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Abstract

The process by which a normal cell is transformed in to a cancer cell and the steps that
follow to drive malignant disease are of interest to both cancer biology and cancer medicine.
Determining the cumulative genomic changes and their functional outcomes can provide insight
into the evolution of a tumor. Challenges exist in obtaining empirical evidence for tumor
evolution, largely due to the heterogeneity of tumors. Tumors from different primary tissues of
origin exhibit variance in their genomic and functional architectures. Even tumors of the same
subtype vary widely due to differences between each individual and their host environment.
Intratumor heterogeneity is a product of tumor evolution, thus regions from the same tumor can
also have genotypic variance. Many approaches in studying tumor evolution exist to partially
mitigate some of this variance and to amplify the signal of tumor evolution. Our approach is to
profile tumors that arise from the same host environment — the same person and tissue of origin.
This characterization of malignancy include synchronous cancer in which multiple primary tumors
are coexisting at the same time, and metachronous cancer in which multiple incidences of the
same tumor type are separated by six or months. Synchronous and metachronous tumors are rare
in sporadic cancer types. However, they are both hallmarks of the heritable cancer syndrome VHL
Syndrome. In performing genomic analyses of nearly 200 synchronous and metachronous clear-
cell renal cell carcinomas (ccRCCs) from over 30 individuals with VHL Syndrome, several notable
genetic alterations gave insight into evolutionary trajectories and constraints of these tumors.
These data identified driver mutations in a subset of high and low-grade ccRCCs and determined
that clonal somatic mutations in specific cancer genes influence the progression of Fuhrman
nuclear grade under a constrained host environment. Specifically, clonal inactivating BAP1 and
PBRM1 mutations were observed to be determinants of high and low Fuhrman nuclear grade,

respectfully. Additionally, linear evolution was observed at SETD2 in a single high grade ccRCC



which contradicts previous observations of branched evolution at SETD2 in sporadic ccRCC.
Finally, observations of recurrent loss of whole chromosome 3 in two different patients, suggest
that a combination of genotype and environment can apply selective constraints for specific
somatic copy number alterations. These results extend our understanding of the evolutionary
architecture and trajectories of tumors including how early genetic alterations can shape future
phenotypes that provide prognostic value and provide evidence that the host environment can
constrain evolution of the somatic tumor genome. This work also substantiates continued
genomic studies of synchronous and metachronous ccRCCs from VHL Syndrome patients and

provides framework for this biological system in future tumor evolution studies.



Chapter 1. Introduction

It is understood that cancer is the result of cumulative changes to the genomic and
functional architecture of cells. Based on decades of research the community has arrived at a
Darwinian model of tumor evolution where the fitness of cells in the tumor is a function of their
evolved genetics in combination with their interaction with the host environment. As in most
examples of Darwinian selection, the two major evolutionary processes are: (1) the positive
selection of genetic alterations that are advantageous to the tumor; and (2) the negative selection
of cells carrying deleterious genetic events through purifying selection. Cancer is largely driven by
positive selection, such as the selection for nonsynonymous variants in driver genes
(Martincorena et al., 2017). Purifying selection may not be a major feature of tumor evolution.
However, purifying selection is a product of immunoediting where a competent host immune
system acts as an extrinsic tumor suppressor system, reducing the cancer cell population

(Shankaran et al., 2001).

Every alteration to the tumor genome does not always encourage growth or
tumorigenesis. Are purely stochastic processes at play or are there underlying mechanisms that
constrain the genetic landscape of the tumor? We and others have become deeply interested in
how a tumor genome evolves in the context of a constitutive genome and a specific environment
(that may or may not be static). Here, | summarize our current understanding of how the germline
context can constrain tumor evolution, how high-resolution data improves tumor evolution
models, and how current models of tumor evolution can be integrated to represent the
complexity of cancer. | first discuss foundational models of tumor evolution informed by
epidemiological data. Next, | discuss variation at the germline and somatic levels as it relates to

tumorigenesis. | then dissect current models of tumor evolution, achieved through large-scale



genomic studies. Last, | discuss the constraints applied at the germline and somatic level and their

ultimate consequences on tumor evolution.

1.1. 20th Century Models of Tumorigenesis

Models of tumorigenesis began from epidemiology in the 1950s and then evolved to
cover genetic mechanisms in the 1970s, finally, adding molecular mechanisms in the 1990s. From
these foundational principles, we have a clear theoretical and mechanistic schema for tumor
evolution. This work now needs to be placed into context of genetic and environmental

constraints.

Initial models of tumorigenesis relied heavily on the relationship between cancer
incidence and mortality with age. In the early 1950s Nordling observed that the frequency of
cancer was increasing to the sixth power of age, and therefore hypothesized that a single cell
would require at least seven mutations for carcinogenesis (Nordling, 1953) and that these
mutations should be successive. Building on Nordling’s model of tumorigenesis, Armitage and Doll
(Armitage and Doll, 1954) introduced the idea that tumorigenesis occurred in stages. They
hypothesized that the number of stages was tissue or cancer type specific and that more than one
mutation could occur within a single stage. Such simple models generalized tumorigenesis into a
specific number of events. The Armitage-Doll multi-stage model was later reduced to a two-stage
model of carcinogenesis that incorporated clonal expansion of cells with a selective advantage as
the first-stage (Armitage and Doll, 1957). Clonal expansion results in the production of a uniform
population of cells. The models proposed by Nordling, Armitage, and Doll, provided a framework
for thinking about how multiple mutations and clonal expansion with positive selection could lead

to cancer.



Nearly two-decades later, Peter Nowell (Nowell, 1976) proposed a model that included
successive clonal evolution, inviting stochastic processes to tumor evolution models. Nowell’s
model suggested that sequential expansion of subclonal populations within the tumor were
driven by genetic variation and positive selection. Clonal expansion rates were considered due to
the application of Knudson’s “two-hit hypothesis” (Knudson, 1971) model of tumor suppressor
activation to adult tumors. Later, Moolgavkar (Moolgavkar, 1978) suggested that clonal expansion
consisted of two rate-limiting steps (1) the mutation in a normal cell forming an intermediate, and

(2) the transition from the intermediate to a cancer cell.

In the late 1980’s, the rise in molecular genetic technologies directed focus towards
particular genes for single tumor types. During this period, Volgelstein and colleagues (Fearon and
Vogelstein, 1990; Vogelstein et al., 1988) introduced a four-stage model for colorectal cancer
(CRC). The four stages proposed were: (1) normal mucosa transformation to aberrant crypt, (2)
transition to early adenoma, (3) advancement to late adenoma, and (4) progression from
adenoma to carcinoma. It was described that the mutation of four cancer genes in order: APC,
then KRAS, then DCC/SMAD4, then TP53, drove progression between the four-stages of CRC
evolution. This model became the driving paradigm for clonal Darwinian selection in cancer
development for the next two decades (Fearon, 2011). Only recently are we appreciating that it

is almost certainly more complex.

1.2 The genetic context

As we refine our models of tumor evolution, it is critical to consider that the development
of a cancer, as an evolutionary process, is strongly influenced by the host genotype. Currently,
this is informed by enormous genome wide association studies (GWAS) of tens to hundreds of

thousands of participants. The germline genome and the somatic genome both contribute to the



genetics of a tumor and, together, are capable of forming complex interactions. The germline
genome sets a base genetic environment that is homogeneous for all cells within the tumor. The
somatic genome is ever changing, and is subject to Darwinian evolution, while under constraint

by the germline genome (Swanton, 2015).

1.2.1. Normal germline variation

Germline genomic variation among individuals drives variation in phenotypes, including
future disease risk. Germline variants must be compatible with organismal viability so they are
unlikely to be disruptive in a diploid state. The effect of germline variants is context dependent,
so a phenotype may only manifest in certain tissue types at certain stages of life. It is estimated
that about 80% of de novo germline mutations are heterozygous and the remaining mutation
fraction are homozygous but not deleterious (Xue et al., 2012). Heterozygous germline mutations
are of particular interest in cancer studies because their phenotype has the potential to be
unmasked by somatic copy-number alterations (SCNAs), and thus can constrain future somatic

events.

1.2.2. Highly penetrant pathogenic germline variants

There are over 200 Mendelian heritable cancer syndromes which cause 5 — 10% of all
cancer cases. These diseases are due to highly penetrant germline variants of genes that
contribute directly to tumorigenesis (Glaire et al., 2017; Nagy et al., 2004). Nearly all hereditary
cancer syndromes have an autosomal dominant mode of inheritance, meaning they are
heterozygous at their causative locus. Phenotypes vary across cancer syndromes, but generally
the following are more frequently observed in comparison to sporadic disease: earlier age of
onset, increased incidence of multiple tumors, and rapid growth. Of importance, inherited cancer

syndromes typically show distinct differences from most sporadic forms of the same disease.



Whether this is because there are distinct constraints in tumor development, the ordering of the

drivers is distinct, or they are different diseases is of great interest.

1.2.3. Low penetrance pathogenic variants modulate cancer risk

Highly disruptive variants tend to be rare in populations and are quickly eliminated before
reaching significant population frequencies. However, later age of onset can allow highly
disruptive variants to persist at high frequencies within certain populations. Heritable and familial
cancers occur at an earlier age than sporadic cancers. However, most incidences of heritable
cancer still occur after the age of reproductive maturity (Brandt et al., 2008) allowing for germline
mutations associated with cancer syndromes to persist in populations. BRCA1 and BRAC2
mutations are associated with hereditary breast and ovarian cancer (King et al., 2003). For
example, in the general population the prevalence of having a BRCA1/2 mutation is 0.2% — 0.3%.
The prevalence of having a BRCA1/2 mutation increases to 2.5% within Ashkenazi Jewish

population (PDQ Cancer Genetics Editorial Board, 2018).

Slightly disruptive variants are able to persist across many individuals in a population and
contribute to risk of disease. Hundreds of low penetrance cancer susceptibility variants have been
identified through large GWAS. A GWAS of breast cancer cases have identified 94 susceptibility
loci explaining 16% of the familial risk of breast cancer (Michailidou et al., 2015). A meta-analysis
across six GWAS identified seven new risk loci for renal cell carcinomas (RCC), totaling 13 reported
risk loci which explains about 10% of the familial risk of RCC (Scelo et al., 2017). Prostate cancers
have over 100 susceptibility loci identified explaining one-third of the familial risk of disease (Eeles
et al., 2017). The number of GWAS hits is proportional to the number of prostate tumors studied
compared to other tumor types. Of note, the Oncoarray Consortium has genotyped nearly

450,000 tumor samples and as the largest cancer GWAS, aims to uncover more cancer



susceptibility loci (Amos et al., 2017). These studies rely on large cohorts of cases and controls in

order to achieve the required power to detect variants of moderate to low effect size.

In some cases, germline variants offer protection against cancer by establishing an
unfavorable genetic context that constrains biological and mutational processes critical to
initiating tumorigenesis. The WTX gene encodes a repressor of WNT signaling and germline WTX
mutations cause skeletal dysplasia in females (osteopathia striata congenita with cranial sclerosis,
or OSCS). Conversely, WTX germline mutations are lethal in males. The WTX gene is somatically
activated in 11-29% of Wilms tumors, yet OSCS patients do not get cancer. This suggests there
exist temporal and spatial constraints on action of WTX during tumorigenesis (Jenkins et al.,
2009). Another example of a germline constraint against cancer exist in Trisomy 21 patients. The
overall cancer prevalence in Trisomy 21 is low — 1/10 of the general population rate (Yang et al.,
2002). There are many tumor suppressors residing on chromosome 21, including the DSCR1 gene
that codes for an angiogenesis suppressor. One theory is that having an additional wild-type copy
of multiple tumor suppressor genes offers a protective advantage against cancer by reducing risk

of inactivating tumor suppressor genes.

1.2.4. The somatic genome

Somatic genomic variation is common and continuous. Each cell division creates a chance
of acquiring new genetic alterations and somatic variants that persist must not be lethal to the
cell. A few studies have aimed to quantify and characterize somatic variation rates in non-cancer
cells. At estimates of 2.8 x107 bp per division in fibroblasts (Milholland et al., 2017), 2-6 x 10°® bp
per division in epidermis (Martincorena et al., 2015), and 4.4 x 10 bp per division in colonic
epithelium (Nicholson et al., 2018); somatic mutation rates are one to two orders of magnitude

higher than germline mutation rate estimates. As a cell accumulates somatic variants, there is



increased risk of acquiring one or more somatic variants providing a selective growth advantage

and thus, creating the genetic context for tumorigenesis.

The Cancer Genome Atlas (TCGA) and related projects have significantly shaped our
understanding of the somatic genomic features across many tumor types. There is enormous
variation in the number of somatic mutations in a cancer genome ranging from 300 for lesions
found in children to 3,000 in typical adult epithelial tumors to 30,000 in hypermutated tumors
(Kandoth et al., 2013). The majority of somatic mutations do not contribute to the fitness of the

tumor and are referred to as passenger mutations.

Driver mutations are those that provide an evolutionary advantage to the tumor. They
can activate oncogenes or inactivate tumor suppressors. It has been estimated that a typical
tumor carries 2-8 mutations in known driver genes (Vogelstein et al., 2013), although this number
is uncertain (Martincorena et al., 2017). TCGA’s pan-cancer analysis across twelve tumor types
(Kandoth et al., 2013) and a later pan-cancer study of 21 tumor types by The Broad Institute
(Lawrence et al., 2014) have identified a total of 160 driver genes across cancers. Reanalysis of
TCGA data using different statistical approaches has identified 26 additional driver genes (Carter
et al., 2017; Dunford et al., 2017). However, we have yet to obtain enough deeply sequenced

cancer genomes to confidently identify all possible cancer driver genes.

Some cancer types and subtypes are characterized by higher mutation frequency in
certain cancer driver genes which help explain subtype-specific tumor evolution. In breast cancer,
TP53 is the most frequently mutated gene with aberrations appearing in nearly 30% of all breast
tumors. However, TP53 mutations are much higher in the triple negative subtype, occurring in
over 80% of these tumors (Bertheau et al., 2013). Point mutations in TP53 are enriched in luminal

tumors, while basal tumors carry insertion or deletion mutations. It is likely that the type of



mutation in TP53 results in different functional consequences from the p53 protein, which may
also dependent on the molecular subtype of the breast tumor (Nicholson et al., 2018). In low-
grade gliomas, prognosis is segregated by mutations in certain genes. Favorable prognosis is
observed in tumors with IDH mutations, whereas poor prognosis is observed in tumors with TP53

and ATRX mutations (Cancer Genome Atlas Research Network et al., 2015).

Cancer mutations are not solely single nucleotide events. Insertion and deletion (indels)
mutations can consistent of any number of nucleotides. Indel discovery is challenged by
constraints in sequencing experiments and downstream processing of mapping and aligning
reads. Indels reported in COSMIC were more commonly somatic rather than germline mutations
(Yang et al., 2010). Oncogenes exhibited a near eight-fold enrichment for tri-nucleotide indels
compared to tumor suppressor genes (Yang et al., 2010). These observations largely suggest that
indels are under positive selection within the somatic tumor genome as driver mutations in tumor
suppressor genes. A recent study (Ye et al., 2016) reanalyzed 8,000 cases from TCGA and
identified complex indels in cancer driver genes in 3.5% of cases that were previously missed or

incorrectly annotated.

A high fraction of somatic variants are copy-number alterations (SCNAs). These are likely
a result of genetic processes in cancer such as chromothripsis and chromosomal aneuploidy.
SCNAs can be as large as an entire chromosome or as small as a single gene. Due to the large size
of most SCNAs, they affect a larger fraction of the genome than any other type of somatic genetic
alteration (Beroukhim et al., 2010). Specifically, aneuploidy, whole-chromosome and arm-level
SCNAs are predominant alterations and observed in 90% of solid tumors (Weaver and Cleveland,
2006). Large genomic copy-number studies in cancer have determined the average tumor has
about 24 gain and 18 loss events (Beroukhim et al., 2010; Zack et al., 2013). In these studies, the

vast majority of frequent SCNAs in cancer do not harbor known oncogenes or tumor suppressors.

10



SCNAs beginning or ending with a telomere tend to be longer than internal SCNAs. Additionally,
SCNAs are more likely to end or break within a centromere than expected given the length of the

centromere (Zack et al., 2013). This is likely an effect of the mechanism for acquiring an SCNA.

Some have determined that the three-dimensional architecture of chromatin (Fudenberg
et al., 2011) and other secondary structures of genomes (De and Michor, 2011) shape the
distribution of SCNAs. This suggests that SCNA can be spatially regulated. Aneuploidy is a
consequence of chromosomal instability (CIN), an increased rate of gain and loss of whole
chromosomes. Mechanisms of CIN are mostly due to errors in mitosis. For example, prior to
metaphase chromosomes can be misaligned or mis-attached. If the spindle assembly checkpoint
fails to recognize either error, then the defective chromosomes will lag and it will be randomly
segregated into either daughter cell (Sansregret and Swanton, 2017). One daughter cell would
gain an additional chromosome, and the other would lose that chromosome. A recent study has
observed inherent bias among individual chromosomes in mis-segregation events and aneuploidy
rates (Worrall et al., 2018). Genome doubling events, observed in nearly 30% of advanced stage
tumors, cause multipolar spindles to form and increase the risk of unbalanced chromosomal
segregation (Bielski et al., 2018). They are one of the earliest mutational events and most often

lead to later SCNA events.

1.2.5. Mutation Signatures

Mutations are dependent on the context of the sequence and the environment, which
can constrain tumor evolution. Many features of a genomic locus can affect its mutagenicity, such
as nucleosome occupancy, replication timing, recombination rate, retentiveness, transcription, or
GC-content. Microsatellites are more frequently mutated due to their repetitive sequence and

low-fidelity within repetitive regions by DNA replication polymerases (Brinkmann et al., 1998).

11



CpG dinucleotides are mutated 10-18 times more often than all other dinucleotides in the cancer
genome (Rubin and Green, 2009). There is a two-fold increase in transition mutations versus
transversions (Gojobori et al., 1982). Transcribed regions are mutated more frequently than non-
transcribed regions (Park et al., 2012). DNA damage mutations can occur on the antisense strand
during transcription because it is left exposed as a single strand, while the sense strand bound to

transcription machinery is protected from damage.

