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Dissertation Abstract 

This thesis is composed of two studies that utilizes different statistical methods to 

answer cancer research questions. The first study uses supervised and unsupervised statistical 

modeling on methylation array data from the BeatAML cohort to infer methylation signatures of 

AML. The findings demonstrate that computational modeling of methylation impact of AML 

drivers can reveal novel molecular pathways while also validating previously known 

associations and significantly enhancing AML risk-stratification. We extracted accurate and 

stable signatures of methylation impact of DNMT3A and TET2 mutations, which are the most 

frequently mutated epigenetic regulators in AML, and revealed methylation pathways that are 

important in leukemogenesis. We also employed topic modeling to deconvolute methylation 

signatures of multiple drivers. We observed that this method can extract the signatures of 

relatively less frequent events that would have been obfuscated by high frequency events in a 

conventional hard label clustering approach and it has strong potential to improve methylation-

based subtyping. Collectively, these signatures broaden our understanding of the impact of 

epigenetic mutations on leukemogenesis and may inform subsequent detection and drug 

response studies for AML patients. 

The second study presents a non-commercial and inexpensive protocol for measuring 

and monitoring adaptive dynamics in TCR clonotype repertoire using genomic DNA-based bulk 

sequencing. The results show that the concordance between bulk clonality metrics obtained 

from using the commercial kits and that developed herein is high. The study describes the Open 

TCR Sequencing Protocol (OTSP) that efficiently corrects for amplification bias post-

sequencing, provides a transparent protocol enabling clonality metrics, and is reproducible 

across samples. This study will be highly relevant to the scientific community, given the 

extensive interest in measuring and monitoring adaptive dynamics in patient TCR repertoires 
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and its potential significant impact on response and resistance monitoring for patients receiving 

various forms of immunotherapy in the treatment of cancer or auto-immune diseases. 

Overall, these two studies demonstrate the importance of statistical methods, bioinformatics, 

and machine learning in contemporary cancer biology research. They aid in integrating and 

interpreting a wide range of high-dimensional data types and identifying the molecular 

characteristics of tumors, predicting patient outcomes, and developing personalized treatments. 

In the future, these techniques will continue to play a critical role in advancing cancer research 

and improving patient outcomes.



23 

 

 Introduction 

1.1. Utilizing Statistical Methods and Machine 
Learning to Advance Cancer Biology Research 

Statistical methods and machine learning have transformed the field of cancer biology by 

providing researchers with powerful tools to analyze and interpret complex biological data at an 

unprecedented scale. These techniques support the integration of different layers of data from 

genomics, epigenomics, transcriptomics, proteomics, and imaging at the single-cell resolution. 

Importantly, these methods allow for the identification of molecular signatures that characterize 

tumors, predict patient outcomes, and guide the development of personalized therapies to name 

a few. 

1.2. Supervised and Unsupervised Machine Learning 
Methods 

Statistical, computational and machine learning techniques are essential to process, 

analyze, interpret and extract meaningful insights from the vast amount of data generated from 

high-throughput experiments. When class labels are present, supervised machine learning 

approaches such as support vector machines, random forests, regression and deep neural 

networks provide robust and efficient solutions to model the data, identify important variables, 

make predictions and classify samples. Often, however, we need to identify patterns and 

clusters in the high throughput data without pre-labeled information or prior knowledge of the 

structure of the data. After performing dimensionality reduction and including the most 
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informative variables, unsupervised machine learning models such as nonnegative matrix 

factorization, topic modeling and deep learning models can be used to represent the data in a 

latent space. These models, through different strategies, optimize the latent mapping such that 

a faithful approximation of the original data can be reconstructed from it. The difference of the 

reconstruction from the original data is called reconstruction error and is a key metric for 

assessing model performance.  Latent representations have been shown to be more 

manageable and provide the hidden structures in the data with a higher resolution than the 

traditional clustering methods. 

1.3. Statistical Normalization 

High-throughput techniques in biology often exhibit substantial technical variability and 

batch effects that can confound the biological signal of interest. This variability can stem from 

multiple sources, including differences in sample preparation, instrument performance, and 

experimental conditions. By applying normalization techniques, researchers can mitigate these 

biases and ensure that the observed differences between samples primarily reflect the 

underlying biology rather than technical artifacts. Consequently, normalization is a critical step in 

the analysis of high-throughput data, enabling more reliable interpretations of the data, and 

ultimately leading to more robust and reproducible findings in biological research. 

1.4. Using Supervised and Unsupervised Machine 
Learning Models to Build AML Epigenetic Signatures 

In the first part of my thesis, I use supervised and unsupervised machine learning 

models on methylation profiles of AML patients to classify and categorize differentially 
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methylated regions to shed insights into AML etiology, dynamics, mechanisms and enable risk-

stratification.  

Acute myeloid leukemia (AML) is a type of cancer that can start developing in healthy 

tissue years before the onset of symptoms. The path to AML can differ between individuals, with 

hematopoietic stem cells following different paths and gaining different features over time 

(Figure 1-1). Once the disease progresses to an advanced stage, it develops substantial clonal 

heterogeneity and becomes difficult to treat, with only a small percentage of patients surviving 

for more than five years after diagnosis. The disease can be difficult to detect early on, and the 

early phase is primarily driven by a small set of mutations that can lead to large numbers of 

differentially methylated regions (DMRs) in the genome. These DMRs can be used to gain a 

better understanding of the mechanisms and dynamics that are important in leukemogenesis, 

as well as to characterize aberrant methylation in cancers, sub-classify tumors, distinguish the 

tissue of tumor origin and gain insight into the mechanisms underlying AML and use this 

knowledge to develop new diagnostic and treatment strategies.  
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Figure 1-1 Myeloid malignancies comprise a continuum of hematopoietic disorders: 
Myeloid malignancies comprise a continuum of hematopoietic disorders that are characterized 
by increased proliferation, abnormal morphology (dysplasia) and impaired differentiation of 
myeloid lineage cells, or combinations thereof. Adapted with permission from Deininger et al., 
2017 (1) 

I grouped methylation changes into “epigenetic signatures” through two parallel 

statistical approaches: a supervised approach to find methylation signatures capturing the 

impact of driver mutations and an unsupervised Topic Modeling approach to factorize covarying 

epigenetic changes into few “topics”. 

Supervised machine learning models involve training a computer algorithm using a 

labeled dataset, where the inputs have corresponding outputs or target values. These models 

can then be used to predict the output for new, unlabeled data points. I use elastic net 
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regression models for inferring wild type vs mutant genotypes for DNMT3A and TET2, the most 

frequent epigenetic regulators, based on their downstream epigenetic impacts. This analysis 

reveals new methylation pathways of AML driver events important in leukemogenesis, uncovers 

new insights into methylation regulation in AML and validate previously known associations. 

This framework can be leveraged to build predictive models for AML-risk to inform detection and 

drug response studies for AML patients. 

Unsupervised machine learning models are a type of artificial intelligence technique that 

can identify patterns and relationships in data without prior knowledge or guidance from 

humans. Unsupervised models like topic modeling are particularly beneficial for exploring the 

underlying patterns and structures in sparse and high-dimensional data, like data from 

methylation profiling. By analyzing the joint distribution of DNA methylation at multiple CpG sites 

across the genome, topic modeling reveals groups of CpG sites that tend to co-vary together, 

providing insights into potential regulatory mechanisms in AML. As such, our models uncover 

methylation signatures of infrequent mutations, identify topics that show high concordance with 

ELN-2017 criteria, reveals unique signatures of co-occurring and a group of adverse-risk 

mutations with convergent methylation impacts and provides a computational framework has 

potential to select methylation sites with high biomarker potential for liquid biopsy assays. 

