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Abstract

Sensors deployed in the Columbia River estuary gather information on physical

dynamics and changes in estuary habitat. Of these sensors, conductivity sensors are

particularly susceptible to bio-fouling, which gradually degrades sensor response and

corrupts critical data. Several weeks may pass before degradation is visibly detected.

As a result, an indeterminate amount of the archival data is corrupted, as the onset

time of bio-fouling is unknown. To speed detection and minimize data loss, we de-

velop automatic bio-fouling detectors, based in machine learning approaches, for these

conductivity sensors. We demonstrate that our detectors identify bio-fouling at least

as reliably as human experts and provide accurate estimates of bio-fouling onset time.

Real-time detectors installed during the summer of 2001 produced no false alarms, yet

detected all episodes of sensor degradation before the �eld sta�.
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1 The Bio-fouling Problem

Environmental observation and forecasting systems (EOFS) gather, process, and deliver

environmental information to facilitate sustainable development of natural resources. Our

work is part of a pilot EOFS system being developed for the Columbia River Estuary

(CORIE) [1, 2, 3]. This system uses data from sensors deployed throughout the estuary

(Figure 1) to calibrate and verify numerical models of circulation and material transport.

CORIE scientists use these models to predict and evaluate the e�ects of development on

the estuary environment [4].

CORIE salinity sensors deployed in the harsh estuary environment lose several months of

data every year due to sensor degradation. As an example of the severity of the problem,

degradation of salinity sensors is so common in late summer that the data archive contains

little or no reliable salinity data for the beginning of the rainy season. Corrupted and missing

�eld measurements compromise model calibration and veri�cation. This in turn can lead

to invalid environmental forecasts and erroneous conclusions about e�ects of development

on the estuary environment.

Figure 1: Map of the Columbia River estuary marked with approximate locations of CORIE sensor stations

A common yet particularly insidious form of salinity sensor degradation is bio-fouling. Bio-
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fouling occurs when biological matter accumulates on the sensors, reducing their responsive-

ness. Field sta� do not have time to study the sensor measurments every day searching for

this gradual degradation. Consequently, the bio-fouling process goes undetected for weeks

or months until a sensor becomes substantially compromised. Even after sensor failure is

visually obvious, the precise onset time of bio-fouling remains uncertain, leaving a history

of unreliable measurements.

Early bio-fouling detection is made diÆcult by the normal variability of salinity measure-

ments. Tides cause the measurements to vary from river salinity to near ocean salinity twice

a day. In addition, the patterns of salinity measurements are di�erent for every station.

For instance, sensors near the mouth of the estuary measure higher salinity at tidal 
ood

than do sensors further up-river. Changes in weather and ocean condition cause additional

variations in salinity. To complicate bio-fouling detection further, the bio-fouling signature

also varies from episode to episode.

To improve the integrity of CORIE system data, we must accomplish two objectives. First,

we must detect bio-fouling quickly (within several diurnal cycles). This early detection

will limit the use of corrupted data in real-time or on-line applications. Second, we must

estimate the onset time of bio-fouling. Having an estimate of onset time will allow us to

remove corrupted measurements from the data archive. In this work, we concentrate on

developing automatic classi�cation systems to detect bio-fouling of conductivity sensors

used to measure salinity.

2 Characterizing Sensor Bio-fouling

Salinity is a measure of the mass of dissolved salts in one kilogram of water (g/kg) and is

expressed in practical salinity units (psu). The CORIE systems includes several inductive

conductivity and temperature (CT) sensors deployed in the estuary. Salinity is determined

from the electrical conductivity of the water with corrections for temperature and pressure

at the sensor site [5].

A CT sensor reports reduced salinity when it bio-fouls. The sensor measures the conduc-

tivity of a calibrated volume of water. Biological material accumulating on the sensor �lls

the measurement cavity, reducing the actual volume of water measured. Consequently, the

reported salinity is lower than the true salinity. Once bio-fouling begins, degradation in-

creases until biological material �lls the cavity and then levels o�. The degradation rate

3



and �nal degradation level di�ers for every bio-fouling incident.

We observe two types of bio-fouling in the estuary, hard-growth and soft-growth. Hard-

growth bio-fouling is primarily caused by barnacles growing on the sensors. Barnacles are

primarily found on sensors close to the ocean where maximum tidal salinity is high. It is

characterized by linear degradation until the barnacles �ll the sensor measurement cavity.

Soft-growth bio-fouling is caused by plant material growing on and around the sensor. It is

characterized by by slow linear degradation with occasional interruptions in the downtrend.

In addition, the sensor response partially recovers in the winter months, presumabley due

to plant material die back. In either case, the time from onset to complete bio-fouling takes

anywhere from 3 weeks to 5 months.
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Figure 2: Clean and bio-fouled salinity time series examples from Red26 station. The upper time series os

from clean instrument CT1460. The lower time series from instrument CT1448 shows degradation beginning

on September 28, 2001. On removal, CT1448 was found to be bio-fouled.