Many of these mutagenic processes are so distinctive that they leave behind a particular
mutation signature in the somatic genome. Over 80 mutation signatures have been identified in
cancer and some are associated with clinical and biological features of tumors (Alexandrov and
Stratton, 2014; Alexandrov et al., 2018, 2013, 2015). Kataegis is a mutational process that results
in hypermutation of C > T and C > G within a localized region. It is observed in about 55% of breast
tumors and associates with cases that are later onset and have better prognosis (D’Antonio et al.,
2016). An APOBEC, family of cytidine deaminases, signature results in C > T and C > G mutations
and is thought to contribute to kataegis (Roberts et al., 2013). An elevation in C > T mutations is
associated with an “age” signature, which is the most common signature. Most tumors studied
exhibit more than one mutational signature suggesting there to be more than one mutational

process during the lifetime of a tumor (Gerstung et al., 2017).

1.3. Emerging Models of Tumor evolution

Recent models of tumor evolution build on most of the historical models previously
discussed, describe cancer as an adaptive process. It is a process of replication, mutation and
selection each with a small effect on cell growth (Beerenwinkel et al., 2007). Genotypic and
phenotypic heterogeneity is fundamental to the Darwinian evolution of cancer. Advancements in

genome sequencing technologies and tumor sample collection have provided higher resolution

12



data to generate improved models of tumor evolution. We can quantify the heterogeneity of the

tumor in relation to its spatial and temporal environment in some cases.

1.3.1. The Branched Architecture of Tumor Evolution

The ordered relationship of genetic lesions between a clone and its subclones and the
relationship of genetic lesions within a clone provide insight into the clonal architecture of tumors.
Earlier models of tumor evolution lacked consensus on the importance of temporal order of
mutations. Perhaps, due to an underappreciation and misunderstanding of intratumor
heterogeneity (ITH). Phylogenetic trees are often used to illustrate ITH, where the trunk
represents mutations observed in all cells and the branches represent the mutations present in
subsets of the tumor. The more branches present in a tumor’s phylogenetic tree, the more

heterogeneity there is.

As clones diverge from a common ancestor, tumor evolution becomes increasingly more
branched and ITH increases. In evolution speciation, some lineages are dead ends. Not all
subclones have equal fitness as the environment changes and thus will be out-competed by other
subclones. To observe the clonal architecture of a tumor, high resolution data is required. Single-
cell sequencing, multi-regional sequencing, ultra-deep sequencing of bulk tumor, or sequencing

of serial samples could all provide sufficient data.

Branched evolution has been observed in the many tumor types including lung (Zhang et
al., 2014, 2017), clear-cell renal cell carcinoma (Gerlinger et al., 2012, 2014), breast (Yates et al.,
2015), colorectal (Suzuki et al., 2017), and even some pediatric cancers (Anderson et al., 2011). In
branched evolution, clones diverge from a most recent common ancestor (MRCA) and evolve in
parallel, usually with minimal clonal competition. There is not always a relationship between the

size of the observed clonal and subclonal fractions because mutational processes differ during the
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lifetime of a tumor. Conversely, tumors driven by similar mutational processes do share similar

evolution architectures.

Pediatric tumors carry far fewer mutations than tumors from adults. It might be argued
that they undergo less evolution and yet branched evolution is observed (Anderson et al., 2011).
Pediatric acute lymphoblastic leukemias (ALL) positive for the initiating ETV6-RUNX1 gene fusion
event were profiled at the single-cell level at 8 genomic targets to determine clonal architecture.
The genetic architecture observed was diverse, subclones demonstrated branched evolution, and
recurrent CNAs were not acquired in a particular order — that is there was no difference in
oncogenic "potency" across these secondary CNAs. Some CNAs present in multiple subclones
could arise independently, suggesting that some mutations were not a result of selection but were

due to locus-specific genomic instability (Anderson et al., 2011).

1.3.2. Clonal Sweeping — Establishing the Dominant Clonal Genotype

Clonal evolution suggests that a series of clonal expansions grows to dominate the
neoplasm, the replacements are called selective sweeps. Linear evolution, where driver mutations
are acquired in a step-wise fashion, requires the presence of selective sweeps. The time to the
next driver mutation must be longer than the time required for a clone to sweep through the
neoplasm in order for evolution to occur. Clonal interference occurs when a second mutation
occurs in a competitor clone and results in restricted expansion of both clones due to mutual
competition. This is likely a common occurrence due to the large number of cells and high
mutation rate observed in most tumors. Serial sampling studies could address this further. Several
studies utilizing serial sampling techniques (Maley et al., 2006; Suzuki et al., 2015; Walter et al.,
2012) determined that parallel clonal expansions occur before competition exists and that certain

subclones will begin to dominate within the tumor. Clonal sweeping and interference is less

14



common in branched evolution because multiple clones have increased fitness and expand

simultaneously (Davis et al., 2017).

Linear and branched evolution, while competition models, are not necessarily mutually
exclusive. Consider that a tumor acquires many driver mutations and each driver mutation is
under selection individually and some are under selection collectively. For example, reconsider
Fearon and Vogelstein’s early model of CRC (Fearon and Vogelstein, 1990). They argued that
progress of CRC involved a step-wise or linear series of specific mutational events. This model still
stands strong today. However, branched evolutionary architecture has also been observed in CRC
(Suzuki et al., 2017). Suzuki et al. observed the genetic alterations from Fearon and Vogelstein's
linear model of CRC (APC, TP53, and KRAS mutations) as truncal events of branched evolutionary
trees. In this example, a single tumor is exhibiting both linear and branched architecture during
discrete moments of its evolution. Its evolution is first linear then later becomes branched,

presumably after undergoing many more cell divisions and mutational events.

Driver mutations are observed more frequently in tumors than would be expected given
the normal background mutation rate. Driver mutations are associated with clonal expansion,
occurring within the clonal fraction as well as being responsible subclonal lineages in later
tumorigenesis (Gerstung et al., 2017). Driver mutations are found in regions of a gene that affects
its function, frequently occurring within the coding regions of the genome, and are a type of
mutation that alters the function of a gene (non-synonymous, frameshift, nonsense) (Lawrence
et al., 2014). Most noncoding driver mutations are found within promoter regions and regulate
the expression of genes important to tumorigenesis (Weinhold et al., 2014). An example are TERT
promoter mutations. They are frequently found in bladder and central nervous systems cancers

and increase expression of telomerase (Vinagre et al., 2013).
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Bozic et al. studied glioblastomas and pancreatic tumors, and estimated that driver
mutations gave an average fitness advantage of only 0.4% (Bozic et al., 2010). Bulk sequencing
studies underestimate the clonal prominence of driver gene mutations. To better measure the
effect of a mutant clone on selection, a longitudinal study with clonal size estimated at multiple

time points is needed.

1.3.3. Punctuated vs Gradual Evolution

Itis debated if tumors evolve gradually through a sequence of genetic changes and clonal
expansions, or if the evolution is due to large punctuated changes possibly caused by a
catastrophic event that causes multiple genetic lesions (such as chromothripsis). Punctuated
evolution describes tumorigenesis stages as short bursts of events followed by clonal expansion.
Events are discrete and with order, represented by bursts of phenotypic change and complex
chromosomal rearrangements. On the other hand, gradual events are slow and with a consistent
rate. Is punctuated evolution the dominant effect or does gradual evolution dominate? Studies
answering this question, focus on genomic rearrangements such insertions, deletions, and copy-
number alterations. This can change over time and, within or between clones. Punctuated and
gradual evolution are not mutually exclusive (Figure 1). Single-cell studies along with serial

sampling are needed to discern this.
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Figure 1: Mutational diversity landscape is shaped by punctuated and gradual somatic variation.
Germline variation (blue) is constant and while it does not directly contribute to intratumor
heterogeneity, it provides the context for subsequent somatic variation. Somatic variation can be
categorized as punctuated or gradual. Gradual somatic variation (green) begins in early human
development and has a relatively constant rate. However, disruption to biological processes that
drive tumorigenesis can alter the mutation rate over time. Punctuated somatic variation (yellow)
increases intratumor heterogeneity in large bursts within a short period of time. Clonal mutations
will occur early in tumor development and will be present in all cells of the tumor. Subclonal
mutations occur later in development and increase intratumor heterogeneity.
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Chromosomal complexity, chromoplexy, is a hallmark of punctuated evolution. In a study
of 57 prostate tumors, complex structural variation caused by breakpoint fusion bridge cycles was
observed in successive cell divisions (Baca et al.,, 2013). Each tumor possessed multiple
independent complex genomic rearrangements determined to occur in an ordered chain (Baca et
al., 2013). The degree of chromoplexy altered phenotypes and simultaneously disrupted multiple
known cancer driver genes. In prostate cancer, disruption of distinct cancer genes by chromoplexy
was identified as an early stage followed by sustaining subclonal growth where deletion bridges
were present. Deletion bridges are deletions that span two rearrangements and adjacent deletion
bridges link multiple rearrangements in a chained fashion. This suggests that there must be
multiple stages of chromoplexy in prostate tumors (Baca et al., 2013). Punctuated evolution was

also observed in initiating events of triple negative breast cancer (Gao et al., 2016).

Certain mutation signatures like smoking and APOBEC, as well as genome doubling
contribute to processes that support punctuated evolution. Exposures such as UV and smoking
result in a higher accumulation of mutations, as observed in skin and lung cancers. Although the
mutation rate is increased, the higher lifetime risk of lung cancers with increased pack-years and
the decrease in lifetime risk upon quitting smoking supports gradual evolution (Blackford et al.,
2009; Le Calvez et al., 2005). Primary driver genes of squamous cell carcinoma (SCC) of the skin
including NOTCH1, TP53, and FGFR3 were enriched for mutations and clone size in normal eyelid
epidermis from a multiregional sequencing study (Martincorena et al., 2015). However, primary
driver genes of basal cell carcinoma and melanoma carried few mutations. This represents
positive selection for SCC driver mutations in normal eyelid epidermis. Interestingly, differential
selection was observed in NOTCH genes. One individual carried a higher propensity for NOTCH2
mutations across eyelid epidermis regions while another individual had a higher propensity for

NOTCH1 mutations (Martincorena et al., 2015).
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From the analysis of whole genome sequence of synchronous tumors, the number of
mutations positively correlated with age, which is representative of gradual evolution (Fei et al.,
2016). In a multi-regional sequencing study of glioblastomas, there was a positive correlation
between age and the number of clonal mutations, yet there was no correlation between age and
the number subclonal mutations (Kim et al., 2015). This observation strongly suggests that
mutational processes driving tumorigenesis at early versus later stages are not always the similar.
Mutation timing was profiled in the International Cancer Genome Consortium’s (ICGC) study of
2,658 tumors and their data showed that some mutation processes change activity over the
lifetime of the tumor (Gerstung et al., 2017). For example, UV related signatures decreased in
activity in later mutational stages, although, overall the average variation in mutation signatures

throughout the lifespan was a modest 30%, it is still a topic requiring further studies.

1.4. Selective Pressures and Constraints

Germline and somatic genomes interact to drive tumorigenesis and thus produce modest,
but real constraints on tumor evolution. Many studies within individual tumor types have
identified germline pressures towards specific somatic copy number alterations driving tumor
progression. Allele specific gains of the T91A allele of AURKA (Ewart-Toland et al., 2003; Hienonen
et al., 2006) and losses of the A1176C allele of PTPRJ (Ruivenkamp et al., 2003) have been
observed in human CRC. The rs6983267 SNP on 8924 shows allele-specific imbalance in multiple
genome wide association studies of CRC (Tuupanen et al., 2008). Breast tumors with germline
BRCA1 mutations have more frequent losses on 4p, 4q, 5q, Xp, and Xq, and gains of 10p and 16q
compared to breast tumors without BRCAI mutations (Jonsson et al., 2005; Stefansson et al.,
2009). Dworkin et al. studied aCGH copy-number profiles of 305 independent SCCs from 181

patients and identified 9 loci with allelic imbalance. One loci, 8924, contained multiple SNPs
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previously associated with an increased cancer risk and one SNP, rs13281615, showed evidence

of allele-specific imbalance (Dworkin et al., 2010).

A recent integrative approach was applied to studying the interaction between the
germline and somatic genomes within the collection of TCGA cases. Carter et al. identified 916
germline markers with strong associations with the tumor tissue type, and 62 associations
between germline markers and protein-altering somatic mutations in cancer driver genes (Carter
et al., 2017). Additionally, melanomas with germline MC1R mutations have a higher frequency of
somatic BRAF mutations, and RAS/MAPK signaling oncogene that is mutated in two-thirds of
melanomas (Landi et al., 2006; Maldonado et al., 2003). These interactions are the sorts of

constraints that now need to be studied.

Another example of a constraint on tumor development is variation in essential drivers
across different tissues. For example, germline mutations in APC, a tumor suppressor and
regulator of cell-adhesion, cause Familial Adenomatous Polyposis (FAP) Syndrome (Crabtree et
al., 2003) and result in colorectal tumors. Somatic mutation of APC is an early driver of sporadic
CRC and is observed in over 76% of these tumors (Lawrence et al., 2014). von Hippel-Lindau (VHL)
Syndrome is caused by a germline mutation in VHL, a tumor suppressor and negative regulator of
angiogenesis. Loss-of-function mutations result in a 100% lifetime risk of developing multiple
clear-cell renal cell carcinomas (ccRCC) (Prowse et al., 1997). VHL is a clear driver of sporadic clear-
cell renal cell carcinomas, as it is altered in nearly two-thirds of these tumors (The Cancer Genome
Atlas Research Network, 2013). Interestingly, VHL mutations are rare in other tumor types

suggesting that VHL plays a pivotal role in ccRCC development (Kandoth et al., 2013).

Somatic mutations are random searches for solutions for fitness advantages given the

constraints of the static germline genome and complex microenvironment. Resource, size, and
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space limitations exist in the microenvironment. The doubling time of cancer cells in vitro, one to
two days, is faster than the doubling time of tumors in vivo (60-200 days) (Chojniak and Younes,
2003; Furukawa et al., 2001; Nerli et al., 2014). Studies of circulating tumor DNA have determined
in vivo doubling time of about two-weeks for clones containing driver mutations in early-stage
primary breast cancer (Garcia-Murillas et al., 2015). One hypothesis is that the majority of cancer
cells die before they can divide, likely due to the addition somatic mutations that are not
sustainable given the constraints of the germline and microenvironment. The somatic “search” is
much like a guess and check method. Some guesses may be cell lethal or may reduce fitness and
be outcompeted by stronger clones. Or, perhaps the division rates between in vitro and in vivo

conditions differ but cell viability remains similar.

Exogenous exposures introduce a source of selection to tumor evolution. Many
chemotherapies, carcinogenic chemicals, and radiation exposures are genotoxic. Surviving cells
must have mutations that provide protection against cell death and these mutations likely

increase the malignant potential of these cells.

1.4.1. Endogenous Environment

Studying the environmental constraints of tumor evolution poses many challenges due to
the complexity of the environment. One experimental approach is the application of patient
derived xenograft (PDX) models. To create a PDX model, a collection of suspended-single cancer
cells or a fragment of a tumor biopsy are removed from their natural environment and grafted
into an immunocompromised mouse. These studies often lead to tumors that do not fully
reproduce the features and heterogeneity observed in the original tumor sample. Eirew et al.
examined how PDX models of breast cancer reflect the clonal composition of patient tumors and

the clonal dynamics that exist when transplanting tumors. Tumors with the largest changes in
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clonal structure became less heterogeneous in subsequent passages due to dominance of a few
clones or reduction of subclonality (Eirew et al., 2015). Kreso et al. performed a similar study using
a PDX model of CRC to understand if cells within a single genetic clone are functionally equivalent.
They observed strong clonal selection after implantation, but maintenance of clonal architecture
through serial passages (Kreso et al., 2013). Kreso and Eirew are similar studies but come to
opposite conclusions, possibly due to the biological difference between breast tumors and CRC,
differences in these specific tumors, or differences in the design of each study. The reproducibility
of Eirew’s study provides strong conviction that clonal dynamics are not stochastic and are largely

influenced by the genetic makeup of clones.

1.5. VHL Syndrome - A biological model for probing tumor evolution

We can assume that the germline genome is largely constant over the lifespan of an
individual. To fully understand the germline constraints on tumor evolution, one would need to
study multiple tumors arising from an isogenic environment. To measure the influence of the host

environment on tumor evolution we can consider VHL Syndrome.

1.5.1 Clinical Presentation of VHL Syndrome

VHL Syndrome is an autosomal dominant Mendelian disorder associated with germline
mutations in the gene VHL. It has an incidence of 1in 35,000 in the US and exhibits near complete
penetrance by the age of 65 (Varshney et al., 2017). Most VHL Syndrome cases are inherited and
20% are de novo. The most significant phenotype is the formation of multiple benign and
malignant tumors. Diagnosis is established if there is a family history of VHL Syndrome and a

characteristic tumor presents, or if two or more characteristic tumors present.

Phenotypic heterogeneity in VHL Disease was first studied in 1991 (Neumann and

Wiestler, 1991). There are two broad types of VHL Syndrome that differ in their functional
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outcome of the VHL mutation (Glenn et al., 1991; Gnarra et al., 1994), thus affecting the
phenotypic presentation. Type 1 individuals present with pheochromocytomas while Type 2
individuals do not. Both VHL Syndrome subtypes can present with clear-cell renal cell carcinomas
(ccRCC), the phenotype that is the focus of this dissertation. Renal tumors are the only malignant
tumor observed in VHL Syndrome and thus pose a significant health concern. Both subtypes can
also present with hemangioblastomas of the central nervous system or the retina, pancreatic
cysts, and neuroendocrine tumors (Varshney et al.,, 2017). Hemangioblastomas are vascular
tumors that can grow large in size (3 — 30 mm in diameter) and are usually well tolerated unless
their size causes significant pressure on the cerebrum (Slater et al., 2003). Renal tumors and
hemangioblastomas of the central nervous system are the greatest risk to mortality in VHL

Syndrome cases (Schmid et al., 2014).

1.5.2. Surveillance and Treatment

Given the multisystem involvement and the complete penetrance in VHL Syndrome,
lifelong clinical screening is standard. Coordinated diagnostics, genetic registry, and recurrent
screenings over the last 30 years have increased the life span of individuals with VHL Syndrome
to at least 50 years of age (Maddock et al., 1996). Clinical surveillance is often coordinated across
several medical specialties and screening measures are stratified by age (Lattouf et al., 2016;
Schmid et al.,, 2014). Annual physical and ophthalmic screenings along with blood plasma
molecular diagnostics for cerebral and retinal hemangioblastomas, and neuroendocrine tumors
are suggested as early as age one to five years. Diagnostic imaging including abdominal MRI and
CT scans are recommended annually beginning at age sixteen to detect renal tumors and reduce
metastatic risk (Lattouf et al., 2016). A watchful waiting method is used for ccRCCs under three

centimeters in the largest diameter because heritable and sporadic ccRCCs of this size have nearly
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zero metastatic potential (Duffey et al., 2004; Walther et al., 1999). Routine surveillance and
diagnostics are continued on the patient while all renal tumors remain under three centimeters
in any diameter. Once any single tumor grows beyond this size, all visible tumors are resected at
once using nephron sparing surgery and CT-guided focal ablation as preferred methods to radical
(total) nephrectomy (Schmid et al., 2014). Preferred resection methods are minimally invasive
and preserve as much normal kidney as possible. The unique high-level of surveillance in this
disease provides a large volume of clinical data that can be used for collecting phenotypes across

many timepoints during the evolution of a ccRCC.