1.5. Using Statistical Normalization to Quantify TCR 
Repertoires 

In the second part of my thesis, I implemented statistical methods to quantify and model 

T Cell Clonotype repertoires using TCRβ CDR3 sequences. The binding of wide range of 

antigens to receptors on the surface of T cells is a crucial factor in shaping the immune 

response in both healthy and diseased states. The T cell receptor (TCR) is a heterodimer 
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consisting of an alpha and a beta chain, encoded by the TCRα and TCRβ genes respectively. In 

order to recognize a vast array of antigens, the TCR genomic loci undergo somatic 

recombination of variable (V), diversity (D), and joining (J) gene segments, resulting in a diverse 

range of TCRs (Figure 1-2). The diversity of the TCRβ chain is particularly high in the 

complementarity determining region 3 (CDR3), located at the D segment of the recombined 

TCRβ gene – this region works as a natural barcode identifying the clone. Therefore, 

sequencing the recombined TCRβ gene or transcript TCR repertoire can help us understand the 

dynamics and diversity T-Cells. 

Experimental pipeline is based on multiplex PCR followed by NGS. In the multiplex PCR, 

it is necessary to use multiple sets of primers to amplify the recombinant CDR3 region and each 

forward and reverse primers work at different efficiencies. This amplification bias needs to be 

statistically corrected to quantify the T-Cell Receptor (TCR) repertoire and abundance 

accurately and for comparisons between different samples or treatment conditions. Measuring 

and monitoring adaptive dynamics in patient TCR repertoires could have a significant impact on 

response and resistance monitoring for patients receiving various forms of immunotherapy in 

the treatment of cancer or auto-immune diseases. 
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Figure 1-2 TCR specificity determined by V(D)J recombination: The T-cell receptor (TCR) 
specificity of αβ T cells is dictated by the distinctive events of V(D)J recombination that take 
place during the maturation of each T cell. In this process, V, D, and J gene segments are 
arbitrarily chosen and combined on the β chain, while the α-chain experiences a comparable 
rearrangement of the V–J gene segments. Within this progression, random nucleotide additions 
or deletions can happen at the junctions of these segments. The region known as the 
complementarity-determining region 3 (CDR3), which is encoded by sequences located in the 
V(D)J junction, exhibits the greatest diversity and ultimately determines the antigen specificity of 
each TCR. TCRβ: T-cell receptor beta; CDR3β: the gene sequence encoding the 
complementarity-determining region 3 of the TCR beta chain. 
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2.1. Abstract 

Decades before its clinical onset, epigenetic changes start to accumulate in the 

progenitor cells of Acute Myelogenous Leukemia (AML). Delineating these changes can 

improve risk-stratification for patients and shed insights into AML etiology, dynamics 

and mechanisms. Towards this goal, we extracted “epigenetic signatures” through two 

parallel machine learning approaches: a supervised regression model using frequently 

mutated genes as labels and an unsupervised topic modeling approach to factorize 

covarying epigenetic changes into a small number of “topics”. First, we created 

regression models for DNMT3A and TET2, the two most frequently mutated epigenetic 

drivers in AML. Our model differentiated wild-type vs. mutant genotypes based on their 

downstream epigenetic impacts with very high accuracy: AUROC 0.9 and 0.8, 

respectively. Methylation loci frequently selected by the models recapitulated known 

downstream pathways and identified several novel recurrent targets. Second, we used 

topic modeling to systematically factorize the high dimensional methylation profiles to a 

latent space of 15 topics. We annotated identified topics with biological and clinical 

features such as mutation status, prior malignancy and ELN criteria. Topic modeling 

successfully deconvoluted the combined effects of multiple upstream epigenetic drivers 

into individual topics including relatively infrequent cytogenetic events, improving the 

methylation-based subtyping of AML. Furthermore, they revealed complimentary and 

synergistic interactions between drivers, grouped them based on the similarity of their 

downstream methylation impact and linked them to prognostic criteria. Our models 
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identify new signatures and methylation pathways, refine risk-stratification and inform 

detection and drug response studies for AML patients. 

2.2. Introduction 

In many Acute Myeloid Leukemia (AML) cases, precancerous clonal expansions start in 

healthy tissue decades before the cancer onset(2–4). A hematopoietic stem cell may follow 

different paths to AML gaining the necessary pathological features (e.g., increased proliferation, 

abnormal morphology, and impaired differentiation of myeloid lineage cells, or combinations 

thereof) at different rates,(1) dictated by the interplay between the type and order of mutations, 

epigenetic events and tumor micro environment(5). 

Before the acute presentation of a myeloid malignancy with anemia, neutropenia 

and thrombocytopenia, the disease is clinically silent and hard to detect. Recent single-

cell sequencing studies(6,7) showed that this early phase is primarily driven by a small 

set of mutations(8–10). Clones frequently harbor multiple co-occurring mutations 

including DNMT3A, TET2 and ASXL1, which are epigenetic regulators that change the 

normal physiological methylation landscape when mutated (6,7,11), thus conferring a 

broad risk of progression to a myeloid malignancy with the acquisition of a cooperating 

mutation(12). Once the disease progresses to an advanced stage it develops substantial 

clonal heterogeneity and becomes difficult to treat; only 20% of the patients survive for 

more than 5 years after diagnosis and recurrence is common even after complete 

remission(13).  

These early drivers lead to a large number of Differentially Methylated Regions 

(DMRs) in the genome(14). Their effects can be captured as distinct "signatures" to gain 

a better understanding of the mechanisms and dynamics that drive early disease. DMR 
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signatures could be used for characterizing aberrant methylation in cancers(15), tumor sub-

classification and distinguishing the tissue of tumor origin(16–18). For example, Vosberg et 

al.(16) showed that the AML clinical risk stratification based on genetic mutations European 

LeukemiaNet (ELN-2017) has good concordance with the DNA methylation based clustering. 

The authors suggested that the DNA methylation profiling could be used for AML risk 

stratification as subgroups of epigenetically homogeneous AML patients differ significantly in 

clinical outcomes. Similarly, Cabezon et al.(19) demonstrated that different methylation 

signatures at the time of diagnosis could predict response to azacytidine, a hypomethylating 

agent. 

Compared to genomic profiles, methylome profiles offer two key benefits for liquid biopsy 

applications. First, a single genomic alteration can be associated with thousands of methylation 

changes, leading to significant signal diversity if the methylation changes have selective 

advantage. Secondly, various low frequency genomic alterations that have similar downstream 

effects can be grouped into methylation factors. These advantages are critical in both cancer 

early detection and disease monitoring applications, as they increase the power to detect rare 

subclonal expansions of pre-malignant diseases. 

In this study we investigated how well the upstream genomic events are reflected in the 

methylome, and whether common downstream effects of groups of genomic events can be 

detected. To achieve this objective, we systematically modeled methylation signatures in AML 

using methylation, genetic, and clinical profiling data from 220 AML patients in the BeatAML 

cohort(20).  We used two statistical approaches to capture these signatures. First, we identified 

frequent epigenetic signatures linked to mutations in DNMT3A and TET2 genes and used 

supervised regression models to deduce methylation activities. We demonstrated that 

epigenetic signatures in methylation pathways were associated with DNMT3A and TET2 

mutations (Figure 2-1). Next, we utilized unsupervised topic modeling(21,22) to develop a latent 
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representation of the methylation landscape and labeled methylation signatures using 

biological and clinical factors. We showed that topic modeling can accurately identify the 

impacts of all major drivers, and these signatures are highly correlated with ELN-2017 

prognosis(23). Our findings suggest that our approach can substantially improve risk-

stratification for AML patients by revealing the previously unknown methylation 

signatures of relatively rare cytogenetic events, which will also greatly improve the 

subsequent methylation-based subtyping of patients for drug response studies and 

provide a framework for the usage of methylation as a biomarker.    