Figure 2 illustrates both tidal variations in salinity and the e�ect that bio-fouling has on

these measurements. It contains salinity time series from two sensors mounted at the Red26

station, Figure 1. The upper trace, from midwater mounted sensor CT1460, contains only
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clean measurements. The lower trace, from riverbed mounted sensor CT1448, contains both

clean and bio-fouled measurements. The �rst half of the two time series are very similar,

but beginning on September 28th, the salinity measurements diverge. The deeper sensor,

CT1448, exhibits the degradation typical of hard-growth bio-fouling.

3 Evaluation Bio-fouling Detectors

Previously, no automatic classi�cation system existed for detecting sensor bio-fouling. In

our context, an automatic classi�er distinguishes between signals from clean and bio-fouled

sensors. Prior to this work, bio-fouling was identi�ed by visually examining the salinity

time series. When the salinity was lower than expected for several weeks, the sensor was

declared bio-fouled. Since no automatic classi�cation system exists, we �rst develop two

baseline classi�ers using standard statistical pattern recognition techniques. However, these

baseline classi�ers do not provide estimates of bio-fouling onset time. Consequently, we

also develop two new classi�ers, based on sequential likelihood ratio tests, that provide

early bio-fouling detection and onset time estimates. Before discussing these classi�ers, we

describe the data used in our evaluations and the method we employ to evaluate classi�er

performance.

3.1 Evaluation Data

We evaluated our bio-fouling detectors on measurements from CORIE salinity sensors pre-

dominantly subject to hard-growth bio-fouling. Hard-growth bio-fouling is of particular

interest in this initial work, as human experts typically identify this type within 15 days

of onset and can estimate the onset time with reasonable certainty. Due to the slow and

variable nature of soft-growth bio-fouling, it is less amenable to human identi�cation until

it has progressed to an advanced stage. The accuracy with which human experts identify

hard-growth bio-fouling sets a high standard for our automatic classi�ers.

The results presented in this paper are from two of the tested stations. The �rst sensor

is mounted at Sand Island, labeled \sandi" in Figure 1, which is the station closest to the

ocean. It is subject to only hard-growth bio-fouling and has the most consistent salinity

measurements of all the estuary stations. The second sensor is mounted at Tansy Point,

labeled \tansy" in Figure 1, and is subject to both hard-growth and soft-growth bio-fouling.
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This station is further up-river than Sand Island, so the salinity measurements show greater

sensitivity to changes in tidal strength and river 
ow. This greater variability in both salinity

and bio-fouling behavior makes bio-fouling detection more challenging at Tansy Point than

at Sand Island.

Our evaluation data includes time series segments from the CORIE data archive as well as

measurements gathered during the summer of 2001. Bio-fouling is most prevalent during the

summer period of mid-April to mid-October, so we limit our evaluation to this time period.

We have four time-series segments for Sand Island and three segments for Tansy Point.

Figure 3 contains the latter part of the summer 2000 time series for these stations. Both

these segments exhibit degraded measurements due to bio-fouling. For all the sensor data

used in our evaluation, bio-fouling was previously veri�ed by removing and inspecting the

sensor. Bio-fouling onset time is unknown, so we estimated it visually with the assistance

of our �eld scientist.
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Figure 3: Segments of bio-fouled salinity time series from Sand Island (top) and Tansy Point (bottom)

stations taken from summer 2000 data archive. Estimated bio-fouling onset time for Sand Island is August

11 and for Tansy Point is July 17.
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3.2 Evaluating Classi�er Performance

To evaluate classi�er performance, we use receiver operating characteristics (ROC). An

ROC provides the information to assess detector performance for any cost function. It

plots percentage of false alarms (identify clean signal as bio-fouled) against percentage of

correct detections (identify bio-fouled signal as bio-fouled) for a range of detector threshold

values. We are interested in detection at low false alarm rates. Replacing instruments is

expensive in terms of time and resources. Consequently, we want to be con�dent that a

sensor is bio-fouled before sending a diver out to retrieve and replace it.

To accurately characterize classi�er performance we must use our small data set e�ectively.

There are too few examples to divide the data into �xed development (training) and test

sets. Instead we generate two ROC curves for each classi�er using resubstitution and hold-

out methods. For resubstitution, the classi�er is developed and tested on all the available

data. This method gives somewhat optimistic estimates of classi�er performance. For

hold-out, we develop a series of classi�ers. Each classi�er is trained using all but one of

the example time-series segments and is tested on the held-out segment. Each time series

segment is held-out in turn. The results from these classi�ers are combined to form a single

ROC, which gives a more conservative estimate of classi�er performance. Expected classi�er

performance will lie between these two curves [6].

4 Baseline Methods for Bio-fouling Detection

When we began this work, no automatic classi�cation system existed for detecting sensor

bio-fouling. As a starting point, we developed two baseline classi�ers using standard sta-

tistical pattern recognition techniques. This section describes these baseline classi�ers and

their performance on CORIE test data. The �rst classi�er monitors only salinity measure-

ments and indicates whether or not the sensor is bio-fouled. The second classi�er monitors

both salinity and temperature measurements to improve bio-fouling detection and reduce

false alarm rates.

