
Copula Models for Multivariate Density

Estimation, Classification and Robust

Speech Recognition

Alireza Bayestehtashk

M. S. Electrical Engineering

Amirkabir University of Technology-Tehran Polytechnic, 2008

Presented to the

Center for Spoken Language Understanding

within the Oregon Health & Science University

School of Medicine

in partial fulfillment of

the requirements for the degree

Doctor of Philosophy

in

Computer Science & Engineering



Copyright c© 2018 Alireza Bayestehtashk

All rights reserved

ii



Center for Spoken Language Understanding

School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Ph. D. dissertation of

Alireza Bayestehtashk

has been approved.

Izhak Shafran, Thesis Advisor

Research Scientist, Google Inc.

Alexander Kain

Associate Professor

Xubo Song

Professor

Peter A. Heeman

Associate Professor

Andrew W. Senior

Research Scientist, Google Inc.

iii



Dedication

To my family, specially my mother and father, for their endless support.

iv



Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Izhak Shafran, for

his insightful guidance during all these years. Special thanks to the members of my

thesis committee, Prof. Peter Heeman, Prof. Alexander Kain, Dr. Andrew W. Senior and

Prof. Xubo Song for their constructive and invaluable comments. I also want to thank

Dr. Amir Babaeian for his comments on KL mapping. I would like to say thanks to

all of the faculty members at CSLU specially Prof. Meysam Asgari, Prof. Steven Bedrick,

Prof. Steven Wu, and Prof. Jan van Santen for their enormous help during my PhD studies.

Thanks to the staff of CSLU, Patricia Dickerson, Robert Stites and Ethan VanMatre for

their continued support. Finally, it was impossible to finish this work without the support

of my family who have endured my seven years absence from home with patience.

v





Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Copula Model In A Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Multivariate Copula Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Archimedean Copula . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Vine Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Gaussian Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Grafted GMM copula and its applications in density estimation and

classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Gaussian Copula with Toeplitz Correlation Structure . . . . . . . . . . . . . 20

3.2 Mixture of Copula Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 GMM with marginal modification . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Experimental results on UCI databases . . . . . . . . . . . . . . . . 24

3.4 Experiments on OHSU Monkeys’ vocalization corpus . . . . . . . . . . . . . 29

3.4.1 Motivation for the Task . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 The Corpus of Rhesus Macaque Vocalizations . . . . . . . . . . . . . . . . . 30

3.5.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Filtering Stationary Background Noise . . . . . . . . . . . . . . . . . 33

3.5.3 The Task of Detecting Vocalizations . . . . . . . . . . . . . . . . . . 34

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



4 Application of Copula Models in Automatic Speech Recognition . . . . 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Optimal Transformation for Matching Two Gaussian Copula Models . . . 45

4.3 Proposed Copula-Based Feature Enhancement for ASR . . . . . . . . . . . 50

4.4 Experimental Results on Aurora4 Dataset . . . . . . . . . . . . . . . . . . 51

4.4.1 Dataset and Baseline System . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Effect of Marginal Estimation . . . . . . . . . . . . . . . . . . . . . . 53

4.4.3 Analysis of Marginal Distributions . . . . . . . . . . . . . . . . . . . 56

4.4.4 Analysis of Normalization Style . . . . . . . . . . . . . . . . . . . . . 57

4.4.5 Effect of Normalization on Triphone and DNN Based Models . . . . 58

4.5 Experimental Results on CHIME 4 Dataset . . . . . . . . . . . . . . . . . . 59

4.5.1 Dataset and Baseline System . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Effect of Copula Based Normalization . . . . . . . . . . . . . . . . . 63

4.5.3 Analysis of Channel and Beam Forming Distortions . . . . . . . . . 66

4.6 Integration into Acoustic Model . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



List of Tables

3.1 Average classification accuracy on 4 UCI classification tasks with their stan-

dard deviations, where † denotes use of Ledoit-Wolf method for estimating

covariances and ∗ denotes [max:min]. Note, one class of Glass data does

not have enough samples for fitting GMM. . . . . . . . . . . . . . . . . . . 28

3.2 Average classification accuracy on Parkinson Speech Dataset . . . . . . . . 29

3.3 The performance (accuracy) of different classifiers in detecting segments

with vocalization from the monkeys. . . . . . . . . . . . . . . . . . . . . . . 37

3.4 5-fold cross-validated paired t-test between GMM with modified marginal

distribution and two other best classifiers. . . . . . . . . . . . . . . . . . . 37

4.1 Details on dataset and baseline ASR system for Aurora 4 . . . . . . . . . . 53

4.2 Monophone WERs on Aurora 4 eval set trained and tested with enhanced

features. The enhanced features are obtained using different marginal esti-

mators, multi conditions training set and W = I. . . . . . . . . . . . . . . . 54

4.3 Average WER of clean, noisy, distorted clean and distorted noisy conditions

for triphone model on Aurora 4 task with different features: original MFCC,

normalized MFCC without correlation correction W = I and normalized

MFCC with correlation correction. The model is trained by multi conditions

training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Average WER of clean, noisy, distorted clean and distorted noisy conditions

for DNN model on Aurora 4 with different features: original FB, normalized

FB without correlation correction W = I and normalized FB with corre-

lation correction. The model is initialized by the alignment of triphone

model, which is obtained either by original MFCC or by normalized MFCC

with W = R
1/2
g R

−1/2
f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Average WER of clean, noisy, distorted clean and distorted noisy conditions

of our best model compared with other state of the art methods on Aurora 4. 60

4.6 More details on dataset and baseline configurations for CHIME 4 . . . . . . 62

4.7 Average WERs of the baseline systems trained on single channel data. . . . 63

4.8 Average WERs of the baseline systems trained on single channel features

after copula-based transformation. . . . . . . . . . . . . . . . . . . . . . . . 67

viii



4.9 Average WERs after combining the baseline and copula-based system using

MBR decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 WERs of smbr+RNN system on 1-ch track for different training configura-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 WERs of smbr+rnn system on 2-ch track for different training configurations. 68

4.12 WERs of smbr+RNN system on 6-ch track when the training set is: channel

5, channel 5 with copula-based feat, augmented data and augmented data

with copula-based feat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.13 Recognition results of GMM-HMM system on 1-ch track of CHIME 4 for

two different training-specific transformation. For this experiment, we as-

sume W = I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.14 WER of tri3 on 1-ch track eval set when copula-based normalization is

integrated into: monophone (mono), triphone with delta feature (tri1), tri-

phone with MLLR+LDA feature transformation (tri2) and triphone with

FMLLR feature (tri3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.15 WERs of smbr+rnn system on different tracks with integrated copula nor-

malization and their relative improvements. . . . . . . . . . . . . . . . . . . 78

ix



List of Figures

2.1 (a) and (b) are two different distributions generated by (c) and (d) copula

functions respectively. As depicted, the marginal distributions of (a) and

(b) along each axis are similar. Histogram along each axis represents an

estimation of the marginal distribution along that axis. As depicted, copula

distributions always have Uniform marginal distributions. . . . . . . . . . . 9

2.2 (a) and (b) have been generated by different marginals and a single cop-

ula density in (c). As depicted, copula distribution always has Uniform

marginal distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Illustration of the difference between the marginal distributions of data

(green curves) and the marginal distributions of estimated GMMs (blue

histograms) with (a) one and (b) two component mixtures. . . . . . . . . . 22

3.2 Bivariate joint densities for GMMs with marginal modifications. The GMMs

have (a) one and (b) two component. . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Schematic for modifying marginal distributions based on the copula model.

The true CDFs are computed using the non-parametric method and utilized

to map a xtest to the copula domain u. Then, the inverse CDFs of GMM

are applied to u in order to obtain the x that is used for the evaluation of

copula density function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Two marginal distributions of Wine data set . . . . . . . . . . . . . . . . . 26

3.5 Averaged log-likelihood on the Wine data set. . . . . . . . . . . . . . . . . . 27

3.6 A group of monkeys in a Pen. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Tiny low-power audio recorder along with its housing that attaches to the

monkey’s collar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Different types of monkey vocalizations . . . . . . . . . . . . . . . . . . . . 35

3.9 Averaged log-likelihood on Monkeys’ vocalization data set. . . . . . . . . . . 36

4.1 Scatter plots and their corresponding convex hulls of the first two MFCC

features for a phrase uttered by a female speaker under four different noisy

conditions: street junction (STR), pedestrian area (PED), cafe (CAF) and

bus (BUS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

x



4.2 On the left,the circle and diamond are two noisy versions of a single hy-

pothetical distribution in the original feature space. The right part shows

these distributions after feature-based transformation, where they are now

more similar in the new feature space representation. . . . . . . . . . . . . . 42

4.3 Three components of copula-based transformation: removing marginal dis-

tributions of test set, adjusting the Gaussian copula function and shaping

the marginal distributions similar to the train set between the distribution

of the training data and the transformed test data . . . . . . . . . . . . . . 47

4.4 Block diagram of Copula-based feature enhancement method when the en-

hancement method is independent of the backend ASR . . . . . . . . . . . 50

4.5 Block diagram of noise addition process for Aurora 4 . . . . . . . . . . . . . 52

4.6 The effect of quantization level of the quantile functions (inverse of the

CDFs) on the performance of monophone system for Auroa4. The mono-

phone systems are trained and tested with enhanced features. And the

enhanced features are obtained using different marginal estimators, multi

conditions training set and W = I. . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 The average and standard deviation of critical parameters . . . . . . . . . 56

4.8 Monophone WERs on Aurora 4 evaluation set with different normalization

configurations for clean and multi-conditions train sets. . . . . . . . . . . . 57

4.9 Monophone WERs on different subsets of Auroa 4 eval set with different

normalization configurations for clean and multi-conditions training sets. . . 58

4.10 Recording device used to capture multi-channel audio for the 4th Chime

challenge [92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 Block diagram of noise addition process for CHIME 4 . . . . . . . . . . . . 61

4.12 Recognition results of the best baseline model, which is smbr+rnn, on dif-

ferent tracks of 4th CHIME when the model is trained with : original and

copula-based enhanced features. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.13 WERs of baseline models on 1-ch track of the 4th CHIME task. Note,

5gkn and rnn stand for 5-gram Knesser-Ney and recurrent neural network

language models respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.14 WERs of smbr+rnn system on real and simulated subsets of 1-ch track when

the model is trained with : original and copula-based enhanced features. . . 65

4.15 Recognition results of smbr+RNN model on different real noisy subsets of

1-ch track eval set. when the model is trained with : original features and

copula-based enhanced features. . . . . . . . . . . . . . . . . . . . . . . . . 66

4.16 Block diagram of copula-based feature enhancement method when the en-

hancement method is a part of backend ASR . . . . . . . . . . . . . . . . . 70

xi



4.17 Schematic of the generation of observation data when the model and the

observed data points reside in two different domains . . . . . . . . . . . . . 72

xii



Abstract

Copula Models for Multivariate Density Estimation, Classification and

Robust Speech Recognition

Alireza Bayestehtashk

Doctor of Philosophy

Center for Spoken Language Understanding

within the Oregon Health & Science University

School of Medicine

Thesis Advisor: Izhak Shafran

xiii



Abstract

Univariate distributions can be modeled accurately and efficiently using nonparametric

kernel density estimators, which unfortunately cannot be easily extended to multivariate

distributions. As an alternative, Gaussian mixture models are used to approximate mul-

tivariate distributions, especially because their estimation is relatively straight forward

through the Expectation Maximization (EM) algorithm. Multivariate Gaussian mixture

models implicitly impose a Gaussian mixture distribution on the marginal distributions.

This is a strong assumption on the marginal distributions and is violated in many prac-

tical applications. Copula models disentangle the choice of marginal distributions from

the dependency structure, making them powerful models for multivariate density estima-

tion. According to copula theory, any distribution can be described by a set of univariate

functions and a multivariate function, which is also known as a copula function. The

univariate functions shape the marginal distributions and the copula functions represent

the dependency among the random variables. In this thesis, we investigate how to harness

this decoupling property of copula models to improve the density estimation and build

better classifiers and sequence recognizers.

Multivariate Density Estimation and Classification: We introduce two copula mod-

els for multivariate density estimation, one of them addresses the data scarcity issue in

estimating high dimensional distributions and the other utilizes the decoupling property

to improve an already estimated multivariate distribution.

In the copula literature, one of the main challenges is to construct an appropriate

copula function, particularly for high dimensional distributions. To address this problem,

we propose a relatively straightforward modification to Gaussian copula models, one of

the most popular multivariate copula functions. The Gaussian copula models require

estimation of full correlation matrices, which are prone to data scarcity in many practical

applications, especially in high dimensional distributions. We address this limitation by

constraining the correlation matrices to be Toeplitz matrices and offset the loss of modeling

capacity by introducing mixtures in a Gaussian mixture copula model.

In certain applications, such as modeling sequences, Gaussian mixture models are

xiv



convenient observation models in, for example, Hidden Markov Models, since all the pa-

rameters of the model can be easily estimated jointly using the EM algorithm. In such

cases, we can replace the Gaussian mixture model with a copula model, whose copula

function represents the dependencies already captured in the Gaussian mixture models

and improves it further by augmenting the copula function with univariate functions to

eliminate the error in the estimation of marginals distributions.

We evaluate the performance of both of the proposed methods on several density es-

timation tasks from the UCI Repository as well as our corpus of Monkey vocalizations,

recorded at the Oregon National Primate Research Center. We find that our methods rep-

resent the data consistently better than Gaussian mixture models with equivalent number

of parameters. We also evaluate our proposed methods on building generative classifiers

for a number of classification tasks from the UCI Repository. We find that these gener-

ative models perform as well or better than discriminative classifiers such as a Support

Vector Machine (SVM).

Sequence Recognition: One of the key challenges in recognizing sequences is the mis-

match in training and testing conditions. In most practical applications, recognition sys-

tems utilize supervised training and as a result are privy only to a finite amount of training

data. Thus, they fail to contain representative samples of all the conditions under which

the model might be deployed in real-world applications.

We propose a novel copula-based feature enhancement method to address the mis-

match between the multivariate distribution of features in any test utterance and the

corresponding distribution in the training utterances. The method takes advantage of

the decoupling property of the marginal univariate functions. Specifically, we estimate

an optimal non-linear transformation of the test utterance to reduce the Kullback-Liebler

divergence between the two distributions as parameterized by Gaussian copula models.

We report results on the Aurora 4 Automatic Speech Recognition (ASR) task, which

contains utterances with a wide range of background noises that are not well represented

in the training data. Our results show that the proposed copula-based model improves the

accuracy by about 7% over current best results in the literature. In addition to Aurora

4, we use the proposed enhanced features for the 4th CHIME Speech Recognition task.

xv



These features improve the performance of the baseline system by 4.3%, 1.4%, and 0.5%

(absolute) for 1-channel, 2-channel and, 6-channel tracks, respectively. Furthermore, we

formulate the copula-based transformation as a parametric model and integrate it into a

GMM-HMM acoustic model. We utilize a new method to jointly learn the copula-based

transformation and the acoustic model. Our results show that the integration of copula-

based transformation into the acoustic model leads to further improvements in recognition

accuracy on different tracks of CHIME 4.
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Introduction
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Multivariate density estimation is a problem that is encountered in a wide variety of

disciplines, including but not limited to machine learning, civil engineering, and financial

analysis. Conventional approaches for density estimation can be broadly categorized into

parametric and nonparametric methods. For parametric methods, we typically assume

that the data is generated by a model with some unknown parameters, and our goal is to

find a model and its parameters that is the best fit for the data [35]. The choice of the model

plays a crucial role for this category. Typically, based on intuition or domain-knowledge, an

expert identifies a limited set of predefined parametric models (e.g., Gaussian or Gaussian

mixture models with a given number of components) and empirically evaluates their fit on

a given training data set to pick the best one. The major drawback of parametric models

is that any mismatch (bias) between the true distribution of data and selected model can

not be compensated even by increasing the amount of data to infinity. In contrast to

parametric methods, nonparametric methods allow the data to determine the complexity

of the model; increasing the amount of data results in a more complicated model. The

drawback of these methods is that they can not be extended to higher dimensions because

of the curse of dimensionality. That is, the amount of training data required to provide

the same performance increases exponentially with increases in dimension.

In both parametric and nonparametric estimation of the joint distribution of random

variables, ultimately one form of distribution is chosen, often to maximize likelihood.

This choice automatically dictates a specific form for univariate marginal distributions

which is typically a poor fit for the true marginals. In contrast, when marginals are

estimated in isolation, they can be estimated with very high accuracy using, for example,

histogram and k-nearest neighbor density estimation. Thus, both conventional parametric

and nonparametric approaches do not have enough flexibility to address this mismatch

problem.

Copula models provide a novel paradigm to model multivariate distributions that solves

the above mentioned mismatch. This model was introduced by Sklar in 1959 [86] and it

is mainly recognized because of its success in financial risk prediction [58]. With a copula

model, any distribution is comprised of a set of univariate functions and a multivariate

function, which is also knows as a copula function. The univariate functions control the
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shape of the marginal distributions and the copula function captures the dependency

among the random variables. In this paradigm, a multivariate distribution is estimated

by fitting a set of univariate marginal distributions and a copula function to data. The

main obstacle in copula-based density estimation is the construction of copula function.

While there are several bivariate copula functions in the literature [39], the number of

copula functions for higher dimension barely exceeds a handful of functions.

In this thesis, we first introduces two multivariate copula functions and demonstrate

their effectiveness on density estimation and classification tasks. Second, we propose a

non-linear feature transformation to reduce the distributional mismatch between training

and test utterances, and demonstrate its effectiveness on a couple of challenging automatic

speech recognition tasks such as Aurora 4 [73] and CHIME 4 [92].

1.1 Contributions of the thesis

Mixture of Gaussian copula with Toeplitz structure

In Chapter 3, we investigate a popular copula model – the Gaussian copula model – for

high dimensional settings. The standard Gaussian copula functions require estimation of

a full correlation matrix, which can cause data scarcity in some settings. One approach to

address this problem is to impose constraints on the parameter space. We present Toeplitz

correlation structures to reduce the number of Gaussian Copula parameters. To increase

the flexibility of our model, we also introduce mixtures of Toeplitz Gaussian Copula as a

natural extension of the Gaussian Copula model.

Gaussian mixture model with marginal modification

We also propose a computationally simple method in Chapter 3 to modify the marginal

distributions for the conventional density estimators, in particular a previously estimated

GMM. This is particularly useful when the GMMs are estimated as a component of a

larger model such as a hidden Markov model (HMM).

In addition, we propose a simple generative classification model based on the copula
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model that takes advantage of the accuracy of the nonparametric univariate density esti-

mator and the multivariate dependencies captured in the Gaussian mixture model, thus

alleviating the aforementioned limitations.

Investigation of proposed copula functions on density estimation and clas-

sification

Through empirical evaluation of likelihood on held-out data, we study the trade-off be-

tween correlation constraints and mixture flexibility, and report results on the Wine data

set from the UCI Repository as well as our corpus of Monkeys’ vocalization, recorded at the

Oregon National Primate Research Center with the goal of developing automatic methods

for recognizing social behaviors of individuals. We find that the mixture of Gaussian Cop-

ula with Toeplitz correlation structure and GMM with marginal modification model the

data consistently better than Gaussian mixture models with equivalent number of param-

eters. We compare the performance of our generative classifier with previous classification

benchmarks from the UCI repository and show that for the same number of parameters

the proposed models consistently outperforms Gaussian mixture models. We find that

these generative models perform as well or better than Support Vector Machines (SVM).

We also apply the generative classifier to track natural behavior of animals in captivity

using continous audio recording, which is often corrupted by unpredictable background

noise. This application highlights how the copula model can be used in an application

where deployment is likely to encounter noise types that can never be fully represented in

a training set.

Robust speech recognition using multivariate copula models

In Chapter 4, we address the mismatch between training and testing distributions which

significantly degrades the performance of ASR systems. In this work, we formulate the

mismatch in term of the difference between distributions of training and test data, and

propose a transformation to make test data similar to training data. Proposed copula

based methods provide a generalization to Gaussianization and histogram based approach.

While the others are ad hoc, our methods are theoretically motivated. We prove that if the
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distributions are modeled using a Gaussian copula model, then there is an analytic form

for the transformation. More precisely, we estimate the distribution of feature vectors for

each utterance and the entire training data set using the Gaussian Copula Model (GCM).

We then find a nonlinear transformation for any utterance in training and testing sets

to match the distribution of utterances with the distribution of the entire training data.

Furthermore, we formulate the copula-based transformation as a parametric model and

integrate it into GMM-HMM acoustic model. We also propose a new method to jointly

learn the copula-based transformation and the acoustic model.

1.2 Thesis Overview

Chapter 2 starts with an introduction to the copula model and different multivariate copula

functions. Then, we propose two computationally simple approaches to built multivariate

copula functions in Chapter 3. Finally, we evaluate these approaches in different density

estimation and classification tasks. In chapter 4, we propose two simple methods to address

the mismatch between training and testing conditions, which is a major bottleneck in

everyday applications of ASR systems. First, we introduce a simple copula-based feature

enhancement method independent of the ASR backend. Later in this chapter, we show

that this enhancement can be further optimized by integrating it into the acoustic model.

For evaluation, we use large vocabulary speech recognition tasks on Aurora 4 and Chime4.

Chapter 5 gives the conclusions and future work.
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Related Work
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2.1 Copula Model In A Nutshell

Multivariate density estimation is a crucial task especially in generative models as needed

in many practical tasks, such as anomaly detection and classification in machine learn-

ing [63], analysis of highway bridge traffic loading in civil engineering [23], risk management

in finance [64], analysis of drought in climate research [24], etc. Conventional density es-

timation methods, such as mixture models and kernel-based methods, typically assume

a single parametric form for a joint density function. And the choice of joint density

function automatically dictates a specific form for marginal distributions, which is often

too simple to capture the marginal distributions for practical applications. However, the

marginal distribution of each variable can be estimated more efficiently using non paramet-

ric approaches such as kernel density estimation [84]. A common problem in conventional

techniques is that there is no flexibility in choosing the form of the marginal distributions

even when such a misfit is known a priori. Except for the mathematical convenience, there

is no widely accepted reason to couple joint density functions and marginal distributions

in the literature. The problem can be overcome by decoupling the choice of marginal dis-

tributions from joint density function. Sklar’s theorem provides the necessary theoretical

foundation to decouple these choices [85].

Sklar’s theorem states that any continuous Cumulative Distribution Function (CDF)

F (x) can be uniquely written in terms of a copula function C(u) and a set of univariate

marginal CDF {Fi(xi)}ni=1 as follows:

F (x1, x2, . . . , xn) = C(F1(x1), F2(x2), ..., F2(xn)) (2.1)

where F (x) is an n-dimensional CDF and C(u) is a special function known as a cop-

ula CDF in which the domain of u is bound to the unit hypercube [0, 1]n. If F (x) is

differentiable, the Probability Density Function (PDF) f(x) can be computed by taking

derivatives of Equation (2.1) with respect to x as follows :

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂x1 · · · ∂xn
(2.2)
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where x = [x1, x2, . . . , xn]T . By applying the chain rule of calculus to Equation (2.2):

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) · · · ∂Fn(xn)

×Πn
i=1

dFxi(xi)

dxi

= c(F1(x1), F2(x2), . . . , Fn(n))Πn
i=1fi(xi) (2.3)

where {fi(xi)}ni=1 are univariate marginal PDFs of f(x) and c(u) is the copula PDF.

Equation (2.3) shows that any continuous PDF can be factorized into the product of a set

of univariate marginal PDFs and a copula function. The role of the copula function is to

bind the marginal distributions and shapes the dependency structure among the random

variables for a multivariate distribution. That also shows why the name ‘copula’, which

means link in Latin, is a descriptive term for this function.

From a generative perspective, Equation (2.3) indicates that any continuous PDF can

be constructed by choosing a copula function and a set of marginal distributions. Fur-

thermore, the choice of copula function can be independent of the marginal distribution.

In Figure 2.1, we generate two toy distributions by choosing similar marginal distribu-

tions and different copula functions and in Figure 2.2: (a) and (b), we show two different

distributions with the same copula function while their univariate marginal distributions

are different.

Equation (2.3) also provides a framework for estimating multivariate distributions.

Instead of estimating the PDF using a single function, we can estimate the PDF by

estimating univariate marginal distributions and copula function. We choose proper para-

metric forms for univariate marginal CDFs and copula function. Then, we optimize the

log likelihood function with respect to all of the parameters. There are several well-known

two dimensional Copula function [39] but constructing an appropriate multivariate copula

function is still a challenging task.

2.2 Multivariate Copula Models

Generally, the construction of multivariate copula functions can be categorized into three

different classes : Archimedean, Vine and Gaussian Models [72].
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Figure 2.1: (a) and (b) are two different distributions generated by (c) and (d) copula
functions respectively. As depicted, the marginal distributions of (a) and (b) along each
axis are similar. Histogram along each axis represents an estimation of the marginal dis-
tribution along that axis. As depicted, copula distributions always have Uniform marginal
distributions.
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Figure 2.2: (a) and (b) have been generated by different marginals and a single copula
density in (c). As depicted, copula distribution always has Uniform marginal distributions.
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2.2.1 Archimedean Copula

Perhaps the most common class is Archimedean copula [72], which is defined as:

c(u; θ) = ϕ(ϕ−1(u1; θ) + . . .+ ϕ−1(un; θ); θ) (2.4)

where ϕ is a generator function. There are multiples ways to define a generator function.

Gumbel–Hougaard, Mardia–Takahasi–Clayton and Frank families are some of well-known

Archimedean generators. See [72] for details. The major drawback of the Archimedean

copula is that generator functions typically have one free parameter, regardless of dimen-

sion, which limits their applications for high dimensional problems. However, there has

been some progress on increasing the number of free parameters of generator functions in

Archimedean copula but they are computationally expensive to estimate [46].

2.2.2 Vine Copula

Pair-copula construction, also known as vine copula, is another approach to construct

multivariate copula function. The idea is to use graphical models to decompose multi-

variate copula function into a set of bivariate copula functions. A tree average copula

function [50] uses a tree structure graphical model for random variables. This method

shows that a multivariate copula function can be factorized into several bivariate copula

functions. More precisely, let T = (X , E) be an undirected graph model with a tree struc-

ture. Each element in the node set X is a random variable and E is a set of pairs that

encodes local dependencies in the graph T . Its corresponding joint density can be written:

f(X) =
n∏
i=1

fi(xi)
∏

(i,j)∈E

fi,j(xi, xj)

fi(xi)fj(xj)
(2.5)

where fi,j(xi, xj) is the bivariate density function between xi and xj . Then we rewrite the

bivariate density function based on the Copula model using Equation (2.3) giving:

fi,j(xi, xj) = ci,j(Fi(xi), Fj(xj))fi(xi)fj(xj) (2.6)

where ci,j(·, ·) is the bivariate Copula density function between xi and xj . The Copula

function for a tree-structured density can be computed by combining Equations (2.5) and
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(2.6) :

cE(F1(x1), F2(x2), . . . , Fn(xn)) =
∏

(i,j)∈E

ci,j(Fi(xi), Fj(xj)) (2.7)

Equation (2.7) shows that a n-dimensional Copula density function cT (·) can be fac-

torized into the bivariate Copula density functions by imposing a tree structure over

the n-dimensional destiny function. Equation (2.7) also makes the construction of the

n-dimensional Copula density function trackable because there are several well-studied

bivariate Copula density functions available to choose from. However, the assumption of

the tree structure is too restrictive for real data sets and it does not have the flexibility to

model complicated density functions accurately. Bayesian mixture of all possible spanning

trees has been proposed to alleviate this limitation. It uses a prior distribution over all

possible spanning trees for a graph with n nodes, as shown in Equation (2.8).

P (E|β) =
1

Z

∏
(i,j)∈E

βi,j (2.8)

where Z =
∑
E

[∏
(i,j)∈E βi,j)

]
and β is a edge weight matrix. The average of all the tree-

structured Copula density functions cavg(a;β) is still a valid Copula density function and

can be obtained by combining Equations (2.7) and (2.8) as shown in Equation (2.9).

cavg(U ;β) ≡
∑
E
P (E|β)cE(U)

=
∑
E

[ 1

Z

∏
(i,j)∈E

βi,jci,j(ui, uj)
]

(2.9)

In this case, the estimation of the Copula model parameters requires a computationally

expensive iterative method based on the expectation maximization algorithm.

Copula Bayesian Networks is another method for constructing the multivariate Copula

function [31]. It uses the Bayesian Network (BN) to factorize the Copula density function

into smaller Copula functions. The BN is a directed acyclic graphical model G = (X , E)

that represents a joint density where X is a set of nodes and E is a set of directed edges

between two nodes. Using the graph, a joint density f(X) with n random variables can

be factorized into a product of simpler conditional density functions f(·|·) that have fewer



13

variables than n:

fG(X) =

n∏
i=1

f(xi|pa(xi)) (2.10)

where pa(xi) is a subset of X . The node xj is in pa(xi) if there is a directed edge in E from

xj to xi. The main contribution of Copula BN is to rewrite the conditional density based

on the Copula model. Consider the simplest case of a conditional probability density where

pa(x) consists of just one random variable y. By using Equation (2.3), the conditional

probability density is

f(x|y) =
f(x, y)

f(y)
=
c(Fx(x), Fy(y))fx(x)fy(y)

fy(y)
= c(Fx(x), Fy(y))fx(x) (2.11)

Equation (2.11) shows that the conditional probability density for a node with just one

parent can be written based on the Copula model. The conditional probability density

for a node with more than one parent has the following from:

p(x|Y) =
c(Fx(x), Fy1(y1), . . . , Fym(ym))

∂mC(1,Fy1 (y1),...,Fym (ym))

∂Fy1 (y1),...,Fym (ym)

fx(x) (2.12)

≡ R(Fx(x), Fy1(y1), . . . , Fym(ym))fx(x)

= R(Fx(x), FY(Y))fx(x) (2.13)

where C is a cumulative Copula function and R(·) is the ratio of two Copula densities.

The computation of the denominator in Equation (2.13) is as easy as the computation of

a standard Copula density function. Combining Equations (2.3) , (2.10) and (2.13) gives:

c(F1(x1), F2(x2), . . . , Fm(xm)) =

Πn
i=1Ri(Fi(xi), Fpa(xi)(pa(xi))) (2.14)

where Ri is the ratio term of the i-th conditional density in Equation (2.14). Since the

number of random variables in each conditional density is limited, the computation of the

ratio term Ri is easy. Equation (2.13) provides a way to define a parametric model for high

dimensional Copula density function. Copula BN uses a Bayesian information criterion
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and greedy forward search to find the best model and its parameters. This method is

computationally expensive since the method involves solving a structure learning problem.

As a less expensive alternative, we investigate Gaussian copula, which has a natural

extension for high dimensional domain. In certain applications, such as estimating the

multivariate Gaussian copula distribution for a speech utterance at test time, the available

data may be insufficient for robust estimation of all the parameters of the model. For such

cases, we introduce a version of the Gaussian copula with constrained parameterization.

2.2.3 Gaussian Copula

2.2.3.1 Definition

Gaussian Copula density is the most well-known multivariate Copula function and it can

be obtained by applying the method of inversion to standard multivariate Gaussian [90].

The combination of Gaussian Copula with arbitrary univariate marginal distributions

can represent more complicated densities such as non-elliptical and heavy-tailed densi-

ties. Multivariate Gaussian density can be written in a form that separates the marginal

from the copula function. Using this decomposition, the derivation below shows how the

Gaussian copula can be derived from the Gaussian density.

Definition 1 An n-dimensional Gaussian density g with the mean vector µ, and the co-

variance matrix Σ has the following parametric form:

g(X) =
1

(2π)
n
2 |Σ| 12

| exp{−1

2
(X − µ)TΣ−1(X − µ)} (2.15)

where T stands for the transpose. The covariance matrix Σ can be rewritten as:

Σ = DRD (2.16)
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where R is the correlation matrix1, and D is the diagonal matrix of Standard Deviations

(SD):

D =


σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σn

 (2.17)

where σi is the SD of xi. By plugging Equation (2.16) into Equation (2.15) :

g(X) =
1

(2π)
n
2 |R| 12 ∏n

i=1 σi
exp{−1

2
UTR−1U} (2.18)

where U = [u1, . . . , un]T , ui = xi−µi
σi

. Equation (2.18) can be rewritten as :

g(X) =
[ 1

(2π)
n
2
∏n
i=1 σi

exp{−1

2
UTU}

][ 1

|R| 12
exp{−1

2
UT (R−1 − I)U}

]
≡ gm(U)gc(U)

where gm(Y ) is :

gm(U) =
1

(2π)
n
2
∏n
i=1 σi

exp{−1

2
UTU} (2.19)

and gc(Y ) is :

gc(U) =
1

|R| 12
exp{−1

2
UT (R−1 − I)U} (2.20)

By substituting yi = xi−µi
σi

into Equation (2.19), gm(Y ) can be rewritten as the product

of the marginal densities of g :

gm(U) =
n∏
i=1

1

σi
√

2π
exp{−1

2
(
xi − µi
σi

)2}

=

n∏
i=1

gi(xi;µi, σi) (2.21)

1Rij =
cov(xi,xj)√
var(xi)var(xj)

is the correlation between xi and xj
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where gi is the marginal distribution of xi. The variable ui can be rewritten in terms of

the MDF:

Gi(xi) =

∫ xi

−∞

1

σi
√

2π
exp{−1

2
(
t− µi
σi

)2}dt

=

∫ xi−µi
σi

−∞

1√
2π

exp{−1

2
t2}dt

=

∫ yi

−∞

1√
2π

exp{−1

2
t2}dt = Φ(ui) (2.22)

where Φ is the cumulative distribution function of the standard normal distribution. By

substituting ui = Φ−1(Gi(xi)) into Equation (2.20), gc(U) can be written as :

gc(U) = gc(Φ
−1(G1(x1)),Φ−1(G2(x2)), . . . ,Φ−1(Gn(xn))) ≡ cgauss(U ;R) (2.23)

where Φ−1 is the quantile function of standard normal distribution. By substituting

Equation (2.21) and (2.23) into Equation (2.17):

g(X) = cgauss(U ;R)
n∏
i=1

gi(xi;µi, σi) (2.24)

Equation (2.24) shows that an n-dimensional Gaussian density g can be factorized into

the product of its marginal, and another term cgauss(U ;R). Based on Equation (2.3),

cgauss(U ;R) provides us a valid parametric form of the Copula density function. Since it

is derived from the Gaussian distribution, it is called Gaussian Copula density.

In the general case, the marginal densities do not need to be Gaussian. The Gaussian

Copula model can be constructed by substituting the Gaussian Copula density function

into Equation (2.3):

f(X;R,Λ) = cgauss(U ;R)
n∏
i=1

fi(xi;λi) (2.25)

Lemma 1 The main difference between the Gaussian Copula model in Equation (2.25),

and standard Gaussian distribution is that the marginal density functions in the Gaussian

distribution are necessarily Gaussian while the marginal density functions of the Gaussian

Copula model can by any continuous density and this capability makes the Gaussian Copula

model more flexible than the Gaussian distribution.
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2.2.3.2 Estimation

There are three methods to estimate the parameters of the Gaussian Copula model: Full

Maximum Likelihood (FML), sequential 2-Step Maximum Likelihood (TSML) and Gen-

eralized Method of Moments [90]. Since the TSML is more straightforward, we adopt

this approach in this thesis. It consists of two steps. The first step is to estimate the

marginal (univariate) cumulative functions {F̂i(·)}ni=1 using nonparametric kernel density

estimation and map all data points into a new space, the Copula space.

U = [Φ−1(F̂1(x1)), . . . ,Φ−1(F̂1(xn))] (2.26)

The second step is estimating the parameter of the Gaussian Copula density function R.

The correlation matrix R can be computed using maximum likelihood in Copula space.

R̂ = argmax
R

n∑
i=1

[
− log|R| − UTi (R−1 − I)Ui

]
(2.27)

where n is the number of data points. Equation (2.27) has a closed-from solution.

R̂ =
1

n

n∑
i=1

UiU
T
i (2.28)

The full correlation matrix has O(n2) parameters and not appropriate when n is large

or for moderate-size data set. Liu et el. [62] address this problem by adding an L1 sparsity

constraint to equation (2.27). Zezula [96] alsoproposes two special structures for correla-

tion matrices to reduce the number of parameters. He uses uniform and serial correlation

structures and estimates their parameters based on the Kendall rank correlation coeffi-

cient [49]. The uniform structure assumes that all entries in correlation matrix are equal

(Rij = ρ) while in serial correlation matrix, the entries are Rij = ρ|i−j|. Sample cor-

relation estimator is the most common method to compute the correlation coefficient ρ

but this estimator is not invariant through the transformation in Equation (2.26). The

Kendall method is a rank-based method for estimating the correlation parameter and it

is not sensitive to the strictly increasing transformation like in Equation (2.26). This

property makes this method useful for the Copula model. Since these structures both

have only one free parameter to estimate, they have poor representational power to model
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real data. Toeplitz structure is a common way to increase the degree of freedom in a

correlation matrix while keeping the number of free parameters limited. In this thesis, we

use the Toeplitz structure as an extension to Zezula’s work and show its combination with

a mixture model can provide a richer Copula model.



Chapter 3

Grafted GMM copula and its applications

in density estimation and classification
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As mentioned in the previous chapter, Gaussian copula model provides a powerful model

for estimating mutivariare densities. However, similar to the conventional Gaussian model,

this model also has a limited ability to model multi-modal distributions due to the struc-

ture of the correlation matrix and the high number of free parameters. In this chapter, we

present two modifications to address these problems. We use Toeplitz correlation struc-

ture to reduce the number of Gaussian Copula parameters. We also introduce a mixture

of Gaussian Copula as a natural extension of the Gaussian Copula model to increase the

flexibility of our model.

3.1 Gaussian Copula with Toeplitz Correlation Structure

The covariance estimation is a challenging task specially when the matrix has a spe-

cial structure such as circular or Toeplitz. The conventional methods for estimating the

covariance matrix such as maximum likelihood, don’t have a good performance for high-

dimensional data [21]. Cai et al. [22] have shown that Toeplitz covariance matrix can be

approximated effectively for standard multivariate Gaussian distribution using tapering

and banding approaches. They also have proven a minmax risk of convergence for their

estimator.

In this section, we use tapering and banding approaches for estimating the correlation

matrix in Gaussian copula model when the correlation matrix R in (4.1) is a Toeplitz

matrix.The tapering method consists of three steps. First, the sample full correlation

matrix is computed as in Equation (2.27). The second step is to average across each

diagonal:

R̃m =
1

i− j
∑
i,j

R̂i,j m = i− j (3.1)

Finally, the entries that are far from the main diagonal are tapered with a function.
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Rtaper
i,j = a|i−j|R̃|i−j| (3.2)

ak =


1 for k ≤ P/2

2− 2k
n for n/2 < k ≤ P

0 otherwise

(3.3)

Where P ≤ n
2 . The banding version also can be computed from the tapered matrices as

shown below where I is the indicator function and K is the bandwidth of band.

RBand
i,j = Rtaper

i,j × I(|i− j| ≤ K) (3.4)

Through empirical evaluation, we found that the tapering method works better than the

banding method, so we use the tapering method in the rest of this chapter.

3.2 Mixture of Copula Model

Drawing parallels to the use of mixtures to improve the flexibility and the capacity of the

standard Gaussian models, we propose a similar extension, the Gaussian Mixture Copula.

Lemma 2 Since the Copula function is a valid density function, the convex mixture of

Copula functions is still a valid Copula density:

c(U) =

M∑
i=1

wicgauss(U ;Ri),

M∑
i=1

wi = 1 (3.5)

The parameters of the mixture model can be computed using EM algorithm. To train a

mixture model with M components, we use a heuristic strategy in which we first randomly

initialize 3M components. And after a few iterations of EM, we discard the M compo-

nents with the smallest weights. For each of the remaining 2M components, we compute

the average distance between this component and the other components. We use Frobe-

nius distance between correlation matrices to measure the pairwise distance between two

components. Then, we choose the component with highest average distance. We repeat

this process to select M components. Finally, we use these M component as initial points

and run a few iterations of EM to compute the ultimate mixture model.
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3.3 GMM with marginal modification

In practical applications, it is common to encounter datasets where some features are

bounded to a specific range, or have a heavy-tailed distributions such as log-normal and

Cauchy distributions. The conventional density estimation models, such as GMM, typ-

ically do not have any mechanism to adapt their marginal distributions to the data, so

there is a mismatch between the marginal distributions of data and the model for these

applications. In Figure 3.1, we illustrate this mismatch between marginal distributions

data and GMM for a typical bivariate dataset.
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Figure 3.1: Illustration of the difference between the marginal distributions of data (green
curves) and the marginal distributions of estimated GMMs (blue histograms) with (a) one
and (b) two component mixtures.

In this section, we propose a simple method based on copula model to address the

mismatch problem for GMMs. We decompose the estimated GMM into its marginals

and copula function. Assuming that the copula function fully captures the multivariate

interaction, we replace the marginals with that from the target domain. The intuition is

that the marginals are univariate and can be estimated reliably with very little data from

the new domain.

According to the copula model in Equation (2.3), any joint distribution, including

GMM, can be factored into a copula function c(·) and a set of marginals {fj(xj)} as

follows:
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log

M∑
i=1

wiN(x;µi,Σi) = log cgm(u1, u2, ..., un)

+

n∑
j=1

log fj(xj) (3.6)

where uj is j-th cumulative cumulative function Fj(xj). In GMM, each univariate marginal

density function fj(xj) can be computed by integrating out x \ xj as: Σi
jj , respectively:

fj(xj) =

M∑
i=1

wiN(xj ;µ
i
j ,Σ

i
jj)

where µij is the j-th component of the i-th mean vector µi, and Σi
jj is the j-th diagonal

entry of the i-th covariance matrix Σi. Since marginal density functions are closed-form,

the copula function also has an analytic form as follows:

log cgm(u1, . . . , un) = log

M∑
i=1

wiN(x;µi,Σi)

−
n∑
j=1

log

M∑
i=1

wiN(xj ;µ
i
j ,Σ

i
jj) (3.7)

Thus, the copula density can be computed easily from the estimated joint GMM by the

associated univariate marginal distributions. Now, we can easily construct a new joint

distribution with new univariate marginals uj = F̂j(xj) as follows:

log fnew(x) = log cgm(u1, u2, . . . , un) +
n∑
j=1

log f̂j(xj) (3.8)

Note that we estimate new marginal distributions separately using non-parametric density

estimation but they can also be obtained based on the prior knowledge. Figure 3.2 shows

the result of modifying the marginal distributions of GMM for the previous bivariate

dataset. We use the true marginal synthetic distributions for this example since we know

them a priori. Clearly, the resultant distributions are significantly better than GMMs.

The implementation of this method is simple but tricky. To evaluate the log likelihood

function at a given point, we first map each feature x to a value of u in the unit interval

[0, 1] using new cumulative distribution F̂ (x). Next, we transform u using the inverse of

marginal cumulative function of GMM xtest = F−1(u). In theory, the value of xtest can
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Figure 3.2: Bivariate joint densities for GMMs with marginal modifications. The GMMs
have (a) one and (b) two component.

be any value in (−∞,∞) . To avoid numerical instability in practice, we truncate the

value of u at 0.05 and 0.95. We then plug xtest = [xtest1 , . . . , xtestn ] in to the Equation 3.7 to

compute the copula function. Finally, we add the log likelihood of the copula function and

marginal distributions, according to Equation 3.8, to compute the log likelihood function.

This computationally simple approach provides a framework to improve the performance

of already trained GMM by combining the dependencies modeled in the copula function

of the GMM with the more accurate estimation of marginal distributions.

3.3.1 Experimental results on UCI databases

In this section, we compare the performance of the proposed methods with two other

models – Naive non-parametric estimator and Gaussian mixture models. We evaluate the

models in terms of average log likelihood over many held-out sets, which is a standard

practice for comparing models for density estimation [82]. The naive models assumes the

variables are independent, and hence the joint probability is the product of the marginal

density functions :

f̂(X) =
M∏
j=1

f̂j(xj) (3.9)

We use Gaussian KDE to estimate univariate marginal densities as follows :

f̂(x) =
1

Nh

N∑
i=1

k(
x− xi
h

) (3.10)
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to obtain the x that is used for the evaluation of copula density function.

where k is the Gaussian kernel and h is its bandwidth. The bandwidth can be computed

based on the empirical standard deviation σ̂ [84]:

h =
(4σ̂5

3N

)0.2
(3.11)

3.3.1.1 Density estimation on Wine Quality Data Set

In this section, we evaluate the performance of the proposed methods on mutivariare

density estimation task. We use the red wine data set [28], which is comprised of 1599

samples. Each sample has 11 attributes relevant for predicting the quality of wine. This

data is a good representative of many practical applications where marginal distributions

differ considerably across feature components. Figure 3.4 shows two marginal densities
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for the wine data set. As shown in the figure, the marginal distributions are multimodal

and bounded. Clearly, models, such as GMMs with a finite number of components, are

not well-suited for this data.
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Figure 3.4: Two marginal distributions of Wine data set

Now, we randomly split the data set into two equal sets and use one as a training set

and the other one as a test set. We repeat this experiment 100 times. This approach has

been used previously in the literature to evaluate the performance of density estimation

methods [31]. In Figure 3.5, we compare the performance of mixture of Gaussian copula,

GMM with modified marginals and standard GMM with different configurations. We use

the averaged log likelihood over test set as the performance metric.

The results show that the marginal modification noticeably improves the performance

of the GMM, which also justifies that the marginal distributions of data are far from the

Gaussian assumption. However, the standard deviation of GMMs with modified marginal

distributions are slightly higher than the standard GMMs. Mixture of copula with Toeplitz

correlation matrix and diagonal GMM with marginal modification have O(n) parameters.

Note, both of them fit the data significantly better than the GMM with diagonal covariance

matrix, which has same number of parameters.

3.3.1.2 Classification task

As mentioned earlier, one common application of density estimation methods is to build

generative classifiers. To construct a generative classifier, we estimate the class-conditional

distribution of each class p(x|c) independently. Then, we compute the posterior probability
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Figure 3.5: Averaged log-likelihood on the Wine data set.

of each class using Bayes rule as follows :

p(c|x) ∝ p(x|c)× p(c) (3.12)

where the prior p(c) is the proportion of class c in the training data. Finally, we use the

maximum of the posterior probabilities to assign a class label to an input.

In this section, we utilize our proposed density estimators, including mixture of cop-

ula and GMM with modified marginal distributions, to approximate class-conditional

distributions for the classification task. We compare the resultant classifiers with naive

non-parametric classifier, Gaussian mixture classifier, support vector machine and Copula

Network Classifiers [32].

The naive classifier assumes that the variables for each class-conditional density are
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independent and hence the joint probability is simply the product of the marginals. In

the case of naive non-parametric model, the univariate marginal densities are modeled

by Gaussian kernel density estimation. The bandwidth of the Gaussian kernel h was set

using the empirical standard deviation σ̂.

In Gaussian mixture classifier, the class-conditional densities were modeled using

GMMs with full or diagonal covariances. The parameters of the GMMs were estimated

by EM algorithm. The number of components were set using Akaike information criterion

(AIC), measured on the training set [2].

For the support vector machine, we used scikit-learn toolkit to obtain SVM clas-

sifers [76] with radial and polynomial kernel functions. The optimal parameters of the

SVMs were set using a grid search on a 5-Fold cross validation over training set.

The performance of the classifiers were evaluated using classification accuracy on 5-

fold cross validation. In addition, we use one-against-one strategy to construct classifiers

with more than two classes. Table 3.1 shows the results of different methods on 4 data

sets from the UCI repository [11]– Red Wine, Pima, Magic and Glass. For the Wine

Table 3.1: Average classification accuracy on 4 UCI classification tasks with their standard
deviations, where † denotes use of Ledoit-Wolf method for estimating covariances and ∗

denotes [max:min]. Note, one class of Glass data does not have enough samples for fitting
GMM.

Method Wine Glass Pima Magic

non-Param 57.0(3.3) 92.2(4.4) 76.0(4.0) 75.7(0.3)
GMM+Diag 53.3(4.3) 91.2 (5.9)† 74.9(3.0) 79.3(0.8)
GMM+Full 53.3(4.7) NA 74.5(2.4) 84.5(0.6)
SVM+Poly 57.1(3.1) 78.7(6.5) 75.3(1.8) 82.3(0.6)
SVM+RBF 62.0(2.0) 91.7(3.9) 77.1(2.8) 85.0(0.5)
CNC [32] 59[56:61]∗ 70[52:86]∗ 76[73:79]∗ 81[80:82]∗

mixture of copula 61.3(1.9) 90.1(3.1) 76.9(3.2) 87.0(0.8)
best GMM+marginal modification 58.7(1.4) 94.4(3.6) 77.3(3.7) 85.8(0.6)

data set, as reported in Table 3.1, the non-parametric naive classifier performs better than

GMMs with diagonal or full covariance matrices. The proposed mixture of Gaussian model

significantly outperforms all the classifiers except for SVMs with radial basis function.

But, the performance gain of SVM is not statistically significant. For the Glass data set,
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since the number of samples for some classes is insufficient to estimate the covariance

robustly, we use GMM with one component and use Ledoit-Wolf method [56] to estimate

the GMM with modified marginal distributions. This outperforms all the other classifiers

significantly. In the case of the Pima task, as reported in forth column of Table 3.1, the

performance of GMM with modified marginal distributions method is comparable to the

performance of the SVMs, and significantly better than others. For the Magic task, the

results show that the GMMs outperform non-parametric naive classifier, implying that

the effect of dependencies is more important than the marginals. The interesting point

is that the combination of non-parametric marginal (naive) and the GMM, through the

GMM with marginal modification, performs better than each one by itself. For this task,

the mixture of copula is siginificaly better than others.

In the next experiment, we evaluate the performance of the proposed methods on

diagnosing Parkinson’s disease using the Parkinson Speech Dataset [79]. The goal is to

classify healthy individuals from PD patients using speech related features extracted from

their voice samples. This dataset consists of multiple samples for 40 subjects where 20

are healthy and 20 are PD patients. The results in Table 3.2 are average classification

accuracies for the leave-one-subject-out cross-validation and show that our GMM with

marginal modification outperforms significantly the K-Nearest Neighbor (KNN) and SVM

with linear and radial basis functions.

Table 3.2: Average classification accuracy on Parkinson Speech Dataset

KNN-7 SVM-lin SVM-rbf GMM
GMM with

marginal modification
mixture of

copula
57.5 52.5 55 57.5 67.5 62.5

3.4 Experiments on OHSU Monkeys’ vocalization corpus

This section describes the application of the copula models for classifying vocalizations

from rhesus macaques that was collected at OHSU’s Oregon Primate Research Center.

This task has large amounts of background noise and we wish to study and evalute the

robustness of copula model.
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3.4.1 Motivation for the Task

Current approaches for observing the animal behaviors completely depend on human ob-

servation. A highly trained observer watches the animals in the group and records the

occurrence or duration of the behaviors listed on an ethogram (a set of behaviors with

their quantitative descriptions) [3]. There is a wide range of behaviors such as aggression,

displacement, fear grimace, lipsmack, scream, grunting etc. that can be used in studies

of social behaviors [65]. Human observation has two major limitations: First, feasible

ethograms are limited to a small subset of behaviors since the rate of analyzing the data

and its accuracies drop when an observer annotates more behaviors. Second, it is impos-

sible to annotate all behaviors of every animal in a group in a single pass. In practice,

the observer is forced to go through the data multiple times and in each pass, annotate

a specific behavior of all animals or a particular individuals’ activities. In addition, the

behaviors with auditory modality, such as barking, cooing and grunting, are difficult and

time consuming for human observers to annotate.

Having an automated method for observing and modeling the social activities could

lead to a better understanding of behaviors of social animals and open up new directions

for researchers in behavioral ecology, anthropology, evolutionary psychology, conservation

biology, and neuroscience.

3.5 The Corpus of Rhesus Macaque Vocalizations

Our corpus consists of audio and video recordings of social behaviors of groups of rhesus

macaques. The study and the data collection was approved by OHSU’s Institutional

Animal Care and Use Committee. Groups of 4-6 animals were formed, introduced into

the pen, which is about 12 ft long, 7 ft deep and 7 ft tall as shown in Figure 3.6, and

observed over a period of about 2 months. We recorded behavior as the group settled

into their stable social hierarchy. After approximately two weeks, we perturbed the social

hierarchy of the groups using standard procedures such as presence of an unfamiliar human

(outside the cage), and introduction of toys and desirable food. The observations were

performed to minimize the disruption of animal care and husbandry. This meant swapping
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Figure 3.6: A group of monkeys in a Pen.

the spent audio recorder, housed in their collars, with a fully charged one on a specified

day of the week. The recordings were performed till about 7pm on the same day and

between about 7am and about 7pm the subsequent day, corresponding to the hours when

the lights remained on. In all, 80 such sessions were recorded from 5 different groups.

Video recordings were captured by three cameras mounted on three different corners

of the pen and one fisheye-lens camera mounted on the ceiling. All four cameras were

fully synchronized in the frame level and their frame rate was controlled by an external

trigger to be exactly 12 fps. The mounting locations of cameras were carefully chosen to

support 3D reconstruction of the observation sessions and maximize the coverage of the

visible space in the cage.

Audio was recorded using tiny recorders, EDIC B21, which is about 40 x 15 x 10 mm

in dimension, 8g in weight, and has a battery life of 2-3 days. These recorders were placed

in a custom housing that was attached to a standard collar, as shown in Figure 3.7. Each
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Figure 3.7: Tiny low-power audio recorder along with its housing that attaches to the
monkey’s collar

recorder was programed to record 12 hours at 8 kHz sampling rate for each session. Unlike

the video recordings, the audio recordings could not be synchronized via hardware or other

means. Our calibration attempts using chirp signals show that the asynchrony is erratic

and not easily predictable such as a constant offset or a linear drift. In all, we have about

3800 hours of audio recordings.

3.5.1 Challenges

There are several challenges in processing the above mentioned audio recordings and this

section addresses them.

1. High background noise: Monkeys move about such that their collars hit the walls

and metal mesh of the pen. In addition, the recordings also contain the conversations

of human caretakers.
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2. Multiple speakers: Even though each monkey has a separate collar-mounted recorder,

the recordings contain vocalizations from its neighbors. So, attributing which mon-

key spoke when is non-trivial.

3. Sample dropout: The recorders appear to lose sample randomly over the course of

the long 12 hour recording sessions. This is similar to the problem that occurs in

unreliable low-power sensor networks and complicates the problem of aligning the

recordings which is necessary for identifying which monkey vocalized when.

4. Length of recordings: The sessions are about 12 hours long, which makes it infeasible

to apply conventional solutions such as dynamic programming to align waveforms.

Given the amounts of data, the first step was clearly eliminating the segments with

very low probability of vocalizations. From listening to several random examples and

from preliminary experiments, simple methods based on energy or spectral entropy were

confounded by large amounts of background noise. So, before we could eliminate segments

without vocalization, we had to improve the signal to noise ratio. After enhancing the

signal and removing unvocalized segments, we were able to achieve high accuracies in

detecting vocalizations using a supervised classifier fairly easily. In contrast, without the

signal enhancement, the supervised classifier was unusable. Having identified the vocalized

segments, we aligned the recordings by just focusing on these segments containing high

signal-to-noise ratio. This improved the quality of alignment compared to aligning with

portions that included background noise without vocalizations. Below, we describe each

of the steps in more detail.

3.5.2 Filtering Stationary Background Noise

The pen housing used for collecting the corpus is part of a bigger laboratory, which was not

designed for high quality audio recordings. The infrastructure including ventilation and

lighting introduced a significant amount of background noise. The walls are acoustically

reflective and not dampened in any way, causing significant reverberations.

The recordings contain two sources of additive noise – a significant amount of back-

ground noise that was largely constant in nature, on top of which there were bursts of
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metallic clangs from different distances. Knowing that the first component is a good

candidate for signal enhancement techniques, we applied noise spectral subtraction.

Noise spectral subtraction is a simple and computationally efficient method for reduc-

ing the background noise and enhancing the audio. It is a nonparametric method and has

two major steps. The first and the more important step is to estimate the background

noise. The more sophisticated techniques locate a segment in the recording which contains

only noise. Simpler approaches typically assume the initial few milliseconds are noise and

estimate the background from it. We were interested in quickly characterizing the poten-

tial benefit of this simple technique, so we resorted to the implementation in Audacity [67],

where the user needs to manually choose an appropriate segment containing noise, from

which a noise profile is created. The noise profile simply consists of a set of statistics like

maximum for each frequency bin in Discrete Fourier transform (DFT) computed across all

the frame of noise segment. The second step uses the noise profile to attenuate the power

spectrum of the parts of signal that are similar to the noise and leave the rest unchanged.

Finally frequency-smoothing and time-smoothing are applied to produce a natural sound

and prevent rapid changes in the gain of the output signal.

This simple approach was remarkably effective. After signal enhancement with spectral

subtraction, it was relatively easy to filter out unwanted segments which contained only

silence or background noise and no vocalizations. This was useful in reducing the size of

the data significantly. Energy-based segmentation is simple and computationally efficient

method for removing such segments. All segments below -35 db were removed. This

reduced the corpus by a factor of 10 and made it feasible to process the data using the

next few steps.

3.5.3 The Task of Detecting Vocalizations

The candidate segments extracted from the previous step contains three types of audio –

vocalizations from monkeys, bursty noises such as metal clangs, and human conversations.

Human interference is unavoidable in the standard animal laboratory setting since animal

husbandry requires mandatory routine checks, multiple times a day, by the staff to feed

and monitor them.
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Figure 3.8: Different types of monkey vocalizations

The difficulty in isolating the human conversations is that monkey vocalizations vary

largely depending on the type (e.g., grunting, cooing, barking and screaming), as illus-

trated in Figure 3.8. We manually checked a 12-hour recording from one monkey and

carefully annotated all segments as belonging to the monkey and non-monkey. The data

set consists of 1147 segments where 625 of them are monkey vocalization segments.

For each segment, we extracted a fixed dimension feature vector using OpenSmile [34],

a standard feature extraction tool that extracts a rich set of features for each segment.

Briefly, the toolkit extracts features in two steps. First step is extraction of 25 msec long

frames using a Hanning window at a rate of 100 frames/sec and computation of frame-

level features such as root mean square, MFCCs, Zero-crossing rate, voicing probability,

F0 and their deltas. The second step is aggregating frame-level features into the segmental

feature vector by applying statistical functions such as mean, median, variance, minimum
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and maximum across all frame-level features of a segment. We extract about 400 features

for each segment. Then, we utilize principle component analysis to reduce the number of

dimensions to 17, which captures 90% of the variance.

In this section, we use our proposed methods to estimate the distribution of monkey

vocalization segments. Due to the insufficiency of data for GMM with full covariance, we

limit our experiments to the diagonal covariance. Similar to the previous experiments,

we randomly divide the data into training and test sets and use them for training and

evaluation. We repeat this experiment 100 times. Figure 3.9 shows the performance of

several methods in terms of log likelihood for the monkey vocalization data set. The results

demonstrate that the Toeplitz assumption for speech-like data is more natural where the

correlation between feature components tapers off naturally when the components are

further apart from each other. Thus, they provide nearly the same benefits as a full

correlation Copula model but with fewer parameters.
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Figure 3.9: Averaged log-likelihood on Monkeys’ vocalization data set.

For the classification task, we use our proposed methods to build generative classifiers
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for detecting monkey vocalizations. In this experiment, we compare our proposed classi-

fiers with K-nearest neighbor classifier, GMM-based classifier and SVMs. For the SVM,

we investigated two different types of kernel, namely, the radial and the polynomial basis

functions. The parameters of the classifiers were tuned using a grid search on a 5-Fold

cross validation over training set and evaluated over the held-out set. Results, reported

in Table 3.3, show that GMM with marginal modification works best for this task.

Table 3.3: The performance (accuracy) of different classifiers in detecting segments with
vocalization from the monkeys.

Method Ave. Accuracy Std. Accuracy

K-NN 80.3 3.6
GMM 86.5 2.1

SVM-poly 87.9 1.8
SVM-rbf 91.3 1.5

Mixture of copula 90.1 2.5
GMM with marginal modification 92.9 1.4

Table 3.4 shows the results of 5-fold cross-validated paired t-test between GMM with

modified marginal distributions and two other best classifiers, mixture of copula and SVM.

According to these results, our proposed method almost became significant.

3.6 Summary

In this chapter, we proposed two computationally simple methods to construct multivari-

ate copula functions: Mixture of Gaussian copula model with Toeplitz correlation structure

and GMM with modified marginal distributions. Both of these grafted GMM copulas in-

volves the estimation of a set of marginal distributions and a mixture model, which makes

them a more powerful alternative for GMMs. Note that the marginal modification method

Table 3.4: 5-fold cross-validated paired t-test between GMM with modified marginal dis-
tribution and two other best classifiers.

t-value p-value

SVM-rbf 1.82 0.08
Mixture of copula 2.48 0.04
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provides a simple way to adjust the marginal distributions of already trained GMMs with-

out retraining. These method can also be used to estimate the class-conditional densities in

generative classifications. The resulting class-conditional multivariate distributions form

better classifiers than their corresponding conditional GMM counterparts with the same

number of parameters. Our proposed models perform consistently better than GMMs

with different settings on different classification tasks. The performance of both models

are comparable to SVM in many cases, even though it is a generative model.
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4.1 Introduction

Generally, the mismatch between the training and testing conditions degrades the perfor-

mance of machine learning tasks, including ASR. The mismatch in ASR systems can be at

corpus, speaker or utterance level. The corpus-specific mismatch stems from factors that

differ from one dataset to another. For example, if the training and testing datasets have

been recorded by two microphones with different characteristics, the resulting mismatch

is a coarse-grained corpus level. The speaker-specific mismatch mainly originates from

acoustical differences that exist among different speakers. Factors such as speaking style,

vocal characteristics and accent are responsible for variations in speech that are unique

for each speaker. As an example, the conventional ASR systems trained by adult speakers

have a poor performance on kids’ speech mainly due to the mismatch between the acousti-

cal features of adults and kids. Mismatch can even occur at an utterance-level. This type

of mismatch is related to factors like background noise or reverberation distortion that

can vary from one utterance to another. In Figure 4.1, we plotted the distributions of the

first two MFCC features for an utterance from a speaker under different noise situations.

We also use convex hulls to represent feature space boundaries. The convex hull is the

smallest convex area that contains the data points and it provides a simple and effective

way to visualize the boundary of feature space variations. As Figure 4.1 shows, the shape

and location of the scatter plots of MFCC features change substantially under different

noise conditions, including in street, cafe, pedestrian and bus conditions.

Real-world applications require ASR systems to properly respond under diverse noisy

environments. In addition, the wide range of audio capture devices (e.g., smartphones and

tablets) with different channel characteristics highlight the challenges that ASR systems

might face in real applications. The aforementioned challenges in real-world applications

are reflected in input speech in forms of additive and convolutional noises. These varia-

tions, to some extent, can be modeled by ASR acoustic models. However, it is impractical

to collect training data that represents a wide range of background noises and reverbera-

tions.

DNNs are currently the most popular and effective models for acoustic modeling in
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Figure 4.1: Scatter plots and their corresponding convex hulls of the first two MFCC
features for a phrase uttered by a female speaker under four different noisy conditions:
street junction (STR), pedestrian area (PED), cafe (CAF) and bus (BUS).

ASR systems, after researchers displaced GMMs, which were popular for several decades

before then [45]. DNNs are particularly effective in large vocabulary tasks with large

amounts of training data. GMMs, on the other hand, are simpler and faster to train. As

such, they are still employed in small tasks with limited training data. Both these models

are capable of representing real-valued multivariate stochastic processes and have relatively

simple estimation algorithms for learning the optimal parameters for a recognition task

from labeled training data. With sufficient parameters, both GMMs and DNNs have

enough capacity to easily overfit the training data. Therefore, for good generalization, one

has to cautiously choose the optimal model size by empirically evaluating the performance

on a held-out data set. In practice, the learning process is effective if the model parameters

are learned on a training data that has a minimal mismatch with the testing data.

For GMMs and DNNs, features are computed from raw waveforms in terms of the

logarithm of the mel-warped frequencies, and mel-warped cepstral coefficients. These

features do not explicitly factor the observed signal into the additive and convolutional

components present in the input. Both these features have homomorphic properties where
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convolutional noise becomes additive but the additive noise interacts with the speech signal

in non-linear manner.

The strategies adopted to disentangle the additive and convolutional noises can be

broadly categorized into model-based and feature-based methods. Feature-based meth-

ods transform features into a new feature space representation such that the effect of

additive and convolutional noises are minimized while speech-related variations remain

unchanged [27] [33]. Figure 4.2 illustrates the main concept behind feature-based meth-

ods through a toy example.

Feature-based method 

Figure 4.2: On the left,the circle and diamond are two noisy versions of a single hypothet-
ical distribution in the original feature space. The right part shows these distributions
after feature-based transformation, where they are now more similar in the new feature
space representation.

The simplest version of such a transformation is the well-known Cepstral Mean-

Variance Normalization (CMVN), which removes the convolutional channel noise in the

homomorphic cepstral domain [69]. This method assumes that the channel noise varies

slowly—a mild assumption that is often true. The key advantage of this feature-based

method is its ability to generalize to noises that have never been seen in the training data.

There are several feature-based transformation methods in the literature [42, 43, 30, 29,

37]. Here we limit our review to the most relevant methods. One of the earliest pro-

posed methods is Histogram Equalization (HE), which share similar motivation with our



43

proposed method given in Section 4.2. The core of this method is learning a coarse trans-

formation such that the histogram of test features are the same with those in the training

set. In the same vein, Gaussianization method [25] learns a transformation with respect

to a constrain such that the distribution of transformed features are Gaussian. Both these

approaches are ad hoc as they do not consider an accurate estimation of training and

testing distributions in the computation of a feature-based transformation. In contrast,

our method, as we describe in Section 4.2, provides a principled mechanism based on the

Copula model to take training and test distributions into account.

Model-based methods, on the other hand, transfer the acoustic model such that

the transformed model is well-fitted for noisy data. In general, it is hard to modify the

acoustic model to accurately model the noise characteristics, since the interaction between

the speech and noise is highly nonlinear in feature space. For example, Parallel Model

Combination (PMC) estimates two acoustic models for clean speech and noise. Then, it

uses Taylor series approximation to combine two models in log-spectral domain to model

noisy speech data [70]. PMC has shown performance gains in certain tasks for GMM-

HMM based acoustic models. However, this method is not effective in large vocabulary

speech recognition. For a more comprehensive review of Model-based methods explored

in the literature, see [36].

One brute force approach that has been shown to be remarkably effective is increasing

the diversity of the training data by artificially distorting the input signal with different

noise types. This technique, often referred to as multi-style training (MTR) in the liter-

ature [60], has been shown to be particularly effective in deep neural networks where the

network has sufficient representational power to model more diverse datasets implicitly.

The effectiveness of MTR depends entirely on the diversity of the simulated distortions

of the input signal and it is a non-trivial task to generate all combinations of potential

sources of input distortions. The two common distortions employed for this purpose are

reverberation and additive background noise. In the case of reverberation, the distortion

is generated by convolving the input signal with the impulse response of a room whose

dimensions, and the location of the source and the microphone, have been specified. The

resultant signal is further distorted with appropriately amplified or diminished background
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noise of a specified type. Since the distortion has a number of free parameters, each of

which belongs to an open set, it is impossible to represent all potential distortions that

may exist in a real-world utterance.

To summarize, the DNN and GMM models do not have an inherent mechanism to

factor out the additive and convolutional noise components from input features. This

severely limits the ability of current ASR systems to explicitly represent the model and

noise components in real-world conditions.

In this chapter, we focus on addressing the distributional mismatch that appears be-

tween training and testing conditions similar to what we previously discussed in feature-

based methods. In general, this mismatch is hard to model due to the nonlinear interaction

between the speech and noise in feature space. We investigate the use of the copula model

to reduce the effect of the mismatch between the training and testing set.

The Copula model is an effective method that allows decoupling of marginal distri-

butions from the dependency model in distribution estimation. In a nutshell, we first

estimate the distribution of the training and testing sets using the Copula model. Then,

we find a nonlinear transformation that minimizes the Kullback-Leibler (KL) divergence

between the training and testing distributions. Finally we apply the transformation to

mitigate the mismatch between the testing and training set. It can be shown that the

Mean Variance Normalization (MVN) and Histogram Equalization (HE) are two special

cases of our method.

The rest of the chapter is organized as follows. In Section 4.2, we discuss the Copula

model and its Gaussian variants, and then describe the optimal transformation to convert

one Gaussian copula model to another one. In Section 4.3, we propose a new normal-

ization method based on the couple-based transformation for ASR. Then, we employ the

above normalization in different acoustic models and evaluate their recognition results

on Aurora 4 and CHIME 4 tasks. Next, we formulate a new approach to embed the

copula-based transformation in the acoustic model, and modify the learning method for

the GMM-HMM acoustic model to jointly learn the transformation as well as the acoustic

model. Finally, we report the recognition result of the joint learning and compare it with

our first proposed method, and conclude with a summary of our work in this chapter.
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4.2 Optimal Transformation for Matching Two Gaussian

Copula Models

A common approach to reduce the mismatch effect is transforming the features to a

new space such that the PDF of the testing set is closer to the PDF of the training

set. In order to measure how similar two PDFs are, KL divergence is often used and

minimizing KL divergence results in the reduction of mismatch between two PDFs. The

main drawback is finding distributions that properly represent training and testing sets.

The empirical distribution of training and testing sets, particularly for speech data, are

complex and multimodal which makes mixture models a good candidate to model these

distributions [78] However, the computation of transformation for mixture models with

too many parameters becomes almost analytically and computationally intractable.

In this section, we propose a method to estimate the transformation based on the

Copula model. We show that there exists an optimal nonlinear transformation that min-

imizes the KL divergence between the training and transformed testing distributions if

these distributions are modeled by Gaussian Copula model (GCM). GCM is a simple and

powerful approach for estimating a multivariate distribution [13, 86, 15], derived from

the standard Gaussian model by relaxing Gaussianity constraints on the marginal density

functions. According to the GCM formulation, as discussed in Chapter 3, any multivariate

distribution can be decomposed as follows:

f(x;R,Λ) = c(u;R)

n∏
i=1

fi(xi;λi) (4.1)

where fi(xi;λi) is i-th marginal density function and λi is the parameter of i-th marginal

distribution. c(u;R) is Gaussian copula density function as follows:

c(u;R) =
1

|R| 12
exp{−1

2
uT (R−1 − I)u} (4.2)

where R is a correlation matrix1. The i-th component of vector u is as follows:

1Correlation matrix is a special covariance matrix where the diagonal elements are equal to one.
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ui = Φ−1(Fi(xi))

where Φ−1 is the quantile function of standard normal distribution and Fi is i-th marginal

cumulative function.

Now let x ∼ f(x) and y ∼ g(y) be the distribution of test and training sets where both

x and y are random vectors of size n. The following proposition describes the optimal

transformation when KL divergence is used to measure the mismatch.

Proposition 1 The optimal transformation converts the test distribution to the train dis-

tribution when the difference is by KL divergence.

Proof 1 The KL divergence is always non-negative, DKL(f ||g) ≥ 0, which is also known

as Gibbs’ inequality, with DKL(f ||g) = 0 if and only if f = g every where. So if the

transformed test set has the same distribution as the training set, the KL divergence reaches

to its achievable minimum value, which is zero. For any distribution other than the training

distribution, the KL divergence is greater than 0, so the optimal transformation is also

unique.

From a generative perspective, every distribution can be represented as a copula distri-

bution and a set of univariate transformations. The Copula distribution is a marginal-free

distribution bounded to the unit hypercube [0 1]n, and the set of univariate transforma-

tions, which are in the form of inverse of cumulation density functions, shapes the marginal

distributions. Each dimension has its own univariate transformation. To draw a sample

from a distribution based on the copula model, we first draw a sample from its copula distri-

bution, which is a vector, and then apply the univariate transformation to each component.

The same idea can be used to transform the testing distribution x ∼ c(u, Rf )
∏n
i=1 fi(xi)

into the training distribution y ∼ c(v, Rg)
∏n
i=1 gi(yi). We first remove the marginals

from the testing distribution by applying its marginal cumulative density functions Fi(xi)

to each dimension. The resultant distribution has uniform marginals and it is equivalent

to the copula distribution of the testing distribution. Then, we convert the Copula dis-

tribution into the Copula distribution of the training distribution using a pseudo-linear

transformation v′ = Wu′ where v = Φ(v′), u = Φ(u′) and W = R
1/2
g R

−1/2
f . Finally, we
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shape the marginals of the transformed distribution by applying the inverse of cumula-

tive density functions G−1
i (xi). Figure 4.3 shows the block diagram of the three stages of

the copula-based transformation. In the following, we first investigate the optimality of

copula-based transformation for two special cases and then show the optimality condition

for the general case.
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Figure 4.3: Three components of copula-based transformation: removing marginal dis-
tributions of test set, adjusting the Gaussian copula function and shaping the marginal
distributions similar to the train set between the distribution of the training data and the
transformed test data

Special case 1: Joint Multivariate Gaussian Distribution

Let f(x) ∼ N(0,Σx) and g(x) ∼ N(0,Σy) be two multivariate Gaussian distribu-

tions. From probability theory, we know that a linear transformation of a multivariate

gaussian distribution is also a multivariate Gaussian distribution. The distribution of x
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under the linear transformation T (x) = Σ
1/2
y Σ

−1/2
x x becomes a multivariate Gaus-

sian distribution with covariance matrix Σ =
[
Σ

1/2
y Σ

−1/2
x

]
Σx

[
Σ

1/2
y Σ

−1/2
x

]T
= Σy, which

is equal to the distribution of y. According to Copula theory, a multivariate Gaussian

distribution is a special form of GCM where the marginals are Gaussian and the correla-

tion matrix is Rx =
[
diag(Σx)−1/2

]
Σx

[
diag(Σx)−1/2

]
. Since the marginals are Gaussian,

the i-th marginal cumulative function Fi(xi) in Eq. (4.1) is equal to Φ( xi
σxi

) where σxi

is the standard deviation of xi. Similarly Gi(yi) is equal to Φ( yi
σyi

). By simplifying the

component-wise functions in Figure 4.3 using Φ−1(Fi(xi)) = xi
σxi

and G−1
i (Φ(yi)) = yiσyi ,

the ultimate transformation represented as follows:

T (x) = diag(Σy)
1/2R1/2

y R−1/2
x diag(Σx)−1/2x

= Σ1/2
y Σ−1/2

x x

which is equivalent to the optimal transformation, as described based on probability the-

ory.

Special case 2: Multivariate Distribution with Independent Variables

For a multivariate distribution with independent variables, the probability density

function f(x) =
∏n
i=1 fi(xi) (and g(y) =

∏n
i=1 gi(yi)) is the product of marginal density

functions. From probability theory, the optimal transformation is composed of n uni-

variate transformations xi → yi : hi = G−1
i (Fi) where Fi and Gi are the i-th marginal

cumulative distribution functions for f(x) and g(y). According to the copula model in

Eq. (4.1), correlation matrices Rf and Rg are identity matrices and the weights are wii = 1

and wij = 0 for i 6= j. As a result, all Φ and Φ−1 terms in Figure 4.3 cancel out and result

in the optimal transformation.

General Case: Gaussian Copula Model

Based on the copula model, two distributions are equivalent if both their copula distri-

butions and marginals are identical. According to the aforementioned argument presented
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for Special Case 2, the conversion of the marginals from one distribution into another dis-

tribution is straightforward using the cumulative density functions. Thus, the KL diver-

gence between the training and transformed test distributions reaches its minimum value

if the KL divergence between their corresponding copula distributions are at the minimum

value.

Applying a pseudo linear transformation v′ = Wu′ to a Gaussian copula distribution

c(u′, R) results in another Gaussian copula distribution with a different correlation matrix

Rnew = WRW T . Therefore, the KL divergence between the transformed testing and

training gaussian copula density functions ct and cg is as follows:

DKL(ct||cg) =

∫
· · ·
∫ 1

0
cf (u′;Rt)ln

cf (u′;Rt)

cg(u′;Rg)
du

where u′ =
[
Φ−1(u1) . . .Φ−1(un)

]T
. By plugging this into copula density function from

Eq. (4.1), the KL divergence can be written as:

DKL(ct||cg) =

∫
· · ·
∫ 1

0

1

|Rt|
1
2

exp{−1

2
u′
T

(R−1
t − I)u′}

× ln

1

|Rf |
1
2
exp{−1

2u′T (R−1
t − I)u′}

1

|Rg |
1
2
exp{−1

2u′T (R−1
g − I)u′}

du

The derivative of u = Φ(u′) =
∫ u′
−∞ e

− t
2

2 dt with respect to u′ is du
du′ = e−

u′2
2 , and thus,the

KL divergence can be simplified further as follows:

DKL(ct||cg) =

∫
· · ·
∫ ∞
−∞

1

|Rt|
1
2

exp{−1

2
u′
T
R−1
t u′}

× 1

2

[
ln
|Rg|
|Rt|

− u′
T
R−1
t u′ + u′

T
R−1
g u′

]
du′

=
1

2

[
ln
|Rg|
|Rt|

− n+ tr(R−1
g Rt)

]
=

1

2

[
ln

|Rg|
|WRfW T | − n+ tr(R−1

g WRfW
T )

]
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Where n is the dimension of testing and training distributions. By minimizing the KL

divergence 2 with respect to W , we find the optimal transformation W = R
1/2
g R

−1/2
f .

4.3 Proposed Copula-Based Feature Enhancement for ASR

In this section, we propose a feature enhancement method for ASR systems based on the

copula model. Simply, we estimate the distribution of feature vectors in the entire training

set using a Gaussian copula model (GCM). We then find a nonlinear transformation for

every utterance in the training and testing sets to match the distribution of each utterance

with the distribution of the entire train set.

Input utterance 
Backend ASRUtterance 

specific trans Linear trans

Copula-based transformations 

Training  
specific trans

Figure 4.4: Block diagram of Copula-based feature enhancement method when the en-
hancement method is independent of the backend ASR

Using GCM to model distributions, the nonlinear transformation can be decomposed

into three distinct blocks as depicted in Figure 4.4. The first block, which is the utterance-

specific nonlinear transformation, is computed using the marginal CDFs of the input

utterance and now it varies from one utterance to another. By utterance in this section,

we mean a segment of speech represented as an ordered sequence of feature vectors for each

10 ms frames. The first block removes the marginal CDFs from the input utterance by

replacing the real-valued input features with their normalized ranks in each utterance, so

the output of the first block has uniform marginal distributions. The linear transformation

block is a function of the correlation matrices of the input utterance and the training set

as descried in Section 4.2. The aim of the linear transformation is to adjust the correlation

2At the optimum, DKL(ct||cg) reduces to zero.
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of each utterance to be similar to the training set. The third block, which is a training

specific transformation, is computed using the entire training set and doesn’t vary across

the utterances. The training specific transformation shapes the marginal distributions

of the enhanced features. The marginal CDFs of the enhanced features are dictated by

the type of nonlinearity in the third block. For example, if the aim is to have Gaussian

marginal distributions for enhanced features, the transformations for the third block have

to be quantile functions of the normal distribution. Previous works [44, 59] and our

empirical experiments have shown that the inverse of marginal CDFs of the training set

are a good choice for the training-specific nonlinear transformations, and demonstrated an

acceptable performance improvement for ASR systems under different noise conditions.

4.4 Experimental Results on Aurora4 Dataset

4.4.1 Dataset and Baseline System

The Aurora 4 data set [95, 74] is an extension of the Wall Street Journal (WSJ0) dataset [38]

that also contains noisy speech data. WSJ0 is a clean read-speech corpus with medium

vocabulary size where the speech data was originally recorded using two microphones at

16 kHz. The primary microphone is a close-talking microphone, which is the same for

all recordings. There is a secondary microphone, which is a desk mounted microphone,

chosen randomly from a set of microphones. Although the standard WSJ0 provides a

variety of training sets, the Aurora4 uses only WSJ0 SI-84 subset as the clean training

set. The SI-84 set has 7138 utterances from 83 speakers and it only contains the data

from the primary microphone. In addition to the clean training set, Aurora4 also has a

multi-condition training set which consists of both clean and noisy speech data. The noisy

utterances were obtained by manually adding six different types of noises (street traffic,

train station, car, babble, restaurant, airport) to the clean data as depicted in Figure 4.5

where half of the utterances are from the secondary microphone to introduce channel

distortion.

The level of the noise in the multi-condition training set has been chosen randomly

such that SNR value ranges from 5 to 15 DB. The evaluation set in Aurora4 consists
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Figure 4.5: Block diagram of noise addition process for Aurora 4

of 14 subsets which includes the Nov92 evaluation set and its noisy variants from both

primary and secondary microphones. The Nov92 evaluation set has 330 utterances from

8 speakers. Similar to the evaluation set, the development set is composed of 14 subsets

derived from 330 utterances of the Nov92 development test set. In contrast to the training

set, the level of SNR varies from 5 to 15 dB in evaluation and development sets.

We utilize Kaldi [77], an open source speech recognition toolkit, to implement a baseline

ASR. The baseline for the Aurora4 dataset consists of both GMM-HMM and DNN-HMM

based ASR systems. The GMM-HMM based ASR system consists of monophone and

triphone models. For the monophone model, each phone is modeled by a GMM-HMM

model making 350 HMM states with a total of 1k Gaussian components in the final

monophone model.

The triphone model is obtained by replacing each single phone in the monophone

model with a group of three consecutive phones and applying Linear Discriminative Anal-

ysis (LDA) and Maximum Likelihood Linear Transformation (MLLT). The final triphone

model includes 2500 shared HMM states with a total of 15k Gaussian components. The

DNN-HMM based ASR system utilizes DNN to implicitly model the output probability for

each state in HMM. The input feature for DNN is the concatenation of filter bank features

for a context window with length 11 frames and the target is the state level alignment

obtained from the triphone model. We use a DNN with 7 hidden layers where each hidden

layer has 2048 sigmoidal units. We train the first DNN using the alignment obtained from

the GMM-HMM baseline. Then, we use the alignment obtained from the first DNN to
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Table 4.1: Details on dataset and baseline ASR system for Aurora 4

Dataset
Train

2mics × [890 clean + 6 × 440 noisy] Utts
83 Spks
2mics ×14 hours

Dev
330 × 14 utts
10 Spks

Eval
330 × 14 utts
8 Spks

Baseline

GMM-HMM
Monephone

39 MFCC+∆ +∆∆
350 HMM states
1000 Gaussians

Triphone

39×3 input features
LDA 91 to 40
2.5k HMM states
15k Gaussians

DNN-HMM

11x40 input featuers
7 hiddens layers with 2048 units
2.5k output
Cross entropy training

train the second DNN.

4.4.2 Effect of Marginal Estimation

Accurate estimation of marginal distribution play a crucial role in the Copula model as

described in Equation 4.1. In this section, the aim is to investigate the effect of different

marginal estimators on the performance of copula-based feature transformation for an

ASR system. We assume that the transformation only consists of marginal distributions

by W = I in Figure 4.3. For simplicity, we limit our experiments to a monophone system

for Aurora 4. In order to equalize the effect of quantization for all methods, we represent

each estimated CDF with a lookup table where the size of the table is equal to the number

of data points in training set.

We use three different methods to estimate marginal CDFs. Then, we apply the

estimated CDF of the each utterance to convert the of original features into a unit interval

and use the inverse of the estimated CDF of the entire training data, which is also a lookup

table, to covert back. We use a linear interpolation for missing values in the lookup table.

For the first method, we use cumulative histogram approach where the CDF of x is
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equal to the fraction of data points that is less x.

Our second method is Gaussian kernel density estimation (GKDE) [75] which consists

of the summation of several gaussian kernel functions centered on training data points

{xi}Ni=1 as follows:

f̂(x) =
1

Nh

N∑
i=1

k(
x− xi
h

) (4.3)

where h is the bandwidth of the gaussian kernel and can be computed based on the

empirical standard deviation σ̂ [84]

h =
(4σ̂5

3N

)0.2
(4.4)

The third method is kernel density estimation via diffusion [20, 19] which has been shown

better performance than the other two methods for estimating multimodal and bounded

distributions. This method provides a computationally inexpensive way to estimate a

univariate PDF even though the theoretical justification is somewhat complicated. To

estimate a PDF using the kernel density estimation via diffusion, we first compute the

histogram of the input data. We then apply the discrete cosine transform to the histogram

and multiply the result with a constant complex vector.3 Finally, we apply the inverse of

the discrete cosine transform to obtain the PDF. We can also approximate the CDF by

computing the cumulative sum of the PDF.

Table 4.2 presents the monophone results on Aurora4 with enhanced features for train-

ing and testing obtained by different marginal estimators. The monophone system is

trained using the multi conditions training set and W = I.

Table 4.2: Monophone WERs on Aurora 4 eval set trained and tested with enhanced
features. The enhanced features are obtained using different marginal estimators, multi
conditions training set and W = I.

Marginal estimator WER[%]

Histogram 35.1
Gaussian KDE 36.3
KDE via diffusion 34.6

3Constant complex vector is pseudo delay in frequency domain e−jk
2π2/2t and controls the bandwidth

of KDE via diffusion.
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From the results, the KDE via diffusion outperforms mainly due to its discriminatory

power to deal with multimodality and boundary problems in estimating univariate distri-

butions. The Gaussian KDE has the worst WER because its performance depends on the

bandwidth, which is hard to estimate accurately.

In the previous experiment, we represented the CDFs of the entire training set using

a lookup table where the number of entries is equal to the total number of feature vectors

in the training set. In practice, it is not feasible because the number of feature vectors in

the training set are huge even for a moderate-size data set. A simple way to address this

problem is to uniformly quantize the inverse of CDF, which is called quantile function.

The quantization for quantile functions is fairly straightforward and simple because their

domain are always limited to the unit interval [0 1].

Figure 4.6: The effect of quantization level of the quantile functions (inverse of the CDFs)
on the performance of monophone system for Auroa4. The monophone systems are trained
and tested with enhanced features. And the enhanced features are obtained using different
marginal estimators, multi conditions training set and W = I.

From the graph in Figure 4.6, we see that the performance of the monophone system

improve when we increase the number of quantization levels. This is also noticeable that

KDE via diffusion with the quantization level of 100 is an acceptable compromise between
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Figure 4.7: Empirically computed marginals on the training set – clean and multi-conditional
data – and the test set for first two filter bank and MFCC features.

the computational complexity and the performance, so we use KDE via diffusion with the

quantization level of 100 to estimate CDFs in the rest of this chapter.

4.4.3 Analysis of Marginal Distributions

A simple check for suitability of copula-based normalization is to measure the mismatch

between the marginal distributions of training and test datasets. In Figure 4.7, we plot

the marginals of the first two filter bank coefficients and MFCC features computed on

the training set (clean and multi-condition) and test set. Compared to the clean training

set, the multi-conditional training set is closer to the test set. This may explains the

popularity of using multi-conditional training data for acoustic model training. However,

even with that, there is still a significant difference compared to the test set.
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4.4.4 Analysis of Normalization Style

There are two approaches to apply the copula-based normalization to ASR systems. The

first approach is to train the backend ASR using the original features and use the copula-

based normalization just to alleviate the mismatch between the training and test conditions

during the test time. The main advantage of this approach is to provide a quick and simple

way to add noise-robustness to already trained ASR systems without retraining them. The

second approach is to normalize every utterance (in training and test set) so they are close

to a template distribution (corresponding to that of entire unnormalized training data) and

then use the normalized features both for training and testing. In Figure 4.8, we compare

the performance of the monophone systems on Aurora 4 task with different strategies to

normalize the training and test sets. For this experiment, we use clean and multi-condition

training sets for training, and evaluation set for evaluating the monophone systems.

Figure 4.8: Monophone WERs on Aurora 4 evaluation set with different normalization
configurations for clean and multi-conditions train sets.

Experimental results reveal that the normalization of the test set improves the per-

formance of already trained ASR system with clean training set while only normalization

of the test set degrades the performance of ASR system trained by multi-condition train-

ing set. The best performance is obtained by normalizing features for both training and

testing, and using multi-condition training set.
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The evaluation set of Auroa 4 can be decomposed into four subsets : clean, distorted

clean, noisy and distorted noisy. Figure 4.9 plots the performance of monophone systems

on each subset for different normalization strategies. Except for the clean set, apply

copula normalization at both test and training time in conjunction with multi-conditional

training provides the best performance. From the results of the clean subset in Figure 4.9,

it is noticeable that the normalization of features for the clean training improves the

performance of ASR on clean subset.

Figure 4.9: Monophone WERs on different subsets of Auroa 4 eval set with different
normalization configurations for clean and multi-conditions training sets.

In the rest of this chapter, we limit our experiments to the best normalization style.

4.4.5 Effect of Normalization on Triphone and DNN Based Models

In this section, we investigate the effect of the copula based normalization on the perfor-

mance of triphone and DNN-based models, which are more complicated than monophone

system. In Table 4.3, we compare the WER of the triphone model with original MFCC,

normalized MFCC without correlation correction W = I and normalized MFCC with cor-

relation correction W = R
1/2
g R

−1/2
f where Rg is a global correlation matrix computed over

the entire train set and Rf is per utterance correlation matrix. Rg and Rf are estimated

using full and Toeplitz matrix structures respectively [13]. The results in Table 4.3 show

that the copula based normalization with correlation correction gives 9% relative WER

improvement over the original MFCC features.
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Table 4.3: Average WER of clean, noisy, distorted clean and distorted noisy conditions
for triphone model on Aurora 4 task with different features: original MFCC, normalized
MFCC without correlation correction W = I and normalized MFCC with correlation
correction. The model is trained by multi conditions training set

original
MFCC

normalized MFCC
with W = I

normalized MFCC

with W = R
1/2
g R

−1/2
f

Triphone WER 19.4 18.3 17.7

Table 4.4 reports the WER of DNN based models with original FB, normalized FB

without correlation correction and normalized FB with correlation correction. For this

experiment, we use the alignment of the triphone model, which is obtained either by

original MFCC or by normalized MFCC with W = R
1/2
g R

−1/2
f . The results show the

DNN based model with the proposed copula based normalization achieves 21% relative

improvement over the DNN baseline with original features.

Table 4.4: Average WER of clean, noisy, distorted clean and distorted noisy conditions
for DNN model on Aurora 4 with different features: original FB, normalized FB without
correlation correction W = I and normalized FB with correlation correction. The model is
initialized by the alignment of triphone model, which is obtained either by original MFCC

or by normalized MFCC with W = R
1/2
g R

−1/2
f .

original FB
normalized FB

with W = I

normalized FB

W = R
1/2
g R

−1/2
f

DNN + alignment of
original MFCC

13.4 11.8 11.6

DNN + alignment of
normalized MFCC

12.7 11.1 10.5

In addition, our best result on Auroa 4 is comparable with the state of the art methods

for this task as shown in Table 4.5.

4.5 Experimental Results on CHIME 4 Dataset

4.5.1 Dataset and Baseline System

In this section, we use the 4th CHIME speech recognition challenge [91], which provides

read speech dataset and Kaldi-based baseline to train and evaluate the performance of
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Table 4.5: Average WER of clean, noisy, distorted clean and distorted noisy conditions of
our best model compared with other state of the art methods on Aurora 4.

WER

Recurrent deep neural networks [93] 12.7
DNN noise-aware training [83] 12.4

Joint noise adaptive training [71] 11.1
our best 10.5

ASR systems under different noisy conditions for multichannel speech data. The corpus

consists of real and simulated noisy speech data. Real noisy speech data have been recorded

in real noisy environments such as cafe, bus, street junction and pedestrian area using a

portable device with an array of six microphones as shown in Figure 4.10 and, a closed-talk

microphone. The simulated noisy data were generated by artificially mixing clean data

with different background noise. Background noises have been recorded using the same

device without close-talking microphone. The clean data used for generating the training

Figure 4.10: Recording device used to capture multi-channel audio for the 4th Chime
challenge [92].

set is SI-84 subset from the Wall Street Journal (WSJ0) corpus that consists of 7138 clean

recordings from 84 speakers with different dialects. For the development and test sets, a

clean data were recorded in a quiet place, which is called booth, using the same portable
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device. The mixing process for generating simulated noisy data for the development(or

test) and train sets are slightly different. Both clean data and background noise are multi

channel data for development (or test), and thus the mixing process is to simply add

corresponding channels of the clean and noisy data. The clean data for generating the

training, which is the SI-84 subset of WS0, is single channel. So it is necessary to convert

the single channel data to multichannel data before adding noise. This conversion process

consists of two steps. The first step is to randomly choose a segment from real noisy

speech data and estimating a set of impulse responses in the form of IIR filters between

the closed-talk channel and other channels. Then, this set of IIR filters are applied to

single channel data from the WSJ0 to obtain multichannel clean data. The second step

is to add multichannel noise to clean data to generate simulated multichannel noisy data.

The overall process of generating simulated noisy data from single channel data is depicted

in Figure 4.11.

Estimating 
impulse response 

Random 
chunk of 
speech

near-field signal

multichannel far-field signals

Applying
impulse response 

Single channel clean 
speech from WSJ0

+

multichannel noise

multichannel noisy
speech

Figure 4.11: Block diagram of noise addition process for CHIME 4

To evaluate the effect of multichannel framework on the performance of ASR systems,

the 4th CHIME defines three tracks, in which the number of available channels is limited

at the test time. For the 1-channel ( and 2-channel) track, each utterance consists of

one channel (and two channels), which is randomly chosen. And for the 6ch-track, all six

channels are available during the test time.

For our experiments in this section, we use single channel audio data, particularly
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channel 5, to train the baseline. For 6ch and 2ch track, we use an open source tool,

BeamFormIt, for converting the multichannel data into a single channel before testing [4].

Table 4.6: More details on dataset and baseline configurations for CHIME 4

Dataset
Train

8738 simulated noisy utts from 83 spks
400 × 4 real noisy utts from 4 spks
4 types of noise

Dev

410 × 4 real noisy utts
410 × 4 simulated noisy utts
4 types of noise
4 spks

Test

330 × 4 real noisy utts
330 × 4 simulated noisy utts
4 types of noise
4 spks

Baseline

GMM-HMM

Monophone
39 MFCC+∆ +∆∆
350 HMM states
1000 Gaussians

Triphone1
39 MFCC+∆ +∆∆
2.5k HMM states
15k Gaussians

Triphone2
LDA 91 to 40
MLLR 40

Triphone3 FMLLR

DNN-HMM
DNN

11x40 input featuers
7 hiddens layers with 2048 units
2.5k output
Cross entropy training

DNN+SMBR
Sequence discriminative training
State-level minimum Bayes risk

LM rescoring
Recurrent neural network
Smoothed 5-gram Knesser-Ney

Our baseline for GMM-HMM system builds gradually from scratch and consists of

multiple GMM-HMM subsystems. We first train a monophone system using flat start

initialization method. Then, we use the alignment of the monophone system to train the

first triphone system. We use MFCC, its delta and delta-delta features as the input for the

monophone and first triphone systems. We utilize the alignment of the the first triphone

system to train the second triphone system using LDA and Maximum Likelihood Linear

Transforms (MLLT) feature transformations. The input feature for the second triphone

system is the context feature of 13 MFCC with window length 9, which is obtained by

splicing four left and four right frames. We utilize Feature space Maximum Likelihood

Linear Regression (FMLLR), which is a common method for speaker adaption, to obtain
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the final triphone system. Next, we use FMLLR features as input for a DNN with 7

hidden layers where each layer has 2040 sigmoidal units. We initialize the DNN using

RBM pretreating method and use the cross-entropy training to obtain the first DNN.

Then, we use state-level minimum Bayes risk (smbr) training to compute the second

DNN. Finally, we use Recurrent Neural Network (RNN) and Smoothed 5-gram Knesser-

Ney (5gkn) language models for improving the performance further. Table 4.7 shows the

recognition results of the baseline systems on different tracks of CHIME 4.

Table 4.7: Average WERs of the baseline systems trained on single channel data.

Track System
Dev Test

simu real simu real

1ch

GMM 24.2 21.8 33.5 37.3
DNN 17.4 16.5 26.0 30.0
smbr 15.8 14.6 24.0 27.1

smbr+5gkn 13.9 12.3 22.1 24.3
smbr+rnn 12.8 11.5 20.8 22.9

2ch

GMM 18.7 16.3 27.3 28.7
DNN 13.5 12.2 20.4 22.4
smbr 12.1 10.8 18.8 20.0

smbr+5gkn 10.7 9.6 16.4 17.6
smbr+rnn 9.3 8.4 15.2 16.2

6ch

GMM 14.2 12.7 21.1 21.7
DNN 10.1 9.5 15.9 16.6
smbr 9.0 8.2 14.2 14.7

smbr+5gkn 7.8 7.0 12.1 12.8
smbr+rnn 6.7 6.0 10.9 11.3

4.5.2 Effect of Copula Based Normalization

Similar to our best configuration for the copula based normalization on Aurora4, we

obtain our models in 3 stages: (a) estimating a canonical multivariate copula distribution

of the 13-dim MFCC features using all the utterances in the single channel noisy training

data; (b) transforming each utterance in the training data to reduce the KL distance

distance between the multivariate distribution of the enhanced utterance and the canonical

distribution; and (c) training a standard acoustic model using enhanced features. At the

test time and before decoding, we use the same way to enhance the features of each
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utterance.

Figure 4.12 illustrates WERs of smbr+rnn model, which is the best baseline model, for

different tracks of 4th CHIME trained with original and copula-based enhanced features.

The gains are particularly remarkable in a single channel test set where the mismatch

problem between the train and test is more severe. The mismatch problem for two other

cases ( 2ch and 6ch) is less problematic mainly because we apply beamforming before

decoding, which reduces the effect of noise.

Figure 4.12: Recognition results of the best baseline model, which is smbr+rnn, on dif-
ferent tracks of 4th CHIME when the model is trained with : original and copula-based
enhanced features.

In Figure 4.13, we report the performance of different systems on 1-ch track trained

either by the original features or by the copula-based enhanced features. The results show

that the copula-based features consistently improve the performance of all the models

listed in the baseline.

Up until now, we have used the recognition results on the test set, which consists

of both simulated and real noisy data, to evaluate the performance of ASR models on

the 4th CHIME task. However, the ultimate goal is to improve the performance of ASR

systems on real noisy data, which is a more realistic case. Figure 4.14 shows the WERs

of smbr+rnn system on real and simulated subsets of 1-ch track. It is noticeable that
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Figure 4.13: WERs of baseline models on 1-ch track of the 4th CHIME task. Note, 5gkn
and rnn stand for 5-gram Knesser-Ney and recurrent neural network language models
respectively.

the copula-based features improves the recognition result on real noisy data while the

improvement for simulated noisy data is negligible.

Figure 4.14: WERs of smbr+rnn system on real and simulated subsets of 1-ch track when
the model is trained with : original and copula-based enhanced features.

In Figure 4.15, a comparison between the original and copula-based features on the

performance of smbr+RNN model shows that the gain is highest in bus background noise.



66

Our hypothesis is that there is more structure and correlation in the noise in this case for

which the multivariate copula is an appropriate representation.

Figure 4.15: Recognition results of smbr+RNN model on different real noisy subsets of
1-ch track eval set. when the model is trained with : original features and copula-based
enhanced features.

Finally, our copula based system is sufficiently different from the baseline system that

we are able to obtain additional gain through system combination using minimum Bayes

risk [94], as reported in Table 4.8. Table 4.9 lists the WERs of the combined model on

different tracks for different noises.

4.5.3 Analysis of Channel and Beam Forming Distortions

In this section, we use copula-based normalization to address two other mismatch problems

in the 4th CHIME task. Perviously, we trained our models using single channel data

(channel 5). For 6ch and 2ch tracks, we first apply beam forming to convert multichannel

data into a single channel data, and then use the resultant single channel data for decoding.

For 1ch track, we directly use single channel data without any further preprocessing for

decoding. The key point of the above configuration is to provide a single ASR system

that works with single and multi channel data. However, there are still two mismatch

problems that we are not able to address using the above configuration. For 1ch track, the

above configuration suffers from channel mismatch problem because the test set consists

of single channel audio data from different channels and the training set comes from a
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Table 4.8: Average WERs of the baseline systems trained on single channel features after
copula-based transformation.

Track System
Dev Test

simu real simu real

1ch

GMM 23.0 19.8 30.0 29.4
DNN 17.6 15.4 24.9 24.4
smbr 16.5 13.9 23.5 23.1

smbr+5gkn 14.7 12.1 21.7 20.1
smbr+rnn 13.2 10.7 20.4 18.6

copula+baseline 12.1 9.8 19.2 18.6

2ch

GMM 18.1 15.2 24.9 24.4
DNN 13.9 12.1 20.4 19.8
smbr 12.7 10.7 19.1 18.2

smbr+5gkn 10.9 9.1 17.2 16.4
smbr+rnn 9.6 8.0 15.6 14.8

copula+baseline 8.8 7.3 13.9 13.8

6ch

GMM 14.4 12.5 19.7 19.3
DNN 10.8 9.6 16.0 15.4
smbr 9.8 8.2 15.2 14.5

smbr+5gkn 8.2 7.1 13.0 12.2
smbr+rnn 7.1 6.1 11.7 10.8

copula+baseline 6.3 5.4 10.1 10.1

Table 4.9: Average WERs after combining the baseline and copula-based system using
MBR decoding.

Track Envir.
Dev Test

simu real simu real

1ch

BUS 10.3 12.6 13.8 26.0
CAF 15.7 10.5 23.5 20.8
PED 9.3 6.6 18.8 15.7
STR 12.9 9.6 20.6 11.9

2ch bus 7.2 9.2 10.0 19.4
CAF 11.8 7.5 16.2 14.1
PED 6.9 4.9 14.2 12.0
STR 9.1 7.7 15.2 9.7

6ch bus 5.3 6.8 6.7 13.3
CAF 7.7 5.1 11.2 9.5
PED 5.1 3.9 10.0 8.5
STR 7.2 5.7 12.5 9.1
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specific channel, which is channel 5. A simple solution for the channel mismatch problem

is to use a new train set, which has all the channels. Table 4.10 lists the recognition

results for the 1ch track. The results show that the new training set significantly improves

the performance and further gain is achieved by combining the new training set with the

copula based normalization.

Table 4.10: WERs of smbr+RNN system on 1-ch track for different training configurations.

Training configuration
Dev Eval

simu real simu real

ch5 + original feat 12.8 11.5 20.8 22.9
ch5 + copula-based feat 13.2 10.7 20.3 18.6
all channels + original feat 11.3 9.4 16.9 17.7
all channels + copula-based feat 11.7 8.2 16.6 16.3

Regardless of the type, the aim of beam forming is to use multiple channel data

to reduce the effect of noise, and it doesn’t necessarily produce a single channel data

with the same characteristic as to a specific channel. So, it generally causes a systematic

mismatch between the training and test conditions if we use a specific channel for training.

To address this problem, we can augment the original training set by an additional set

such that the mismatch between the augmented training and test sets is minimized. We

construct an additional set for 2-ch track by choosing all combinations of two channels

for each utterance in the training set, and applying beam forming. Table 4.11 shows that

the augmented training set with copula based normalization outperforms on the test set

of 2ch track.

Table 4.11: WERs of smbr+rnn system on 2-ch track for different training configurations.

Training configuration
Dev Eval

simu real simu real

ch5 + original feat 9.3 8.4 15.2 16.2
ch5 + copula-based feat 9.6 8.0 15.6 14.8
augmented data + original feat 8.7 7.5 14.4 14.9
augmented data + copula-based feat 9.1 7.9 14.3 14.1

Similar to 2ch track, we construct an additional set using all the channels for 6-ch track.

Table 4.12 reports the recognition results for smbr+RNN system. The results show that
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the augmentation method improves the recognition results over the single channel training.

In addition, the combination of the augmentation and the copula based normalization

significantly improves the performance of the baseline system.

Table 4.12: WERs of smbr+RNN system on 6-ch track when the training set is: channel 5,
channel 5 with copula-based feat, augmented data and augmented data with copula-based
feat

Training configuration
Dev Eval

simu real simu real

ch5 + original feat 6.7 6.0 10.9 11.3
ch5 + copula-based feat 7.1 6.1 11.7 10.8
augmented data + original feat 7.2 5.9 10.1 10.5
augmented data + copula-based feat 7.3 6.7 10.3 9.6

4.6 Integration into Acoustic Model

4.6.1 Motivation

The choice of the training-specific transformation, presented in section 4.3, has a major

effect on the overall performance of the enhancement method for ASR systems. Table 4.13

shows the WERs of GMM-HMM system on the 1ch track of the 4th CHIME task for two

different training-specific transformations. For this experiment, we impose the enhanced

features to have either uniform marginal distributions or a set of marginal distributions

similar to the entire training set by choosing proper training-specific transformations. For

the uniform distribution, we extract the range [xmin, xmax] for each dimension where

the xmin and xmax are the minimum and maximum values across the entire training set.

Then, we use the inverse CDF of uniform distribution over [xmin, xmax] as training-specific

transformation. For the latter one, we utilize the inverse of marginal CDF of the entire

train set as training-specific transformation. Results in Table 4.13 show that WERs for

two training-specific transformations are significantly different. This difference motivates

us to propose a method to learn the training-specific transformation automatically during

the training of the ASR system rather than computing it independently.
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Table 4.13: Recognition results of GMM-HMM system on 1-ch track of CHIME 4 for two
different training-specific transformation. For this experiment, we assume W = I

WER[%]

Uniform marginals 33.6
Marginals similar to entire training set 31.3

4.6.2 Problem Definition

As mentioned before, the performance of the ASR system with the proposed feature

enhancement heavily depends on the choice of the training-specific transformation. Pre-

viously, we performed the feature enhancement method on data, which was completely

independent of the backend ASR. Then, we computed the the acoustic model using the

enhanced features [16, 17]. In this section, we present a new method to compute the

training-specific transformation automatically as a part of the backend ASR as depicted

in Figure 4.16. In order to integrate the training-specific transformation into the backend

ASR, we assume that the training-specific transformation is part of the acoustic model in

the ASR system and has a parametric vector-valued function with unknown parameter C

as follows :

Utterance 
specific transInput utterance 

Backend ASRTraining 
specific trans 

Copula-based 
transformations 

Figure 4.16: Block diagram of copula-based feature enhancement method when the en-
hancement method is a part of backend ASR

x = f(u;C) =


f1(u1)

f2(u2)
...

fn(un)

 (4.5)
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where u and x are normalized rank and enhanced feature vectors respectively. We further

assume that each coordinate function fi(ui) is a polynomial function with two constraints

to retain the range of the enhanced features similar to the training set:

fj(u) =
K∑
k=0

ckju
k

subject to fj(0) = xmin,j , fj(1) = xmax,j

where [xmin,j , xmax,j ] is the range of ith feature in the training set. Since the normalized

rank features are limited to the unit interval [0 1], the constraints for the coordinate

functions guarantee that the enhanced feature can not have a range beyond the training

set. By enforcing the range for each feature using the above constraints, we also prevent

the model from learning the constant function, which is trivial. Regardless of the type of

acoustic models, we generally can find the optimal acoustic model and training specific

transformation by adding the parameters of the training specific transformation C to the

parameters of the acoustic model Θ and optimizing the acoustic model with respect to

all parameters. In this section, we consider GMM-HMM as the acoustic model and use a

modified Expectation Maximization (EM) to jointly maximize the likelihood of the model

with respect to all parameters.

4.6.3 Proposed Method

Maximum Likelihood (ML) is a simple framework for fitting a parametric density function

p(x|Θ) to observation data X = {xi}ni=1. The goal of the ML approach is to find the

parameters Θ that maximize the log-likelihood of the parameters given the observation

data :

L(Θ) = log

N∏
i=1

p(xi|Θ) (4.6)

In Equation 4.6, we assume that the observation data are independent and identically

distributed samples directly drawn from the model p(x|Θ). Our problem in this section

is different from the typical ML scenario, when we have access to direct samples of the

model. Assume that our observation set U is an image of direct samples under a nonlinear

transformation as illustrated in Figure 4.17. In addition to the parameters of the model Θ,
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the parameters of the transformation C are also unknown. Our aim is to use the observed

samples to jointly estimate all the parameters.

Nonlinear transformation  Observed samples Samples from model p(x|⇥m)

X = {xi}n
i=1

U = {ui}n
i=1

x = f(u; C)

u = f�1(x; C)

Figure 4.17: Schematic of the generation of observation data when the model and the
observed data points reside in two different domains

In general, the log-likelihood function of the parameters with respect to the observation

data is defined as :

L(Θ, C) = log
N∏
i=1

p(ui|Θ, C) (4.7)

since x = f(u;C), the probability in Equation 4.7, which is in U domain, can be written

as the product of the probability in X domain and the Jacobian of the transformation Jf :

p(u|Θ, C) = p(x|Θ)|Jf (u;C)| (4.8)

where | | stands for the matrix determinant. Since each coordinate function in Equa-

tion 4.5 is a univariate function, the Jacobian matrix of the nonlinear transformation is

diagonal and so, the determinant is the product of the diagonal entries:

|Jf (u;C)| =
∏
j

f
′
j(uj) =

∏
j

K∑
k=1

kckju
k−1
j (4.9)

Putting Equations 4.7, 4.6 and 4.9 together, the likelihood function can be simplified as:
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L(Θ, C) = log
∏
i

p(xi|Θ) + log
∏
i

|Jf (ui;C)|

=
∑
i

log p(f(ui;C)|Θ) +
∑
i,j

log
∑
k

kckju
k−1
ij

(4.10)

Where uij is jth element of ith observation vector ui. Equation 4.10 provides a general

formula to find the model and the nonlinear transformation together by maximizing the

likelihood with respect to C and Θ simultaneously. By comparing the likelihood in Equa-

tion 4.6 and 4.10, the likelihood of C and Θ in U domain simplifies to a typical ML problem

in X domain as described in Equation 4.6, if the nonlinearity transformation C is held

fixed. The first term in Equation 4.10 encourages the model and the nonlinear transfor-

mation to attain higher likelihood in X domain. The second term in Equation 4.10, which

is just a function of C, is a regularization term and penalizes nonlinear transformations

that have low first derivatives at observed data points.

It is computationally expensive to use standard techniques such as gradient ascent for

maximizing the likelihood with respect to C and Θ because the computation of gradient

with respect to Θ typically involves the transformation of the observed data into X domain

for every value of C, as shown in Algorithm 1. A common method to reduce the number

of required transformations (hence, computational complexity) is to use the alternating

optimization method [41]. Based on this method, we start with some initial values for the

parameters. We iteratively consider one parameter set as our target and keep the other

one fixed. Then, we update the target parameters by optimizing the objective with respect

to the target. We continue the sequence of optimization with respect to one parameter to

reach a local optima, as shown in Algorithm 2.
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Algorithm 1 Gradient Ascent

Input: U
Output: Θ and C

1: Initialization Θ0 and C0

2: Computing X using x = f(u;C0)

3: while i ≤ k do

4: Θi = Θi−1 + α ∂L∂Θ |Θi−1,Ci−1

5: Ci = Ci−1 + α ∂L∂C |Θi−1,Ci−1

6: Updating X using x = f(u;Ci)

7: i = i+ 1

8: end while

Algorithm 2 Alternating Maximization

Input: U
Output: Θ and C

1: Initialization Θ0 and C0

2: Computing X using x = f(u;C0)

3: while i ≤ k do

4: Θi = arg maxΘ L(Ci−1,Θ)

5: Ci = arg maxC L(C,Θi)

6: Updating X using x = f(u;Ci)

7: i = i+ 1

8: end while

However, the optimization of the likelihood with respect to Θ itself, which only involves

p(X|Θ) in Equation 4.10, is somewhat challenging if the acoustic model is a GMM-HMM.

GMM-HMM is a partially observed probabilistic model to model temporal data. In

general, partially observed models have two types of random variables: hidden and vis-

ible variables. The observation data, which is used to estimate the parameters of the

model, only consists of the visible variables. The log-likelihood of parameters for partially

observed model can be obtained by marginalizing over hidden variables as:

L(Θ) = log
∏
i

p(xi|Θ)

= log

N∏
i=1

∑
h

p(xi,h|Θ)

(4.11)

where x and h are respectively observed and hidden variables. Unfortunately, the explicit

maximization of the likelihood for partially observed data is typically infeasible due to the

order of logarithm and summation in Equation 4.11.

Expectation Maximization (EM) is a common method to estimate the parameters for

partially observed models. The idea is to approximate the log-likelihood function around

Θcur using a lower bound as:

L(Θ) ≥ L(Θcur) +Q(Θ; Θcur)−Q(Θcur; Θcur) (4.12)
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where the auxiliary function Q is the expectation of the joint log-probability of observed

and hidden variables given the observation data X and current estimation of the param-

eters Θcur:

Q(Θ; Θcur) = E {log p(x,y|Θ)|X ,Θcur} (4.13)

And instead of maximizing L(Θ), we repeatedly maximize the lower bound with respect

to Θ as :

Θnew = arg max
Θ

Q(Θ; Θcur) (4.14)

The auxiliary function for GMM-HMM can be decomposed into GMM and HMM parts

as described by [18] as follows :

Q(Θ; Θold) =
∑
i,j,t

ξij(t) log aij︸ ︷︷ ︸
hmm

+
∑
i,t

γi(t) log bi(xt)︸ ︷︷ ︸
gmm

(4.15)

where the HMM part only consist of the transition probability matrix A = [aij ] and

the GMM part includes the parameters of the output probabilities bi(x) which are means,

covariance matrices and component weights. In addition to the parameters, Equation 4.15

also consists of two posterior probabilities as:

ξij(t) = P (st = i, st+1 = j|X ,Θold), γi(t) = P (st = i|X ,Θold) (4.16)

where ξij(t) is the probability of being in the state i at time t and j at time t+1 given

the observation and the current parameters. γi(t) is the probability of being in the state

i given the observation and the current parameters. Based on Equation 4.15, the tran-

sition probability matrix A and the parameters of output probabilities can be updated

independently for each step of the maximization. However, dealing with the GMM part is

somewhat tricky, since it consists of x which depends on the nonlinear transformation C.

By slightly abusing the notation of the index i to represent hidden state and mixture

component together, we can further simplify the GMM part of the auxiliary function as

follows :

Qgmm() =
1

2

∑
i,t

[
(xt − µi)TΣ−1i (xt − µi) + |Σi|

]
γi(t) (4.17)
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where µi and Σi are the mean and covariance for ith gaussian component in the model.

By plugging 4.17 into 4.10 and replacing x with f(u;C), we can construct an auxiliary

function for the joint log-likelihood L(Θ, C) as follows:

Q(Θ, C; Θcur, Ccur) =
1

2

∑
i,t

[
(f(ut;C)− µi)TΣ−1i (f(ut; C)− µi) + |Σi|

]
γi(t)

+
∑
i,j

log
∑
k

kckju
k−1
ij

(4.18)

Another way to obtain the auxiliary function for the joint log-likelihood is through the

definition of the lower bound similar to Equation 4.13. Again, we can use alternating

maximization method to maximize the auxiliary function. We start with some initial

values for the parameters. We apply the nonlinear transformation with current value of C

to map observed samples into X domain. We update the parameters of the model Θ using

multiple iterations of Viterbi algorithm (or Baum-Welch algorithm). This is equivalent

to the maximization of the auxiliary function with respect to Θ by holding C fixed. We

use Viterbi algorithm (or Baum-Welch algorithm) to estimate the posterior probability

γi(t) using the current value of Θ. Then, we hold the parameter of the model fixed and

maximize the auxiliary function with respect to C, which is a weighted curve fitting with

a regularization term. We repeat the update of C and Θ until convergence. The algorithm

is summarized in Algorithm 3.

Algorithm 3 Alternating Maximization Algorithm for maximizing Q(Θ, C)

Input: U {obtained by applying utterance-specific transformation.}
Output: Acoustic model Θ and training-specific transformation C

1: Initialization C0

2: while i ≤ K do
3: Obtaining X by transforming the observation using x = f(u;C0)
4: M iterations of Viterbi (or Baum-Welch ) training on X to compute Θi−1

5: Viterbi alignment on X to compute γi(t)
6: Computing Ci by maximizing Q(C,Θi−1)
7: i = i+ 1
8: end while
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4.6.4 Experimental Results

As mentioned in Section 4.5.1, the GMM-HMM baseline for CHIME 4 involves training

several models including monophone, triphone with delta feature (tri1), triphone with

MLLR+LDA feature transformation (tri2) and triphone with FMLLR feature (tri3). Each

of these subsystems is a separate GMM-HMM with its own input and configuration.

In this section, we compare the performance of the final systems (tri3) when the

copula-based normalization is combined with acoustic model training at different stage of

the baseline (monophone and triphone systems). The training of the GMM-HMM models,

regardless of their type, consists of 40 viterbi iterations for updating the parameter of the

model, which is equal to K ×M in Algorithm 3. For each of 5 iterations, we optimize

once again the auxiliary function with respect to the parameters of the transformation

and update the X . We utilize Limited-memory BFGS method [61] for the optimization,

and assume each marginal is a polynomial with degree 7. As shown in Table 4.14, the

integration of the copula based normalization into the monophone model performs better

than others. Apart from the improvement, the integration with the monophone is more

computationally efficient mainly because the total number of parameters for the joint op-

timization is less. In addition, these results also reveal that the integration with more

complicated models such as tri2 and tri3, in which the input feature is not MFCC, de-

grades the performance. Our experiments also show that the integration of copula-based

normalization with more than one stage leads to instability in the training process.

Table 4.14: WER of tri3 on 1-ch track eval set when copula-based normalization is
integrated into: monophone (mono), triphone with delta feature (tri1), triphone with
MLLR+LDA feature transformation (tri2) and triphone with FMLLR feature (tri3)

Integration style WER

Independent of backend ASR 29.7
mono 28.3
tri1 28.8
tri2 30.3
tri3 31.4
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Table 4.15: WERs of smbr+rnn system on different tracks with integrated copula normal-
ization and their relative improvements.

WER% Rel %

1-ch
augmented + copula 16.5
augmented + copula + integration 15.7 5.1

2-ch
augmented + copula 14.3
augmented + copula + integration 14.0 2.1

6-ch
augmented + copula 9.9
augmented + copula + integration 8.2 17.2

4.7 Results

For the next experiment, we integrate the copula-based transformation into monophone

system and report WERs of the final smbr+rnn system on different tracks of CHIME 4.

We use augmented data for this experiment because of its better performance on the inde-

pendent variant of copula-based transformation. As shown in table 4.15, the integration

method improves the overall performance for all track. However, the relative improvement

for 6-ch track is more significant that others.

4.8 Summary

In this study, we use copula model to address the mismatch problem between the training

and testing conditions in ASR systems. Simply, we formulate the mismatch in term of the

difference between distributions of training and test data, and proposes a transformation

to make test data similar to training data. We show that if the distributions are modeled

using Gaussian copula model, then there is an analytic form for the transformation.

We explored three different strategies to use the proposed transformation in ASR sys-

tem. For the first strategy, we trained the backend ASR using original features and just

applied the transformation during the decoding phase. This approach provides a quick

way to improve the noise-robustness of already trained ASRs without retraining them.

Our results indicated that this strategy provides a moderate improvement for ASR mod-

els trained by clean training data and degrades the performance of ASR models trained

by multi-condition training data. The second strategy is to transform each utterance
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in training and test dataset such that the distribution of transformed utterance become

similar to the distribution of the entire training set. We then use the transformed fea-

tures for training and decoding. This method consistently improve the performance of

different models over the original features. In contrast to the above two strategies, our

third strategy is not independent of the backend ASR. We formulate the transformation

method as a parametric model and plug it into the GMM-HMM acoustic model. We pro-

pose a computationally efficient optimization method to jointly find the parameter of the

transformation and the acoustic model. Our results showed that the integration into the

acoustic model improves the performance. However, this method is more computationally

expensive than other two methods.



Chapter 5

Conclusion and future work

80
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5.1 Conclusion

In Chapter 1, we presented two mutivariare density estimation methods based on the

copula model : mixture of Gaussian copula model with Toeplitz correlation structure and

grafted Gaussian mixture copula.

From a density estimation perspective, these methods consistently outperform GMMs

with equivalent number of parameters. Our experiments shows that the standard deviation

of density estimation for grafted Gaussian mixture copula is slightly higher than GMM and

mixture of Gaussian copula model. From a computational complexity perspective, both of

these methods only involves the estimation of a set of marginal distributions and a mixture

model, which makes them a more powerful alternative for GMMs. Note that the grafted

Gaussian mixture copula provides a simple way to adjust the marginal distributions of

already trained GMMs without retraining.

In addition, these proposed methods have been used to estimate the class-conditional

densities in generative classifications. The resulting class-conditional multivariate distri-

butions form better classifiers than their corresponding conditional GMM counterparts

with same number of parameters. Our proposed models perform consistently better than

GMM classifier on different classification tasks. The classification performance of both

model are also comparable to SVM in many cases, even though it is a generative model.

In Chapter 4, we proposed a computationally cheap distribution-based normalization

method using copula model to address the mismatch between the training and test con-

ditions in ASR systems. We demonstrated that the proposed method can improve the

performance of ASR systems under noisy conditions, and in the presence of distortion.

Our results reveal that the proposed method consistently benefits different ASR systems

with a wide range of configurations such as monophone, triphone, and DNN-based models

trained with MFCC and filter bank features. We also explored three different strategies

to use the proposed method in ASR system. For the first strategy, we trained the backend

ASR using original features and just applied the normalization during the decoding phase.

This approach provides a quick way to improve the noise-robustness of already trained
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ASR systems without retraining them. Our results indicated that that this strategy pro-

vides a moderate improvement for ASR models trained by clean training and degrades the

performance of models trained with multi-condition training style. The second strategy is

to normalize each utterance in train and test datasets to have a distribution similar to the

distribution of the entire train set. And then we use the normalized features for training

and decoding. This consistently improves the performance of different models over the

original features. In contrast to the above two strategies, our third strategy is not inde-

pendent of the backend ASR. We formulate the normalization method as a parametric

model and plug it into the GMM-HMM acoustic model. We proposed a computationally

efficient optimization method to jointly find the parameters of the transformation and the

acoustic model. Our results showed that the integration into the acoustic model improves

the performance. However, this method is more computationally expensive than other

strategies.

5.2 Future work

In this thesis, we have introduced new methods based on copula model to accurately

estimate multivariate density estimation. We have investigated the application of our

proposed methods in different classification and ASR tasks. In general, our experiments

revealed that copula model based density estimation is an effective and powerful alternative

for standard methods, such as Gaussian model. Here, we list some directions for the future

works.

In Chapter 3, we have shown that the performance of generative classifier significantly

improves for different tasks by estimating class conditional densities using our copula-based

density estimators, instead of a GMM . There are many other tasks in machine learning,

which heavily depends on gaussian distribution, that can benefit from this replacement.

For example, we use a decision tree-based clustering method to build phonetic decision

tree for ASR systems. This method is top-down node splitting algorithm to construct

the tree where each node is associated with some data points. For each node, we use

a set of predefined questions to divide data points into some partitions and choose the



83

best split based on the log-likelihood improvement as goodness of split criterion. The log-

likelihood improvement is the sum of log-likelihood of the partitions where each portion

is modeled by a single Gaussian model. In practice, the distribution of each partition is

far from Gaussian distributions. Similarly, we can use Gaussian copula model to compute

the log-likelihood improvement.

In Chapter 4, we proposed a copula-based transformation to address the mismatch

between the training and testing conditions. The original transformation was independent

of the ASR backend. We have shown that a further improvement can be obtained by

integrating this transformation with GMM-HMM acoustic model. This transformation

can be combined with more sophisticated acoustic models, such as DNN or long short-

term memory neural network. Simply, we can embed this transformation as the first layers

of these models and use backpropagation method to find the transformation besides the

acoustic model.
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