 

Figure 2-1 Overall Approach: Inferring methylation signatures that drives AML from 
methylation profiles. We use two parallel approaches: (a) regression models of epigenetic impact 
of epigenetic regulator mutations. (b) a latent representation of the epigenetic landscape using topic 
modeling. 
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2.3. Methods 

2.3.1. Dataset 

We used a subset of the BeatAML cohort that consists of 220 post-diagnosis AML 

samples profiled with three modalities: 1) Illumina Infinium MethylationEPIC assay(24) 2) 

matching exome sequencing and cytogenetic information and 3) matching clinical profiling(20). 

Methylation values of each probe was normalized to follow an approximate Beta – 

valued distribution, with constrained to lie between 0 (unmethylated locus) and 1 (methylated 

locus), normalized based on the BMIQ method(25). Beta values indicate the probability that the 

corresponding locus is methylated. 

2.3.2. Approach for supervised models 

We used an Elastic Net based approach(26) to infer wild type vs mutant genotypes for 

DNMT3A and TET2 based on their downstream epigenetic impacts. We trained regression 

models with different regularization parameters. Samples were divided into two sets: training 

and validation (80%), and test (20%). Training and validation set were used to optimize 

hyperparameter(s) with 10-fold cross validation. The test set was only used for obtaining 

performance measures of the model on new data. We used a variance filter of top 1% most 

variable methylation sites. We obtained the performance measures using receiver operator 

characteristic (ROC) curve analysis from the ROCR package(27). We evaluated 25 different 

80% training and 20% test sets splits and observed the standard deviation of resulting models 

as well as hyperparameters to ensure that the models are highly robust to sampling bias. For 

further validation, we evaluated the biological relevance of the results by extracting the loci with 

the highest feature (CpG sites) coefficients and annotated them.  For annotation purposes, we 
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used ridge regularized models to have more stable feature weights. In ridge regression, 

all coefficients are assigned with a nonzero value during regularization and coefficients 

with high absolute values are important in terms of predicting the mutation status, 

positive coefficients specifying hypermethylation and negative values specifying 

hypomethylation. We extracted a list of loci and annotated the genome based on their 

closest gene on the genome to reveal the relationship between the selected most 

important chromosome sites and the epigenetic regulator under investigation.  

2.3.3. Approach for unsupervised models 

We use topic modeling to reduce the feature space of 866,800 methylation loci to 

a latent space of small number of topics (factors) and represent each sample as a 

combination of a few topics. We used a Latent Dirichlet Allocation (LDA)(28) based 

approach implemented in the topicmodels package(29). This implementation provides 

explicit quantification of uncertainty, important for evaluating and comparing topics. 

While implementing the topic modeling, we optimized the model parameters including 

topic size as well as the size of the chromosome sites/probes provided as an input to the 

model. For validation with topic perplexity, the model evaluates how well the input matrix 

(methylation values for all chromosome sites of a new patient) is reconstructed from the 

output matrices, finding the hyperparameters minimizing the reconstruction error 

iteratively. We further evaluated model performance using topic coherence with 

biological and clinical information mapping. After inferring topics and assigning topic 

values to each patient with the specified optimal topic size of 15 and by taking the top 

1% of the most variable genomic sites across patients, we annotated the topics with 

biological and clinical information. Then, we systematically tabulated the statistical 
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enrichment of known factors for each topic using –log p-values based on the student t-test. 

2.3.4. Data sharing statement 

All data used were from previously published studies(20,24). The source code for 

the analysis is available at https://github.com/gurundem/AML_methylation_signatures 

2.4. Results 

2.4.1.  DNMT3A and TET2 have robust downstream 
methylation signatures 

We computationally constructed signatures for the downstream impact of DNMT3A and 

TET2, and then, we used these signatures to shed light on their methylation pathways in AML.  

Our rationale for modeling DNMT3A and TET2 mutations has been four-fold: 1) For a 

given gene, our regression models require sufficient number of mutant cases in a given cohort 

to produce stable models. DNMT3A and TET2 are the top two most frequently mutated 

epigenetic regulators. 2) DNMT3A and TET2 are epigenetic regulator genes, directly impacting 

the methylation landscape and leaving a distinguishable signature on the DNA when 

mutated(17,30). 3) DNMT3A and TET2 are known to confer a broad risk of converting to a 

myeloid malignancy with the acquisition of a cooperating mutation(12), making them important 

players of early AML etiology. 4) Mutations in these genes are found in almost all types of 

hematologic cancers(31), broadening the impact of our models.  

Frequencies of DNMT3A and TET2 mutations in AML are 22% and 11% respectively 

from prior work(20). The BeatAML dataset have similar frequencies: 22% (49) patients carry 

DNMT3A and 17% (37) carry TET2 mutations.  
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We trained classifiers to infer the wild-type vs. mutant genotypes for DNMT3A 

and TET2. Regression models predict the mutation status of a given frequent epigenetic 

regulator from the downstream methylation changes. We calculated performance 

measures using receiver operator characteristic (ROC) curve analysis. Our results show 

that we trained highly robust and accurate classifiers with AUROC = 0.9 for DNMT3A 

and AUROC = 0.8 for TET2 (Figure 2-2). This suggests that despite the complex 

genetic and epigenetic makeup of these post-diagnosis samples, the distinctive 

signatures left by epigenetic regulator mutations on DNA can be successfully extracted.  

 

Figure 2-2.A-B. Performance of classifiers measured with AUROC (Area under the ROC 
curve)Regression models accurately classified wild type vs mutant genotypes based on their 
downstream impacts. 

2.4.2. DMRs selected by DNMT3A and TET2 signatures 
highlight key downstream pathways  

To gain more insight into the molecular processes that were indicative of the 

mutation status of DNMT3A and TET2, we annotated the genomic sites that has the 

highest coefficients in the model with the closest gene in the genome (Table 2-1 and 

Table 2-2). We found that well-known targets of DNMT3A, such as EVI1/MECOM(32) 
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and AEBP2 (a member of the polycomb repressive complex), were often selected by the 

models. For example, hypomethylation of AEBP2 is strongly associated with DNMT3A 

mutations, and recent single-cell studies have suggested a link between mutated 

DNMT3A and preferential hypomethylation of targets of the polycomb repressive complex 2(33).  

Known targets of TET2 mutations were also selected by the models, including the 

CEBPA-AS1 and ABR hypomethylation. Studies have shown that CEBPA and TET2 mutations 

frequently co-occur and ABR is a transcriptional regulator of CEBPA and contributes to myeloid 

differentiation. In addition to known targets, we have also identified several novel loci that are 

strongly correlated with the mutation status of these genes. Further study of these sites could 

provide new insights into the role of methylation regulation in AML. 
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Gene Potentially Relevant Associations 

TM2D2 Found in 8p23.1 amp, linked to pediatric malignancies(34) 

HYDIN Indicated in familial MDS/AML(35) 

N/A  

COX7A2 
Part of a myeloid differentiation block regulated by homeobox  
TFs(36) 

SAPCD2P2;VN1R28P Pseudogene 

WNK2 MEK pathw ay upstream regulator(37) 

CHN2 Expression changes associated w ith lymphomas(38,39) 

N/A  
N/A  

TENM2 
Mutually exclusive w ith MECOM and DNMT3A, identif ied in 
BeatAML(20) 

N/A  
HOXB2 Homoebox TF, know n suppressor of FLT3-ITD driven AML(40) 

C1orf87  
DYSF  Plays a role in monocyte differentiation(41,42) 

AEBP2 
Polycomb repressor complex member, frequently deleted in AML, 
associated w ith DNMT3A hypomethylation(33,43) 

VKORC1L1 Next to PIK3CG – a potential tumor suppressor of AML.(44,45) 

TXNRD1 Major regulator of metabolism in leukemia cells(46) 

AGAP1 
Part of a myeloid self-renew al block regulated by homeobox  
TFs(47) 

RPS6KA2 rho gtpase(48) 

MECOM 
Translocations transform to AML/ mutually exclusive w ith TENM2 
and DNMT3A(32) 

Table 2-1 Gene annotations for the top ten most frequently selected features for the 

DNMT3A status prediction both for hypermethylated (green) and hypomethylated 

(yellow) sites 



41 

 

 

2.4.3. Factorization of methylation changes into Topics link 
genomic events into distinct methylation programs 

Using topic modeling, we reduced the methylation profiles to a latent space of 15 topics. 