4.1 Classi�cation with Maximum Diurnal Salinity

Our �rst task involved identifying candidate input features for the classi�ers. A useful

classi�cation feature shows a large shift in value when the sensor is bio-fouled, but has low

variability when the sensor is clean. Maximum diurnal (md) salinity, de�ned as the maxi-
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mum salinity over two tidal periods, satis�es these criteria. When the sensor is clean, the

md salinity stays close to some mean value, with occasional dips of several psu presumably

precipitated by changing ocean and river conditions. When the sensor bio-fouls, the md

salinity gradually decreases to typically less than half its normal mean value, as seen in

the Figure 3 examples. The rate of bio-fouling varies with each incident. Once bio-fouling

begins, a sensor progresses from clean to fully degraded in 20 to 150 diurnal cycles.

To extract the md salinity feature, we �rst need to know the times of tidal ebb and 
ood.

The pressure sensor at each station is immune to bio-fouling, providing us with reliable tidal

information. The times of tidal ebbs are determined by �nding minimums in the pressure

signal. We then �nd the maximum salinity between the times of each pair of tidal ebbs.

This is the tidal maximum salinity. One tide of each pair will be stronger, resulting in higher

salinity values. The maximum diurnal salinity is the larger of each pair of tidal maximum

salinities. Figure 4 illustrates feature extraction.
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Figure 4: Segment of salinity and pressure time series demonstrating extraction of maximum diurnal

salinity. First, we identify tidal ebbs, marked with dotted lines. Then, we �nd maximum salinity between

each pair of ebbs, marked with Æ. The maximum diurnal salinity is the higher of the pair of tidal maximums

(29.91 and 30.08), marked with �.
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Md salinity, s, behaves as if it has some constant level, �s, but is perturbed by noise, �,

that is

s = �s + � (1)

If the noise � is Gaussian with zero mean and variance of �2s , the probability density of s is

also Gaussian, N (�s; �
2
s), that is

p(s) =
1p
2��s

exp
�(s� �s)

2

2�2s
(2)

Figure 5, which shows a histogram of measured salinity from a clean sensor at Tansy Point,

demonstrates that this Gaussian assumption, while not perfect, is not unreasonable. We

plan to develop more accurate density models in future work.
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Figure 5: Histogram of clean sensor salinity measurements from Tansy Point. A Gaussian distribution, �t

to the mean and variance of the data, is shown in black. The data matches this curve well except for a few

low salinity points. We see occasional short periods of low salinity apparently related to increases in river


ow.

When the sensor bio-fouls, the measurement at time n, xn, will be less than the true

salinity, sn. Consequently, the expected residual E[xn � �s] will be zero when the sensor

is clean and negative when the sensor is bio-fouled. To use maximum diurnal salinity to

identify bio-fouling, we compare the residual xn � �s to a threshold. If the residual is

below the threshold, the sensor is identi�ed as bio-fouled. The performance of md salinity

classi�ers developed for and applied to Sand Island and Tansy Point data are shown in

Figure 6. Resubstitution and hold-out results are similar. For near zero false alarm rate

(never classify a clean example as bio-fouled), these classi�ers correctly identify roughly

65% of the Sand Island and less than 30% of the Tansy Point bio-fouled days. At 5% false

alarm, the percent correct identi�cation increases to 80% and nearly 50% respectively.
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Figure 6: Maximum Diurnal Salinity resubstitution (thin line) and hold-out (thick line) ROC for classi�-

cation of Sand Island and Tansy Point data.

4.2 Incorporating Temperature to Reduce False Alarms

Classi�ers that monitor salinity alone can not distinguish natural decreases in salinity from

early bio-fouling. An example of a natural salinity decrease is apparent in the top plot,

Figure 3, around July 25. The low salinity measurements below the main Gaussian bump

in Figure 5 are presumed to be due to natural changes in ocean and river conditions. Natural

salinity decreases can be recognized, if we can examine a correlated source of uncorrupted

information, such as a nearby clean sensor or a sensor measuring a related value. The

temperature sensor included with each conductivity sensor is not subject to bio-fouling.

Consequently, we can use temperature measurements as a correlated and uncorrupted source

of salinity information.

The salinity and temperature at a station are products of the same mixing process of ocean

and river waters, so we expect the values at tidal 
ood will be correlated. To show this, we

assume a standard linear mixing of ocean and river waters. The measured salinity Sm and

temperature Tm at a station are then linear functions of ocean values fSo; Tog and river

values fSr; Trg
Sm = �(t)So + (1� �(t))Sr (3)

Tm = �(t)To + (1� �(t))Tr (4)
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Figure 7: Time series of md salinity and temperature-based mixing coeÆcient values showing the correla-

tion between salinity and temperature measurements. Data from Tansy Point, summer 2000.

where �(t) is the mixing coeÆcient at time t and river salinity Sr is close to zero. We focused

our work on the late spring through summer period when bio-fouling is most prevalent. In

this period the temperature is anti-correlated with salinity, To < Tr. The estimated mixing

coeÆcient

�(t) =
Tr � Tm
Tr � To

(5)

will be well correlated with salinity, Sm � �So. Figure 7 contains time series of salinity

and the temperature based mixing coe�cient from Tansy Point that show this correlation.

