Export: 0

Lock Header Lock Request Lock Request Lock Request

op name: op name: op name:Deposit Deposit
Tid: 2003Tid: 1987
state: grantedstate: granted state: pending

Tid: 2104
WithdrawAccount_003

Account_412

Lock Header
mode: exclusive

mode: exclusive

Max: 50 Max: 75 Max: 25

Max: 75
op name:
Tid: 2003
state: granted
Lock Request

Withdraw

Figure �� Extended data structures of the Transaction Manager and Lock Manager�

	
�
� Transaction Groups

Extensions for transaction groups are added to support Cooperative Serializability �CoSR�
 where

individual transactions can form cooperative groups� A transaction group is created using the

new command Begin Group�Group name�
 and individual transactions join a cooperative group

using the new command Join�Group name�� The Begin Group procedure creates a standard

transaction entry in the transaction table for the group and associates the Group name with the

TID assigned to the new entry� When transaction tj issues Join�Group name� the Join procedure

creates an entry in the transaction table for tj and records the TID associated with Group name

in the Group �eld
 and then records the TID of tj in the Members �eld of the transaction entry

corresponding to the group� The procedures for the commands Commit Group and Abort Group

can traverse through the Members list of the transaction group entry to issue Commit and Abort

commands to the individual member transactions�

��



In addition to the list of lock requests maintained for each transaction
 the Transaction Man�

ager will also maintain a list of requests for each group� When a member transaction in a trans�

action group issues Commit no locks are released� However
 if it aborts the locks acquired by the

transaction are released� Finally
 when the last transaction in the group issues Commit Group the

Transaction Manager can traverse through the lock list associated with the group and release all

locks that were acquired by transactions in the group�

	
�
� Transaction Dependency Tracking

We extend the Transaction Manager to record dependencies between transactions through the

introduction of a new Depends�on function� Transaction dependencies are induced by both con�

current recoverable operations and con�icts detected between transactions in di	erent coopera�

tive transaction groups� Each transaction entry has separate �elds to record both commit and

serialization dependencies
 and the Depends�on function provides an argument to select the de�

pendency type that is being recorded� Depends�on��Commit�Serial
�Ti� Tj�� Conceptually


the dependency information stored in the transaction entry forms a directed graph
 in which each

transaction entry is a node in the graph and the �elds pred and succ are the incoming and outgoing

edges
 respectively� Before the dependency �edge� is recorded between transactions ti and tj
 the

function Depends�on performs a check to prevent dependency cycles from occurring� If a cycle is

detected then the transaction issuing the operation request is blocked�

	
�
� Managing the Pseudo Commit of Transactions

The status of a transaction tj in the transaction table
 is one of the following states� run�

ning
blocked
 writing
 pseudo commit
 committed
 or aborted� A transaction enters into the running

state when it starts and enters into the blocked state when it is waiting for a lock� We modify

the Commit procedure to manage the pseudo commit for the transaction� When transaction tj

issues Commit the commit protocol is invoked� It will �rst check whether the �eld Cpred �the set

of transactions that t commit�depends on� is empty or not� If yes
 it enters the transaction into

the writing state
 where all updates to the database are made durable and made visible to other

transactions by releasing all locks held by tj at this point� It also removes all commit dependencies

recorded through tj
s Csucc list
 notifying all transactions that are commit�dependent on tj that

it has completed
 and releases all locks acquired by tj� If Cpred is not empty
 it is blocked until all

transactions that tj commit�depends on complete �i�e�
 wait until Cpred becomes empty��

��



��� Lock Manager Extensions

The Lock Manager provides transactions with the means to acquire and release locks on data

objects� The Lock Manager maintains a lock table which contains a lock entry for every data

object on which a lock has been requested �each request corresponds to an operation�� Each lock

request is in one of two states
 Granted or Waiting� In order to determine if a lock request is

semantically compatible with Granted lock requests we extend the information stored with each

lock request entry in the lock table to include the following additional information�

Operation Name The name of the operation the transaction is attempting to execute�

TID Transaction identi�er �Tid� of the transaction that issued the lock request�

Max Maximum change to the value of the data object that could result from the active operation� This
provides an upperbound on the inconsistency that could be imported or exported to a transaction
executing under ESR�

These extensions to the data structures of the Lock Manager are summarized in Figure ��

Accordingly
 the interface to the Lock procedure is extended to optionally pass the additional

information that will be stored in each lock table entry� Lock�Object� operation� OpName�

TID� Max�� The Max parameter will be used for ESR�safeness testing
 while the OpName param�

eter is used by STest to index selected compatibility tables using the operation name
 and the TID

parameter provides access to transaction information
 such as dependencies
 group identi�cation


and inconsistency speci�cation and counters for ESR�safeness testing�

	
�
� Semantic Con�ict Testing

Semantic con�ict testing is a generalization of standard con�ict testing mechanisms
 in which

semantic information in the form of a compatibility table is used to relax the notion of con�ict�

The function Lock implements semantic con�ict testing as a two�step test� Step one is the standard

syntactic con�ict test based on the update of the operation �e�g� read�typed or write�typed� and


if a con�ict is detected
 step two performs semantic compatibility testing using the appropriate

semantic compatibility table�s� to determine if the two operations semantically con�ict or are

compatible� If the two operations semantically con�ict
 then ESR�safeness can be tested
 if ESR

has been selected
 to determine if the inconsistency introduced from the con�ict would exceed the

trans���spec� Figure � shows the procedure that functions Lock and STest will follow when a lock

request is received�

The logic of the extended Lock function is described in detail in Figure �
 while Figure �

presents the logic of the semantic compatibility function STest� Together these functions imple�

��



Operation
Conflict

Semantic

Imprecision
Within Safe
Limits

Syntactic
Operation
Conflict

No

No

Safe

Syntactic Conflict

Semantic Conflict

Unsafe Conflict

Grant Lock Block Operation

operation

read-typed or write-typed

Figure �� Semantic Compatibility Function for Acquiring a Lock

ment semantic con�ict detection
 using selected semantic methods and ESR to relax syntactic

con�icts�

��� An Encina Implementation of SBCC

We now discuss how the extensions required for SBCC can be implemented in Encina
 a com�

mercial TP system distributed and supported by Transarc� The components of Encina that need

to be modi�ed to support SBCC are in the Encina Toolkit� Speci�cally
 the Tran code of the

Encina Toolkit is modi�ed to support the necessary changes to the Transaction Manager and

lock requests
 while the Lock Service code of the Toolkit is modi�ed to support semantic con�ict

testing� Most of these modi�cations follow immediately from the description of the extensions

previously presented�

We �rst modify the function tran Begin
 which denotes the start of a transaction� It takes as

arguments the transaction identi�er of the parent transaction �NULL if none� and a pointer �TID�

to the transaction entry in the transaction table� To support SBCC
 we augment the interface to

accept optional arguments
 one for the SBCC methods that are to be used for this transaction


the import inconsistency speci�cation
 and the export inconsistency speci�cation� To store these

values
 and other values that may be supplied later
 such as commit and serialization depen�

dencies
 group and member transaction identi�ers
 and corresponding inconsistency counters
 we

use property lists� Property lists are a mechanism provided by the Encina Toolkit to associate

��



status Lock	object� operation� TID� OpName� Max
 f
lock � get lock	object


request � new request	operation� TID� OpName� Max


�� Step � � syntactic con�ict test ��
if	lock compatible	operation� lock�granted mode

 f
lock�granted mode � compute lock mode	operation� lock


request�status � Granted

return OK


g
�� Step � � perform semantic con�ict testing if SBCC methods selected ��
else
if 	transaction table�TID��SBCC �� nil

STest	request�object� operation� TID� OpName� Max



if 	request�status �� Granted

return OK


else f
�� Wait for lock until timeout or deadlock detected ��
request�status � Waiting

Wait	timeout


if	request�status �� Granted
 return OK
else f
delete request	request


return request�status
 �� TimeOut or DeadLock ��

g
g

g

Figure �� Extended Lock Function

additional information with each transaction� This additional transaction information can be

accessed using the TID and property name� For the transaction interface we introduce the func�

tions Begin Group
 Commit Group
 Abort Group
 and Join
 to support transaction groups� The

de�nition of these functions follows directly from their speci�cations presented in Section ������

In Encina
 lock requests are done through the lock Acquire function
 which accepts arguments

for the identi�er of the requesting transaction �TID�
 the desired lock mode
 and the logical name

of the lock� To support SBCC
 we augment the lock entry data structure to record the name of

the operation requesting the lock �OpName�
 and the maximum change to be performed on the

data object by the operation �Max��

A requested lock is granted only if it is compatible with the lock modes of the transactions

currently holding a lock on the same data object� Con�ict testing is performed by the function

lockConflict WithHolderswhich takes three arguments
 the requested lock mode
 the lock entry

of the desired item
 and the TID of the requesting transaction� Syntactic con�icts are detected by

a table lookup keyed on the current lock status and the requested lock mode� The table lookup

returns either true or false for compatibility�

After Encina detects a syntactic con�ict by comparing the overall lock status and the request

lock mode
 it performs further analysis to determine whether the detected con�ict is real or

whether it should be allowed� The con�ict may be not be a real one
 for instance
 if the requesting

