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Abstract

Software application generators can eliminate many of the technical aspects of program�
ming for most computer users� We have developed a uniform approach to the design of pro�
gram generators� based upon a simple idea�provide a declarative speci�cation language for
each application domain and give it a computable� denotational semantics� To make this
idea practical� however� requires a comprehensive system for transforming and translati�
ing expressions in the higher�order functional operators of the semantics formulation into
a reasonably e�cient implementation expressed in a �rst�order� imperative programming
language� This paper describes the system we have built to accomplish this�

The technique and the system have been applied to produce a generator for modules
that validate and translate messages sent from a peripheral sensor to a central controller�
The input to a generator is a speci�cation of the data formats and data constraints that
characterize a message� The output is an Ada package of six functions that perform message
translation and validation�

�The research reported here has been sponsored by the USAF Materiel Command�
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� A technology for automatic program generation

Program generators o�er a substantial reduction of e�ort to produce application�tailored
versions of a common software design� but the task of designing and implementing a pro�
gram generator for a new application domain can be formidable� This paper describes a
new technology for creating program generators� It is built upon research results in the
theory of programming languages� formal semantics� program transformation and compila�
tion� It comprises a suite of translation and transformation tools that constitute a design
automation system for software engineering�

In our method� the user	s interface to a program generator is a language in which to
specify each particular application for which a software module is required� We refer to this
speci�cation language as a domain�speci�c design language 
DSDL�� for it is tailored to the
problem domain for which the generator is intended� A DSDL is a specialized� declarative
language in which the important� high�level abstractions of the problem domain are directly
expressible� Often� a DSDL is just a formalization of a tabular or graphical speci�cation
language that engineers in the problem domain have long been using to express detailed
designs�

When a DSDL is used to provide input to a program generator� however� it must have
been given a computational semantics� The requirements that we impose upon the seman�
tics de�nition for a DSDL are that it be 
i� compositional� 
ii� e�ectively computable� and

iii� total� The implementation of a program generator is derived from the semantics of a
DSDL through several steps of translation and transformation to obtain satisfactory algo�
rithmic performance and to tailor the implementation to a speci�c platform and software
environment�

Compositionality implies that an implementation can be assembled piecewise from the
components of the semantics� E�ective computablility eliminates reliance on the axiom of
choice� for instance� The requirement that all semantic functions must be total allows us
to use equational theories to drive program transformations�

The idea of deriving an implementation for a formally speci�ed language from its se�
mantics was �rst tried experimentally in the SIS system ��� over � years ago� However� at
that time� the prospect of a technology to improve the performance of an implementation
enough that it would become acceptable for practical use seemed remote� In the intervening
years� there have been many discoveries relating to the formal calculation of programs� and
it seems time to revisit the ambitious task of automating program generation�

� Classes of transformations

The compositional style of programming used in designing a computational semantics for a
formal speci�cation language is attractive to the designer� However� powerful transforma�
tions are necessary to improve e�ciency of the programs synthesized from the semantics�
Semantics�preserving� fully automatic transformation tools relieve the software designer
from having to consider programming details that tend to obscure high�level concepts rel�
evant to the design itself�
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The transformations we have considered fall into four classes� for which distinct imple�
mentation strategies seem most appropriate�

�� Parametric transformations are instances of general theorems established by para�
metricity arguments� They yield equivalences that apply in all datatypes� hence the
resulting transformations are type�parametric�

� Order�reduction transformations replace expressions that use higher�order functions
by equivalent expressions using only �rst�order functions�

�� Algebra�speci�c transformations are those that depend upon some algebraic laws� such
as the associativity and commutativity of a binary operator�

�� Architecture�speci�c transformations depend upon representation equivalences or op�
eration code equivalences of a particular architecture� Such transformations are typi�
cally found in the code generator of an optimizing compiler�

A compositional style of programming introduces many intermediate data structures�
Directly applying semantic functions may entail multiple traversals of the data structure
that represents the abstract syntax of the language that is being interpreted� These prob�
lems can be addressed by two parametric transformation strategies�

� fusion or deforestation� in which identical control structures of sequentially applied
functions are merged� often allowing an intermediate data structure to be elimi�
nated ��� ��� and

� the tupling or parallel fusion strategy ��� ���� in which a pair of functions that operate
on the same data are transformed into a single function that returns paired results�
Symbolically� this transformation is


f x� g x� �� hf� gi x

When applied to traditional functional programs� parametric strategies can require ex�
pensive and inexact analysis to determine whether su�cient conditions for their application
are satis�ed� However� if control structures are explicitly designated in the formulation of
semantic functions and this information is preserved through the translation and trans�
formation process� it can be exploited to drive the transformation strategies by pattern
matching alone�

Parametric transformations are remarkably e�ective� However� they do not exploit
speci�c� algebraic properties of functions used in designing a semantics� A property like the
associativity and commutativity of multiplication over natural numbers is not parametric�
Associativity is necessary to apply the accumulator�introduction strategy that eliminates
recursion in favor of iteration� It can be exploited by transformation systems based on the
unfold�fold method ����� but these require human intervention or ad hoc heuristics to direct
them�

Term�rewriting� using a theory completion process for control� provides a �exible basis
for implementingalgebra�speci�c transformations ��� ��� Such systems perform transforma�
tions on �rst�order programs� Parametric transformation strategies can also be performed
by term�rewriting methods� Algebra�speci�c transformations are more costly and more dif�
�cult to automate than parametric transformations but they can have a dramatic impact
on the performance of programs� Algorithmic complexity improvment can be obtained
through transformations by a clever use of algebraic laws�

A strategy for order reduction is to generate a specialized version of each higher�order
function for each distinct list of functional arguments to which it is applied in a given

�



program� This specialization increases the size of the program but has no negative impact on
its execution time� Generation of an appropriate data structure to represent closures �� ��
leads to a more general but less straightforward approach for this class of transformations�

Specialization of functions can also be used to eliminate parametric polymorphism in a
program� This may in turn allow an implementation to avoid boxed representations of data
objects� which can be regarded as an architecture�speci�c transformation�
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� Computable denotational semantics

Denotational semantics for programming languages are translations of syntax to functional
expressions such that all constructions are deterministic and composable� Composability
implies that the semantics of a syntactic construction is a function of the semantics of its
component parts�and of nothing else� If each of the semantic functions associated with
a constructor of the abstract syntax is e�ectively computable� then we have a computable
denotational semantics� Our tactic for making a speci�cation language computable is to
formalize its intuitive meaning in terms of a computable denotational semantics expressed
in an executable meta�language�

We have designed the ADL language ���� as our preferred meta�language� ADL is an
acronym for Algebraic Design Language� It adapts the notion of structure algebras from the
mathematics of universal algebras to provide an unusually rich control structure without
employing an explicit recursion operator� ADL is a language of total functions� which
admits equational reasoning and program transformation by equational rewriting� ADL
also incorporates a dual concept of coalgebras� which contribute control structures that
correspond naturally to iteration�

��� Structure algebras in ADL

Some structure algebras� most notably the algebra of lists� are familiar to functional pro�
grammers and have been used by Bird� Meertens and their students ��� ��� ��� ��� to derive
programs from logical speci�cations by formal reasoning� In ADL� structure algebras are
�rst�class entities that can be declared� bound to identi�ers� abstracted 
in the module
system� and form the basis for ADL control operators�
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The declarative elements of ADL include signatures of algebraic varieties� algebra speci��
cations and constant 
value� declarations� ADL has program modules which are abstracted
with respect to algebras�

Signature declarations do not use explicit recursion� for a signature does not de�ne just
a single algebra� but an entire class 
or variety� of algebras that share a common structure�
For example� the signature declaration 
in abbreviated form� for list algebras is�

signature list
a� ftype c� �nil� �cons of a � cg

Each algebra in the variety de�ned by this signature has operators �nil and �cons� The
identi�er c� which ranges over all types� designates the carrier of an algebra of this variety�
For each such algebra� c represents a speci�c type� The codomain of each operator is the
carrier� The domain typing of each operator is speci�ed in the signature� By convention�
an operator symbol such as �nil� for which no domain typing is given� represents a constant
of the carrier type� Signatures for multi�sorted algebras can also be written in ADL but
shall not be discussed in this paper�

An algebra speci�cation binds a type for the carrier and a compatibly typed constant
for each operator symbol� For example� a list�algebra speci�cation would be

algebra Sum list � list
int�fc �� int� �nil �� �� �cons �� 
��g

In this speci�cation� both the type parameter� a� and the carrier have been bound to a
common type� int� the operator symbol �nil has been bound to a constant of type int and
�cons has been bound to the operator that designates int�addition�

Another list�algebra is a free term algebra� which has as its operators data constructors
nil and cons� and which has as its carrier the set of terms constructed by well�typed ap�
plications of these operators� The type parameter� a� instantiated to any type� determines
a particular instance of a free list algebra� Thus the carrier of a free term algebra derived
from the variety list corresponds exactly to an instance of a list datatype in a functional
programming language such as Standard ML ����� For each variety declared by a signature
in an ADL program� its free term algebra functor is declared implicitly�

In ADL� we distinguish two degrees of knowledge of the structure of an algebra� When
an algebra is speci�ed as an instance of a declared variety� we know how to form composite
functions from it with the combinators described in the following section� This is what we
mean by a structure algebra�

If the signature of the variety is not visible or the algebra has not been declared as
an instance of a variety� then we know only its operators and their typings� We say that
such an algebra is concrete� The de�nitions of operators of a concrete algebra may be
invisible� if the algebra has been imported into a module� For example� the type int is the
carrier of a concrete algebra which is externally speci�ed� A concrete algebra is imported
with its signature but without de�nitions of its operators� These de�nitions may even be
implementation�de�ned�

To support reasoning about programs that depend upon concrete algebras� a concrete
algebra may be partially axiomatized by a volume of equational laws� The laws are not part
of ADL itself� but constitute an externally speci�ed� logical constraint on the operators of
a concrete algebra� When operators are implementation de�ned� it becomes an veri�cation
obligation to establish that the operators satisfy the required laws� The laws may then be
used in formal veri�cation or to justify program transformations� This convention supports
the use of architecture�de�ned arithmetic in ADL�
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��� Control structures in ADL

The expression elements of ADL include variables� constants� function and operator appli�
cations� datatype constructions� abstractions and saturated combinator expressions �� Of
particular interest are the combinator expressions� for these determine all interesting con�
trol structures� ADL provides four combinators� red� hom� gen and cohom� The �rst two
express control derived from algebras� the second two derive control from coalgebras� We
shall only discuss here the algebraic control combinators�

The combinator red is indexed by a sort name and applied to an algebra speci�cation�
Its denotation is then a function from an initial term algebra to the carrier of the speci�ed
algebra� For example� the expression

red �list� Sum list � list
int� � int

denotes a function that sums the elements of a list of integers� If this function were written
in a language such as SML that has explicit recursion� you would recognize it as a recursion
over the structure of its domain� However� the recursion is not explicit in ADL� it is instead
calculated from the signature declaration given for the variety list� The combinator red is
also called a catamorphism combinator �����

The combinator hom generalizes the reduction scheme implicit in red to that of more
general structure algebra morphisms� The domain of a hom expression need not be the
carrier of an initial term algebra of the speci�ed variety� Its domain may be any non�
functional type� A hom is applied not only to an algebra speci�cation� but also to a
partition relation� which may be thought of as a map from the domain of a hom�expression
into the carrier of a free term algebra of the required variety� A partition relation is speci�ed
with lambda�notation� as is a function� but the expressions it returns are applications of
the operators of the signature of an algebraic variety�

For example� using the algebra speci�cation given previously� we can supply a partition
relation to obtain the function

hom �list� Sum list 
�n if n mod  �� � then �nil else �cons
�� n div �� � int� int

which calculates the integer part of the base  logarithm of a positive integer� The only
semblance of list structure is in the sequential structure of the calculation� not in the data�
However� the control structure of programs is exactly what we are interested in when looking
for transformations to apply�

��� A tool for parametric transformations

A parametric transformation schema has an instance for every variety of structure algebra�
The quintessential parametric transformation is based upon the Promotion Theorem �����
This theorem and the transformation derived from it are most easily presented with the
help of some notation from category theory�

The data of a signature with type parameter a consists of the domain typings of its
operators� We can represent the structure of these data in the category Set by a coproduct
of the domain types of the separate operators� This representation is the object map of a

�The term combinator is used here to mean an operator with no dependence on free identi�ers and which

operates on well�typed expressions in the language to produce a new expression� A combinator expression is

saturated if all required arguments of the combinator are present�
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bifunctor� E � For instance� the bifunctor that represents the signature list has the object
map

E list
a� c� � � � a � c

where � is the empty product� A list�algebra is represented in this notation by an arrow�
For instance� the algebra Sum list is the arrow

E list
int� int�
f�� 
��g

� int

where the curly brackets denote the case analysis of an element of a sum type� with com�
ponent operators � � �� int and 
�� � int� int� int�

The free list algebra with parameter type a is the arrow

E list 
a� list
a��
inlist � fnil� consg

� list
a�

where inlist is the composite operator of the free list algebra with carrier list
a��
A list reduction� h � red �list� fc� fnil � fconsg satis�es the following set of equations

h nil � fnil 
��

h 
cons
x� y�� � fcons 
x� h y� 
�

that can be read from the commuting diagram�

E list 
a� list
a��
inlist

� list
a�

E list 
ida� h�

� �

h � red �list� fc� fnil � fconsg

E list
a� c� �

ffnil � fconsg
c

Not only does red �list� fc� fnil � fconsg satisfy the equations read from the diagram� but it
is the unique function for which the diagram commutes�

Moreover� for any variety T � every T �reduction is uniquely determined by a T �algebra
speci�cation and satis�es a similar diagram� in which the speci�c algebraic operators cor�
respond to the T �signature�

Theorem� Promotion�
Let fc� fg be a T 
a� algebra and let g � c � c�� If there exists a T 
a� algebra fc�� �g such
that ��ET 
ida� g� � g �f with type ET 
a� c�� c� then g � red �T � f � red �T �� � T 
a� � c��

Proof� Consider the diagram below� The upper square commutes since h is a T �algebra re�
duction� The lower square commutes as the hypothesis of the theorem� Therefore the outer
square commutes� thus the arrow on its right�hand edge is the unique T �algebra reduction
determined by fc� �g�
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ET 
a� T 
a��
inT
�T 
a�

ET 
ida� h�

� �

h � red �T � f

ET 
a� c�
f
� c

ET 
ida� g�

� �

g

ET 
a� c��
�
� c�

�

The higher�order transformation tool� HOT� uses a clever heuristic tactic to calculate
an operator � that satis�es the promotion theorem ��� ��� The tactic is not complete�it
does not always �nd a candidate if one exists�but it is inexpensive to apply and it often
succeeds�

Given the data described in the proof of the Promotion Theorem� HOT introduces a
symbol� g�� with the assumed law that g � g� � idc� � A consequence of the assumption is
that ET 
ida� g� � E

T 
ida� g
�� � idE�a�c��� Using this deduced law� we derive a representation

for �� namely that
� � g � f � ET 
id� g��

Now g� is a meaningless symbol� but the expression on the right�hand side of the equation
can often be simpli�ed after introducing the detailed structure of f and of the bifunctor
ET � which is derived from the signature T � In the course of simpli�cation� any occurrence
of the expression g � g� is replaced by idc� � which is justi�ed by the assumed law� If� after
simpli�cation� the residual expression contains no occurence of the identi�er g�� then it
represents the operator of a T 
a��algebra that was sought� Otherwise� the tactic fails�

� Order�reduction transformations

Order�reduction transformations remove instances of higher�order functions 
applications
that include function�typed arguments or which return function�typed results� from a pro�
gram while preserving its overall semantics� Obviously� this is only possible for programs
that calculate ground�typed results from ground�typed data� The order�reduction stage in
our translation pipeline consists of a suite of individual algorithms that perform speci�c
order�reduction transformations e�ciently� These are�

� A lambda�lifter ����� which removes nested function declarations and explicit abstrac�
tions� replacing them by new� closed function declarations and replacings occurrences
of locally de�ned functions by applications of the new function constants� 
Some
nested declarations may be reintroduced during code generation� but if left in place
throughout the pipeline� they might interfere with later transformation steps�� After
lambda�lifting the program contains function de�nitions of the form f x� � � �xn � e

where each of the xi is a variable and e is either a variable� a constant� an application�
or a pattern case analysis�
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� Eta�abstraction furnishes abstracted variables as arguments to an unsaturated appli�
cation of a curried function� It is used to increase the arity of a function de�nition if
its arity does not agree with its typing� and to supply additional� dummy arguments
to an applicative expression that is unsaturated� When a function is polymorphically
typed� like the polymorphic identity function� it may be applied with di�erent ari�
ties� An instance of the polymorphic identity function applied to three arguments� for
instance� can be replaced by a specialized identity de�ned by id� x y z � x y z�

This transformation sometimes enables an expression in the body of a function dec�
laration to be statically reduced� and is a prerequisite to further steps of function
specialization and reduction� This transformation has been studied by Chin and Dar�
lington ���� who refer to it as Algorithm A for higher�order function removal�

� Specializing a function to the arguments found at each of its call sites is a familiar
technique for order�reduction 
see for instance� Algorithm R of ����� Specialization
occurs in two phases� A naive but e�cient algorithm is e�ective in nearly all cases
that arise in practice� For cases that are beyond the scope of the naive algorithm� we
have implemented a more general specializer based upon Reynolds algorithm ���

For example� an application map sqr x� can be replaced by the application of a new
function� map sqr x� whose de�nition is gotten by specializing the de�nition of map�

map f nil � nil map f x �� xs � 
f x� �� 
map xs�

with respect to the constant sqr� obtaining

map sqr nil � nil map sqr x �� xs � 
sqr x� ��map sqr x

A su�cient condition for this technique to work is that the function�typed arguments in
a de�nition are variable or constant�only� A function�typed argument of a higher�order
function F is variable or constant only if in each recursive call in the declaration of F � this
argument position is �lled either by a variable or by a constant 
i�e� a closed expression
without free variables�� The function map is variable�only� The de�nition G f 
a �� x� �

f a� �� 
G 
sqr� x� is constant�only� But the de�nition�

H f 
a �� x� � 
f a� �� 
H 
f � f� x�

is not variable or constant�only� Such arguments may cause a specializer to diverge as it
attempts to specialize the function in�nitely on arguments of growing size�

f� f � f� 
f � f� � 
f � f�� 

f � f� � 
f � f�� � 

f � f� � 
f � f��� � � �

To specialize applications of higher�order functions that do not meet the restriction of us�
ing variable or constant�only arguments in the function	s declaration� we have implemented
Reynold	s specialization algorithm� The method involves encoding as data the sequence of
function�typed arguments generated by unfolding a recursive de�nition� The encoding is
realized via a construction with a recursively�de�ned datatype� For simplicity� suppose that
a function�typed argument f is transformed to E
f� in just a single recursive call of the
higher�order function that is to be specialized� In the declaration of H above� E
f� � f � f �

The �rst step in the transformation is to synthesize the recursive declaration of a
datatype�

datatype �a T � C� of �a j C� of �a T

Next� replace the declaration of the higher�order function by that of a �rst�order function
modeled on the same recursion scheme� except that

	



� when the function�typed argument� f � occurs in the �rst position in an application� it
is replaced by AppH f �

� the composite function�typed expression E
f� that occurs as an argument in a re�
cursive call of H is replaced by C�
f�� For the example above� this new declaration
is�

H� t x � AppH f x �� H� 
C�
f�� x

The function AppH interprets the constructions in the recursive datatype� For the example�
the following declaration is generated�

AppH 
C�
f�� � f

AppH 
C�
t�� � 
AppH t� � 
AppH t�

All that remains is to replace each application of the higher�order function in a program
with a use of the new function applied to an appropriately constructed argument� That is�
H f is replaced by H� 
C�
f���

This technique is more general than the naive specialization but it proliferates data
types� so that a program becomes more di�cult to analyze by subsequent transformation
tools� We prefer to apply it only to the cases left by the naive specializer� Presently the
order�reduction suite eliminates all occurrences of higher�order functions from programs
except function�typed values embedded under data constructors� It is certainly possible to
extend Reynold	s technique to handle that case as well�

� Algebra Speci�c Transformations

Many transformations are justi�ed in part by the laws of speci�c algebras� In the ADL
framework� an algebra that is imported as a parameter of a module is made concrete by
declaring the operators of its signature as constants� However� nothing is revealed about
the de�nitions of these operators� thus only their typings are visible in the scope of the
module� We refer to an algebra imported in this way as �concrete�� As a logical extension
to the module� selected properties of a concrete algebra may be asserted as equational laws�
It is these laws on which we base algebra�speci�c transformations� At the present time�
there is no formal veri�cation that the realization of a concrete algebra actually obeys the
asserted laws� This gap in veri�ability obviously needs attention in the future development
of our system�

Commonly used equational laws are those of associativity� commutativity� distributiv�
ity� right and left unit� and right and left inverse� Laws justify tactics such as recursion
elimination� which can sometimes reduce the asymptotic complexity of an algorithm� Un�
fortunately� it is very di�cult to fully automate the application of such tactics�

Astre is a transformation tool based on rewriting techniques ��� It is �exible enough
so that some tactics can be fully automated� An example is the elimination of structural
recursion by accumulator introduction in the presence of an associative operator� which is
the familiar foldr�to�foldl transformation when specialized to list algebras�

A rewrite system is a set of rules� ordered pairs of terms� written as l � r� When a
�rst�order functional program is expressed by a set of mutually recursive pattern�matching
equations� it translates into a rewrite system R�� The techniques that are used to transform
such a program are simply rewriting and critical pair computation� A critical pair is the
result of an overlap between the left�hand sides of two rules g � d and l � r� An overlap
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exists if there is a position � in l such that lj� and g are uni�able with the most general
uni�er � 
after renaming the two rules so that their respective sets of variables are disjoint��
A critical pair is the 
new� equation �
l�� � �
d��� � �
r� where the notation t�� � u�
denotes the replacement in t of the subterm at position � by u� Rewriting enables both
folding and unfolding of de�nitions� depending upon the orientation of the equations as
rules� Critical pair computation performs both instantiation and unfolding� hence providing
an implemention for transformation by the unfold fold methodology� This technique has
been called synthesis by completion ���� ���

In Astre� synthesis by completion is used as a mechanism to transformR� into a sequence
of rewrite systems R�� R�� � � � � Rn to get from a functional programP� to a new� semantically
equivalent program Pn that is more e�cient� Astre translates Rn into an SML program
where functions are presented by a set of mutually recursive functions with pattern�matching
arguments�

A fully automated transformation system needs additional techniques� including

� a fully automated mechanism to discover rules that introduce new function de�nitions
to form synthesis rules in the system� Critical pair computations with synthesis rules
are the basis of many transformations� Synthesis rules were called eureka rules in the
fold unfold methodology because they depended upon the insight of a clever user�

� a mechanism to orient critical pairs into rewrite rules and to control critical pair
production so that it generates a complete de�nition of the synthesized function� Astre
controls the orientation of critical pairs into rules as required by the transformation
strategy� It guarantees that termination of the rewrite system is preserved during the
synthesis� Astre also carefully controls the production of critical pairs hence ensuring
termination of the completion ����

Consider� for example� the function that reverses the elements of a list� It is translated into
the following rewrite system�

reverse
nil � � nil 
��

reverse
x �� xs� � reverse
xs� ! �x� 
��

where ! is a concrete algebra operator that is associative and has nil as right and left
unit� A simple analysis discovers that the recursive call reverse
xs� in the right�hand side
of Rule � occurs under the associative operator !� In this case� it introduces automatically
a synthesis rule reverse
x� ! u � g
x� u�� This synthesis rule reduces the right�hand side
of rule �� reverse
x �� xs� � g
xs� �x��� Critical pair computation with the right unit law�
x ! nil � x� gives the pair 
reverse
x�� g
x� nil��� which yields a new de�nition of reverse�

reverse
x� � g
x� nil� 
��
Critical pair computation with associativity gives the equation�

g
x� u� ! z � g
x� u ! z� 
���
Critical pair computations with Rules �� and Rule 
�� return pairs� 
nil ! u� g
nil� u��� and

g
xs� �x�� ! u� g
x �� xs� u��� The left�hand side of the �rst pair reduces into u by rewriting
with the left unit law� nil ! x � x� The left�hand side of the second pair reduces by
rewriting with equation 
��� conveniently oriented into the rule g
x� u� ! z � g
x� u ! z��
The result is reverse
xs� ! 
�x� ! u�� which further reduces with the synthesis rule itself
into g
xs� �x� ! u�� The system has discovered the de�nition of g�

g
nil� u� � u 
��

g
x �� xs� u� � g
xs� �x� ! u� 
��
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which is tail recursive� Use of another law of !� �x� ! y � x �� y� reduces the left�hand
side of rule � into g
x �� xs� � g
xs� x �� u�� Now the de�nition of reverse does not refer
to !�

reverse
x� � g
x� nil� g
nil� u� � u g
x �� xs� u� � g
xs� x �� u�

This derivation is replicated each time a recursive call occurs under an associative oper�
ator with left and right unit� A more sophisticated instance of this strategy eliminates one
recursive call in the following example ���� originally proposed by P� Chatelin ����

height
tip
x�� � �

height
tree
lt� rt�� � � � max
height
lt�� height
rt��

Here the recursive calls occurs under two associative operators with left and right unit�
namely 
�� and max� Moreover the operator � distributes over max� allowing use of the
associativity of max�

� Generating implementations

Following several stages of transformation� our system produces a �rst�order SML program
that is functionally equivalent to the computational semantics of a sentence in the DSDL
that a user has written� This program can be compiled by an SML compiler to produce an
executable software module� To execute this module� the run�time support for SML needs
to be present� however� It is often the case that the requirements of a software architecture�
of a target platform for the software� or of standards adopted by a software organization
dictate another implementation� To provide for alternate implementations� a back�end tool
called the Program Instantiator generates target code to meet requirements imposed on a
desired implementation�

The Program Instantiator 
abbreviated PI� is based upon earlier research by Dennis
Volpano ��� ��� It is driven by several parameters of an implementation� which include�

� the target programming language in which an implementation is to be coded�

� templates in the target language that realize implementations of the concrete algebras
used in a program�

� target language templates that provide a standard implementation of free term alge�
bras and of the case discrimination on data constructors�

� templates for function calls and module headers in the target language�

The PI also interprets an environment speci�cation that provides the types and structure
of data and control interfaces with a host software architecture� The output of the PI
is a module 
or modules� in the syntax of the speci�ed target language that provides an
implementation of the �rst�order SML program given it as input� The PI is currently the
least mature of the tools in the translation pipeline and several issues remain to be resolved�
These include�

� duplicate function declarations� There is currently no test for function de�nitions that
are identical� up to renaming� and hence could be identi�ed�

� heap storage management� The PI does not currently generate a general�purpose
garbage collector� It performs storage allocation in blocks that can be collected in
total if lifetimes of data are known to be limited�
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� special scoping restrictions� Some possible target languages 
�C	� for instance� impose
restrictions on the declarations of nested scopes� The PI does not currently provide
for such restrictions�

	 Implementing the pipeline

The translation and transformation tools described in the preceding sections have all been
implemented in Standard ML 
SML� ���� except for Astre� the term�rewriting transforma�
tion tool� which is implemented in CAML� Furthermore� a restricted sublanguage of SML
is used for the intermediate representation of programs as they are passed through the
pipeline� An abstract syntax representation of SML is used internally by each tool� This
representation is unique to the SDRR tools and has little in common with the internal
representation used by the SML NJ compiler� for instance�

Use of SML language technology has been an important factor in the success of the
�fteen�month project in which most of the tool development occurred� It has allowed
considerable code reuse among tools� and has simpli�ed integration and testing procedures�

��� Common parts

The suite of tools shares several common parts� These tools communicate program images
in a restricted dialect of SML� Internally� most of the tools use a common representation
for the abstract syntax of SML terms� They share a common parser and prettyprinter to
destructure and reconstitute the textual image of a program�

Type reconstruction is required for order reduction� for postprocessing by Astre and by
the program instantiator� However� each of these tools needs some additional information
or needs typing information presented in a di�erent format� We have used a common type
inference tool that is customized with an output module to meet the needs of its various
clients�

Reuse of these common parts has contributed substantially to the ease with which the
family of tools could be maintained and kept consistent�


 An application generator

The SDRR method has been applied to design a software component generator for message
translation and validation 
MTV�� This is an application that arises in military command
and control systems� with automatic teller machines in banking and with point�of�sale
terminals for retail stores� A central controller receives byte�string encoded messages from
remote sensors or terminals� It must validate each message and translate it into an internal
format for further analysis and response� A controller may serve several sensors� each of
which generates messages in a di�erent format� An MTV module for a particular message
format analyzes a string of bytes given as input to check whether it has the expected
structure� reports errors if the input is not a valid message� and translates the input into
a data structure representing the contents of the message if the input is valid� A system
must include an MTV module for each message type that it expects to receive� Thus a
generator that is capable of interpreting an message format description and producing an
MTV module for the speci�ed message type is useful�
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A message speci�cation is presented to an engineer as an interface control document

ICD�� The ICD is a semi�formal description of the string�encoded format of the message�
It consists of general information� such as the expected length of a message� followed by
a �eld�by��eld description of its contents� Field descriptions may themselves have internal
structure� For example� a date �eld will contain a day� month and year� Some �elds
may represent various types of data� For example� a �eld may represent an altitude if
it contains only digits or a location if it contains alphabetic characters� The ICD also
contains constraints on valid messages� these are expressed informally in natural language�
We have designed a Message Speci�cation Language 
MSL�� which is a domain�speci�c
design language for the MTV application�

For the MTV domain the essential abstractions are the internal and external represen�
tations of messages� They are related by translation functions that map between them� A
logical representation in which both intra� and inter��eld constraints are imposed is intro�
duced as an intermediate representation� From the logical representation� a controller can
derive the necessary internal representation� There is also a �user� representation� which is
an Ascii string in a format readable by humans� that is used for logging messages received
by a controller or for manual entry of a message�

A software module for MTV consists of six components�

� two functions that check the formats of external or user messages�

� two functions that translate between external and internal formats� and

� two functions that translate between user and internal formats�

The MSL language describes the logical structure of the internal representation of data�
the message translation action that parses a message� scaling of numeric values� and any
constraints imposed on the values in �elds of the message� From these descriptions� the
MSL translator and the SDRR transformation pipeline generate the six components of the
solution as an Ada package�

��� The Message Speci	cation Language

To use the MTV generator� an engineer speci�es the logical structure of a message as a
logical type in MSL� In the example that follows� square brackets enclose the components
of a labeled sum and curly brackets enclose the components of a labeled product� Instances
of labeled products are record structures� labeled sums are types for variant records�

�� Type declarations ��

type Confidence�type � �High� Medium� Low� No�	

type Alt�or�TC�type � �Altitude
 integer������

Track�confidence
 Confidence�type�

No�value�or�Alt�less�than������	

type Time�type � �Hour
 integer��������

Minute
 integer�������	

message�type MType � �Course
 integer���������

Speed
 integer����������

Alt�or�TC
 Alt�or�TC�type�

Time
 Time�type�	
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The basic types used in messages of this type are integers and integer subranges� These are
arranged into labeled sums 
Confidence type and Alt or TC type� and labeled products

Time type and MType��

The engineer also speci�es the translation map in one direction� from external to logical�
This speci�es an external message reader 
EXR�� For example�

�� Action declarations ��

EXRaction to�Confidence � �High
 Asc � � �HH��

Medium
 Asc � � �MM��

Low
 Asc � � �LL��

No
 Asc � � �NN��	

EXRaction to�Alt�or�TC � �Altitude
 Asc�Int ��

Track�confidence
 to�Confidence�

No�value�or�Alt�less�than�����
 Skip �

� � Delim ���	 �� field separator ��� ��

EXRaction to�Time � �Hour
 Asc�Int ��

Minute
 Asc�Int �

� � Delim ��r�	 �� CR as field separator ��

EXRmessage�action to�MType � �Course
 Asc�Int � � Delim ����

Speed
 Asc�Int � � Delim ����

Alt�or�TC
 to�Alt�or�TC�

Time
 to�Time�	

Message reader declarations are a fundamental syntactic construct in MSL� and are given
semantics in its formal de�nition� The semantics is compositional and makes use of the
structure implicit in the types declared for the corresponding �elds� Primitive translation
functions such as Asc�Int provide a basis for the translation actions� For example� Asc�Int
� reads two Ascii characters 
which must be numerals� and produces an integer value�
Speci�ed reader actions for individual �elds can be aggregated into a record reader by
enclosing them in curly braces�

To accommodate variant record readers� a failure backtrack mechanism is provided in
the semantics of MSL� If the data string presented the reader action EXRaction to Alt or T

is a sequence of digits� it is interpreted to denote an altitude� but if it is alphabetic it is a
track con�dence� If it is neither of these� it must be empty� In all cases the �eld is delimited
by a slash character� The semantics of an external message reader implements a parser for
a simple language without recursion in its grammar�

From the speci�cation of an external message reader� the MSL translator infers the
inverse mapping from logical to external representation and also the logical to user map�
pings� For either the external to logical or the user to logical translation� the semantics
must prescribe checking of constraints on values of �elds in the message� Constraints are
of two kinds�

� Subrange speci�cations on an individual �eld� These are speci�ed in a �eld type and
are translated as range checks�

� Inter��eld dependencies� These can involve conjunctions or disjunctions of boolean�
valued expressions that refer to values in di�erent �elds�
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An MSL speci�cation is declarative� rather than algorithmic� Maintenance of an artifact
expressed at this level is expected to be signi�cantly easier than maintenance of a code level
representation� A graphical user interface is used to help application engineers formulate
or modify a message design in the MSL language�

� Conclusions

We have successfully demonstrated an automated transformation system that compiles
practical software modules from the semantic speci�cation of a domain�speci�c application
design language� The integrated suite of transormation and translation tools represents a
new level of design automation for software� Although there is much more that can be done
to further improve the performance of generated code� the prototype system demonstrates
the feasibility of this approach�

The implementation of type�parametric theorems as transformation tactics for HOT
has not been done before� It remains to be seen whether algebra�speci�c transformations
can be incorporated in the same tool by refering to a database of algebraic laws� In the
current system� algebra�speci�c transformations are performed by term�rewriting� which is
an entirely di�erent paradigm�
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