We estimate the ocean temperature to be a To = 8ÆC, based on minimum temperatures

seen at the outermost sensor station (Sand Island). The river temperature, Tr, is estimated

from the station temperature at the tidal ebb, which generally agrees with temperature

measurements from upriver stations.

Given the correlation of temperature and salinity, we now develop a classi�er dependent on

this relationship. We use the well-known technique of Fisher Linear Discriminant Analysis

(LDA) [7] as a starting point. Pairs of temperature-based mixing coeÆcient values, �,

and md salinity, s, form a 2-dimensional data vector, x. Fisher LDA de�nes a projection
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Figure 8: Scatterplot of clean and bio-fouled data from Sand Island showing the relationship between

maximum diurnal salinity and temperature-based mixing coeÆcient. Clean samples are indicated by + and

Bio-fouled samples by a Æ. An example transformW projects the data onto the black line and the dotted line

indicates an example threshold. Values below the threshold are considered to be from a bio-fouled sensor.

operator, W , that reduces such multi-dimensional data to a scalar while maximizing the

separation between data from two classes. This transform is given by

W = ��1(�c � �f ) (6)

In our case, �c and �f are the means of the clean and bio-fouled data examples and � is the

sum of the clean and bio-fouled data covariance matrices. A classi�er based on Fisher LDA

monitors the discriminant, h = W Tx. The discriminant h is tested against a threshold to

decide whether or not the signal is bio-fouled. Figure 8 is a scatterplot of temperature-based

mixing coeÆcient and md salinity from Sand Island that shows one possible transform and

threshold. Values below the threshold are classi�ed as bio-fouled and values above the

threshold are classi�ed as clean.

We evaluated our Fisher LDA based classi�ers on the CORIE test data. Figure 9 shows

ROC curves for these classi�ers in black; the previous salinity alone results are shown in

gray. At a given false alarm rate, the Fisher LD generally labels more bio-fouled examples

correctly than does the salinity alone feature. For instance, at near zero false alarm rate,

correct bio-fouling classi�cation at Tansy Point doubles from less than 30% to between 60%

and 70%. The exception in performance improvement is the hold-out curve for Sand Island.
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In this case, one of the hold-out training sets had too few bio-fouled measurements for robust

class�er development. The poor hold-out results at Sand Island illustrate the importance

of having enough representative data to estimate classi�er parameters accurately.
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Figure 9: Fisher linear discriminant resubstitution (thin line) and hold-out (thick line) ROC for classi�ca-

tion of Sand Island and Tansy Point data. Maximum diurnal salinity results are underlaid in gray.

5 Limitations of Baseline Methods

Our baseline classi�ers have several limitations. Neither method provides an estimate of

bio-fouling onset time. Developing the Fisher LDA based classi�er requires many examples

of bio-fouling, which are not available. Both methods operate on a single measurement at a

time, yet bio-fouling is a progressive process. We expect that combining information from

several sequential measurements will improve classi�er accuracy.

A critical missing element for our task is the lack of onset time estimate. Since bio-fouling

is a gradual process, data before the bio-fouled decision point will likely be corrupted. The

rate of bio-fouling varies widely, so we can not easily estimate how much data to discard.

The sensor can go from clean to completely bio-fouled in as quickly as three weeks or as

slowly as �ve months. Discarding some �xed number of days before the decision point would

result in either loss of much clean data or retention of corrupted data. Consequently, we

desire a fault detector that accurately estimates onset time.

13



Another critical problem is presented by the dearth of bio-fouling onset examples in the data

archive. Developing Fisher LDA detectors require many fault examples. Unfortunately, all

sensor stations in the estuary are missing onset examples for important periods of the year.

Some sensors have been installed recently and have no bio-fouling examples whatever. A

development approach that requires only clean example data would help alleviate this data

shortage problem.

Finally, the above methods classify each measurement independently. However, human

experts make bio-fouling judgements by watching the behavior of the salinity signal over

several weeks. Likewise, we expect that using a method that accrues information over time

will increase con�dence in our bio-fouling decisions.

To address these issues, we introduce sequential likelihood ratio (SLR) tests. SLR tests

combine several sequential measurements for every classi�cation decision. They can be

adapted to provide estimates of bio-fouling onset times. Finally, by de�ning a parameterized

model of bio-fouling behavior, we can estimate the bio-fouling rate in real-time. Since we

�t the fault model to the measurements under test, the classi�er can be developed using

only clean data examples.

6 Sequential Likelihood Ratio Tests

Sequential likelihood ratio tests accrue information to improve classi�cation con�dence [6].