For each patient, topic values represent probabilities of enrichment for each topic based on the 

Gene Potentially Relevant Associations 

FRMD6-AS2  

FOXK2;RP13-638C3.3 
Genomic stability, DNA repair, cancer stem cell maintenance, 
cell proliferation, apoptosis and cell metabolism(49) 

GTDC1 
Glucosyltransferase high expression in blood leukocytes(50), 
3′ MLL fusion partner in acute leukemia(51) 

RP11-804A23.1   

SCUBE1;Z99756.1 
Initiation and maintenance of MLL-AF9-induced 
leukemogenesis in vivo. Binds to FLT3(52)  

TBCD 
Show n to be differentially methylated during 
granulopoiesis(53) 

PHACTR1 Cytoskeletal regulation(54) 

EHD4   

DTHD1 Apoptotic control(55) 

GDF7   

FAM155A   

IQSEC1    

TRAP1 Key mitochondrial regulator(56) 

CEBPA-AS1;CTD-
2540B15.9 

CEBPA regulator, In CEBPAdm cases for concomitant 
mutations, TET2 found to be most frequently mutated(57) 

C1orf112;SELL   

ABR CEBPA regulator, TF contributes to myeloid differentiation(58) 

TPO   

RP11-191L9.4   

RGS17 GPCR regulator(59) 

DMRTA1 Cell differentiation(60) 

Table 2-2 Gene annotations for the top ten most frequently selected features for the 

TET2 status prediction both for hypermethylated (green) and hypomethylated (yellow) 

sites. 
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most co-variable DMRs across patients. We observe that 15 topics captured major mutations 

and cytogenetic events as well as having a prior MDS, gender and ELN-2017 risk stratification 

by genetics(23). Each patient has different combinations of driver events, but topic modeling 

successfully deconvoluted the impact of these drivers in the methylome, even for the relatively 

low frequency chromosomal alterations (Figure 2-3).  

Figure 2-4 tabulates the statistical enrichment of known factors for each topic. For each 

topic and epigenetic factor pair, we calculated whether that topic’s value is significantly higher in 

patients with the factor compared to patients without the factor to methodologically quantify 

enrichment.  
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Figure 2-3. Topic Distribution for 220 post-diagnosis AML patients: Topic size is 15    
(columns). For each patient, topic values represent probabilities of enrichment for each topic 
based on the most variable DMRs across AML patients. Topic 11 is enriched for DNMT3A and 
NPM1 co-mutations (yellow rectangles). Topic 7 is enriched for TET2 and NPM1 co-mutations 
(blue rectangles). Topic 4 (primarily) and topic 2 are enriched for IDH1 and IDH2 (purple 
rectangles). NPM1’s effect is further distributed to topics 4 and 13. Topic 15 is enriched for 
inv16 (grey rectangles) and t(8,21) and topic 14 is enriched for CEBPA (red rectangles) and 
t(8,21). t(8,21)’s effect is further distributed to topic 10 (green rectangles). Topic 5 is enriched 
for gender. ASXL1, SRSF2, TP53, RUNX1, BCOR and 5q and 7q deletions associated topics 
are aligning with Prior MDS and ELN-2017 adverse category (black rectangles). The other 
common chromosomal events t(15, 17) and t(9,11) almost exclusively map to topics 9 and 3 
respectively (orange and gold rectangles respectively).  
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Figure 2-4.Enrichment heatmap of topics vs. epigenetic factors: Cell colors indicate the 
significance of whether the average topic values of the patients with the factor (e.g. DNMT3A 

mutant) is significantly higher than the average topic values of the patients without that factor 
(e.g. DNMT3A WT), reflecting –log p-values based on the one sided t-test. Gender is strongly 
associated with topic 5, NPM1 and DNMT3A co-mutations, topic 11, t(15, 17), topic 9, (inv 16), 
topic 15, IDH1 and IDH2, topic 4 (primarily) and 2, t(9, 11), topic 3, CEBPA, topic 14 (primarily), 
and NPM1 and TET2 co-mutations, topic 7. NPM1’s effect is further distributed to topics 4 and 
13. t(8,21)’s effect is distributed to topic 15 (primarily), 10 and 14. RUNX1, BCOR, ASXL1, 
TP53, SRSF2, 5q and 7q deletions, having a prior MDS and ELN2017 adverse risk category 
associated topics are clustered together.  

Strong statistical associations between eight topics and specific driving events including 

topics that represent gender (topic 5), NPM1 and DNMT3A co-mutations (topic 11), 

translocation of chromosomes 15 and17 (topic 9), inversion of chromosome 16 (topic 15), IDH1 

or IDH2 mutation (topic 4 and less strongly to topic 2), translocation of chromosomes 9 and 11 

(topic 3), CEBPA mutation (topic 14) and NPM1 and TET2 co-mutations (topic 7) are identified 

(Figure 2-3 and Figure 2-4). The effect of NPM1 is also distributed to topics 4 and 13, while the 

effect of translocations of chromosome 8 and 21 is distributed to topics 15 (primarily), 10 and 
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14. Topics associated with RUNX1, BCOR, ASXL1, TP53, SRSF2, 5q and 7q deletions, having 

prior MDS and the ELN2017 adverse risk category are clustered together, , demonstrating their 

similar downstream methylation impacts. 

We observe that these epigenetic topics can be broadly classified into four groups for 

AML a) gender associated, b) cytogenetic events with a distinct signature, c) co-mutations with 

NPM1 d) A heterogenous set with TP53, SRSF2, ASXL1, BCOR, RUNX1 mutations and 5q and 

7q deletions that is associated with prior MDS and adverse prognosis. 

We then asked if the DMRs that have high coefficients for a given topic recapitulate 

known downstream pathways or reveal novel biology. We annotated each locus with the closest 

gene in the genome (Table 2-3 and Supp. Figure 1). We observe that topic group a (1, 5, 6) 

predictably have DMRs located on chromosomes X and Y. For other topics, multiple 

downstream pathways have been found to occur repeatedly across various topics, including 

pathways associated with homeobox (HOX) genes, histone deacetylases, lipid metabolism and 

maintenance of stem-cell state. Topic group d (2,8,12) had substantial enrichment in remodeling 

and differentiation pathways as well as expression of T-Cell receptors, potentially indicating a 

de-differentiation mechanism to other hematopoietic lineages.  

Supp. Figure 2 and Supp. Figure 3 show ELN-2017 adverse and ELN-2017 favorable 

risk category groups of mutations and events clustering together, respectively. In addition, we 

showed that there is no topic enriched in association with FLT3 mutations—this is in agreement 

with previous findings(61) (Supp. Figure 4). 

We also tested whether topic enrichment for cytogenetic events, such as t(15;17) are 

achieved through their downstream methylation impact or through the detection of their break 

points by the topic modeling algorithm. For example, topic number 9 is exclusively enriched for 

t(15; 17) (Figure 2-3 and Figure 2-4). We annotated the top ten genomic sites with the highest 
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assigned topic values on the genome and none were mapped on chromosomes 15 or 17 (Table 

2-3 and Supp. Figure 4), suggesting that cytogenetic aberrations are categorized based on 

their trans, downstream methylation impact rather than cis effects. 