��



status STest	request�object�operation�TID�OpName�Max
 f
Commit list � nil

SOK � False

All SOK � True

�� Test compatibility with all granted lock requests ��
for each granted request in lock�REQgranted f
�� If CM selected test for commutativity ��
if 	CM in transaction table�TID��SBCC

if 	objectCC �OpName�granted request�OpName� �� SOK�CC

SOK � True


�� If not	SOK
 and RC selected� test for recoverability ��
if 	not	SOK
 AND 	RC in transaction table�TID��SBCC


if 	objectRR�OpName�granted request�OpName� �� SOK�RR
 f
SOK � True

append	Commit list�	TID�granted request�TID




g
�� If not	SOK
 and COSR selected� test for cooperative serializability ��
if 		not	SOK
 AND 	COSR in transaction table�TID��SBCC


if granted request�TID in COSR�request�Group�
SOK � True


�� If not	SOK
 then operations semantically con�ict ��
If 	not	SOK
 and 	ESR in transaction table�TID��SBCC


if ESR Safe	request�TID�OpName�Max
 f
SOK � True


g
�� record serialization dependencies in transaction table for CoSR ��
if		not	SOK
 AND 	COSR in transaction table�TID��SBCC


Depends�on	Serial�transaction table�TID��Group�transaction table�granted request��Group


All SOK � 	All SOK AND SOK


g
if ALL SOK f
request�status � Granted

�� record commit dependencies in transaction table ��
for each dependency in Commit list
Depends�on	Commit�dependency



return OK

g
else
return CONFLICT


g
g

Figure �� Semantic Compatibility Function STest�

transaction already has the requested lock on the data item or is part of a nested transaction that

has the lock� A con�ict may be allowed if every transaction currently holding the lock agrees

that the con�ict is allowable� this is exactly the functionality required for semantic compatibility

testing� Encina supports this latter type of testing with con�ict callback functions� Con�ict

callback functions are associated with individual transactions and are used to determine whether

the detected syntactic con�ict between an associated transaction and the con�ict transaction

should be treated as a con�ict or should be allowed� If there is no con�ict callback function

associated with the transaction or if the callback function returns false
 the con�ict is not allowed�

Otherwise the con�ict is relaxed and the lock request is granted�

We use the con�ict callback functions to implement semantic con�ict testing for SBCC� Tradi�

tional transactions will not have con�ict callback functions associated with them and will therefore

��



reject any attempt to allow syntactic con�icts� If the transaction designer or user has selected

SBCC methods or ESR to be used with the transaction
 then the function STest
 described in

Figure �
 is registered as the con�ict callback function
 so the selected methods will be used to

relax the notion of con�ict� A transaction that does not pass all the con�ict callback function

testing in STest is said to cause a semantic con�ict and the transaction must block� Otherwise


there is no semantic con�ict so STest will record any inconsistencies or dependencies
 and the

lock request is granted�

� Conclusion

In this paper
 we described the Integrated Semantics Extension �ISE� Method for implementing

and combining semantics�based concurrency control �SBCC� protocols in practical TP systems�

ISE is not yet another new SBCC protocol� Rather
 it extends practical TP systems in a modular

way to implement a variety of SBCC protocols� Unlike previous proposals of SBCC protocols

which are largely incompatible with each other
 ISE shows that we can systematically implement

many SBCC protocols in the same TP system and allow the users a choice of any combination of

them at run�time at the �ne granularity of each transaction�

The implementation was described in detail for several speci�c SBCC protocols
 representing

important classes� We chose commutativity ��� and recoverability ��� to show that ISE handles

well the protocols based on data operation semantics� For SBCC protocols based on transaction

semantics
 we chose cooperative serializability ���� To relax serializability in bounded amounts
 we

showed that ISE also supports epsilon serializability ���� With such a wide coverage of examples


we make a case for the general applicability of ISE�

We achieved this wide coverage without resorting to a highly abstract model for algorithm

description� Gray and Reuter ��� have described an e	ective and concrete TP architecture that

has simple and direct mapping into production TP monitors such as Encina� ISE uses Gray and

Reuter
s architecture to specify the implementation of concrete SBCC protocols� In particular