The likelihood ratio for fault detection is the probability of a data measurement x assuming

it is faulty, p(xjf), divided by the probability of x assuming it is clean, p(xjc). A likeli-

hood ratio test compares the logarithm of this ratio to a threshold. If the value is above

the threshold, the data is declared faulty. A sequential likelihood ratio test sums the log

likelihood ratios over some time window and compares the sum to a threshold, �, that is

h =
NX
n=�

ln
p(xnjf)
p(xnjc)

f
>
<
c

� (7)

where the window begins at time n = � and ends at current time N . If most of the data

is faulty (clean), the sum will lie well above (below) the threshold and we will have high

con�dence in the classi�cation decision. This framework can also be adapted to estimate

the fault onset time. If we set the window length to maximize the log likelihood ratio, h,

the best estimate of onset time is � [8].
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6.1 Bio-fouling Fault Model

In order to develop a sequential likelihood ratio test for bio-fouling detection, we �rst de�ne

models of the clean and bio-fouled data. We start with the model for salinity alone and

latter add temperature. As before, md salinity s is modeled as a Gaussian signal with

mean �s and variance �2s . When the sensor is clean, it measures the true salinity value, so

the measurement at time n is xn = sn. When the sensor bio-fouls, the measured value is

suppressed relative to the true salinity. We model this suppression as a linear downtrend

with rate (slope) m, that begins at time � . The measured value becomes

xn = g(n)sn (8)

where the suppression factor, g(n), is

g(n) =

8<
: 1 n < �

(1�m(n� �)) n � �
(9)

and m is the bio-fouling rate (1/sec). The probability density of measurement xn is thus

p(xn) =
1p

2�g(n)�s
exp

�(xn � g(n)�s)
2

2g2(n)�2s
(10)

Both the measurement mean, g(n)�s, and variance, g2(n)�2s , decrease as bio-fouling pro-

gresses.

Using these models for clean and bio-fouled salinity signals, we now write the SLR for md

salinity. The values for the bio-fouling rate m and onset time � are not known in advance,

so we replace them with their maximum likelihood estimates. The SLR is

h = max
�;m

NX
n=�

ln
1

1�m(n� �)
+

(xn � �s)
2

2�2s
� (xn � (1�m(n� �))�s)

2

2(1�m(n� �))2�2s
(11)

When a sequence of measurements �ts the bio-fouled model better than the clean model,

the second term in (11) is large and the third term is small, so h is positive. Consequently,

when h is above a chosen threshold, the sensor will be classi�ed as bio-fouled. The threshold

is chosen to satisfy operational requirements. For this work, we choose thresholds so the

classi�ers have low false alarm rates.

Incorporating temperature information into SLR tests should improve classi�cation accu-

racy. The appropriate SLR is the log probability of md salinity conditioned on temperature
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given the bio-fouling model divided by the probability given the clean model. We start by

modeling the salinity, s, and temperature-based mixing coeÆcient, �, as jointly Gaussian,

p(s; �) = N (�;�) where � =

2
4 �s

��

3
5 and � =

2
4 �2s �s�

�s� �2�

3
5 : (12)

The probability of md salinity conditioned on temperature when the sensor is clean is Gaus-

sian with N (�; 
), where the mean is the expected value of md salinity given temperature,

E[sj�] � � = �s + (�s�=�
2
�) (�� ��) (13)

and the variance

var[sj�] � 
 = �2s � �2s�=�
2
� (14)

Since the temperature sensor is not susceptible to bio-fouling, we do not have to consider

the case of both sensors degrading at the same time. When bio-fouling occurs, the salinity

measurement is suppressed relative to the true value. Using the suppression factor g(n) (9),

the probability of the salinity measurement, x, conditioned on temperature is p(xnj�n) =
N (g(n)�n; g

2(n)
). The SLR for salinity conditioned on temperature is then given by

h = max
�;m

NX
n=�

ln
1

1�m(n� �)
+

(xn � �n)
2

2

� (xn � (1�m(n� �))�n)

2

2(1 �m(n� �))2

(15)

When h is above our chosen threshold, the sensor is classi�ed as bio-fouled.

6.2 Model �tting

The SLR classi�er parameters, � and � are determined from only clean example data;

no bio-fouled examples are necessary. We �nd maximum likelihood estimates for these

parameters from archival time series data. The mean values are given by

� =
1

N

NX
n=1

2
4 sn

�n

3
5 (16)

The salinity and temperature covariance matrix, �, is given by

� =
1

N

NX
n=1

0
@
2
4 sn

�n

3
5� �

1
A
T 0
@
2
4 sn

�n

3
5� �

1
A (17)

All other classi�er parameter values, such as �s or E[sj�], can be extracted or calculated

from the mean vectors and covariance matrix.
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To use SLR tests for bio-fouling detection, we determine the bio-fouled model parameters

from the data under test and calculate h, (11) or (15), for the current time. At each time

step, n, the onset time � and bio-fouling rate m are �t by maximum likelihood methods to

the past and current measurements. The SLR h is then calculated using these estimates. If

h is above our threshold, the current measurement is classi�ed as bio-fouled and the onset

time is reported as � .

Determining the onset time estimate, � , requires searching over all past time for the SLR

window length that maximizes the ratio, that is

� = argmax
k

NX
n=k+1

ln p(xnjf ;mN�k)� ln p(xnjc): (18)

where N is the current time and our notation mN�k stresses that the bio-fouling rate is a

function of the window length N � k. For each possible value for � , that is k = 3 : : : N ,

we �rst determine the maximum likelihood estimate for mN�k (described below) and then

calculate the corresponding SLR hN�k. The estimated onset time, � is the time k that gives

the largest value of h.