1.6. VHL is a Negative Regulator of Hypoxia

The VHL gene is located on 3p25. It encodes the tumor suppressor VHL protein (pVHL)
which functions as an E3 ubiquitin ligase complex (Gossage et al., 2015) to specifically target
hypoxia inducible factor (HIF) for proteasomal degradation. HIF is a heterodimeric transcription
factor involved in the regulation of angiogenesis, a necessary process for tumor growth (Benita et
al., 2009). It is composed of one of three alpha subunits (HIF1a, HIF2a, or HIF3a) and HIF1B. pVHL
is known to interact with both HIFla and HIF2a. HIF1la is ubiquitously expressed while HIF2a
expression is limited to endothelial, lung, renal, and hepatic tissues; but these two alpha subunits

display different functionalities (Raval et al., 2005).

It is the disruption of the HIF2aw and pVHL interaction that has been observed in renal
carcinoma progression. Mouse and cell line models of ccRCC have determined active HIF2a is
necessary for tumor growth under biallelic VHL inactivation (Chen et al., 2016; Kondo et al., 2003;
Zimmer et al., 2004). Under normoxic conditions, pVHL complexes with adapter proteins elongin
C and elongin B to ultimately bind cullin-2 (Pause et al., 1997) and complete the ubiquitin-ligase

complex. This complex recognizes and binds hydroxylated HIF2a, targeting it for degradation and
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preventing the formation of HIF heterodimers. Oxygen is a cofactor necessary for the HIF2a
hydroxylation. Thus, under hypoxia HIF-alpha is not degraded and can complex with HIFP. The HIF
complex binds hypoxia-response elements to activate the transcription of pro-angiogenesis
factors such as VEGF, erythropoietin, and PDGF[. Somatic VHL mutations often fall with the

elongin C and B or HIFa interaction domains (Gossage et al., 2015; Hoffman et al., 2001).

1.7. Clear Cell Renal Cell Carcinoma

In 2017, there were 65,000 estimated new cases of renal and pelvic cancers, and
approximately 14,490 deaths (American Cancer Society, 2018). Approximately 75% of all renal
cancers are of the clear-cell subtype. The rate of renal cancer diagnosis has steadily increased
since 1975, while the number of deaths has remained constant. However, from 2005 to 2014 the
rate of new diagnosis of renal and pelvic cancers has remained lower than the death rate (0.7%
and 0.9% respectively). The five-year relative survival rate has increased over the last four
decades. While, these trends suggest there to be improvements in early detection and treatment,

it is still of public health concern to understand the features of tumors that determine prognosis.

1.7.1. Genetic Features of ccRCC

In 2013, TCGA published results of the genetic landscape from the largest cohort of ccRCC.
91% of tumors had loss of the p-arm of chromosome 3, and 9% of these tumors also had loss of
3q (whole loss of chromosome 3). Four of the five most frequently mutated ccRCC tumor
suppressor genes are located on 3p, including VHL (The Cancer Genome Atlas Research Network,
2013). With the exception of VHL, these 3p driver genes are all chromatin remodelers or
modifiers. Loss-of-function mutations or gene silencing through methylation in VHL occur in over

60% of ccRCC tumors and are not indicative of driving any other type of malignant disease.
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VHL is rarely mutated in tumor types that are not observed in VHL Syndrome (The Cancer
Genome Atlas Research Network et al., 2013). It is the most frequent driver of ccRCC and follows
a traditional tumor suppressor mechanism of activation. Multiregional studies have identified a
somatic VHL mutation to be clonal (Gerlinger et al., 2012, 2014), and thus occur early. Loss of 3p
is also clonal but theorized to occur after the VHL mutation. Copy neutral LOH has also been

observed in a minority of ccRCCs (The Cancer Genome Atlas Research Network, 2013).

Common co-morbidities for ccRCC include smoking, obesity, hypertension, chronic renal
disease, and viral hepatitis. Interestingly, there exist a 2:1 male-bias in ccRCC incidence that is
unexplained by disease risk factors. A recent study (Ricketts and Linehan, 2015) recently stratified
mutation profiles of 628 ccRCC, across 3 datasets, by sex to determine the root of this sex-bias.
Of the genes residing on the X chromosome, the mutation rate in KDM5C, a significant driver of
ccRCC, was higher in males. Other ccRCC drivers, including PBRM1 and BAP1, exhibited a sex-bias
in mutation rate. PBRM1 mutations were more frequent in males, while BAP1 mutations were
more frequent in females. PBRM1 and BAP1 are both located on chromosome 3p, within a LOH
region observed in over 90-percent of ccRCCs. Additionally, KDM5C, PBRM1 and BAP1 are all
chromatin remodelers or modifiers. Therefore, part of the sex-bias observed in renal cancers can
be attributed to genetic factors. Other factors of this sex-bias might include hormonal differences

between males and females.

Approximately 2% of ccRCC tumors have germline loss-of-function VHL mutations,
resulting in VHL Syndrome. Fundamental biology and pathology of the tumors are similar, thus
there is no reason to suggest they should be treated differently. Due to high surveillance and
recurrent resection surgeries in VHL Syndrome, ccRCCs from these individuals tend to be biopsied

at a lower grade and stage. Additionally, VHL Syndrome individuals acquire tumors at a much
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younger age and the age signature observed in heritable ccRCCs is less pronounced (Fei et al.,

2016).

1.7.2. Molecular Features of ccRCC

Evolution is dependent on prior steps that constrain future evolutionary routes. Early
constraints can drive convergence towards specific phenotypes. A multiregional sequencing study
of the clonal architecture of somatic mutations across a pair of synchronous renal tumors
identified convergence towards mTOR pathway dysregulation in both tumors (Fisher et al., 2014).
Consistent with these observations, PI(3)K/AKT/MTOR pathway is dysregulated in about 23%
sporadic ccRCCs (The Cancer Genome Atlas Research Network, 2013). However, Fisher et al. did
not find evidence for branched evolution, the evolution identified within their previous work in
sporadic ccRCC (Gerlinger et al.,, 2012, 2014). Additionally, BAP1-mutant ccRCCs exhibit
overexpression of mTOR pathway components (Pefia-Llopis et al., 2012). mTORC1 has been
observed to interact with HIF2a and the activation of mTOR and HIF pathways are positively
correlated (Elorza et al., 2012). The connection between mTOR and HIF2a is interesting because
HIF signaling is also aberrant in ccRCC (Chen et al., 2016; Shen et al., 2011). As a result, HIF and
MTOR pathways are targets for therapeutic intervention in ccRCC (Chen et al., 2016; Cho et al.,

2016; Pantuck et al., 2007).

1.7.3. Pathobiology features of ccRCC

Several renal cell types may have the capacity to give rise to ccRCC including proximal
tubular epithelial cells and other epithelial nephrons (Droz et al., 1990; Paraf et al., 2000). The

IH

name “clear-cell” is derived from the histological features; Specifically, the cytoplasmic lipid and
glycogen deposits which dissolve during histological processing and leave the appearance of clear

cytoplasm (Frew and Moch, 2015). The high lipid content of these tumors gives a yellow
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appearance at the surface. Some ccRCCs can be cystic due to necrosis or neoplastic cysts (Eble
and Bonsib, 1998). Cystic ccRCCs contain a reduction of solid tumor tissue and may represent an

alternate pathway in ccRCC initiation (Montani et al., 2010).

Of all pathological features of ccRCCs, the Fuhrman grade provides the most effective
metric of metastatic potential. The Fuhrman nuclear grading system is used on all renal tumors to
categorize by the size and shape of the nucleus, and the nucleolar prominence (Fuhrman et al.,
1982). The majority of VHL Syndrome ccRCC tumors are detected at Fuhrman grade 2 and are
three centimeters or less in the largest dimension. However, if monitoring is delayed, tumors may
advance to higher Fuhrman grades and larger size. Tumors where any single dimension is under
5.5 cm diameter are considered the optimum actionable size for high survival, regardless of
patient age (Ficarra et al., 2005). High Fuhrman grade correlates with increased ability for

metastasis and lower survival (Nishikimi et al., 2011; Sukov et al., 2012).

1.8 Genomic Analysis of VHL Syndrome ccRCC

There have been a handful of genomic studies aimed at determining somatic genetic
architecture of heritable synchronous ccRCCs relative to sporadic tumors. Frequent loss of 3p was
observed in a comparison of copy-number profiles across ccRCCs from 90 total heritable cases,
sporadic cases, and cell lines (Beroukhim et al., 2009). Copy-number profiles among the three
groups were heterogeneous and variants were highly fragmented within the cell lines compared
to the patient samples. Generally, more SCNAs were observed in in sporadic tumors than in
heritable tumors. When comparing synchronous tumors, breakpoints at 3p were inconsistent,

which supports the theory that each synchronous tumor was independent in origin.

Recently, | participated in the analysis of whole-genome shotgun sequencing of 40

synchronous ccRCCs from six VHL syndrome patients (Fei et al., 2016). All tumors were
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determined to be independent primary tumors with no clonal relationship. Over 90% of all sSSNVs
were tumor specific (Figure 2A) and most of the sSNVs shared between two tumors from the same
patient were determined to be kidney specific (Figure 2B). We can extend this result to VHL
Syndrome renal cancer and generalize that all (or most) tumor initiate and evolve independently

while under the same host environment.

Consistent with sporadic ccRCC, we observed recurrent loss of 3p in the tumors of all six
patients (Figure 3A). However, patient Green presented with loss of whole chromosome 3 in ten
of thirteen tumors from one patient. The loss of whole chromosome 3 in ten of thirteen tumors
from one individual is extremely non-random (p-value of 2.1*10 ®) and highly significant. It
remains unclear why in some individuals with ccRCC, whole chromosome 3 loss occurs, but in
most individuals with ccRCC loss of 3p is observed. What is clear, is that there exists a personal
bias in somatic alterations in tumors, supporting convergence towards specific somatic

genotypes.

In this dissertation, | further examine genomic features of VHL Syndrome ccRCCs,
including reanalysis of previously studied cases, additional cases from previously studied patients,
and new cases. In two studies, | aim to illustrate how the germline and somatic environments can
constrain the evolutionary paths of tumors. The first study asks the question: if somatic driver
events shape tumor grade divergence and convergence. The second study is concerned with the
observation of non-random loss of chromosome 3 and germline pressures on SCNAs. Together,
these studies should demonstrate the wide potential of VHL Syndrome ccRCCs as biological

system for probing tumor evolution.
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Figure 2: Somatic SNVs reveal no clonal relationship between tumors.! A) A heatmap of all
private sSNVs (variants unique to a single tumor). 90.2% of the 100,677 sSNVs called were private.
Each column represents one tumor and tumors from the same patient are similarly colored. Rows
represent variants and the variant allele frequency (VAF) is represented by the shading (highest
VAFs are in red and lowest VAFs are in white). Hierarchical clustering was performed across both
columns and rows. B) Heatmaps of all sSNVs shared between two or more tumors from the same
patient. The three patients with both kidney and blood normal samples are shown. Most shared
variants were present in the kidney normal.

1 “Figure 2: The somatic SNVs revealed that each tumour was independent from the other tumours.” by
Fei et al. is licensed under CC by 4.0.
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Figure 3: Somatic copy number alteration profiles corroborate tumor independence and
expose patient-specific variation.2 A) A heatmap of copy-ratios depicting somatic copy number
alterations (SCNAs) across all 40 tumors. Each row represents a different tumor with patient
color codes. Blue represents a loss event, while red represents a gain. Shading of SCNAs is due
to the log2 of the copy-ratio and can be influenced by the tumor purity and clonality of the
SCNA. B) A heatmap of all sSSNVs shared among tumors from patient Green. Rows represent
each sSNV and the shading designates the VAF of that sSNV. Each column is a different tumor.
Columns shaded darker green have loss of whole chromosome 3, while lighter green columns
have loss of 3p. Hierarchical clustering was performed across both rows and columns.

2 “Figure 4: Copy number variants confirmed that the tumours are independent but showed within-
patient patterns.” by Fei et al. is licensed under CC by 4.0.
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Chapter 2. High grade VHL Disease clear-cell renal cell carcinomas are

associated with the presence of clonal driver mutations

Asia D. Mitchell, Suzanne S. Fei, Christopher J. Ricketts, Christopher Boniface, Cathy D. Vocke, W.

Marston Linehan, Paul T. Spellman

All data presented in this chapter were analyzed by Asia Mitchell. The experimental design was
led by Asia Mitchell with assistance from Paul Spellman. Suzanne Fei and Christopher Ricketts
consulted on the initial hypothesis and early-stages of the experimental design. Previous data
obtained and published by Suzanne Fei provided the foundation for this study. Christopher
Boniface prepared the DNA libraries for sequencing. Cathy Vocke and Marston Linehan provided
all patient materials, including DNA and clinical data. All figures and text were composed by Asia

Mitchell.
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2.1 Abstract:

VHL Syndrome is a rare genetic disorder with a dominant mode of inheritance, which predisposes
carriers to benign and malignant neoplasms in a variety of tissues, including renal cell carcinomas.
Individuals with VHL Syndrome, who develop renal cancer, commonly present with multiple,
malignant clear-cell renal carcinomas (ccRCC). These are synchronous tumors, meaning they
initiate, mature and evolve, at the same time and within the same germline environment. We
previously published the whole genome sequences of 40 ccRCCs from six VHL Syndrome patients.
While these genomes were sequenced deeply enough to call most clonal mutations, they lacked
sufficient depth to definitively identify subclonal single nucleotide variants in known cancer driver
genes. To determine if there were missed driver mutations in these tumors we performed exome
resequencing on five high-grade and five low-grade synchronous ccRCC tumors from three VHL
syndrome patients obtaining 131X median coverage. Resequencing provided sufficient power to
call variants across all known cancer driver genes. We applied methods to assess clonality within
these tumor samples to improve detection of true drivers of tumor evolution with respect to
Fuhrman grade. We show that the high-grade tumors were elevated for nonsynonymous driver
gene variants. In one patient we observed linear evolution at SETD2 in a high-grade tumor. In
tumors from the same individual, we observe clonal loss-of-function BAP1 mutations in two high-
grade tumors and a clonal loss-of-function PBRM1 mutation in one low-grade tumor. Together
our observations suggest that clonal somatic mutations in known cancer genes are determinants

of Fuhrman grade in VHL Syndrome ccRCCs.
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2.2 Background

Clear-cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancers, and
accounts for three-quarters of the nearly 50,000 new annual renal cancer cases. Prognosis is
largely associated with biological aggressiveness of the tumor. The most widely used method for
classifying renal tumors is the Fuhrman nuclear grading system. This method categorizes renal
tumors based on the microscopic morphology of the nucleus and nucleolar prominence (Ficarra
et al., 2005; Fuhrman et al., 1982). High Fuhrman grade correlates with increased ability for
metastasis and lower survival (Nishikimi et al., 2011; Sukov et al., 2012) and is the most effective

indicator of a tumor’s metastatic potential.

There are distinct genetic features of ccRCCs that are well characterized from large-scale
genomic studies (The Cancer Genome Atlas Research Network, 2013). Inactivating mutations or
epigenetic modifications in the tumor suppressor gene VHL are observed in two-thirds of sporadic
ccRCCs (The Cancer Genome Atlas Research Network, 2013). Biallelic inactivation of VHL is a
known early driver of ccRCC (Gerlinger et al., 2012, 2014), but tissue specific biallelic inactivation
of VHL is not sufficient to produce ccRCC in mouse models of ccRCC (Haase et al., 2001; Hou and
Ji, 2018). VHL is located on 3p as are BAP1, PRBM1 and SETD2, which are three of the other tumor
suppressor genes commonly mutated in ccRCC. Loss of 3p is observed in over 90% of all ccRCCs.
BAP1 and PBRM1 mutations are mutually exclusive in sporadic ccRCCs and BAP1 loss of function
is associated with higher tumor grades (Pefa-Llopis et al., 2012). Additionally, loss of BAP1 is
observed before and during metastatic progression (Eckel-Passow et al., 2017) and correlates with

larger tumor volume (Minardi et al., 2016).

Approximately 2% of individuals diagnosed with ccRCC have VHL syndrome, caused by

inherited loss-of-function (LOF) mutations in VHL. VHL syndrome associated ccRCCs often
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manifest as multiple tumors at an early age. In VHL Syndrome carriers who are screened for
ccRCCs, the majority of these tumors are detected at Fuhrman grade 2 and are 3 cm or less in the
largest dimension. However, if monitoring is delayed or a tumor is particularly aggressive, tumors

may advance to higher Fuhrman grades and larger volumes.

We previously published the whole-genome sequences (WGS) of 40 synchronous ccRCCs
from six VHL syndrome patients (Fei et al., 2016). Over 90% of all somatic mutations called were
tumor specific. Further, half of the mutations that were shared between at least two tumors from
the same individual were identified as kidney-specific. These data show that synchronous tumors

in VHL syndrome are not clonally related and are independent primary tumors.

Sporadic ccRCCs have been subjected to multi-regional analyses, where distinct parts of
the same tumor have been analyzed independently with the aim of understanding evolutionary
trajectories of tumors (Gerlinger et al., 2012, 2014; Mitchell et al., 2018; Turajlic et al., 2018b,
2018a). These analyses have determined that sporadic ccRCCs can have regional clonal
architecture and some variants that are nearly clonal in one region are not observed in other
regions. These multiregional studies also show that the majority of variants predicted to be clonal

in one region are observed (and clonal) in other regions assessed.

VHL Syndrome provides one of the few human systems to study the evolution of multiple
tumors in the same genetic background. It has been hypothesized that evolution is dependent on
prior steps that constrain future evolutionary routes and lead to divergent genotypic and
phenotypic features that can have significant clinical value (Swanton, 2015). Here, we provide a
comparison of somatic driver events in Fuhrman grade 2 and 3 synchronous ccRCC tumors and

discuss how these mutations impact the evolution of the tumor.
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2.3 Methods
Tumor samples and DNA extraction

Patient phenotypes and other clinical data were obtained from the National Cancer
Institute Clinical Research Information System or patient charts. This study was approved by the
Institutional Review Board of the National Cancer Institute (IRB study 16626). All patients
provided written informed consent. Sample procurement details and DNA sequencing methods

were described in Fei et al. 2016.