 

Table 2-3. Annotation of the top 10 most enriched loci for all 15 topics 
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2.5. Discussion 

We systematically modeled the epigenetic impact of genomic events using supervised 

and unsupervised approaches. Individual DNMT3A and TET2 signatures were detected with 

high accuracy and robustness, as they yielded high AUROCs with a testing error that was 

consistent with training error across multiple training rounds, even amidst the complex genetic 

and epigenetic landscape of post-diagnosis samples. Methylation loci commonly chosen by the 

models includes well-known downstream targets such as EVI1/MECOM and AEBP2 for 

DNMT3A, and CEBPA-AF1 for TET2, all of which exhibited hypomethylation. A hypomethylated 

loci near HOXB2 was a strong predictor of mutant DNMT3A status although there are conflicting 

reports in the literature of the overall effect of DNMT3A mutation on the methylation of the HOX 

promoters(62–64). This observation strongly suggests that specific loci might have stronger 

signal for the upstream regulator status as opposed to methylation patterns over a genomic 

region. Further investigation of these sites can lead to new mechanistic insight on methylation 

pathways important in leukemogenesis. As the cohorts become larger, these approaches can 

be extended beyond DNMT3A and TET2 to other potential AML epigenetic drivers including 

cytogenetic events and related methylation pathways can be investigated. 

Our regression models require labeled data (such as mutation status) and allow us to 

model the impact of each driving factor (e.g. DNMT3A mutation status) independently. However, 

we need substantially larger cohorts for building models of infrequent drivers such as 

cytogenetic events. Furthermore, the analysis may be confounded by co-occurring mutations. 

To complement this approach, we used topic modeling on the same dataset to factorize 

methylation profiles. This yielded a representation of each patient's methylation pattern as a 

combination of multiple topics. For each topic we identified mutations and clinical classes that 

are statistically enriched. We observe that identified topics fell into 4 broad categories: Gender 



48 

 

associated, cytogenetic events, NPM1 co-mutations and a heterogeneous set of 

mutations in TP53, SRSF2, ASXL1, BCOR, RUNX1, and deletions of chromosomes 5q 

and 7q. The latter group is associated with adverse-risk prognosis and topic modeling 

reveals that they have converging downstream methylation impacts. 

We have shown that DNA methylation-based categorization achieved by topic 

modeling resulted in a good concordance with the ELN-2017 risk stratification by 

genetics and having a prior MDS. Vosberg et al.(16) and Figueroa et al(61) previously 

pointed to the potential of DNA methylation profiling to refine AML risk stratification and 

our study reinforces these observations. However, we improve upon these hard-label 

clustering techniques by representing each patient's pattern as a combination of several 

factors as opposed to belonging to a single subtype. This factorization and 

deconvolution are crucial, given the highly combinatorial nature of the disease. We, in 

fact see that less frequent factors such as cytogenetic events crosscut previously 

defined subtypes, methylation effects of which have been obfuscated by the effects of 

more frequent drivers in a hard-clustering approach. Through topic modeling, we can 

deconvolute the impact of overlapping factors, creating an improved latent 

representation of the disease state. As a result of this, our models have made 

substantial improvements in methylation-based risk-stratification by uncovering 

previously unknown signatures associated with relatively rare cytogenetic events. This 

may greatly enhance the subtyping of patients for drug response studies and provide a 

framework for using methylation as a biomarker in subsequent studies.   

 We reviewed the frequently selected methylation loci to gain insight on the downstream 

methylation impact. We observed multiple downstream pathways re-occurring across multiple 

topics including HOX genes, stem-cell and de-differentiation associated pathways as well as 

histone deacetylases. This implies that although different genetic regulators have distinct 
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methylation impact, they might be converging on common downstream processes and these 

convergence points might be excellent therapeutic targets. We also observed several 

downstream pathways that were not canonically associated with upstream genetic events such 

as parathyroid hormone receptor, lipid homeostasis and protein glycosylation. Perhaps more 

importantly, we observed that the topic modeling was able to systematically capture the impact 

of key epigenetic regulating events and simultaneously grouped events that have similar or 

synergistic impacts together.  

As these signatures help us quantify the relationship between a driver event and its 

downstream methylation impact, they can be leveraged to build predictive models for AML-risk. 

Methylation changes can be tracked throughout leukemogenesis in early detection cohorts 

through simple liquid biopsies. Risk-stratification based on downstream epigenetic signatures 

can help us determine which patients are at risk and who should be monitored more frequently. 

We can also use these models to test if the function of a regulator is restored or disrupted 

following treatment, such as hypomethylating agents targeting epigenetic regulator functioning, 

and stratify who can benefit from the treatment. Since modifications by epigenetic mutations are 

reversible with therapy, broadening our understanding of the impact of epigenetic mutations on 

leukemogenesis and therapeutic response will be essential for advancing treatment of myeloid 

malignancies(31).  
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3.1. Abstract 

T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure 

and monitor adaptive dynamical changes in response to disease and other perturbations. 

Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target 

amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we 

utilize an equimolar primer mixture and propose a single statistical normalization step that 

efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our 

open protocol and a commercial solution, we show high concordance between bulk clonality 

metrics. This approach is an inexpensive and open-source alternative to commercial solutions. 

3.2. Background 

The receptors on the surface of T cells bind to an enormous array of antigens that play a 

pivotal role in shaping immune response during health and disease. The T cell receptor (TCR) is 

a heterodimer composed of one alpha and one beta chain which are encoded by the TCRα and 

TCRβ genes, respectively. To recognize an extremely large antigen space, the TCR genomic loci 

undergo somatic recombination of variable (V), diversity (D), and joining (J) gene segments, and 

generate a diverse repertoire of TCRs. The complementarity determining region 3 (CDR3) region 

present at the D segment of the recombined TCRβ gene is highly diverse in TCR beta chains. 

Therefore, surveying the recombined TCRβ gene or transcript as a proxy for overall TCR 

repertoire diversity has emerged as a rational approach to study TCR repertoire dynamics.  

Over the last ten years it became possible to obtain comprehensive profiles of TCR 

through an array of next generation sequencing (NGS) based approaches(65–72). These vary 

based on the experiment type (bulk or single-cell), sample type (RNA or DNA), library preparation 
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(multiplex PCR, bead-based enrichment, 5’RACE) and sequencing platform, each choice 

presenting a different, and fascinatingly interlocked trade-off. Single cell approaches compared 

to bulk can be very accurate and unbiased for high frequency clones, but have lower resolution 

for low frequency clones(73,74). They are also substantially more expensive and require intact 

cells. RNA-based approaches are affected by the variability in TCR RNA expression levels, but 

may better reflect diversity when the sample size is limited(72). Genomic DNA (gDNA)-based 

approaches require either multiplex PCR or target enrichment during library preparation which 

introduces biases(75). A recent comparison of these two approaches confirmed these issues for 

both RNA- and DNA-based methods but also found the methodological variability to be smaller 

than the biological variability(76). New innovations are being introduced rapidly for all of these 

approaches but currently there is no established gold standard. 

Multiplexed PCR-based bulk sequencing approaches using gDNA, however, have 

become the standard approach for translational and even clinical applications due to reasonable 

sample requirements and moderate costs(77). This is reflected in the fact that all currently 

available commercial TCR sequencing products offer this as their major DNA option (Adaptive 

Biotechnologies(78), BGI(79), iRepertoire). Multiplex PCR refers to the usage of multiple forward 

primers specific for the V segments and multiple reverse primers specific for the J segments in 

combination during the initial amplification for target enrichment. Since each primer pair will have 

a different efficiency multiplexing will distort the relative abundances of the VDJ segment 

combinations(80). Correcting for this amplification bias is a key challenge for accurate 

quantification. One approach (78) is using spiked-in oligomers (synthetic templates) for each 

primer pair to measure primer efficiencies and to carefully control the design of the primers and 

their concentrations accordingly. Assuming that there is no interaction between the efficiency of 

primer pairs, amplification bias is reduced by iteratively calibrating the primer concentrations to 
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find the optimal primer mix, and then removing any remaining amplification bias computationally 

using spiked-in oligomer counts.  

The proprietary setup described in (78) is currently available for human and murine 

samples exclusively through commercial kits. These are difficult and labor-intensive to adapt if 

requiring different settings, e.g. a different mammal or application. Furthermore, synthetic 

templates when added to all of the samples with the kits can substantially increase preparation 

and sequencing costs, as well as decrease coverage for clonotypes.  

3.3. Results 

3.3.1.  Amplification bias due to multiplex PCR is 
reproducible 

To amplify all possible TCR somatic recombination products, we performed a multiplex 

PCR with 20 different V-specific forward primers and 13 different J-specific reverse primers. 

Since the differences in efficiency of primer pairs can produce significant amplification bias in 

TCR clonotypes, we spiked-in 260 synthetic TCR templates (ST) in equimolar concentration as 

internal controls to the multiplex PCR reaction in order to measure and control bias (Figure 

3-1).  
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Figure 3-1 Overview of the TCR sequencing analysis pipeline : A. gDNA extracted from 
freshly resected murine peripheral blood, peritoneal orthotopic mesotheliomas, and spleen 
tissues. B. Equimolar mixture of synthetic TCR templates (ST) were then added, and C. 
followed by addition of forward and reverse sequences of ST (top) and TCRβ (bottom). For ST, 
universal 9-bp barcode (grey), unique 16-bp barcode (purple). For TCRβ, V-region (red), 
VD/DJ-junctions (grey), D-region (purple), J-region (green). D. Samples amplified with multiplex 
PCR followed by second-stage barcoding PCR. E. Samples were then pooled for sequencing. 
F. ST and TCRβ were then separated using universal barcodes, and G. ST was quantified 
using unique barcodes. H. TCRβ clonotypes were quantified with the MiXCR tool suite. I. 
Negative binomial normalization was used to remove amplification bias. J. Scaling factors were 
applied to counts, and K. then used to normalize counts for diversity analyses. 

We hypothesized that the estimated mean counts of the 260 ST would scale 

proportionally across samples and experiments. To test this, we measured the distribution and 

variation of ST counts across 20 ST-only samples in the absence of genomic DNA (Figure 3-2). 
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Figure 3-2 ST proportion distributions : Plot showing stability for relative frequencies of ST 
counts within individual samples, and amplification bias based on the reproducibility of the 
multiplex PCR. Median IQR of ST-to-ST variation was ~20-fold greater than the median IQR of 
experiment-to-experiment relative frequencies of ST counts. Target values aim to be at the ln 
(1/260) line in the absence of amplification bias. Data derived from twenty ST-only samples 
described in the ST-only data sets.  

Within each sample, ST counts were converted to relative frequencies to reduce the 

effect of random sample-to-sample variation on the comparisons. For a given ST, deviation of 

the median relative frequency across all samples from 1/260 is a measure of the PCR 

amplification bias for the corresponding primer pair, while the spread of relative frequencies is 

an indication of the random sample-to-sample variation. We observed that the ST-to-ST 

variation was much larger than the sample-to-sample variation within an individual ST (~20-fold 

difference in respective median IQRs). These differences indicate that the observed differences 

in ST counts are primarily caused by amplification bias of different primer pairs. The ln (1/260) 

line indicates the (log) expected ST relative frequency in the absence of amplification bias. To 

demonstrate that the above observations apply in the presence of TCR clonotypes, we obtained 
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ST counts from samples with genomic DNA extracted from P14 and OT-1 TCR transgenic mice 

where CD8 T cells primarily recognize OVA257-264 when presented by the MHC I molecule. A 

similar relationship was found between ST relative frequencies in the presence of TCR 

clonotypes across samples, though the sample-to-sample variation is noticeably larger (Supp. 

Figure 5). 

3.3.2.  A negative binomial model fits the data 

The fit of count data on 260 ST from each of 20 ST-only samples to the negative binomial 

(NB) with ST-specific means and a common dispersion parameter d can be informally assessed 

by examining an empirical variance (v) vs mean (m) plot with the line v = m + dm2 displayed, all 

with log-log scales. 

At the high end, we expect an approximate linear relationship between log mean and log 

variance for the ST counts, with a slope of about 2, since log v ≈ log d + 2log m for large m. In 

Figure 3-3, we took d=0.125, as this was the median value of the dispersion estimates found by 

fitting separate NB distributions to the 260 sets of 20 ST counts.  

The fact that the ST counts fit NB distributions with approximately similar overdispersion 

parameters reassures us the variation we are seeing is in some sense natural and that the system 

is in control(81).  
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Figure 3-3. A negative binomial model fits the data : Observed mean-variance relationships 
fit as compared to the negative binomial (NB) model. Dots are observed values derived from 
260 ST count distributions with a separately fitted dispersion parameter. The red line is the 
relationship predicted by the NB model with fixed d (0.125). Data derived from twenty ST-only 
samples described in the ST-only data sets. 

3.3.3. Scaling factors are relatively stable across experiments 

We fit the NB model to three different sets of ST-only observations at different equimolar 

concentrations, coming from two different batches: (1) a set of 20 samples from one batch, (2) 

two sets of 10 samples from another batch. To demonstrate that scaling factors were relatively 

stable across ST-only samples, we compared the sets of 260 (𝑚𝑚𝑖𝑖/𝑚𝑚•) values based on 20 ST-
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only samples, to those based on the sets of 10 ST-only samples. We observed the (𝑚𝑚𝑖𝑖/𝑚𝑚•) values 

to be highly correlated on a log-log scale (Pearson r = 0.83 and 0.97, p-value < 2×10-16 for both 

comparisons) (Figure 3-4), indicating that scaling factors are relatively stable across 

experiments.  

 

Figure 3-4.A-B. Stability of scaling factors : Scatter plots (log-log scales) comparing the sets 
of 260 (𝑚𝑚𝑖𝑖/𝑚𝑚•) values based on 20 ST-only samples to those based on the two sets of 10 ST-
only samples (described in the Data Sets section). The (𝑚𝑚𝑖𝑖/𝑚𝑚•) values are observed to be 
highly correlated across different batches and samples. (Pearson r = 0.97 and 0.84, p-value < 
2×10-16 for both comparisons).  

We then computed estimates of the (mi) by pooling data across these sets, adjusting for 

the concentration differences, calling the results the combined estimates. Pooling also deals with 

errors introduced to the ST-only counts by processing samples in different batches along with 

different samples. The combined estimates of the (mi) are therefore used for normalization below 

(Supp. Material 1).  

3.3.4. Normalization considerably reduces amplification bias 

We normalized the 20 ST-only measurements with the combined estimates of the (mi). 

The spread of the ST counts for 20 samples was considerably reduced after normalization 

(Figure 3-5). A similar comparison of ST counts for 20 samples, in the presence of genomic 
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DNA derived from mesothelioma tumors, revealed that the reduction in spread of ST normalized 

counts was present, although less pronounced (Supp. Figure 6).  

  

Figure 3-5. NB normalization reduces amplification bias: Variation in ST counts within 
samples is apparent before normalization (red), however, the ST-to-ST differences within each 
sample are reduced to less than two-fold after normalization (cyan). Data derived from twenty 
ST-only samples described in the ST-only data sets. 

To validate the normalization procedure further, we assessed the observed ratio of 

monoclonal counts before and after normalization utilizing the 50:50 mixture of P14 and 
OT-1 TCR transgenic monoclonal DNA. After normalization, the differences between the 

transgenic TCR counts were substantially reduced for all samples, as represented by the 

smaller deviations of the proportion of the dominant clonotype from ½ following 
normalization (Figure 3-6). 
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Figure 3-6. Amplification bias of spleen genomic DNA of P14 and OT-1 TCR transgenic 
mice : To further evaluate normalization parameters, a 50:50 mixture of P14 and OT1 TCR 
transgenic monoclonal DNA was utilized to examine differences between transgenic TCR 
counts (red) that were reduced for all samples following normalization (cyan), as observed by 
the smaller deviations from ½ of the proportions of the dominant clonotype. Red color indicates 
values from clone counts before normalization, green color indicates values from normalized 
clone counts. Data derived from 12 50:50 mixture of P14 and OT-1 transgenic mice samples 
described in the Transgenic TCR data sets. 

3.3.5.  Amplification bias reduction benefits from the 
dependence of primer pairs 

A question from data presented in Figures 3.5 and 3.6 that arose had to do with 

determining how great a reduction in the spread of the 260 ST counts would be possible, given 

the variation, even in the absence of amplification bias. A theoretical analysis is presented in 

Supp. Material 2 under the assumption that counts from equimolar concentrations of the 260 ST 

are independent NB distributions with the same mean and dispersion parameters gives a lower 

bound. Seeing that counts from the 20 ST-only samples were well approximated by NB 

distributions with the same dispersion parameters (albeit with quite different means), our 

conclusion was that the different ST counts were likely not independent. Further, this result 
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supports the normalization scheme, as the dependence aids reduction of the amplification bias 

below the level that would be expected under independence. Since each primer pair shares one 

primer with 32 other primer pairs, it is not surprising that the different ST counts are not 

independent; indeed, patterns of dependence in counts using chi-squared statistics are observed 

(Figure 3-7). The interactions revealed as patches of red and blue colors demonstrate that groups 

of V primers exhibit positive or negative dependence together with groups of J primers, that is, 

they interact to become over or under-represented in groups.  

In their experimental setup, Carlson et al., using an ANOVA based approach, concluded 

that primer pairs can be treated independently, and employed primer iteration experiments to find 

the optimal primer mix(79). Based on our normalization approach, however, the non-random, non-

zero interaction terms revealed by chi-squared statistics substantially complicate preparation of 

an optimal primer mix through primer iteration experiments, and indicate a limit on the extent to 

which amplification bias can be addressed experimentally. We note that Carlson et al. also 

employed a second, computational normalization step, which we believe is primarily due to this 

limit.  
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Figure 3-7. Cluster analysis revealing dependence between forward and reverse     
primers: A heatmap of interaction terms between forward and reverse primers 
reveal widespread and reproducible deviations from expected efficiencies under 

independence. Interaction terms were calculated as signed Pearson residuals (O-

E)/√E where O is the observed ST count and E is the expected ST count under 
independence, calculated as E = row total x column total / grand total. Blue and red 

colors indicate positive and negative deviation from independence between forward 

and reverse primers respectively, and white indicates no deviation. Data derived 

from twenty ST-only samples described in the ST-only data sets.  

3.3.6.  A negative binomial model supports downstream 
analyses of T cell repertoire dynamics 

With the TCR clonotype counts normalized, we wanted to determine if results from these 

analyses were concordant with results from a commercially available platform (Adaptive 

Biotechnologies) described by Carlson et al(78). To achieve this, we utilized gDNA generated 

from pancreatic ductal adenocarcinoma specimens described in Byrne et al(82) containing 17 

samples previously sequenced by Adaptive Biotechnologies’ platform. Aliquots of samples were 

sequenced and processed using the protocol described above. We utilized in-house software 

(see methods), tcR package, and VDJ tools to compute TCR repertoire metrics such as the 

diversity, clonality, and clonal distribution and refer to this pipeline as Open TCR Sequencing 

Protocol (OTSP). The 16 samples with enough DNA were sequenced in parallel and results were 

evaluated for concordance using Spearman correlation analyses for all combinations of: 1) 

Adaptive Biotech. platform sequences run by OTSP; 2) OTSP sequences run by OTSP; and 3) 

Adaptive Biotech. platform sequences run by Adaptive Biotech. Figure 3-8 show concordance 

between results of OTSP sequences run by OTSP and Adaptive Biotech. sequences run by OTSP 

for Clonal index (r=0.7) and Shannon diversity index (r=0.8). The concordance for other 

combinations for Clonal Index and Shannon Diversity, as well as concordance between results of 
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OTSP sequences run by OTSP and Adaptive Biotech. platform sequences run by Adaptive 

Biotech. for the frequency of hyperexpanded clones are shown in Supp. Figure 7 (A-E). Overall, 

results from the OTSP pipeline demonstrates a strong association with results from the Adaptive 

Biotech. TCR sequencing platform (p<0.001 for all comparisons).  

 

Figure 3-8. Concordance analysis of T cell repertoire metrics: Concordance analysis 
comparing commercial and in-house pipelines where samples were evaluated based on the 
results of OTSP sequences run by OTSP and the Adaptive Biotech platform sequences run by 
OTSP for Clonal Index (A) and Shannon Diversity Index (B). Spearman r=0.8 for Clonal Index 
and r=0.7 for Shannon Diversity Index. (p<0.001 for both comparisons). Data derived from 
samples described in the Byrne et al. data set.  

The descriptions and formulas related to Clonal index, Shannon diversity index and 

frequency of hyperexpanded clones are included in (83), which deploys the NB mean 

normalization methodology described here in a biological context. 

3.4. Discussion 

Measuring and monitoring adaptive dynamics in patient TCR repertoires could have a 

significant impact on response and resistance monitoring for patients receiving various forms of 
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immunotherapy in the treatment of cancer or auto-immune diseases. To achieve the goal of 

capturing the diversity, quantifying the abundance of T-cell clones and performing longitudinal 

comparisons, TCR sequencing has emerged as an approach to monitor T cell responses to 

therapy and disease progression.  

The OTSP pipeline described herein provides a transparent protocol enabling clonality 

metrics, including evaluating amplification bias specific to each primer pair, and is reproducible 

across samples. Count variability approximates the negative binomial distribution that can be 

exploited using estimated NB means. The NB distribution tells us the variation anticipated in ST 

counts is indicative of a controlled process. 

OTSP pipeline results were compared to data generated from the commercial platform by 

fixing 260 ST-specific scaling factors derived from ST-only measurements (without the presence 

of genomic DNA). We observed a high concordance between bulk clonality metrics across the 

two platforms. This observation indicates that the OTSP pipeline can be integrated across 

batches, samples and platforms, further improving utility of TCR clonality measurements, 

something not generally possible when using commercial platforms as ST-counts are typically not 

provided. 

OTSP is open and freely available; we anticipate this will allow scaling up the number of 

measurements substantially. Since we only use computational normalization, rather than 

addressing differing primer efficiencies at the bench level, the OTSP methodology is also less 

labor-intensive than previous methods. Notably, OTSP avoids the primer iteration experiments 

needed to address amplification bias problems. Porting of the platform to new organisms or 

designs will require new calibration. Utilizing the designs presented here for mouse are likely to 

require minimal optimization. 



66 

 

Since PCR amplification bias is repeatable across samples we have demonstrated the 

possibility of conducting analyses without the addition of ST beyond the initial calibration. This is 

achieved by using ST-specific normalization scale factors obtained from independent, ST-only 

measurements. The idea of using 260 universal ST-specific scaling factors to address 

amplification bias in mouse models could be explored further, for if deployed this would 

substantially decrease cost of this methodology as ST are costly. An additional advantage stems 

from the fact that ST reduce sequencing depth due to competition between genomic DNA and 

the ST (Supp. Figure 8). We observed that when gDNA amount was kept constant at 600 ng, 

increasing concentrations of ST led to decreasing detectability of clonotypes, indicating a 

competition between the ST and clonotypes during the process. This is especially important as 

indicated by our results revealing that drop-outs can be frequent, even for the most abundant 

clonotypes (Supp. Figure 9). For example, when the most frequent 0.3% clonotypes from Wild 

Type spleen tissue were used, we observed that only 119 distinct clonotypes were detected in 

the 5 replicates, with 63 clonotypes detected in 4 samples, 69 in 3, and 90 in 2, respectively. 

These drop-outs stem from the stochastic nature of the sampling and could be reduced by 

increasing the read coverage by not using ST. 