For the salinity alone SLR, we �nd the maximum likelihood estimate of bio-fouling rate m,

by setting the �rst derivative of (11) with respect to m equal to zero. This operation yields

the relation

m
NX

k=�+1

(k � �)2

!2k
�2s =

NX
k=�+1

k � �

!k

 
(xk � �s)�s

!k
� �2s +

(xk � !k�s)
2

!2k

!
(19)

where !k = 1 �m(k � �) and N is the current time. Note that m appears both at the

beginning of (19) and in the de�nition of !, so we do not have a closed form solution

for m. However, the ! values act as weights that increase the importance of most recent

measurements. This weighting accounts for the expected decrease in measurement variance

as bio-fouling progresses. To estimate m we take an iterative approach. First, initialize m

to its minimum mean-squared error value given by

m(0) = �
PN

k=�+1(k � �)
�
xk
�s
� 1

�
PN

k=�+1(k � �)2
(20)

We obtain (20) by setting the bio-fouled variance equal to the clean variance in (11) and

maximizing the resulting SLR. Second, repeatedly solve (19) for m(i) with ! calculated

using the previous value m(i�1). The estimated rate value stops changing when h reaches a

maximum.
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For the salinity conditioned on temperature SLR, m is found by maximizing (15). The

results are similar to (19) and (20) with �s replaced by �k (13) and �2s replaced by 
 (14).

The classi�cation procedure is the same as that for salinity alone SLR tests.

SLR tests address the limitations of our baseline classi�ers. They provide an estimate of

onset time by �nding the time that the measurements switch from matching the clean

model to matching the bio-fouled model. By parameterizing the bio-fouling model, we are

able to develop the SLR test classi�ers exclusively on clean example data. The bio-fouled

model parameters are �t to the data under test. Finally, SLR tests classify a sequence of

measurements, so that long salinity downtrends produce larger h values than do short down-

trends. The strong response to sustained salinity decreases should increase our con�dence

in bio-fouling decisions.

7 SLR Test Evaluation

We evaluated classi�cation accuracy, time to detection, and onset time accuracy of our

SLR classi�ers on CORIE test data. Classi�cation accuracy is reported using ROC curves

as in our earlier evaluations. Time to detection is the time di�erence between bio-fouling

onset and the earliest time our classi�ers correctly identify that the sensor is bio-fouled.

We compare time to detection of all four classi�ers to the time it takes a human expert

to visually identify that the sensor is bio-fouled. For onset time evaluation, we simulated

bio-fouled signals by applying a linear degradation function to clean salinity measurements.

We compare the estimated onset time provided by our SLR classi�ers with the known onset

time.

7.1 Classi�er Accuracy

We compared the classi�er performance for our salinity alone SLR test, SLR(s), to the

performance of the md salinity classi�er discussed earlier. Figure 10 contains resubstitution

and hold-out ROC curves for SLR classi�er applied to Sand Island and Tansy Point data.

The same curves for the md salinity classi�er are shown in gray for comparison. Again we

are interested in the classi�cation accuracy at low false alarm rates due to the high cost of

retrieving a sensor for cleaning. At Sand Island, the SLR classi�er has accuracy comparable

to or slightly lower than the the md salinity classi�er when false alarm rates are low. At

Tansy Point, the SLR classi�er correctly labels more bio-fouled days when the false alarm
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rate is below 10%. At the lowest threshold that gives no false alarms, the percentage of

correctly labeled bio-fouled days increases from 40% to over 65%.
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(b) Tansy Point

Figure 10: Sequential likelihood ratio tests on maximum diurnal salinity. Resubstitution (thin line) and

hold-out (thick line) ROC for classi�cation of Sand Island and Tansy Point data. Maximum diurnal salinity

results are shown in gray.

We also compared the classi�cation performance of salinity conditioned on temperature

SLR classi�er, SLR(sj�), to the Fisher LDA classi�er described earlier. The SLR classi�er

requires no fault example data to train the classi�er, since fault parameters are �t to the

data under test. One expects that classi�ers developed using only clean or healthy data

will have lower accuracy than classi�ers developed using both clean and fault examples.

However, at low false alarm rates, the SLR classi�ers have accuracy comparable to the

Fisher LDA classi�ers. Figure 11 shows resubstitution and hold-out ROC curves for the

salinity conditioned on temperature SLR test. The earlier results for the Fisher LDA

classi�er are shown in gray. For the Sand Island data, the SLR classi�er is slightly less

accurate than the Fisher linear discriminant when evaluated on the training data. However,

the SLR classi�er is more accurate for the more realistic hold-out tests. At Tansy Point,

the SLR test classi�es bio-fouled days at least accurately as the Fisher LDA classi�er at

10% false alarms and more accurately at lower false alarms rates.

In summary, SLR classi�ers for salinity alone are more accurate than the baseline md salinity

classi�er at low (� 10%) false alarm rates. The SLR classi�ers for salinity and temperature
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Figure 11: Sequential likelihood ratio tests on maximum diurnal salinity conditioned on normalized tem-

perature. Resubstitution (thin line) and hold-out (thick line) ROC for classi�cation of Sand Island and

Tansy Point data. Fisher LDA results are shown in gray.

are as accurate as Fisher LDA classi�ers at low false alarm rates. As an added advantage,

SLR classi�ers achieve this accuracy without requiring bio-fouled training examples.