Statistical Analysis of Phenotypes

Clinical phenotypes and mutation counts based on WGS were tabulated for all 40 tumor
samples. Features included: tumor grade, age at tumor resection, ellipsoid tumor volume, total
somatic single nucleotide variant (sSNV) count from WGS, and tumor purity estimate. To
determine relationships between features and tumor grade, we performed multivariate logistic
regression. Tumor grade was binarized, where low-grade tumors (grade 2) were 0 and high-grade
tumors (grade 3) were 1. Features containing continuous or non-zero data was normalized by
median centering. The logistic regression model was fit across normalized features using Scipy

Stats module in Python.

Exome Sequencing

A subset of 10 tumors were selected for exome sequencing and Aligent SureselectXT All
Exon V5 (cat 5190-6208) was used to perform the exome DNA library capture. We sequenced
these exomes using lllumina HiSeq at the Oregon Health & Science University Sequencing Core
with a median coverage of 75X. All sequencing data files and analyses were performed on the

OHSU Exalab compute cluster.
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Exome Sequence Alignment

Paired-end reads were aligned to the hg19 human reference genome using bwa-mem (Li
and Durbin, 2009). Output SAM files were converted to BAM files, sorted, and indexed using
Samtools v0.1.17 (Li et al., 2009). MarkDuplicates, part of Picard Tools v1.51 (McKenna et al.,
2010), was used to mark duplicate reads generated during the PCR amplification stage. Fine-
tuning of the alighment was performed using GATK Best Practices workflow. For each sample,
local positions to target for realignment were called using RealignerTargetCreator and then
realigned using IndelRealigner. Quality scores were then recalibrated using BaseRecalibrator and
PrintReads, which bins reads based on the original quality score, the dinucleotide, and the
position in the read. A second round of realignment and base recalibration was applied to each

tumor-normal pair, to improve alignment around germline variants.

Post-alignment Processing

Whole-exome sequencing (WES) and WGS BAMS were further processed to extract only
reads overlapping to Agilent exome probes. BAM files were processed using BEDtools (Quinlan
and Hall, 2010) and a BED file containing hg19 genomic positions for all exons. For each sample,
we merged both the WES-exon-only BAM and the WGS-exon-only BAM then performed another

round of local realignment and base recalibration.

SNV calling and filtering

Somatic single-nucleotide variants were called for each tumor-normal pair using MuTect2
(Cibulskis et al., 2013; Poplin et al., 2018). To reduce false positives, we performed two filtering
steps: sample-level and dataset-level.  Sample-level filtering considered each sample
independently. Called sSNVs were discarded if they had fewer than 14 reads in the tumor, fewer

than 8 reads in the normal, power > 0.8 to detect mutation with allele fraction > 0.3 at site, present

38



in DbSNP (but not present in COSMIC), and did not pass each of the 14 integrated quality filters in
MuTect2. Data-set level filtering considered all samples collectively. sSNVs were also discarded if
they were suspected to be a single-nucleotide polymorphism (SNP) due to presence in normal
alignments of other patients. They were also discarded if the region contained other and different
variants across two or more samples from different patients. The neighboring alignment of all
variants was manually reviewed in IGV and variants residing in poorly aligned regions were

discarded.

SNV Annotation

Oncotator was used to annotate variants as synonymous or nonsynonymous, and to
annotate genes [Ramos et al., 2015]. Synonymous variants were filtered out and not included in
further analysis. The candidate driver list of 260 genes was curated from three publications: The
Cancer Genome Atlas (TCGA) ccRCC (The Cancer Genome Atlas Research Network, 2013), TCGA
Pan Can—12 tumor types (Kandoth et al., 2013), TCGA 21 tumor types (Lawrence et al., 2014). All
genes listed as significant drivers were included and reduced to a unique list of genes.

Nonsynonymous variants were assessed for functional impact by using three approaches:

(1) Missense variants were assessed using five bioinformatics tools: MutationAssessor
(Revaetal., 2011), PolyPhen2 (Adzhubei et al., 2010), CADD (Kircher et al., 2014), SIFT
(Ng and Henikoff, 2003), and iCAGES (Dong et al., 2016). Each tool uses different
methods and evidence to make their predictions of functional impact.
MutationAssessor considers evolutionary conservation of the locus across protein
homologs and has been successfully applied to several cancer studies (including
TCGA). PolyPhen2 considers multiple sequence-based and structural-based features

of the variant allele and at the locus. CADD and iCAGES incorporate results of other
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(2)

(3)

variant assessment tools as features for training machine learning classifiers. CADD
also utilizes data from functional genomic studies as well as conservation data.
iCAGES specifically assesses cancer variant and incorporates data from cancer
mutation databases such as COSMIC and TCGA. Finally, SIFT considers evolutionary
conservation at the locus and the changes to physio-chemical properties of amino
acids. Variants were classified as “loss-of-function” using the following thresholds: a
functional impact score > 1.9 from MutationAssessor; a phred score > 15 from CADD;
a prediction of “possibly damaging” or “probably damaging” by PolyPhen2; a
prediction of “damaging” by SIFT; and a prediction of “damaging” by iCAGEs. Variants
determined to be damaging by three or more of the aforementioned tools were
marked as candidate loss-of-function variants.

Splice site variants were assessed using NNSPLICE 0.9 (Reese et al., 1997), a tool that
uses an artificial neural network to predict structural changes leading disruption of
the splice site. This tool gives a metric from zero to one that represents the strength
of the splice site (values closest to one indicate strong splicing). Splice site metrics
from NNSPLICE 0.9 were previously computed by Piva et al. for all known mutations
in BAP1, PBRM1, and SETD2. We used these metrics to assess any splice site variants
in these three genes (Piva et al., 2015).

All variants were compared against variant curation databases ClinVar (Landrum et
al., 2014) and COSMIC (Forbes et al., 2017), as well as peer-reviewed literature. If a
variant was found in ClinVar, the clinical significance, assertion method, and
supporting evidence were all considered. If the clinical significance was listed as
“pathogenic” or “likely pathogenic” then the variant in question was marked as a

candidate pathogenic variant. If the variant was found in COSMIC or in published
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literature, the cancer type and mutation frequency were considered. If the variant
was previously observed in a renal cancer, then it was marked as a candidate

pathogenic variant.

CNV Calling and Annotation

WGS datasets were used to determine segmented copy number variant sites base on read
depth using BIC-seq v1.1.2 (Xi et al., 2010) as described in Fei et. al 2016. Genotypes were
previously called using Unified Genotyper (Poplin et al., 2018). To identify copy-neutral loss of
heterozygosity, genotype VCFs were used with the scatter plot function from CNVKit (Talevich et
al., 2016) to visualize and detect sites of allelic imbalance overlapping regions lacking read depth-

based copy number variation.

Tumor purity estimation
Tumor purity was estimated using filtered synonymous and nonsynonymous variants
derived from WGS, segmented copy number data, and the ABSOLUTE (Carter et al., 2012) method

as described in Fei et al. 2016.

Cancer cell fraction calculation

The cancer cell fraction (CCF) is a ratio of the average number of mutations per cell and
the expected number of mutations per cell and was approximated using PyClone (Roth et al.,
2014). PyClone requires filtered SNVs, minor and major integer copy number, and tumor purity
as input. Prior genotypes weights were derived based on the assumption that mutations at (i)
diploid loci were almost always heterozygous, (ii) haploid loci were effectively homozygous, and
(iii) triploid loci were a mixture of majority AAB and minority ABB, where A is the mutant allele.
The highest weight was always applied to heterozygous genotypes. The binomial model was run

using 10,000 iterations, an error rate of 0.001, and burn-in of 1,000.
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2.4 Results

Few candidate drivers discovered in WGS

We identified non-synonymous mutations in coding sequences from our previously
published WGS of 40 VHL syndrome ccRCCs from six individuals (Fei et al., 2016). We filtered SNVs
as described in the methods and identified variants residing within known cancer genes from
three sources: TCGA ccRCC working group (n=17) (The Cancer Genome Atlas Research Network,
2013), TCGA PanCan working group (n=114) (Kandoth et al., 2013), and a secondary TCGA PanCan
assessment across 21 tumor types (n=260) (Lawrence et al., 2014). Few coding variants were
found in known cancer genes and only 14 out of 40 tumors (35%) had somatic mutations in any
of these genes (Figure 1A). Median coverage across these genes was 39X with tumor purities
ranging from 0.25 to 0.75. This sequencing depth only provided sufficient power to detect somatic

SNVs (sSNVs) at 82% of loci across known cancer genes (Table 1).

In all but one case, the inherited null allele of VHL was revealed by either the partial or
complete loss of chromosome 3 encoding the wild-type allele, or copy-neutral loss of
heterozygosity (LOH) (Figure 1A-B). Full somatic copy-number profiles for each tumor are
available in chapter 1 figure 3. Only 5 out of 40 tumors (12%) contained mutations in driver genes
identified as significantly mutated by TCGA ccRCC analysis. These five tumors had mutations in
MTOR (one mutation), PBRM1 (one mutation), BAP1 (two mutations in two tumors), and SETD2

(two mutations in one tumor).
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Power Power

Tumor ID (drivers) (ccRCC)
M22-1 0.88 0.82
M22-2 0.88 0.80
M22-3 0.93 0.90
M22-4 0.85 0.76
M22-5 0.88 0.85
M45-1 0.90 0.89
M45-2 0.88 0.82
M45-3 0.89 0.84
MA45-4 0.78 0.74
M45-5 0.89 0.87

F60-1 0.89 0.82
F60-2 0.85 0.80
F60-3 0.91 0.80
F60-4 0.88 0.84
F60-5 0.67 0.61
F60-6 0.76 0.74
F28-1 0.93 0.92
F28-2 0.91 0.89
F28-3 0.88 0.80
F28-4 0.69 0.61
F28-5 0.85 0.80
F28-6 0.89 0.82
F28-7 0.78 0.72
F28-8 0.69 0.67
F28-9 0.92 0.89
F28-10 0.80 0.74
F28-11 0.84 0.67
F28-12 0.80 0.67
F28-13 0.93 0.90
F58-1 0.88 0.80
F58-2 0.74 0.55
F58-3 0.88 0.82
F58-4 0.88 0.84
F58-5 0.89 0.76
M28-1 0.87 0.76
M28-2 0.89 0.85
M28-3 0.88 0.84
M28-4 0.87 0.80
M28-5 0.87 0.80
M28-6 0.89 0.87

Table 1: Median power to detect clonal mutations across all driver gene positions and across
ccRCC driver genes (ccRCC) in 40 tumors with WGS
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Figure 1: Candidate somatic driver mutation events called from WGS in 40 VHL Syndrome ccRCC
tumors. A) Each oval represents an independent tumor drawn to scale using the two largest
dimensions measured after surgical resection. Tumors from the same patient are the same color,
and tumors of the same Fuhrman grade are similarly shaded. Somatic mutation events are
annotated within each oval: green circle represent candidate driver mutations, red plus signs
represent a copy-gain of 5q, and blue minus signs represent a copy-loss of 3p and/or 14q. Tumor
ovals with a blue dotted outline were further profiled using WES. B) B-allele frequency (BAF) plots
for chromosome 3 for all fours tumors lacking copy-number LOH from Fei et al. 2016. C) Spearman
rank correlation matrix of various features of across the tumors. Correlated features are
represented in red.
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We grouped tumors by phenotypic features to identify any relationships between
phenotypes and to recurrent or driver genomic events (Figure 1C). We confirmed the previously
reported positive correlation between patient age and total number of sSNVs (Fei et al., 2016).
No obvious pattern could be observed between the size of the tumors and the acquisition of
cancer driver sSNVs. Additionally, there was no correlation with tumor size or grade. We did
identify a small positive correlation between tumor grade and total number of sSNVs (Figure 1C).
Upon performing multivariate logistic regression analysis, we determined that the total number

of candidate driver variants is positively influenced by the total number of sSNVs.

We observed nonsynonymous mutations in known driver cancer genes in 6 out of 7 (86%)
of the Fuhrman grade 3 tumors, compared to 8 out of 33 (24%) of the Fuhrman grade 2 tumors.
Additionally, 6 out of 7 (86%) of the Fuhrman grade 3 tumors had gain of chromosome 5q in
comparison to 11 out of 33 (33%) of the Fuhrman grade 2 tumors. These results suggest that
increasing Fuhrman grade is associated with an accumulation of cancer associated genomic

alterations in these VHL Syndrome ccRCCs.

Merged WGS and WES

To improve our power to detect variants across all loci within known cancer driver genes,
we performed whole exome sequencing (WES) on a subset of tumors from our cohort. We
selected five Fuhrman grade 2 and five Fuhrman grade 3 tumors from the three patients with both
high and low grade tumors and obtained a median WES coverage of at least 70X. The WES and
WGS genomes were independently aligned (methods). For each tumor-normal pair, the exome
portion of the WGS alignment was extracted and merged with the WES alignment (Figure 2). Local
realignment around known indels and base recalibration were both performed on the merged

tumor-normal pairs prior to calling variants using MuTect2.
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As expected, deeper WES uncovered additional mutations in cancer driver genes in both
grade 2 and grade 3 VHL ccRCC tumors (Figure 3A). The median power to call clonal variants at
candidate gene locations improved by > 9% in all ten tumors and ranged from 96% - 100% (Table
2). The addition of WES revealed four additional candidate driver gene mutations with variant

allele frequency (VAF) between 10% and 15% (Figure 3A) that passed our variant filters.

WGS

WES + Subset
Exome

Merge WES & WGS-subset
Alignments

GATK / Picard

Variant Calling
GATK Mutect2

Dataset-level
Filtering

Sample-level
Filtering

Manual Review
IGV

Clonal Analysis

Pyclone

Annotation
Oncotator

Figure 2: Overview of the bioinformatic workflow design to obtain merged genome and high
confidence variant calls.
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D WGS Merged (WGS + WES)
Median Depth % >=50X Median Power | Median Depth % >=50X Median Power

M45-B 52 54% N/A 114 96% N/A
M45-1 45 24% 90% 124 96% 99%
M45-2 42 20% 88% 133 97% 99%
MA45-5 43 19% 89% 134 96% 99%
F60-B 43 18% N/A 150 99% N/A
F60-1 43 19% 89% 193 99% 100%
F60-3 46 33% 91% 134 99% 100%
F60-4 43 22% 88% 131 97% 100%
F60-6 34 1% 76% 128 97% 100%
M28-B 39 8% N/A 134 96% N/A
M28-1 38 7% 87% 111 93% 99%
M28-3 44 28% 88% 123 96% 99%
M28-4 40 15% 87% 107 93% 96%

Table 2: Median power and depth to detect clonal mutations across candidate driver gene
positions in WGS and Merged genome

Driver SNV, WGS + WES
. Driver SNV, WGS

[ Somatic Copy-Loss

' Somatic Copy-Gain

Dj:‘ Fuhrman Gr. 2
-:| Fuhrman Gr. 3

I1eml2em I 3em |

Figure 3: Candidate driver events identified in VHL Syndrome ccRCCs merged genomes.
Overview of candidate driver mutations and CNVs across 10 tumors. Data are represented as
described in figure 1. Candidate driver sSNVs identified in the merged genome are represented
by hashed interior green circles.
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Figure 4: Distribution of cancer cell fraction (CCF) for all nonsynonymous variants in each tumor.
Coloring of the distribution density represents is patient specific and shading represents the
tumor grade (darker shades are high grade, while lighter shades are low grade tumors). Green
triangles represent clonal candidate driver variants, while green circles represent subclonal
candidate driver variants. Dark-grey points denote clonal passenger variants, CCF = 0.9, and light-
grey points denote subclonal passenger variants.

ID  Gr. Purity Total WES Variants % SNVs % Indels % Nonsynonymous % Clonal
F60-1 3 0.64 622 723% 27.7% 28.8% 78.9%
F60-3 2 0.55 429 82.8% 17.2% 25.4% 77.0%
F60-4 3 074 435 80.7%  19.3% 26.7% 71.4%
F60-6 2 0.67 303 75.2%  24.8% 22.8% 33.3%
M28-1 2 0.83 268 83.2% 16.8% 28.0% 39.4%
M28-3 2 0.71 234 80.3% 19.7% 18.8% 22.2%
M28-4 3 0.65 225 80.0%  20.0% 25.8% 9.1%
M45-1 2 0.27 254 82.7% 17.3% 26.0% 16.7%
M45-2 3 0.82 477 80.1% 19.9% 26.8% 58.3%
M45-5 3 0.52 320 77.8% 22.2% 24.4% 65.8%

Table 3: Variant type frequencies
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Functional Impact & Clonal Architecture

To understand the role of each candidate driver mutation, we assessed the clonality and
the functional impact of each variant. Functional impact was determined by taking the consensus
output of five variant assessment tools as outlined in the methods. To approximate the clonal
architecture of these tumors, we utilized PyClone to calculate the cancer cell fraction (CCF) for all
nonsynonymous variants (Figure 4). The CCF is a ratio of the average number of mutations per
cell and the expected number of mutations per cell. Given that our study used bulk tumor

samples, our CCF values represent an average across the region sequenced.

Four of the five high-grade tumors carry candidate driver variants and in three of these
high-grade tumors, all candidate driver variants detected were clonal. One low grade tumor
contained clonal candidate driver variants, while three out of five low-grade tumors did not
contain any candidate drivers. CCF distributions of nonsynonymous variants (Figure 4) do not
show trends by patient, grade, or size. No trends were observed when considering the size of
mutation (SNV vs indel) or the rate of nonsynonymous variants (Table 3). It should be noted that
the trunk size (the fraction of clonal mutations) tended to be higher in the high-grade tumors
(Table 3). The trunk size of F60-3, a low-grade tumor, was more similar to the trunk sizes of the

two high-grade tumors, F60-1 and F60-4, than to that of the low-grade tumor F60-6.

Four of the ten exome sequenced tumors contained TCGA ccRCC significantly mutated
genes. Both high grade tumors from patient F60 contained KIRC drivers. Notably, F60-1 contained
a single nucleotide deletion in exon 13 of BAP1 determined to cause loss-of-function and F60-3
contained a 23 bp insertion also in BAP1. The F60-3 BAP1 insertion occurred four bp upstream of
the most frequent causative allele of BAP1 tumor predisposition syndrome. Additionally, COSMIC
reported four renal cancers reporting mutations at this allele. Therefore, we determined both

BAP1 mutations to be pathogenic. One low-grade tumor F60-3 contained a splice-site mutation
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in PBRM1, near exon 16, determined to disrupt normal splicing and cause loss-of-function of
PBRM1 transcripts. M45-2 contained two SETD2 mutations (Table 4). One mutation was
determined to be a clonal missense mutation and predicted to be a loss-of-function mutation.
The second SETD2 mutation was determined to be a subclonal protein truncating mutation and
also predicted to result in loss-of-function. We observed loss-of-heterozygosity at the SETD2
locus, so both SETD2 mutations are likely on the same allele. In multiregional sequencing studies
of sporadic ccRCC (Gerlinger et al., 2012, 2014) multiple independent SETD2 mutations have been

observed in several ccRCC tumors and provide evidence for parallel evolution.