Section � speci�es the ISE modular extensions in terms of Gray and Reuter architecture
 and

then follows the speci�cations to implement the extension in Encina
 through a set of practical

modi�cations to modules the Encina Toolkit�

Once applied to a practical TP system
 ISE gives application designers the ability to mix and

match the semantics of importance to them� Any transaction
 at any time
 can run under the

conventional two�phase locking rules
 without having to perform any special operation� The SBCC

protocols can be selectively employed for data objects
 transactions or classes of transactions for

which they are likely to provide the most bene�t�

��



Given a research topic as wide as semantics�based concurrency control
 it is perhaps not

surprising that we have not solved all the problems in the area� For example
 di	erent SBCC

protocols may interact with each other in unexpected ways
 both in terms of con�ict semantics

and implementation� We have resolved these interactions for the four SBCC protocols described

in this paper� However
 a more rigorous classi�cation of SBCC protocols and strengthening of ISE

to follow the classi�cation is a subject of current research� Furthermore
 although we have chosen

four representative protocols
 there are some SBCC protocols that defy classi�cation� We have

had some success with these �exotic� methods
 e�g�
 chopping transactions and Escrow method ���


but their integration with a systematic approach such as ISE remains a topic of future research�

References

�BHG
�� P�A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in
Database Systems� Addison�Wesley Publishing Company� �rst edition� ��
��

�BPH��� R�S� Barga� C� Pu� and W�W� Hseush� A practical method for realizing semantics�based
concurrency control� Technical report� Department of Computer Science and Engineering�
Oregon Graduate Institute� �����

�BR��� B�R� Badrinath and K� Ramamritham� Semantics�based concurrency control� Beyond com�
mutativity� ACM Transactions on Database Systems� ��� September �����

�CR��� P�K� Chrysanthis and K� Ramamritham� Acta� A framework for specifying and reasoning
about transaction structure and behavior� In Proceedings of the ���� SIGMOD� pages ����
���� Atlantic City NJ� May �����

�CRR��� P�K� Chrysanthis� S� Raghuram� and K� Ramamritham� Extracting concurrency from objects�
A methodology� In Proceedings of the ���� SIGMOD� pages ��
����� Denver� Colorado� June
�����

�GM
�� H� Garcia�Molina� Using semantic knowledge for transaction processing in a distributed
database� ACM Transactions on Database Systems� 
�����
������ ��
��

�GR��� J� Gray and A� Reuter� Transaction Processing� Concepts and Techniques� Morgan Kaufmann
Publishers� �����

�Gra
�� J�N� Gray� The transaction concept� virtues and limitations� In Proceedings of the �th
International Conference on Very Large Data Bases� pages �������� September ��
��

�Hse��� Wenwey Hseush� Semantic�Based Optimization Under Epsilon�Serializability� PhD thesis�
Columbia University� �����

�KS

� H�F� Korth and G�D� Speegle� Formal models of correctness without serializability� Proceedings
ACM SIGMOD� 
�����
������ ��

�

�MP��� B� Martin and C� Pederson� Long�lived concurrent activities� In Amar Gupta� editor� Dis�
tributed Object Management� pages �

����� Morgan Kaufmann� �����

�NSF��� NSF with the cooperation of the University of Kentucky and Amoco� Proceedings of the Work�
shop on Multidatabases and Semantic Interoperability� Tulsa� Oklahoma� November �����

��



�O�N
�� P�E� O�Neil� The escrow transactional method� ACM Transactions on Database Systems�
������ December ��
��

�PHK���� C� Pu� W�W� Hseush� G�E� Kaiser� P� S� Yu� and K�L� Wu� Distributed divergence control
algorithms for epsilon serializability� In Proceedings of the Thirteenth International Conference
on Distributed Computing Systems� Pittsburgh� May �����

�PL��� C� Pu and A� Le�� Replica control in distributed systems� An asynchronous approach� In
Proceedings of the ���� ACM SIGMOD International Conference on Management of Data�
pages �����
�� Denver� May �����

�RC��� K� Ramamritham and P�K� Chrysanthis� In search of acceptability criteria� Database con�
sistency requirements and transaction correctness properties� In editor� editor� Distributed
Object Management� pages �������� Morgan Kaufmann� �����

�RP��� K� Ramamrithan and C� Pu� A formal characterization of epsilon serializability� Technical
Report CUCS�������� Department of Computer Science� Columbia University� �����

�SSV��� D� Shasha� E� Simon� and P� Valduriez� Simple rational guidance for chopping up transactions�
Proceedings ACM SIGMOD� pages ��
����� May �����

�Wei

� W�E� Weihl� Commutativity�based concurrency control for abstract data types� In ��st
Annual Hawaii International Conference on System Sciences� volume II Software Track� pages
�������� Kona� HI� January ��

� IEEE Computer Society�

�WYP��� K�L� Wu� P� S� Yu� and C� Pu� Divergence control for epsilon�serializability� In Proceedings
of Eighth International Conference on Data Engineering� pages �������� Phoenix� February
����� IEEE�Computer Society�

��


