Research Week 2023

An advanced thermal decomposition method for the synthesis of novel cobalt-doped core (magnetite) shell (maghemite) iron oxide nanoparticles with ultrahigh heating efficiency for systemic magnetic hyperthermia

Prem Singh, Ananiya A Demessie, Youngrong Park, Abraham S Moses, Tetiana Korzun, Fahad Y. Sabei, Hassan A. Albarqi, Leonardo Campos, Cory R. Wyatt, Khashayar Farsad, Pallavi Dhagat, Conroy Sun, Olena R Taratula,* Oleh Taratula*

Prem Singh, Department of Pharmaceutical Sciences, College of Pharmacy, 2730 S Moody Avenue, Oregon State University, Portland, Oregon 97201, USA;

Keywords

Magnetic hyperthermia, nanoparticles, ovarian cancer, LHRH peptide, AMF

Abstract

Owing to the low heating efficiency of currently available magnetic nanoparticles, it is challenging to reach therapeutic temperatures above $44{ }^{\circ} \mathrm{C}$ in tumors that are generally difficult to access after systemic delivery of nanoparticles at clinical dosage ($10 \mathrm{mg} \mathrm{kg}^{-1}$). In order to solve this problem, we have developed an advanced thermal decomposition method for the synthesis of novel cobalt-doped core (magnetite) - shell (maghemite) iron oxide nanoparticles ($\mathrm{Co}^{-} \mathrm{Fe}_{3} \mathrm{O}_{4} / \gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$) with an ultrahigh ILP of $48.0 \mathrm{nH} m 2 \mathrm{~kg}^{-1}$. Our in vivo research shows that these nanoparticles containing a cancer-targeting peptide are biocompatible and accumulate well in ovarian cancer grafts after being administered systemically at a concentration of $4 \mathrm{mg} \mathrm{kg}-1$. When exposed to an external AMF (420 kHz , $26.9 \mathrm{kA} \mathrm{m}^{-1}$), the delivered nanoparticles elevate temperature in both subcutaneous and metastatic cancer tumors to $50^{\circ} \mathrm{C}$. This newly developed synthesis method can be used for the synthesis of both non-doped core-shell nanoparticles and core-shell nanoparticles doped with different metals (e.g., Ni, Co). As a result, this strategy could be extended to the development of novel nanoparticles with even greater heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.