Remarkably one tumor, F60-6, lacked any identifiable copy number variant on 3p, 5q or
14qg and did not present any candidate driver variants. However, the total sSSNV count, 1430, [Fei
et al 2016] of this tumor was consistent with another low-grade tumor (F60-5) from the same
patient with similar tumor purity and dimensions. One high-grade tumor M45-5 lacked any
candidate driver variant. However, this tumor did contain copy-neutral LOH of whole

chromosome 3 (Figure 1B) and gain of 5q (Figure 1A).
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Nuc. AA

ID Gr. Gene Chr. Pos. Change Change LOF Depth VAF CCF
M28-1 2 NBPF1 1 16891347 C>T R1044K Neutral 50 0.10 0.24
M28-4 3 ACVR2B 3 38495828 G>C W5C Neutral 16 0.63 091
M28-4 3 TP53BP1 15 43767876 G>T C319* X 46 0.21  0.70
M45-2 3 NTN4 12 96180874 AST V143E X 140 043 097
M45-2 3 SETD2 3 47059198 G>T P2488H X 45 0.71 097
M45-2 3 SETD2 3 47161898 C>A E1410* X 105 0.25 0.45
M45-2 3 SF3B1 2 198268446 C>A A528S X 164 042 097
MA45-2 3 TPX2 20 30386234 G>T R671L X 75 0.20 047

M2080lI,
F60-1 3 XIRP2 2 168104667-8  GA>TC K2081Q X 350 0.07 0.23
F60-1 3 NOTCH1 9 139400027 G>A P1441S Neutral 154 0.10 0.34
F60-1 3 SMC1A X 53440031 G>A L225F X 223 0.27 043
F60-1 3 BAP1 3 52437750 delC G470fs X 211 0.70  0.99
F60-3 2 ALPK2 18 56204766 C>G V885L Neutral 118 0.31  0.99
F60-3 2 CDKN2C 1 51439577 G>C GA48R X 84 0.12 045
F60-3 2 PBRM1 3 52643328 C>A Splice Site X 34 0.35 0.98
F60-4 3 ANK3 10 61958142 C>T A549T Neutral 87 0.28 0.91
F60-4 3 APC 5 112173923 T>A L878M Neutral 199 0.37 0.95
F60-4 3 BAP1 3 52436620 Tins24 *685fs X 61 0.50 0.90
F60-4 3 CARD11 7 2962289 G>A H750Y Neutral 97 0.11  0.30

Gr. = Fuhrman Nuclear Grade, ccRCC driver genes are in bold, Chr. = Chromosome, Pos. = Position, Nuc. = Nucleotide, AA = Amino
Acid, LOF = Loss-of-Function, VAF = Variant Allele Frequency, CCF = Cancer Cell Fraction

Table 4: List of candidate driver gene mutations across 10 tumors
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2.5 Discussion

We have identified that ccRCC tumors associated with VHL Disease have few driver
events, and in many tumors, the germline VHL mutation is the sole observable driver event. If
high tumor grade represents a more evolved tumor, then high-grade tumors should have more
clonal driver events than low grade tumors. Notably, low grade tumors appear to be driven by
loss of VHL and 3p and do not have other driver events that appear to be early. Conversely, grade

3 tumors are driven by VHL, loss of 3p, and additional early mutational events.

A large number of the original 40 tumor genomes seem to have gained no additional
mutations in cancer associated genes other than the germline VHL mutations and yet still
developed into large tumors. The presence of known cancer-associated chromosomal alterations
other than chromosome 3p loss is more common in these tumors than mutations, yet the largest
tumor assessed (M28-1) demonstrated no additional known driver mutations or chromosomal
alterations. Upon deeper sequencing, a few additional candidate driver mutations were identified

within these 10 tumors, including one candidate driver mutation in M28-1.

We still do not know the minimum number or combination of mutations required for
tumorigenesis but, our observations provide further evidence that this number can be small, on
the order of one to ten driver mutations per tumor (Martincorena et al., 2017). For example,
other than germline VHL, no known cancer driver variant or recurrent copy-number variant was
observed in F60-6, a small low-grade tumor. Despite the peculiar lack of identifiable somatic
variants supporting evolution towards tumorigenesis, the somatic mutation count and
pathological features provide evidence for F60-6 being a tumor and not a cyst. Although, ccRCCs
can often have cystic components and can be difficult to distinguish from grade 1 ccRCCs (Moch

et al., 2016). The total sSNV count of F60-6 was very similar to that of tumors of a similar tumor

53



purity, grade, and age of diagnosis. We have observed cysts to have whole-genome sSNVs counts
below 10 (data not shown), which is two-orders of magnitudes less than the whole-genome sSNV
count observed in ccRCC. Perhaps the biopsy taken from this tumor did not include the tumor
region containing driver variants. We speculate that complete inactivation of VHL in this tumor is
due to methylation of the wild-type allele, which is observed in nearly 10% of sporadic ccRCCs
(The Cancer Genome Atlas Research Network, 2013). There may be other epigenetic

modifications that drive tumorigenesis for F60-6.

Structure of Tumor Evolution

Tumor evolution is also concerned with observing the degree of clonal selection.
Competing models of evolution in sporadic and heritable ccRCCs exist. A previous study of four
ccRCC tumors from an individual with VHL Syndrome (Fisher et al., 2014) identified few coding
mutations and few subclonal mutations. The observed mutations occurred in a step-wise pattern
which suggested a linear model of tumor evolution for heritable ccRCCs. However, other studies
of sporadic ccRCC tumors (Gerlinger et al., 2012, 2014) observed a branched model of evolution.
These studies identified several-fold more coding mutations, a higher degree of intra-tumor
heterogeneity, and the presence of multiple subclones. Heritable and sporadic ccRCC are assumed

to be similar diseases (Beroukhim et al., 2009) yet exhibit two different evolutionary trajectories.

With bulk sequencing, we lack the empirical data to fully determine the model of
evolution. However, our study did identify novel results that provide some insight into
evolutionary characteristics of heritable ccRCCs. Consider the two SETD2 mutations identified in
M45-2. One mutation, missense, was clonal while the truncation mutation was subclonal. M45-2
exhibits LOH at the SETDZ2 locus, thus both mutations occur on the same SETD2 allele. This

suggests a linear relationship exists between these two SETD2 mutations, where the missense
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mutation occurred before the truncating mutation. We hypothesize that the missense mutation
may have reduced the functionality of SETD2 products and the truncating mutation caused a full
loss-of function; Otherwise, there would be no evolutionary advantage of acquiring the second

coding mutation within the same allele.

Multiple SETD2 mutations have been previously identified in sporadic ccRCCs. However,
in these studies, the SETD2 mutations were determined to be subclonal and to exist on different
branches (Gerlinger et al.,, 2012, 2014). Thus, in sporadic ccRCCs, multiple SETD2 mutations
represent a branched relationship and, with our observation, further suggests that the
evolutionary characteristics of heritable and sporadic ccRCCs differ. High depth multiregional or
single-cell sequencing performed on a subset of these tumors would be necessary to better

determine the evolutionary architecture of SETD2 mutations in heritable ccRCCs.

Model of Tumor Grade Evolution

We hypothesize the following model for grade determination in tumor evolution: early
driver mutations are responsible for early determinants of tumor grade. Recent developments in
mouse models of VHL Syndrome ccRCCs support our observations in human tumors. In mouse
models, complete knockout of VHL with conditional knockout of BAP1 led to high grade tumors,
while conditional knockout of PBRM1 led primarily to low grade tumors (Hou and Ji, 2018). BAP1
mutations occurin 10-15% of sporadic ccRCC while 50% of sporadic ccRCC have PBRM1 mutations

(The Cancer Genome Atlas Research Network, 2013).

Rarely BAP1 and PBRM1 mutations are found in the same tumor. However, multiregional
studies have only observed BAP1 and PBRM1 mutations in separate regions of the same tumor.

Gene expression profiling of BAP1-only mutant and PBRM1-only mutant tumors depict different
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profiles and little pathway overlap, suggesting that these tumors may represent different ccRCC

subtypes (Joseph et al., 2016).

These mouse models put context around an intriguing result for patient F60. We observed
two high grade tumors with BAP1 mutations and one low grade tumor with a PBRM1 mutation.
All three variants were predicted to be both pathogenic and clonal within the bulk tumor sample,
suggesting that these mutations were indeed early tumor drivers. Since these tumors arose from
the same host environment, it argues against the germline or host environment contributing to

differing tumor grades in human ccRCCs.
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3.1. Abstract

Somatic copy number alterations (SCNAs) affect a larger fraction of the genome than any other
somatic genetic alteration in cancer and are thus of significant interest to carcinogenesis. SCNAs
are often the site of known cancer driver genes and overlap with significantly mutated genes. In
clear-cell renal cell carcinoma, four of the five most frequently mutated tumor suppressor genes
are located along the p-arm of chromosome 3. The loss of 3p is observed in 90% of clear cell renal
cell carcinomas (ccRCC). Of the ccRCCs that lose 3p, 9% also lose the g-arm of chromosome 3 and
thus have whole loss of chromosome 3. It is currently unknown if loss of whole chromosome 3 is
a significant genomic alteration in ccRCCs. We performed low-pass whole genome sequencing to
assess arm-level copy-number across 143 synchronous and metachronous clear-cell renal cell
carcinomas from 24 individuals with VHL Syndrome. Our profile of at least three primary tumors
arising from the same environment provided sufficient power to identify patient specific
constrains on arm-level somatic copy number alterations, including loss of whole chromosome 3.
We observed recurrent loss of whole chromosome 3 in two unique patients. This supports our
hypothesis that an undefined combination of genotype and environment can apply selective

pressure for loss of whole chromosome 3.
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3.2. Background

Somatic copy number alterations (SCNAs) affect a larger fraction of the genome than any
other somatic genetic alteration (Beroukhim et al., 2010). SCNAs fall into four classes: focal events
involving one or a few genes, arm-level events involving an entire chromosome arm, aneuploidy
events involving whole chromosomes, and copy-neutral loss of heterozygosity. SCNAs are
frequent across nearly all tumor types and are present in over 85% of the solid tumors profiled by
TCGA (Zack et al., 2013). On average, tumor genomes contain 40 SCNAs of any length (Beroukhim
et al., 2010; Zack et al., 2013), but discovery of SCNAs of all lengths is dependent on the

experimental approach..

SCNAs are sometimes the site of known cancer driver genes and overlap with significantly
mutated genes (Zack et al., 2013). Focal amplified regions are predicted to harbor oncogenes,
while focal loss regions are predicted to harbor tumor suppressors. Focal alterations are often
tissue specific, such as amplification of 1723 in 18% of breast cancers corresponding to ERBB2
(zack et al., 2013) and loss of 10g23.31 in glioblastomas corresponding to PTEN (Brennan et al.,

2013).

Less understood yet affecting more of tumor genome than any other alteration, are
aneuploidy and arm-level SCNAs. The most frequently recurrent arm-level SCNAs occur two
orders of magnitude more often than that of focal alterations. Some arm-level alterations exhibit
near uniform patterns of alteration in certain tumor types, such as loss of 3p observed in over
91% of clear-cell renal cell carcinomas (ccRCCs) (The Cancer Genome Atlas Research Network,
2013). It is understood that 3p loss is common in ccRCC because four of the most frequently
mutated ccRCC tumor suppressor genes (VHL, PBRM1, BAP1, and SETD2) are located within a

narrow locus on 3p. Intratumor heterogeneity (Gerlinger et al., 2012, 2014) and mutation timing
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studies (Gerstung et al., 2017; Mitchell et al., 2018) have identified loss of 3p as a clonal event,

occurring early ccRCC progression.

Of the ccRCCs that lose 3p, 10% also lose the g-arm of chromosome 3 and thus have whole
loss of chromosome 3 (The Cancer Genome Atlas Research Network, 2013). Other frequent arm-
level SCNAs in ccRCC include gain of 5g and loss of 14q (Gunawan et al., 2001; Klatte et al., 2009;
Mitsumori et al., 2002). Gain of 5q has been identified as concurrent with early loss of 3p (Mitchell
et al., 2018). Loss of 14q is associated with the loss of HIFA (Shen et al., 2011), a key component

of the hypoxia-inducible transcription factor complex and a target of pVHL.

A few groups, including our own, have studied copy-number variation in heritable ccRCCs
from individuals with VHL Syndrome (Beroukhim et al., 2010; Fei et al., 2016; Fisher et al., 2014;
Shuib et al., 2011). Individuals with VHL Syndrome have a germline loss-of-function mutation in
VHL, resulting in essentially 100% lifetime risk of developing multiple ccRCCs (Prowse et al., 1997).
The multiple ccRCCs can be synchronous (tumors originating in the same tissue at the same time),
or metachronous (tumors originating in the same tissue across different time periods). We have
previously published results from the whole genome sequencing (WGS) of 40 synchronous ccRCCs
from six VHL Syndrome patients (Fei et al., 2016). Notably, we observed loss of whole
chromosome 3 in ten of thirteen tumors within one patient, a statistically unlikely event if the

process of chromosome loss is random.

Here, we profile over 150 synchronous and metachronous ccRCCs from 25 individuals
with VHL Syndrome in order to investigate patient-specific constraints on somatic copy-number

variation.
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3.3. Methods

Samples and DNA extraction

Patient phenotypes and other clinical data were obtained from the National Cancer
Institute Clinical Research Information System or patient charts. This study was approved by the
Institutional Review Board of the National Cancer Institute (IRB study 16626). All patients

provided written informed consent.

Tumor DNA was extracted from frozen normal or tumor tissue with Maxwell 16 Tissue
DNA purification kits (Promega) using the “tissue” program. Blood DNA was extracted from EDTA-
anticoagulated peripheral blood samples using Maxwell 16 Blood DNA purification kits (Promega)
with the “buffy coat” program. DNA concentrations were determined using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies). Twenty normal, nontumor, DNA samples were
obtained from the Knight Cancer Institute BioArchive at Oregon Health and Science University.

DNA was extracted from buffy coat or whole blood.

Whole Genome Library Preparation and Sequencing

Beginning with at least 20 ng of genomic DNA for all tumor and normal samples,
transposase (tagmentation) reactions were performed using 2 uL of 5 ng/uL DNA, 7 ulL of
nuclease-free H,0, 10 ul buffer, and 1 uL of Tn5 enzyme. Tagmentation enzymes provided by
Adey lab. Transposase reactions were then incubated at 55°C for 5 minutes before adding 10 uL
of 5M guanidine thiocyanate (Sigma G9277). Following tagmentation, samples were cleaned up
using Ampure XP beads (Beckman-Colter A63881) to retain DNA fragments larger than 100 bps.
Bead purification was performed at a ratio of 1.3 parts sample to 1 part Ampure XP beads,
incubated at room temperature for 5 minutes, washed once with 70% ethanol, and finally

eluted with 20 ul of nuclease-free H.O.
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Library amplification and indexing was performed using KAPA HiFi Hotstart 2X master mix
(KAPA KK2602) by combining 25 uL master mix with 20 uL of eluted DNA (from previous reaction),
4.5 uL of nuclease-free H,0, 0.5 uL of i7 indexed primer, and 0.5 ulL of i5 indexed primer (primers
from IDT). PCR was run under the following conditions: 72°C for 5 minutes, 98°C for 30 seconds,
then 8 cycles of 98°C for 10 seconds, 62°C for 20 seconds and 72°C for 40 seconds, and finally
72°C for 10 seconds. PCR reactions were purified using the Ampure XP beads at a ratio of 1 part
beads to 1 part sample. Samples were incubated at room temperature for 5 minutes, washed

once with 70% ethanol, and eluted with 25 ul of nuclease-free H,0.

Bead purified DNA libraries were assessed for quality using Agilent’s High Sensitivity DNA
kit (Agilent 5067-4626) with the BioAnalyzer 2100. DNA quantification was performed by qPCR
using KAPA Library Quantification kit (KAPA KK4824). Single ended 50 bp sequencing was
performed using lllumina HiSeq at the Oregon Health & Science University Sequencing Core. In
order to maximize resolution of copy-number segments, targeted sequencing depth was

calculated based on the equations below:

Equation 1
Read g l Genome Size c
= — %
eads per Sample = 7~ Length overage
Equation 2
) Reads per Sample
# Windows = -
Target Reads per Window
Equation 3
CNV Resolution = Genome Size
esotutton = # Windows
Equation 4

Reads per Lane

#S l L =
amptes per Lane Reads per Sample
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For equation 1, genome size is 3.2 billion bp and read length is 50 bp (single ended reads).
For equation 2, target reads per window was 300 and this value is based on a publication using
LP-WGS for calling fetal CNAs from maternal blood samples [Dong et al., 2016}. This study was
referenced due to the similarity in challenges between maternal-fetal DNA contamination and
normal-tumor DNA contamination. | used equations 1—4 to derive the valuesin table 1 and chose

a target coverage of 0.05X, or approximately 3.3 million reads per sample.

. CNV # Samples per
WGS Coverage Reads per Sample # Windows Resolution (bp) Lane
132,000,000 440,000 7,500 2
1 66,000,000 220,000 15,000 4
0.5 33,000,000 110,000 30,000 7
0.25 16,500,000 55,000 60,000 14
0.1 6,600,000 22,000 150,000 36
0.05 3,300,000 11,000 300,000 71
0.015 990,000 3,300 1,000,000 237
0.01 660,000 2,200 1,500,000 356
0.005 330,000 1,100 3,000,000 712
0.001 66,000 220 15,000,000 3,561

Table 1: Target coverage calculations for LP-WGS method of detecting SCNAs

Whole Genome Sequence Alignment

Single-end reads were aligned to the hg19 human reference genome using bwa-aln and
bwa-samse (Li and Durbin, 2009). Output SAM files were converted to BAM files, sorted, and
indexed using Samtools v0.1.17 (Li et al., 2009). MarkDuplicates, part of Picard Tools v1.51
(McKenna et al., 2010), was used to mark duplicate reads generated during the PCR amplification
stage. Final BAMs were reindexed using the Buildindex tool from GATK4. Alignment sequencing
quality was assessed by viewing the distribution of MAPQ scores for mapped reads the total
number of uniquely mapped reads across all samples. Samples with library sizes below 600,000

were removed from further analysis.
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Somatic Copy Number Alteration (SCNA) Calls

Copy number ratios (log; scaled) were determined using CNVKit (Talevich et al., 2016)
followed circular binary segmentation (CBS) to determine copy number segments. First, a flat
reference was computed for the hg19 reference fasta file. This process determines GC-content
and RepeatMasker information needed for bias correction. Next, in “wgs” mode, a pooled
reference was built from the BAM files of all the non-tumor normal samples and the average
target bin size was set to 1 Mbp. While still in “wgs” mode, copy-number ratios were computed
for all tumor samples using the pooled reference. Finally, tumor copy-number ratio tables were
segmented using the CBS algorithm. The final output file contains arm-level copy-number

segments and the log, tumor to normal copy-number ratio.