7.2 Detection Delay

Another way to evaluate our classi�ers is to examine the time to detection. To minimize

data loss and the real-time use of corrupted data, we need short times to detection. Since the

exact time of bio-fouling onset is uncertain, we compare detection times relative to the onset

times estimated visually by a human expert. We selected classi�er thresholds to produce

no false alarms on archival clean data. Detection time is the earliest time a discriminant

exceeds and stays beyond the corresponding threshold. Included in our evaluation are a

�eld scientist's estimates of when he would have scheduled a sensor to be cleaned, if he had

monitored the salinity signal daily. We have very few bio-fouling onset examples; four for

Sand Island and three for Tansy Point. To make the most use of limited data, all segments

were used to both train the classi�ers and evaluate detection time. Applying these classi�ers

and thresholds to new data may result in occasional false alarms.
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site segment detection day

year HE Sal SLR(s) F LDA SLR(sj�)
1997 8 17 15 8 8

Sand 1999 4 16 16 7 5

Island 2000 9 11 9 4 4

2001 15 17 15 9 9

Tansy 1999 74 59 30 23 9

Point 2000 11 13 16 11 12

2001 9 y y 10 10

Table 1: Estimated Bio-fouling Detection Times for Sand Island (top) and Tansy Point (bottom). Days are

the number of days after onset time (as estimated by a human expert) that the classi�er discriminant passed

the no false alarm threshold. The HE column contains the day on which a human expert visually inspecting

the sensor measurements estimates he would consider the instrument bio-fouled. For the classi�ers, detection

day is the earliest time that a discriminant passed and stayed beyond the no false alarm threshold. SLR(s)

is SLR classi�er for salinity alone, F LDA is the Fisher LDA classi�er, and SLR(sj�) is the SLR classi�er

for salinity conditioned on temperature. y threshold not exceeded; this instrument was removed on day 12

to con�rm bio-fouling indication by on-line Fisher LDA and SLR(sj�) classi�ers.

Table 1 contains time of detection rounded to the nearest day for Sand Island and Tansy

Point time-series segments. Since we have so few examples, we hesitate to make precise

comparisons of detection time, but we do note a few general trends. Classi�ers that in-

corporate both salinity and temperature measurements have detection times comparable to

or a few days faster than the human expert. Classi�ers based on salinity alone typically

pass their thresholds several days after the �eld scientist estimates that he would identify

bio-fouling.

To see how well our classi�ers worked in practice, we implemented versions that operated

on real-time salinity and temperature measurements. For all three instances of sensor

degradation (two bio-fouling incidents and one instrument failure that mimicked biofouling)

that occurred in the summer 2001 test period, our classi�ers correctly indicated a sensor

problem before the �eld sta� was aware of it. In addition, the real-time classi�ers produced

no false alarms during the test period.
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7.3 Onset Time Estimates

One advantage of sequential likelihood ratio tests is their ability to produce a maximum

likelihood estimate of bio-fouling onset time. We would like to evaluate the accuracy of

this estimate, but true onset times for our example data are not known. Instead of using

actual bio-fouled examples, we generated simulated bio-fouled time series with degradation

starting at a known time. The simulated time series consist of clean example data, x, where

after the chosen onset time, � the signal is linearly degraded until some minimum value is

reached. The simulated signal y at time step n is thus

yn =

8>><
>>:

xn n � �

(1�m(n� �)) xn n > � and m(n� �) < 0:5

0:5 xn otherwise

(21)

wherem is the bio-fouling rate. We chosem = 0:016=sec, since rates measured from summer

bio-fouling incidents ranged from 0.012 to 0.025. We classify the simulated bio-fouled data,

y, and extract the onset time estimated when the discriminants �rst exceed their no false

alarm thresholds.

Table 2 contains onset time estimates from the SLR classi�ers for several example time

series with simulated bio-fouling. In general, the onset estimates are within a day or two

of true onset. There are a couple of exceptions worth noting. The �rst is illustrated by the

Tansy Point example with onset day 8/14. In this case, the estimate from SLR(s) classi�er

is several days after the onset. There is a natural increase in salinity at the point where bio-

fouling is applied, so salinity does not decrease until a few days after onset. The SLR(sj�)
classi�er uses temperature to recognize that salinity should have been increasing and gives

a better estimate of onset time. The only problem found with the onset time estimate is

illustrated by the Sand Island example with onset day 6/04. In this case, the estimate

from both SLR classi�ers is early. The md salinity measurements are below the expected

value (either E[s] and E[sj�]) for over a week before bio-fouling onset, so it �ts the clean

data model poorly. Hence, the SLR classi�ers treat both the low md salinity data and the

bio-fouled data as bio-fouled. We �nd that when bio-fouling occurs during or immediately

following a period of low md salinity, the onset estimate is consistently too early.
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site segment onset SLR(s) SLR(sj�)
year day onset err onset err

1999 6/07 6/07 0 6/06 � 1

Sand 1999 6/29 6/30 + 1 6/30 + 1

Island 2001 6/04 5/24 � 11 5/23 � 12

2001 6/19 6/20 + 1 6/20 + 1

2001 6/21 6/20 � 1 6/22 + 1

Tansy 2001 7/02 7/05 + 3 7/04 + 2

Point 2001 7/13 7/15 + 2 7/13 0

2001 8/14 8/20 + 6 8/15 + 1

Table 2: Estimated bio-fouling onset times for Sand Island (top) and Tansy Point (bottom) Times are

given as month/day. Onset day is � in (21). The �rst degraded measurement occurs on onset day +1. Err

is di�erence between estimated and true onset times. SLR(s) is the SLR classi�er for salinity alone, and

SLR(sj�) is the SLR classi�er for salinity conditioned on temperature.

8 Discussion

The CORIE observation network includes measurements from CT sensors deployed through-

out the Columbia river estuary. These sensors are subject to bio-fouling, that is the gradual

degradation of sensor response due to the accumulation of biological matter on the sensor.

To insure data integrity, we must detect this degradation within a few diurnal cycles of

bio-fouling onset. In this paper, we described our successful initial e�orts to develop au-

tomatic classi�ers for these sensors. In this work, we concentrated on sensors subject to

predominately hard-growth bio-fouling. However, we expect our methods to be most useful

in detecting soft-growth bio-fouling, which is diÆcult to identify by visually examining the

signal. In this �nal section, we summarize our work to date and discuss future plans to

enhance our classi�ers and develop bio-fouling detectors for sensors subject to soft-growth

bio-fouling.

8.1 Summary

Prior to this work, no automatic bio-fouling detection existed for the CORIE salinity sen-

sors. The �eld sta� identify bio-fouling by periodic visual examination of the time series.

Our initial work involved the development of two baseline classi�ers, one which monitored

maximum diurnal salinity and one based on Fisher linear discriminant analysis of salinity
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and temperature. On the Tansy Point test data, the md salinity classi�er correctly identi-

�ed less than 30% of the bio-fouled measurements correctly at a detection threshold that

produced no false alarms. The Fisher LDA classi�er performed much better, identifying

over 60% of the bio-fouled measurements correctly.

We also developed sequential likelihood ratio tests for salinity and salinity conditioned on

temperature. These SLR classi�ers have several advantages over our baseline classi�ers;

they accrue information over time to improve classi�cation accuracy, they provide an esti-

mate of bio-fouling onset time, and they do not require an extensive number of bio-fouled

data examples to develop. On the Tansy Point test data, the SLR classi�er for salinity

alone correctly identi�ed nearly 70% of the bio-fouled measurements correctly at a classi-

�er threshold that produced no false alarms. Again incorporating temperature information

improved classi�cation performance as the SLR classi�er for salinity conditioned on temper-

ature correctly identi�ed nearly 80% of bio-fouled measurements. This classi�cation error

rate corresponds to a delay between onset and detection that is comparable to or a few

days faster than that of human experts. As an added advantage, the onset time estimates

generated by the SLR classi�ers are generally accurate to within a day or two of true onset

time.

Our classi�ers also performed well detecting sensor bio-fouling in real time. Classi�ers

deployed during summer 2001 detected all three epsisodes of sensor failure before the �eld

sta� noticed the signal degradation. In addition, these real-time detectors generated no

false alarms during the test period.

8.2 Future Work

In developing the classi�ers described in this paper, we assumed that md salinity measure-

ments from clean sensors varied around some stationary mean value. However, in the spring

and late fall, there are occasionally periods of depressed md salinity. At low false alarm

rates, the measurements that are incorrectly identi�ed as bio-fouled occur during these peri-

ods of low md salinity. In addition, the SLR classi�er onset time estimates are consistently

too early when md salinity is lower than expected. To correct these problems we plan

to examine two possible solutions: model salinity with a mixture of Gaussian densities or

adapt the model mean to the data under test.

One of our test cases indicates that our SLR classi�ers may be e�ective in solving the diÆcult
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problem of detecting soft-growth bio-fouling quickly. Most of the test cases presented in this

paper were incidents of hard-growth bio-fouling. However, the 1999 time series segment from

Tansy Point, Table 1, is a classic case of soft-growth bio-fouling with slow �tful degradation.

Our expert did not identify bio-fouling on this segment until around seventy-�ve days after

onset, much longer than his typical �ve to �fteen day delay. However, our SLR(s) classi�er

had a detection delay of around thirty days and the SLR(sjt) classi�er detected bio-fouling

only nine days after onset. While we obviously can not draw conclusions from a single

example, this test case encourages us to develop SLR classi�ers for sites subject to soft-

growth bio-fouling.

Developing bio-fouling detectors for sensors subject to soft-growth is complicated by the

variability of salinity measurements at these stations. Soft-growth bio-fouling occurs pre-

dominantly up-river where there is less salt penetration than in the lower estuary. At these

sensors, the md salinity measurement varies with the spring/neap tidal cycles of 14 and 28

days. This strong periodicity, with its frequent normal salinity decreases, makes it diÆcult

to detect bio-fouling degradation quickly. We plan to investigate the use of time-series pre-

diction to remove these normal salinity variations, which will facilitate development of SLR

classi�ers for accurate detection of soft-growth bio-fouling.
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