Tumor Purity Calculation

To estimate tumor purity, | relied on the following assumptions: (1) Loss of 3p is an early
event in all ccRCCs, therefore it’s clonal and present in nearly all tumor cells. (2) The largest
contiguous segment on 3p to represents the clonal 3p loss event. This segment will have the
highest number of probes. (3) If a tumor does not have loss of 3p, we cannot use the method
below to estimate purity. Copy number ratios are log2 scaled. Copy loss is a log2 ratio less than -
0.10 (copy ratio of 0.933). A total of 143 of 158 tumor passed the above constraints. The equation
(Egn. 5) used to estimate purity is the percent error. Here, p is purity and CNR is the log, copy-

number ratio of the largest contiguous segment on 3p in tumors with 3p loss.

Equation 5

p=1-2x(2VF-1/,)
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To test the accuracy of this tumor purity estimation method, we compared tumor purity
estimates obtained from the ABSOLUTE method (Carter et al., 2012) for 10 samples previously
profiled with 30X WGS (as described in Fei et al. 2016). | calculated the difference between the
two methods then used these values to calculate the standard error (SE) of our method, as
outlined in equation 6, where G is the standard deviation of the difference between the two purity

estimation methods and n is the number of samples compared.
Equation 6

_ U(PABSOLUTE—Psp)

SE =
Vn

Clonal Tumor Comparisons.

To compare complete SCNA profiles of tumors, copy number segments were divided into
smaller segments. The smaller segments where chromosomal g-bands from hgl19. This created
862 segments for each tumor. Chromosomal band segments and their log, copy-number ratio
were stored into a dataframe in Python. The columns of the data frame represented each tumor
and the rows of the dataframe represented each chromosomal band. Bands lacking copy number

for all tumors from an individual were removed from the matrix.

The complete matrix was used to calculate rho, the Spearman rank correlation coefficient.
First, | computed then plotting rank values of a subset of tumor pairs to determine if our data fit
the assumptions of the Spearman rank correlation. | identified a monotonic relationship between
each pair assessed and thus determined that the Spearman’s rho was an appropriate statistical

test of correlation for our dataset.

To perform the test, first rho values were calculated for each pair of unrelated tumors,

totaling unique comparisons. Next, we used the rho values for unrelated tumor pairs to create a
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distribution of rho value for independent tumors. | used this distribution to determine clonal
tumors to have a rho value > 99.9" percentile. Finally, | computed rho values for each pair of
related tumors and compared these values to the 99.9" percentile threshold of the rho value
distribution for independent tumors. If the rho value was > 99.9"" percentile, then the tumor pairs

were determined to be clonally related.

Patient-Specific Recurrent SCNA Analysis.

The identification of patient-specific recurrent SCNAs is based on the binomial
distribution, Equation 7, where the probability of success is equal to the rate of the event in
sporadic ccRCC cases from TCGA (The Cancer Genome Atlas Research Network, 2013). Here, p is
the binomial probability, x is the number of tumors with an SCNA, F is the rate of that SCNA in
sporadic ccRCC, and n is the total number of tumors from a patient or case. An SCNA would be
significantly recurrently if the binomial probability is < 0.05. The binomial distribution relies on
the assumption that all comparisons are independent, therefore, tumors determined to be

clonally related were removed from the SCNA analysis.

Equation 7

X
pCin, F) = Z Gy X F¥ % (1 — F)n=
n
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3.4. Results

Sample population

To better understand the SCNA landscape of synchronous tumors, | profiled SCNAs from
additional cases of VHL Syndrome ccRCC. Statistical modeling indicated that at least three tumors
per cases were necessary to identify patients with recurrent loss of whole chromosome 3 (Figure
1). This per patient tumor number was based on the binomial distribution where the probability
of success is equal to 0.09, the rate of whole chromosome 3 loss in sporadic ccRCCs (The Cancer
Genome Atlas Research Network, 2013). In patients with three or four tumors profiled, loss of
whole chromosome 3 would be recurrent if observed in at least two tumors (Figure 1a-b). In
patients with five tumors sequenced, the SCNA would be recurrent if observed in at least three

tumors (Figure 1c).

0 1 2 3 0 1 2 3 4 0 1 2 3 4 5
X X X

Figure 1: Sample size calculations. Significance calculations based on the binomial distribution,
where n is the number of tumors per patient, x is the number of tumors with a specific SCNA, P(X
=x) is the probability of the SCNA, and the red horizontal line is the significance threshold (p-value
< 0.05). A) n =3 tumors, B) n =4 tumors, C) n =5 tumors.

We identified 22 VHL syndrome patients with at least three synchronous or
metachronous ccRCCs that were not part of our previous study (Table 2). Table 2 provides the
naming schema for the surgery IDs - the patient’s sex (M or F) followed by the patient’s age at the
time of tumor resection. Color codes and surgery IDs have been retained for tumors studied from

patients also in Fei et al. 2016 (denoted in bold) and were added to the surgery ID for the one new
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patient with metachronous tumors (Brown). Duplicate case IDs were followed by a letter to create
unique case IDs (e.g. M27A and M27B). The median number of tumors per patient was four (Table
2). We also identified three additional cases from two previously characterized individuals
(patient Green F28 and patient Red M22) (Fei et al., 2016). This amounted to 143 synchronous

and metachronous ccRCC tumors from 24 individuals with VHL Syndrome.

Patient Number Resection

Color ID Surgery ID of Tumors Site VHL Mutation Relative
Brown F57 1 R CD 117kb Green
Brown F58 2 R CD 117kb Green
Brown F59 1 R CD 117kb Green
Green F20 6 L CD 117kb Brown
Green F28 13 R CD 117kb Brown
Green F29 5 L CD 117kb Brown
Orange M4a5 3 R fsR176
Purple M28 3 R N78S
Red mM22 5 R P86R
Red M34 11 R P86R
Yellow F60 3 R W117C

F24 5 L P86S

FA9 6 R L158P M60
F53 4 R PD exon 3, 19kb

F59 6 L W88R

F63 4 R PD exon 2-3, 19.5 kb
F66 4 L PD exon 2-3, 7.6kb
F73 4 L R167W

M26 3 L G104W, fs*28
M27A 4 R delF76

M27B 16 L PD exon 3

M32 4 L delF76

M34 8 R L118P

M37A 4 R PD exon 2

M37B 4 R splice acc exon 2
M39 7 L PD exon 1, 5,646 bp
M42 6 R PD exon 1, 2,700 bp
Ma4 6 R(3),L(3) L135*

M47 4 L PD exon 1, 1,089 bp
M48 4 L R161*

M60 5 R L158P FA9
M84 4 R fs codon 178

PD = partial deletion, CD = complete deletion, splice acc = splice site acceptor, fs = frame shift, * = stop gain.
Cases from Fei et al 2016 are in BOLD

Table 2: Patient and sample information
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In addition to the new VHL Syndrome ccRCC cases, we resequenced nine tumors across
three patients from our previous study (Fei et al., 2016) serve as a positive control and to
determine the accuracy of our methods. Twenty diploid non-tumor DNA samples from whole

blood were used as a pool of normals.

Our previous work identified patient-specific recurrent whole chromosome 3 loss in
patient Green, F28, (Fei et al., 2016). In order to assess if this event was due to this individual’s
germline environment, we needed to study tumors from different time points. For patient Green,
we acquired six tumors resected eight years prior from the left kidney (surgery ID is F20) and
acquired five tumors resected one year later from the left kidney (surgery ID is F29). We also
obtained four tumors from three surgeries (each surgery separated by one year) from the mother
of this patient (surgery IDs are F57, F58, and F59), herein called patient Brown. We were
interested in profiling tumors from related individuals to determine if recurrent SCNAs might be
due to the inherited VHL mutation or other germline chromosome 3 variants in cis with the VHL
mutation. For both the patient Green and Brown, the germline VHL mutation was a 117KB

deletion that resulted in a complete deletion of VHL, a rare mutation in VHL Syndrome.

Lastly, we included tumors from a later resection for patient Red. The SCNA profiles for
M22 were noisy in our previous study (Fei et al., 2016), but whole loss of chromosome 3 was
apparent in two out of the five tumors profiled. We resequenced all five of these tumors and
eleven additional tumors (surgery ID is M34) from a resection occurring twelve years later to

determine the copy number status of chromosome 3 in patient Red’s ccRCCs.
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Low-pass whole genome sequencing

We performed low-pass WGS (LP-WGS) on our sample cohort to generate high quality
arm-level copy-number profiles. We called somatic copy-number alterations (SCNAs) using CNVKit
and a panel of normals, as described in the methods and outlined in Figure 2. CNVKit performs a
genome-wide GC content correction and repeat-masked fraction correction before computing
tumor-normal CNRs. Copy number segments were determined from the tumor-normal copy-
number ratios using CBS. To reduce batch effects during library preparation and sequencing, we
randomized sample order across tumor and normal samples, as well as by tumors from the same

patient.

LIBRARY PREP

Nextera Protocol
Dual-index barcodes for multiplexing

SCNA CALLING - CNVKit

Whole Genome Sequencing SE 50bp Build Reference on Pooled Normals
(llumina NextSeq) Infer Tumor Copy-number Ratios
Circular Binary Segmentation

Hg19 Alignment (BWA mem)
Map and Remove PCR Duplicates (Picard)
Local Realignment (GATK)

ANALYSIS

Tumor Purity
Identify Clonal Tumors
Nonrandom SCNAs

Figure 2: The Bioinformatic workflow for calling somatic copy-number alterations (SCNAs).

We removed two normal samples and one tumor sample from further analysis due to
insufficient read depth. Figure 3 shows the distribution of total uniquely mapped reads following
alignment to hg19 and removal of PCR duplicates for all remaining tumor samples. We achieved
a range of 642 thousand to 14.34 million uniquely mapped reads and a median of 4.39 million
uniquely mapped reads. With this depth, we achieved an approximate median genome-wide

coverage of 0.05X.
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To assess the accuracy of our arm-level SCNA calling approach, we compared arm-level
SCNA calls from the LP-WGS method to those from 30X WGS across the nine resquenced tumor
samples. These tumor samples had a tumor purity range of 25% to 75%. We were interested in
determining the combined effect of tumor purity and total uniquely mapped reads on our ability
to call loss of 3p in these tumors. For each tumor, we down-sampled the sequence library across
arange of 300 thousand reads to the total number of reads then called SCNAs as outlined in figure
2. Figure 4 shows the log, copy-ratios and 95% confidence across a variety of library sizes (total
mapped reads). For high purity tumors, 65% to 75%, log, copy-ratios from the 30X WGS fell within
the 95% confidence interval of LP-WGS approach across nearly all library sizes. For the least pure
tumors, 25% and 46%, the LP-WGS approach slightly underestimated the log, copy-ratio.
However, at library sizes of at least 1 million reads, the difference between the two approaches
was able to distinguish a copy-loss event (middle plot in figure 4B) from no SCNA (top plot in figure
4B).

Tumor Purity

As previously mentioned, 3p copy-number can be difficult to distinguish in tumors of low
purity and at low read depth. ccRCC can be highly cystic, resulting in low tumor cellularity. To

account for contamination of non-tumor diploid cells and the likelihood of cystic structures within
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the bulk tumor sample, we estimated the tumor purity for all tumors containing 3p alterations.
Our tumor purity calculation relies on the assumption that loss of 3p is one of the earliest genomic
alterations and is presentin all tumor cells. Figure 5A provides a distribution of the tumor purities.
The median purity was 56.94%, and the range of tumor purity was 17.27% to 90.77%. The purity
range and distribution are on par with purity estimates for sporadic ccRCC (The Cancer Genome
Atlas Research Network, 2013). We used median values from Figure 4 to remove any samples
where tumor purity and library size may be too low to distinguish copy-loss of 3p from non-altered
3p. No samples fell below our thresholds for low tumor purity (<30%) and small library size (< one

million reads); Thus, purity and read depth did not limit our ability to call arm-level SCNAs (Figure

58).
F60 M45
A 40 B o
045 00 4 TS 0446
2 050 - g 0.25
é 0.65 é 202
é -0.55 0.65 é 5
8 -0.60 - 8
) i S 04 -
S 065 4 075, S 05
0.6
T o1 4 S A
-0.75 T T T T T T T T - T T T T T T T T
0 10 2 30 40 50 60 70 80 20 0 10 2 30 40 50 60 70 80 20
Total Mapped Reads (100KB) Total Mapped Reads (100KB)
M28 . .
C 050 Figure 4: Comparison of LP-WGS to

conventional WGS. Solid lines are the mean
log, copy-ratio of 3p from LP-WGS and the
shading area denotes the 95% confidence
interval. Dashed lines of similar colors
represent log, copy-ratio of 3p from 30X
WGS. Values on the right are tumor purity
075 |- TERIIN .................coctnensnsasesscsens. 0.75 estimates obtained from the 30X WGS
dataset. A) F50 yellow. B) M45orange. C)

0 0 2 0 4 = @ wn = o M28pu rple.
Total Mapped Reads (100KB)

Log2 Copy-Ratio
s
"

72



A 20 - B 104 o
¢
1d ¢ 0ot
oy = AR (WY $
g 5067 4 pettet .
@ . ¢ ¢
g,' 041 I il 0N ¢
e = .__L___*.ﬁ__’ _____ ¢ _*§ _______
51 - ' ¢ % ¢ ]
021 | ¢4 ¢
|
I
0 - 00 1 T T 1
0.0 0.2 04 0.6 0.8 1.0 0 5 10 15
Purity Total Mapped Reads (millions)

Figure 5: Assessment of tumor purities. A) Histogram of estimated tumor purities. B) Estimated
tumor purity plotted vs total number of uniquely mapped reads. The horizontal dashed line at
tumor purity of 0.3, represents the threshold for low tumor purity. The vertical dashed line at one
million total mapped reads represents the threshold for small library size. Error bars are based on
the calculations provided in Table 3.

To test the accuracy of this tumor purity estimation method, we compared tumor purity
estimates obtained from the ABSOLUTE method (Carter et al., 2012) for ten tumors previously
profiled with WGS (Fei et al., 2016). We calculated the difference between the two methods then
used these values to calculate the standard error (SE) of our method, as outlined in the methods

and shown in Table 3. The standard deviation for the difference is 1.6%. The purity estimate

described here is +/- 3.2% (95% confidence) of the purity estimate from the ABSOLUTE method.

Purity (Absolute) Purity (3p loss)

Tumor (Patient) 30X+ WGS Low-pass WGS Difference
M28-1 (purple) 81.00% 83.80% 2.80%
M28-2 (purple) 68.00% 71.00% 3.00%
M28-3 (purple) 61.00% 68.20% 7.20%
F60-1 (yellow) 23.00% 20.30% 2.70%
F60-2 (yellow) 82.00% 76.00% 6.00%
F60-3 (yellow) 61.00% 64.20% 3.20%
M45-2 (orange) 62.00% 65.90% 3.90%
M45-3 (orange) 73.00% 75.50% 2.50%

Table 3: Comparison of two tumor purity estimation methods
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Identifying Clonal Relationships

Previous genomic analyses of synchronous and metachronous VHL Syndrome ccRCCs
(Beroukhim et al., 2009; Fei et al., 2016; Fisher et al., 2014) have not observed clonally related
tumors from the same patient. However, it is possible that tumors from the same patient could
be clonally related. We assumed that clonally related tumors would have SCNA profiles that were
more similar than any two non-related tumors. To identify clonal tumors, we applied the
Spearman Rank correlation test in a pairwise fashion to unrelated tumors in our cohort as outlined
in Figure 6A and further detailed in the methods. The distribution of rho values across all
unrelated tumor pairs are shown Figure 6B. We then applied the same Spearman Rank correlation
test to each pair of related tumors. Significantly clonally related tumors were determined to have
a rho value greater than the 99.9th percentile (rho < 0.802) of unrelated tumor pair rho values.

This threshold is represented by the red line in figure 7B.
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Figure 6: Spearman rank correlation determines clonal relationships. A) Diagram of the method
for determining clonal relationships between related tumors. Copy number segments for each
tumor are divided into chromosome band segments, then rho values of the Spearman Rank
Correlation are computed for each pair of unrelated tumors. B) The density distribution of the rho
coefficient from the Spearman Rank correlation test for all comparisons of unrelated tumor pairs.
The blue outline represents the kernel density estimate. The red line represents the 99.9th
percentile threshold for distinguishing a clonal relationship between tumor pairs.
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We identified significant clonal relationships within two patients (Figure 7 and 8). In one
patient, patient Brown, all tumors studied were determined to be clonally related (Figure 7A-C).
For this patient, we used the rho values from the spearman rank correlation (Figure 7B) to
reconstruct the phylogenetic tree in order to better visualize the clonal hierarchy (Figure 7C).
Notably, the phylogenetic tree is consistent with the age of resection. The tumor resected at the
youngest age (57 years, F57) was less correlated with all other tumors, while a tumor resected a
year later (58 years, F58-1) had the highest correlation with all other tumors from patient brown.
These observations suggested F57 it to be closest to the most recent common ancestor (MRCA),
and F58-1 to be centrally located within the phylogenetic tree. Tumor F57 from patient Brown,
was the only tumor to acquire loss of chromosome 4 and lacked loss of chromosome 13. Two
tumors were resected at age 58 and differ by one SCNA. The loss of whole chromosome 10 occurs

in F58-2, while F58-1, and all other tumors from patient brown, only loose 10q.

For patient M39, five of its seven tumors demonstrated clonal relationships (Figure 8A-
C). We used the rho values from the spearman rank correlation to reconstruct a phylogenetic tree
of clonal relationships (Figure 8B-C). It appears that the MRCA had several loss events including
3p 8p and 111, as well as several gain events such as 3p and whole chromosome 20. Except for
loss of 3p, tumors M39-6 and M39-7 do not share any of these early SCNAs. Tumors M39-1, M39-
3, M39-4, and M39-5 share a gain of 5q, which is frequently observed with loss of 3p. M39-7 also

has gain of 5q but lacks gain of 3q observed in the previously mentioned clonal tumors.
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Figure 7. Clonal relationships in patient Brown. A) Genome wide SCNA profile for all five tumors
across three resections from patient Brown. Different resections are denoted along the vertical
axis by tumor ID, where 57, 58, and 59 represent the patient’s age at the time of resection.
Chromosome numbers are given along the horizontal axis. The heatmap provides log, copy-ratios,
where gains are in red and losses are in blue. B) Correlation matrix for tumors in 5A based on
Spearman rank correlation. The rho correlation coefficient is provided with the matrix. Strong
positive correlations are dark red, while strong negative correlations are dark blue. C)
Phylogenetic tree of evolutionary relationship for tumors in 7A-B built using deductive reasoning
informed by correlation coefficients in 7B. SCNA events connecting branches are given in blue,
where a minus (-) represents a somatic copy loss event.
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Figure 8. Clonal relationships in M39. A) Genome wide SCNA profile for all seven tumors across
one resection from patient M39. Different tumors are denoted along the vertical axis.
Chromosome numbers are given along the horizontal axis. The heatmap provides log, copy-ratios,
where gains are in red and losses are in blue. B) Correlation matrix for tumors in 5A based on
Spearman rank correlation. The rho correlation coefficient is provided with the matrix. Strong
positive correlations are dark red, while strong negative correlations are dark blue. Clonal
relationships have grey rho values. Independent relationships have black rho values. C)
Phylogenetic tree of evolutionary relationship for tumors in 8A-B built using deductive reasoning
informed by correlation coefficients in 8B.
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SCNA Profiles

The genome-wide arm-level SCNA profiles for all tumors of remaining patients are
provided in Figures 9 — 11 and in appendix B. Each figure contains the SCNA profile of ccRCC from
a single patient. The SCNA profiles from 30X WGS from our previous publication (Fei et al., 2016)
are provided for reference for the thirteen tumors for M22, patient Red, (Figure 9) and from F28,
patient Green, (Figure 10). Loss of 3p and gain of 5q were the only two arm-level alterations
observed in every patient. Collectively, 91% of tumors had loss of 3p and 57% of tumors had gain
of 5g. These frequencies are consistent with sporadic ccRCC. Four tumors from four different
patients (M45-3, M34-5, F24-6, and F73-4) had no alteration on chromosome 3 yet had other
alterations. We presume these have copy-neutral LOH of chromosome 3 because we previously

identified copy-neutral LOH of whole chromosome 3 in three ccRCCs discussed in chapter 2.

Patient-Specific Recurrent SCNAs

We were interested in identifying cases of recurrent events at arm-level and whole
chromosome SCNAs observed in sporadic ccRCCs. Table 4 list frequencies of these SCNAs in
sporadic ccRCC (from TCGA et al 2013) and the minimum number of cases per individual needed
to identify a recurrent SCNA. For example, we are powered to detect patient-specific recurrent
SCNAs occurring at a frequency < 13% if at least 3 tumors per patient were available. Patients
were removed from recurrent SCNA analysis if they lacked enough tumors to identify a statistically
significant event. The binomial distribution assumes events are independent, thus clonally related
tumors were not considered for recurrent SCNA analysis. Tests for recurrent events were only
performed under two conditions: (1) patient met the minimum sample size for each SCNA listed

in table 4; and (2) the SCNA was observed at least 3 times if the total number of tumors was
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greater than 3. These conditions reduced the number of statistical tests performed and the need

for multiple test correction.

Four patients (M27B, M34, F63, and M47) had a total of eight tumors lacking any
identifiable SCNA. Although, we are unable to confirm that these samples contained tumor DNA,
we still considered these tumors within the patient-specific recurrent SCNA analysis. Our previous
study of 40 VHL Syndrome ccRCC identified one tumor containing no identifiable SCNA, which

supports our rationale to consider these tumors.

We identified three new cases of patient-specific recurrent SCNAs, all involving loss of
whole chromosome 3. These recurrent SCNAs are summarized in table 5. No other SCNA in table
4 met the two previously mentioned selection conditions necessary to perform the test for
recurrence; and thus only three statistical tests for recurrent events were performed. M27B
(figure 11) and both resections from patient Green (figure 9) were determined to exhibit patterns
of patient-specific recurrent loss of whole chromosome 3. Whole loss of chromosome 3 was
thought to be observed in the previous WGS of M22 (patient Red), but the copy-number calls
were noisy. After resequencing with LP-WGS, whole loss of chromosome 3 was observed in two
(M22-1 and M22-2) out of five tumors. However, this observation was not statistically significant
and is likely random. Only one tumor out of eleven from the later surgery of patient Red lost whole

chromosome 3.
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Minimum

SCNA Frequency Sample
Size
+16 0.06 3
+17 0.06 3
-22 0.06 3
+1q 0.08 3
-3 0.09 3
+11 0.09 3
+18 0.09 3
+21 0.11 3
-21 0.11 3
+22 0.11 3
+19 0.12 3
-13 0.13 3
+2 0.16 4
10q 0.16 4
-1p 0.17 4
+3q 0.17 4
-18 0.18 4
-6 0.19 4
+164 0.2 4
+20 0.23 4
-9 0.26 5
+12 0.26 5
-8p 0.28 5
+7 0.37 6
144 0.41 6

Table 4: Frequencies of arm and chromosome- level somatic copy number alterations (SCNAs)
in sporadic ccRCCs from TCGA

Tumors Total

Surgery ID SCNA with SCNA Tumors p-value
M27B -3 5 16 0.011
F20 -3 3 6 0.011
F29 -3 3 5 6*10°

Table 5: List of all patient-specific recurrent SCNAs
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Figure 9. SCNA profiles and loss of chromosome 3 in patient Red. A) Genome wide SCNA profile
from LP-WGS for 16 tumors across two resections. Each tumor is denoted along the vertical axis.
Chromosome numbers are given along the horizontal axis. The heatmap provides log, copy-ratios,
where gains are in red and losses are in blue. B) Genome wide SCNA profile for M22 derived from
30X WGS from (Fei et al., 2016).
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Figure 10. SCNA profiles and recurrent loss of chromosome 3 in patient Green. A) Genome wide
SCNA profile from LP-WGSfor 11 tumors across two resections. Each tumor is denoted along the
vertical axis. Chromosome numbers are given along the horizontal axis. The heatmap provides
log, copy-ratios, where gains are in red and losses are in blue. B) Genome wide SCNA profile for
F28 derived from 30X WGS from (Fei et al., 2016).
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Figure 11. SCNA profile and recurrent loss of chromosome 3 in M27B. Genome wide SCNA profile
from LP-WGS for 16 tumors across one resections. Each tumor is denoted along the vertical axis.
Chromosome numbers are given along the horizontal axis. The heatmap provides log, copy-ratios,
where gains are in red and losses are in blue. M27B — 16 did not contain any arm-level SCNA.
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3.5. Discussion

Loss of 3p represents an essential mechanism for driving tumorigenesis of ccRCC due to
the loss-of-heterozygosity of tumor suppressor genes such as VHL, PBRM1, SETD2, and BAP1.
Nearly every tumor we studied, with the exception of tumors without any observable SCNAs,
contained loss of 3p. We understand loss of 3p to be an early event in the evolution of sporadic
renal tumors from studies by Gerlinger et al., and we can also assume loss of 3p to be early in
heritable ccRCC (Gerlinger et al., 2012, 2014). A mutation timing study by the TRACERx renal
consortium, calculated loss of 3p to occur five to twenty years prior to VHL inactivation and three
to five decades prior cancer diagnosis (Mitchell et al., 2018). This result suggests that for sporadic
ccRCC, in the “two-hit” model of tumor initiation, loss of 3p is the first hit and inactivation of VHL
is the rate limiting step. However, the tumor initiation model is reversed in heritable ccRCC — VHL
inactivation is the first hit followed by loss of 3p as the rate limiting step. Therefore, the order of

these two tumor initiating alterations must not be essential to tumorigenesis.

Mechanisms for loss of 3p in ccRCC

Copy-number alterations are often a product of punctuated evolutionary processes.
Punctuated evolution results in a large increase in tumor heterogeneity in a short period of time
due to the acquisition of multiple genetic alterations at once. Chromothripsis, or chromosome
shattering, can cause punctuated evolution and chromoplexy, complex structural
rearrangements, can be observed following chromothripsis. Chromoplexy has been observed as
initiating events in several tumor types (Baca et al., 2013; Gao et al., 2016) including ccRCC
(Mitchell et al., 2018). In ccRCC, recurrent breakpoint fusions were detected between 3p and 5q
in tumors with 3p loss and 5q gain. In the rearrangement, a “derived chromosome” is formed
between 3p and 5q. This alteration is common in sporadic ccRCC, occurring in up to 60% of tumors

(The Cancer Genome Atlas Research Network, 2013). Other structural abnormalities between 3p
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and other chromosomal arms in sporadic ccRCCs from TCGA as well as the observation of
subclonal gain of 5gq in many ccRCC both suggest there to be many mechanisms for loss of 3p in
ccRCC.

TRACERX also applied their method to reanalyze the 40 heritable ccRCC whole genomes
from our previous work, to determine if there was evidence for chromothripsis at 3p-5q
breakpoint fusions. Similar to sporadic ccRCC, clustered rearrangements were detected at 3p and
5q breakpoints suggesting translocation of 3p to 5q, t(3:5), caused by chromothripsis (Mitchell et
al., 2018). Breakpoint rearrangement alterations differed between tumors from the same patient,
suggesting there to be no patient specific constraint in chromothripsis.

Here, we observed ccRCCs with concurrent 3p loss and 5q gain in nearly every patient,
with this alteration occurring in well over half of all tumors. Several patients had concurrent 3p
loss and 5q gain in all of their tumors. Our clonality analysis ruled out similarities in 3p breakpoint
locations. These two observations lead us to believe that the host environment could constrain
the mechanism for 3p loss. We did not have sufficient whole genome coverage to call genotypes
or somatic mutations. However, with additional sequencing, we could determine evidence of

chromothripsis driving t(3:5).

Mechanisms for increased whole chromosome 3 loss in ccRCC

While we understand why some somatic genetic alterations are beneficial to a tumor, we
do not understand how one’s constitutive genome can select for or against certain copy number
events. We have identified a propensity for loss of whole chromosome 3 in two individuals. The
observation of preferential whole chromosome 3 loss in all surgeries from patient Green is a
strong indicator that additional surgeries from M27B should be studied. Interestingly both patient
Green and M27B had a large number of tumors resected at each surgery. Their tumor counts were

the largest across all patients profiled. Given the nature of how and when surgical resections of
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ccRCCs are performed in individuals with VHL Syndrome, it may be a leap to make inferences from
the total number of tumors resected. Nonetheless, it would be beneficial to this study to review
clinical surveillance data to determine if patients who exhibit recurrent loss of chromosome 3 also
exhibit a higher number of renal tumors or a higher total tumor burden at a single time point.

Numerous studies support that each type of SCNA must be governed by different
mechanisms. Aneuploidy can result from genome wide doubling (Sansregret and Swanton, 2017).
We previously discussed that arm-level alterations can be driven by chromothripsis. However, we
do not know why some individuals have a propensity for loss of whole chromosome 3 or loss of
3p in renal tumors. It has been demonstrated in a few studies that aneuploidy is positively
selected for in cancer and that aneuploidy promotes tumorigenesis via loss of heterozygosity of
tumor suppressor genes (Sheltzer et al., 2017; Taylor et al., 2018). In one study, aneuploidy events
involving single chromosome gains (single chromosome trisomy) suppressed tumorigenesis in
vivo but later drove the cells to acquire structural abnormalities to compensate for the copy-gain
and increase fitness (Sheltzer et al., 2017). The Darwinian principles governing tumor evolution
lead us to believe that loss of whole chromosome 3 is a stronger tumor initiating alteration than
loss of 3p in these individuals. Therefore, we have hypothesized several mechanisms for
preferential whole chromosome loss in ccRCC.

Perhaps there exist inherited genetic events that apply selective pressure for or against
whole chromosome 3 loss. For example, individuals with 3p loss could be enriched for deleterious
heterozygous germline mutations along the g-arm of chromosome in cis to the germline VHL
mutation. In these cases, loss of the whole chromosome 3 containing the wildtype VHL allele
would unmask the deleterious effects of these other germline mutations on 3q and the
deleterious effect would reduce fitness of the tumor cell or be cell-lethal. We could test this

hypothesis through cytogenetics experiments on normal renal cells from patient Green and M27B
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in comparison to other patients. If this hypothesis is true, whole chromosome 3 loss would be
present in some normal renal cells from patient Green and M27B, but not present in normal renal
cells of other patients.

Alternatively, there could exist low penetrance polymorphisms on chromosome 3 may
modify chromosome 3 loss in patients with recurrent loss of whole chromosome 3. These
polymorphisms may confer a small risk of increase tumor fitness alone but the risk is amplified
when copy-number is altered. For example, Ewart-Toland et al. identified a polymorphism in
STK15, a gene that controls chromosome segregation during mitosis. The polymorphism was low-
penetrance, but increased tumor susceptibility due STK15 copy number amplification (Ewart-
Toland et al., 2003). This could be assessed by performing an association study limited to SNPs
residing on chromosome 3. As with any association study, the effect size is likely small and large
samples sizes would be necessary to achieve the needed power to perform this study.

We also considered if perhaps the germline VHL mutation modulated chromosome 3 loss.
Patient Green had a 25 Kbp deletion encompassing the entire VHL gene. Complete deletion of
VHL is less common in VHL Syndrome cases presenting with ccRCC because large deletion events
can affect the function and expression of neighboring genes. This then affects the phenotypic
presentation of VHL Syndrome. For example, one member of a family with a 50 Kbp deletion at
VHL presented with bilateral ductal breast cancer (Krzystolik et al., 2014). It was later discovered
that the large deletion affected the FANCD2 gene, an important member of DNA repair processes.
We hoped to compare SCNA profiles from patient Green and their mother, patient Brown.
However, all tumors profiled from patient Brown were determined to be clonal. After identifying
whole chromosome 3 in a new patient, M27B, with a different VHL mutation, it is unlikely that

recurrent loss of chromosome 3 is due to the germline VHL mutation. Further, M27B’s VHL
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mutation, a partial deletion of exon 3, is common in VHL Syndrome patients presenting with

ccRCC.

The identification of recurrent loss of whole chromosome 3 expands our understanding
of patient specific pressures on tumor evolution. It is important to study the collection of somatic
genetic alterations in the context of the underlying germline background so we can identify

mechanisms that constrain tumor evolution.
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Chapter 4 — Summary and Conclusion

Tumorigenesis as an evolutionary process has been substantiated by many studies since
the 1950’s. Early tumorigenesis studies relied on epidemiological data from non-endocrine
tumors and generalized cancer to evolve in discrete stages. Despite observing the mutagenic
potential of carcinogens such as x-rays as early as the late 1800’s, cancer was not considered to
be largely influenced by genetic factors until the 1960’s. Advancements in molecular genetics
provided the tools to identify and study individual cancer-causing genes. By the 1990’s, we
arrived at models of evolution that were tumor type specific and described the order of
mutation events. The introduction of high-throughput genomic sequencing coupled with wide-
spread collaborative cancer consortia have propelled tumor evolution research and contributed
to thousands of peer-reviewed studies. We now understand cancer to be a dynamically adapting
system, most often governed by stochastic and deterministic genetic processes.

Stochastic processes such as genetic drift introduce a degree of unpredictability. In
cancer genetics, passenger mutations are a product of genetic drift. These are random
mutations that do not change the fitness of the tumor. On the other hand, driver mutations do
affect the fitness of a tumor and do not occur randomly. The acquisition of driver mutations is
due to positive selection, a deterministic process. There is strong evidence that Darwinian
positive selection is a major feature of tumor evolution, such as the enrichment of inactivating
frameshift mutations in tumor suppressor genes (Yang et al., 2010) or the enrichment of certain

mutation signatures in a particular tumor type (Alexandrov et al., 2018).
Tumor Evolution is Deterministic

The deterministic nature of tumor evolution suggests that the order and type of events

are significant. While we do not know the minimum number of alterations or steps required to
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initiate then drive tumor development, we know that there must be a few initiating alterations
and multiple stages in tumor evolution. Clear-cell renal cell carcinoma (ccRCC) provides a good
example of this. The loss of 3p and inactivating VHL mutation are requirements for tumor
initiation (Mitchell et al., 2018). Later stages of tumor evolution usually include successions of
clonal expansion and clonal selection, which may be driven by nongenetic factors. This
multistage process results in increasing genotypic and phenotypic heterogeneity. It is the
intratumor heterogeneity that creates massive challenges in the delivery and identification of
targeted therapeutics. Additionally, if tumor evolution is completely controlled by Darwinian
evolution, then cancer cells will invariably evolve to resist treatment until they outgrow their
host environment, which is evident by the metastasis of late-stage tumors. Therefore, it is of
interest to cancer medicine to understand the evolutionary dynamics and architecture of
tumors, and to determine the contribution of Darwinian processes.

Tumor evolution is dependent on the context of the host environment, which consists of
the germline background at a given time within a specific tissue type. However, the influences of
the host environment on the evolution of a tumor are complex and make it difficult to derive
reproducible conclusions from tumor evolution studies. But, if we observe the evolution of
multiple tumors arising within the same host environment, what do we learn? In rare cases,
individuals may present with multiple primary tumors. Tumors are synchronous if they are
present in the same tissue at the same time, while metachronous tumors represent multiple
primary tumors separated by at least six months. Both scenarios largely control for space and/or
time, reducing complexity when studying the stochastic nature of tumor evolution. Can we
utilize these constraints to predict prognostic features of tumors, or the types of therapies that
might be effective? These are questions that drive further consideration of synchronous tumors

in tumor evolution studies.
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VHL Syndrome as a Biological Model for Probing Tumor Evolution

Synchronous renal tumors of the clear cell subtype arise in individuals with VHL
Syndrome. This biological system is underutilized in cancer genetics studies. Perhaps rare
diseases are overlooked in studies traditionally relying on big data either from large sample sizes
or high-resolution data collection to reach sufficient power. However, the data shown within
this dissertation recommends researchers in cancer genetics to consider if better systems exist
for studying tumor evolution. The term “biological system” is used in reference to VHL
Syndrome ccRCC to reflect that it a system of natural, spontaneous existence.

All individuals with VHL Syndrome have a germline mutation in the tumor suppressor
gene, VHL. There are a variety of phenotypes including neoplasms from a variety tissues of
origin. Patients presenting with renal tumors, the only malignant phenotype in VHL Syndrome,
have loss-of-function (LOF) VHL mutations usually involving a deletion within the first three
exons. Additionally, two-thirds of sporadic ccRCCs have mutated or epigenetically silenced VHL,
causing VHL to be the most frequently mutated gene observed in this tumor type. Under normal
conditions, pVHL functions as a negative regulator of angiogenesis through its interaction with
hypoxia inducible factors (HIFs). Angiogenesis is a hallmark of cancer. Inactivation of VHL
disrupts the regulation of HIFs under hypoxic conditions and increases transcription of
downstream targets that activate angiogenesis.

Like other tumor suppressors, an inactivating VHL mutation is unmasked by loss of the
wild-type allele. Loss-of-heterozygosity (LOH) at VHL nearly always involves loss of 3p and is
observed in over 90% of sporadic ccRCCs. The near requirement of VHL inactivation in both
heritable and sporadic ccRCCs provide further interest of studying the evolution of ccRCCs and
suggest similar evolution models between the two. The early age of onset for ccRCC in VHL

Syndrome patients is consistent with a single mutation model (Maher et al., 1992). The model
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suggests the rate-limiting step for tumorigenesis in heritable ccRCC to be LOH at 3p. A simple
model of ccRCC tumorigenesis would include an inactivating VHL mutation, then loss of the
remaining wild-type VHL allele via LOH at 3p. However, mouse models have demonstrated that
biallelic inactivation of VHL is not sufficient to drive ccRCCs but does induce multicystic renal
disease (Rankin et al., 2006). Due to lack of synteny between humans and mice, it is not possible
to replicate 3p LOH in a VHL Syndrome mouse model. Recent VHL Syndrome mouse models
have successfully driven ccRCC under conditional knock-outs of other known tumor suppressor
genes such as TP53, RB1, BAP1, and PBRM1 (Gu et al., 2017; Harlander et al., 2017; Hou and li,
2018).

We have learned from several ccRCC genetics studies that four of the five most
frequently mutated genes are located on 3p (The Cancer Genome Atlas Research Network,
2013). This includes VHL. The three remaining genes are all chromatin remodelers: BAP1 a
methyltransferase (mutated in 8-11% ccRCCs), SETD2 a deubiquitinase (mutated in 3-12% of
ccRCCs), and PBRM1 a member of the SWI/SNF complex (mutated in 33-41% of ccRCCs). Both
SETD2 and BAP1 directly modify histones; while PBRM1 is responsible for altering nucleosome
to DNA interactions. SETD2 mutant ccRCCs are associated with increase hypermutation (Ricketts
et al., 2018) and hypermutated tumors correlated with decreased survival. BAP1 mutated
ccRCCs also correlate with decreased survival and worst prognosis. Interestingly, BAP1 and
PBRM1 mutations are mutually exclusive and ccRCC with these mutations display different gene
expression profiles (Joseph et al., 2016). The consistencies in genomic location, functions in
chromatin remodeling, mutation frequencies, and clinical outcomes as well as the variance in
concurrent mutations and gene expression must not be coincidental. Each overlapping and

distinctive observation provides insight into the constraints of ccRCC evolution.
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Observation of Constrained Evolution

We have provided supporting evidence that the genomic analysis of synchronous and
metachronous ccRCCs across multiple patients with VHL Syndrome provide an effective system
for understanding tumor evolution. The VHL biological system allows for the study of multiple
independent primary tumors under the same host environment. We consider the host
environment to include the genotypic and phenotypic features of the environment. There are
many models and trajectories of tumor evolution, and any single tumor can exhibit multiple
evolutionary trajectories during its lifespan. | argue that tumor evolution models are not mutally
exclusive but are subjective to the features you consider within the system that you are
exploring. In controlling the host environment and in some cases varying time, | identified
divergent, parallel, and constrained evolutionary trajectories as well as positive selection within
our two studies.

In chapter two, somatic driver events were analyzed across a selection of high and low-
grade tumors. Patient F60 demonstrated both parallel (Figure 1A) and divergent (Figure 1B)
evolutionary trajectories in relation to Fuhrman grade. Parallel trajectory towards high-grade
ccRCC was observed between F60-1 and F60-4. These two high-grade tumors possessed clonal
inactivating BAP1 mutations, each resulting in a frameshift and both under LOH. BAP1 mutant
ccRCC have previously been associated with high Fuhrman grade and increased metastatic rate
(Minardi et al., 2016). Both tumors acquired different pathogenic mutations in the same gene,
BAP1, early in tumor development and both evolved into high-grade tumors. In comparison,
F60-3 acquired an early pathogenic mutation in PBRM1, with LOH, and instead evolved into a
low-grade tumor. Therefore, there is also evidence of divergent evolution in F60 at clonal

inactivating BAP1 and PBRM1 mutations in regards to tumor grade.
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Figure 1: Model of clonal BAP1 and PBRM1 inactivating mutations as determinants of tumor
grade in F60. A) Different clonal inactivating frameshift mutations in BAP1 in tumors F60-1 and
F60-4 lead to parallel evolution towards high Fuhrman grade (dark shading). B) Clonal
inactivating mutations in tumor suppressor genes, BAP1 and PBRM1, lead to divergence upon
tumor grade. High Fuhrman grade is represented by dark shading, while low Fuhrman grade is
represented by light shading.

An example of positive selection was observed in M45-2 (Figure 2), a tumor with two
different SETD2 mutations, one clonal and one subclonal, on the same allele. While both SETD2
mutations were predicted to be inactivating, it is seemingly impossible to acquire two mutations
in the same gene by chance. One theory is that the clonal SETD2 mutation, P2488H, resulted in a
partial inactivation or a reduction in function of the SETD2 gene products, and the subsequent
SETD2 mutation, E1410%*, resulted in a completed inactivation. The subclonal SETD2 mutation
must present a fitness advantage in order for it to persist. This theory is supported by Darwinian
positive selection as a prominent evolutionary feature of tumors. If this theory were true and

tumor M45-2 continued to evolve, then we would observe clonal out-growth of cells containing

the E1410* in SETD2 over time.
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Figure 2: Linear evolution at SETD2 in M45-2. Solid orange circles represent mutational events
during the lifetime of tumor M45-2. The germline mutation in VHL is the first driver event
followed by the loss of heterozygosity (LOH) at 3p. The next driver mutation is P2488H in SETD2,
represented by a cancer cell fraction (CCF) of 97%. Here, clonal expansion is initiated. Both
SETD2 and VHL are located on 3p and thus are in LOH. A second mutation, E1410%*, occurs on
the same allele of SETD2 and is present in approximately 45% of the cancer cells.

The observation of two mutations in SETD2 in tumor M45-2 also support that the
evolutionary architecture around SETD2 mutations can be linear in VHL Syndrome (heritable)
ccRCCs. Figure 2 models the linear evolutionary architecture with respect to SETD2 in M45-2.
This observation is in contrast to the branched evolutionary architecture around SETD2
mutations in several sporadic ccRCCs (Gerlinger et al., 2014). Linear evolution has been
previously observed in two VHL Syndrome ccRCCs (Fisher et al., 2014). The observations of
linear evolution in VHL Syndrome ccRCC does not rule out the presence of branched
architecture in all heritable ccRCCs. Similarly, this does not suggest that heritable and sporadic
ccRCCs are largely different diseases and are not comparable. We have not studied enough VHL
Syndrome ccRCCs with the appropriate genomic methods to be able to both fully characterize

and generalize the evolutionary architecture of these tumors. Experimental approaches that

include genomic analysis of multiple spatial-temporal biopsies (e.g. multi-regional or single-cell
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approaches) from several independent tumors across several patients would be necessary to
potentially observe branching evolutionary architecture.

It may also be that in order to observe branched evolution architecture, there must be
an opportunity for competing clones to emerge. Perhaps a higher number of cell divisions, and
time, are required for clonal competition. In general, sporadic ccRCCs evolve across double the
time span than early heritable ccRCCs. With increased cell divisions, there is more chance that a
selective sweep is incomplete providing an opportunity for divergence. We have also seen in
models of colorectal cancer that linear and branched evolution are not mutually exclusive
(Suzuki et al., 2017). If the same can be said for renal cancers, then | propose that linear
evolution is a predominant feature in less aged tumors (such as most heritable ccRCCs) and
branched evolution is a feature of tumors of greater age (such as most sporadic ccRCCs).

Constraints on tumor evolution were profiled in chapter three. The identification of two
unique individuals, M27B and patient Green, with recurrent somatic loss of whole chromosome
3 demonstrate that the host environment can constrain the evolution of the tumor’s somatic
genome (Figure 3). | am unsure of the fitness advantage of whole chromosome 3 loss in ccRCC
or in these two patients, but there must be one. However, this observation encourages
additional genomic studies of larger sample sizes of ccRCCs and detailed molecular biology
experiments on tumor and normal samples from these two individuals. | am also unsure if there
exists a patient-specific bias towards whole chromosome 3 loss, or other somatic copy-number
alterations, in sporadic ccRCC. | also identified that synchronous and metachronous ccRCCs can
be clonally related and complete independence should not always be assumed when studying
synchronous or metachronous of any tumor type. Experimental protocols should always contain

an approach for determining evolutionary independence.
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Figure 3: Overview for patient-specific recurrent loss of whole chromosome 3. Two patients,
M27B and patient Green, exhibited significant recurrent loss of whole chromosome 3. Almost
ubiquitously, LOH of VHL is achieved through loss of 3p and rarely through loss of whole
chromosome 3. In M27B and patient Green, there is an increased rate for whole chromosome 3
compared to what we observe in sporadic ccRCC, represented by the wide width of the blue
arrow. Alternatively, there is a decreased rate for loss of 3p, as represented by the narrow width
of the red arrow.

Recommendations for future tumor evolution studies

As previously mentioned the assessment of intratumor heterogeneity (ITH) can provide
prognostic value. Yet, there has only been one study of heritable ccRCCs aimed at quantifying
ITH in VHL Syndrome ccRCCs (Fisher et al., 2014). Only two tumors from one patient were
studied and no intratumor heterogeneity was observed in these tumors. Both tumors were low-
grade and likely less evolved. Perhaps these tumors had not undergone clonal divergence or the
experimental approach was not powered to detect it. Nonetheless, this result is surprising and
worth questioning because sporadic ccRCCs exhibit significant ITH at both the genotypic and
phenotypic level (Gerlinger et al., 2014; Turajlic et al., 2018). Studying ITH in relation to

prognostic phenotypes such as tumor grade would be insightful. In order to assess genotypic
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ITH, multiple tumor regions or single tumor cells must be studied. Both approaches require
considerable foresight in sample collection and processing methods.

The design of this study lacked the sample resources to perform functional assays such
as gene expression profiling, protein signaling dynamics, and cellular assays. These assays have
been performed on sporadic ccRCCs in large-scale. Gene expression and epigenetic modification
analysis of tumors analyzed in chapter 2 could have explained Fuhrman grade in tumors lacking
inactivating driver mutations. Studying protein signaling dynamics across synchronous tumors
might reveal additional modes of convergent, divergent, and parallel evolution. Both functional
assays could be used to determine a mechanism for preferential loss of whole chromosome 3. In
order to test this, normal tissue or cells would be required from patients with nonrandom whole
chromosome 3 loss and those without.

Future recommendations are largely dependent on incorporating different sample
collection methods. Collection of sufficient synchronous ccRCC is already challenging due to the
low national and international incidence of VHL Syndrome. To mitigate this, increased
collaboration among research biobanks is needed to acquire and process a variety of
synchronous ccRCC samples for tumor evolution studies.

Models are inherently data driven. As we acquire more genomic data at higher
resolution across many temporal and spatial contexts, we improve our power to detect
reproducible patterns. A multistage model of cancer is still well supported by our data but each
stage may be driven by different mutational processes and thus tumor evolution would be
better described by integrating models. The order and context of the evolution processes must
be pivotal to tumorigenesis. We need better systems to study tumor evolution. It is of the
advantage of the greater cancer genetics research community to consider how to maximize the

use of models already in existence.
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Appendix A

Suzanne Fei, Asia D Mitchell, Michael Heskett, Cathy Vocke, Christopher J Ricketts, Myron Peto,
Nicholas Wang, Kemal Sonmez, W. Marston Linehan, and Paul Spellman. "Patient-specific
factors influence somatic variation patterns in von Hippel-Lindau disease renal tumors." Nature

Communications 2016; 7: n. pag. Web.

Contributions: In collaboration with Suzi Fei, a former post-doc in the Spellman Lab, | assisted in
the analysis of variants from the whole-genome sequencing of 40 clear-cell renal cell carcinomas
(ccRCCs) from six individuals with VHL Syndrome. | also assisted in manuscript writing and
formatting for publication. This is the original dataset providing the foundation for my
dissertation research.

Approximately 10% of somatic single nucleotide variants (sSNVs) were shared between
at least two tumors from the same patient. All sSSNVs were called using whole-blood as the
normal genome. However, we also had normal kidney tissue for three patients and called sSNVs
using the kidney normal as well. Upon comparing shared sSNVs called from the blood normal to
those called using the kidney normal, half of the shared sSNVs were determined to be kidney-
specific sSSNVs. For the remaining 5% of shared sSNVs, we wanted to determine if they fit any of
three scenarios: (1) germline contamination or kidney-specific mosaic sSNV, (2) clonal sSNV, or
(3) sequencing artifact. Using variant allele and total read counts for each sSNVs, | developed a
Python script to parse this data table and bin each variant into the most likely of one of the
three scenarios.

Germline and kidney-specific mosaic sSNVs would be present in multiple tumors from a
single patient but not found in any other patients. These sSNVs would vary in variant allele

frequency (VAF) and some tumors may have fewer variant reads or a lower VAF than our
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minimum cutoff for calling a sSSNV. To account for this, | included all sSSNVs with a total read
depth of at least 15 and at least one variant read observed with a MAPQ score > 30.

Sequencing artifacts are a bit easier to identify in larger sequencing studies. To
categorize shared sSNVs as erroneous, we assumed they could be present in multiple tumors
across different patients. Additionally, we considered that if a particular locus was multi-allelic
at low VAFs across multiple tumors, it was likely erroneous. Given the large volume of sSNVs to
assess, | followed up with a manual review of alignment quality in IGV for a few candidate
erroneous sSNVs.

To identify variants associated with clonal relationships, we compared groups of sSNVS
that were shared across tumors from the same patient. If two tumors shared a clonal
relationship, we would expect there to be at least 100 shared sSNVs across the whole-genome.
Differences in the VAFs of each sSNVs between the tumor would demonstration clonal ordering.
A tumor that disseminated from another tumor would have a collection of shared sSNVs at a
lower VAF than the tumor that preceded it. If two tumors share a most recent common ancestor
(MRCA), then both tumors could share similar VAFs across the shared sSNVs.

We were able to categorize > 91% of all shared sSNVs using the methods described
above. 82% of shared sSNVs (2,018 variants) were categorized as sequencing artifacts or errors.
The remaining 9% of shared sSNVs (226 variants) were categorized as kidney-specific mosaic
sSNVs. There were not large enough collections of shared sSNVs to suggest clonal relationships
exist between any of these tumors. Interestingly, chromosome 22 was over-represented
(relative to size and average mutation rate in ccRCC) and chromosome 18 was under-
represented for candidate kidney-specific variants. Chromosome 11 was also over-represented
for candidate kidney-specific variants. This observation is interesting because in sporadic ccRCCs

chromosome 11 is the least frequently altered in respect to copy-number alterations.
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Appendix B — Somatic Copy Number Alteration Profiles
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Figure 1. SCNA profile for M27A. Genome wide SCNA profile for all four tumors across one
resection from patient M27A. Each tumor is denoted along the vertical axis. Chromosome
numbers are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains
arein red and losses are in blue.
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Figure 2. SCNA profile for M42. Genome wide SCNA profile for all six tumors across one resection
from patient M42. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 3. SCNA profile for F59. Genome wide SCNA profile for all six tumors across one resection
from patient F59. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 4. SCNA profile for F66. Genome wide SCNA profile for all four tumors across one resection
from patient F66. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 5. SCNA profile for M48. Genome wide SCNA profile for all four tumors across one
resection from patient M48. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue.
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Figure 6. SCNA profile for M60. Genome wide SCNA profile for all six tumors across one resection
from patient M60. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 7. SCNA profile for M84. Genome wide SCNA profile for all four tumors across one
resection from patient M84. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue.
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Figure 8. SCNA profile for M26. Genome wide SCNA profile for all three tumors across one
resection from patient M26. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue.
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Figure 9. SCNA profile for M32. Genome wide SCNA profile for all four tumors across one
resection from patient M32. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue.
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Figure 10. SCNA profile for M34. Genome wide SCNA profile for all eight tumors across one
resection from patient M34. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue. M34-4, M34-6, and M34-7 did not contain any arm-level SCNA.
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Figure 11. SCNA profile for M37A. Genome wide SCNA profile for all four tumors across one
resection from patient M37A. Each tumor is denoted along the vertical axis. Chromosome
numbers are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains
arein red and losses are in blue.
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Figure 12. SCNA profile for M27B. Genome wide SCNA profile for all four tumors across one
resection from patient M27B. Each tumor is denoted along the vertical axis. Chromosome
numbers are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains
are in red and losses are in blue.
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Figure 13. SCNA profile for M44. Genome wide SCNA profile for all six tumors across one resection
from patient M44. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 14. SCNA profile for F24. Genome wide SCNA profile for all six tumors across one resection
from patient F24. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 15. SCNA profile for F49. Genome wide SCNA profile for all six tumors across one resection
from patient F49. Each tumor is denoted along the vertical axis. Chromosome numbers are given
along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red and losses
arein blue.
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Figure 16. SCNA profile for F53. Genome wide SCNA profile for all four tumors across one
resection from patient F53. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue.
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Figure 17. SCNA profile for F60. Genome wide SCNA profile for all three tumors across one
resection from patient F60. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue.
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Figure 18. SCNA profile for F63. Genome wide SCNA profile for all four tumors across one
resection from patient F63. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue. F63-3 and F63-4 did not contain any arm-level SCNA.
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Figure 19. SCNA profile for F73. Genome wide SCNA profile for all four tumors across one
resection from patient F73. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red

and losses are in blue.
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Figure 20. SCNA profile for M47. Genome wide SCNA profile for all four tumors across one
resection from patient M47. Each tumor is denoted along the vertical axis. Chromosome numbers
are given along the horizontal axis. The heatmap provides log, copy-ratios, where gains are in red
and losses are in blue. M47-3 and M47-4 did not contain any arm-level SCNA.
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