3.5. Conclusions 

Measuring and tracing changes in the abundance of clones is important for observing the 

immune response to different therapies such as cancer immunotherapy, leukemia monitoring and 

predicting patient outcomes.  

A high concordance between bulk clonality metrics across Adaptive Biotech., one of the 

leading commercial companies in the field, and OTSP is observed. Our approach is a less 

laborious (as OTSP avoids the primer iteration experiments needed to address amplification bias 
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problems), reproducible and an inexpensive alternative for understanding relative abundances of 

clonotypes. Utilization of STs for every experiment in a batch beyond the initial ST calibration may 

not be necessary and their utilization in every batch decreases the sequencing depth.   

We propose the OTSP as an open-source, transparent protocol that efficiently corrects for 

amplification bias post sequencing for accurate, reproducible measurement of clonality metrics. 

3.6. Material and Methods 

The aim of the methodology is modeling T Cell Clonotype repertoires using TCRβ CDR3 

sequences utilizing NGS, multiplex PCR and an NB mean normalization strategy. Some of the 

experiments were performed in the context of genomic DNA derived from mice.  

3.6.1.  Mouse handling 

To generate the Byrne et al data set, wild-type C57BL/6 mice were purchased from The 

Jackson Laboratory and housed at the University of Pennsylvania. Animal protocols were 

reviewed and approved by the Institute of Animal Care and Use Committee at the University of 

Pennsylvania. Mice were euthanized in a CO2 chamber using a flow meter to ensure CO2 was 

displaced at a rate of 30-70% of the chamber volume per minute and maintained for at least 1 

minute after the loss of righting reflex is observed. Euthanasia was confirmed by bilateral 

thoracotomy. Animal handling information regarding tumor injections, drug prep and injection are 

included in Byrne et al(82). 

To generate transgenic TCR data sets, spleen tissue from P14 and OT1 TCR 

transgenic mice (Nolz lab) were obtained. The spleen tissue was homogenized, treated with RBC 

lysis buffer and the resulting single-cell suspension was pelleted. Genomic DNA was extracted 

from the cell pellet using DNeasy blood and tissue kit (Qiagen).  
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To generate all the other data using animals, wild-type C57BL/6 mice were purchased 

from The Jackson Laboratory and maintained within the UCSF or OHSU laboratory for animal 

care barrier facility according to IACUC procedures. To generate the ST dilution series data set 

with mammary tumor and the Mesothelioma data set, we used mammary tumors from 

mouse mammary tumor virus (MMTV)- Polyomavirus middle T (PyMT) transgenic FVB/N mice 

and 40L orthotopic mesothelioma tumors respectively. Mammary tumors were resected from day 

95 mice. For 40L orthotopic mesothelioma tumors, 2 x 106 cancer cells were injected i.p. into wild-

type male C57BL/6 that were 6-12 weeks of age. For both tumor models, all mice were euthanized 

at a pre-defined end-stage for tissue harvest by cardiac puncture followed by cervical dislocation. 

These mice were cardiac perfused, under anesthesia using 1-5 % isoflurane, with 20 mL solution 

of heparin in PBS to clear tissues of residual blood followed by tissue harvest for further analysis 

including TCR sequencing. Tumor tissue was excised and flash frozen in liquid nitrogen and 

stored at -80 degree Celsius until further use for extracting genomic DNA for TCR 

sequencing. Murine SCC tumors were obtained from a previously published study, Medler et 

al(83). 

3.6.2.  Multiplex primers and design of synthetic TCR 
templates 

Multiplex PCR primers previously described by Faham et al. (US patent 8,628,972 B2), 

for the amplification of murine TCRβ genomic loci were utilized (Supp. Table 1. Primer 

Sequences). The 20 Vβ segment specific primers amplify all the 21 functional Vβ segments, and 

the 13 Jβ specific primers amplify all the 13 functional Jβ segments. As previously described by 

Carlson et al., we designed 260 (20V x 13J) synthetic TCR templates (ST) to minimize 

amplification bias due to multiplexing with 20 Vβ forward and 13 Jβ reverse primers(78). Briefly, 

ST are 200 bp long double stranded DNA segments that contain partial V segment and J segment 
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sequences encompassing a set of internal barcodes for post-sequencing identification. The 

internal barcode region contains a 16 bp barcode specific for each VJ combination. This specific 

barcode is further flanked by a 9 bp barcode that is common for all ST. An equimolar mixture of 

the 260 ST is added to the genomic DNA samples during PCR as internal controls. 

3.6.3.  Amplification and deep sequencing of TCRβ genomic 
locus 

Genomic DNA from freshly resected mouse peripheral blood, peritoneal orthotopic 

mesotheliomas(84), and spleen was isolated using the Qiagen DNeasy Blood and tissue kit. 

Utilizing the method described in Robins et al(85), we performed a 2-stage PCR using genomic 

DNA for TCRβ deep-sequencing library preparation. The 1st stage involved amplifying the gDNA 

and the ST using 35 cycles of multiplex PCR with 20 Vβ forward and 13 Jβ reverse primers using 

the Qiagen multiplex PCR kit. The multiplex PCR primers contain a common 5’ overhang, allowing 

amplification by a single primer pair in the 2nd stage PCR. Using 2.0% of the purified PCR product 

from stage 1 as template, a 2nd stage PCR, including 8 cycles, was performed with universal and 

indexed Illumina adaptors. Of note, the indexed adaptors contained an 8-base index sequence, 

providing each sample with a unique sample barcode.  Equal volumes of all samples were pooled. 

Each pool concentration, typically containing PCR mixtures from 70 samples, was measured with 

a 2200 TapeStation (Agilent), and the concentration determined by real time PCR using a StepOne 

Real Time Workstation (ABI/Thermo) with a commercial library quantification kit (Kapa 

Biosystems). Paired-end sequencing was performed with a 2 x 150 protocol using a Midoutput 

300 sequencing kit on a NextSeq 500 (Illumina). Target clustering was ~ 160 million clusters per 

run. Following the run, base call files were converted to fastq format and demultiplexed by a 

separate barcode read using the most current version of Bcl2Fastq software (Illumina). 



70 

 

3.6.4. TCR data analysis Pipeline 

Fastq files were assessed for initial read quality using the FASTQC public tool(86), 

including the per-base quality scores. Quality paired-end sequences were combined using the 

PEAR (Paired-End reAd mergeR) algorithm(87). Merged sequences were then separated into ST 

and non-ST sequences. ST sequences were identified by searching for the common flanking 9-

bp internal barcodes allowing a one-nucleotide mismatch or indel. Sequences flagged as ST via 

this search were removed from downstream clonotype analyses. The individual ST sequences 

were distinguished and quantified by searching for the specific 16-bp barcode sequences unique 

to each ST, again allowing a one-nucleotide mismatch or indel (Supp. Figure 10). Clonotypes 

were identified from purified (ST-removed) sequences utilizing the MiXCR pipeline(88), which is 

a two-step alignment and assembly process. First, reads were aligned to reference V, D, and J 

sequences, using the align module. Next, the assemble module grouped alignments into distinct 

clonotypes using a hierarchical clustering method based on sequence similarity and relative 

abundance. Finally, the export module exported alignments as well as assembled clones in 

tabular format. Raw clonotype counts were normalized using the NB mean normalization strategy 

described below. Normalized clonotype counts were exported in tabular format for use in 

downstream analysis. A number of TCR repertoire metrics, including clonality, maximum clonal 

frequency, and the Shannon diversity index were calculated. Quality control data was recorded in 

an overall summary table.  

3.6.5. Data Sets 

ST-only data sets: Twenty samples of an equimolar mixture of ST were sequenced. Two 

sets of ten samples of equimolar mixtures of ST at different concentrations were also sequenced 

at a later date. No genomic DNA was present in these samples. 
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Transgenic TCR data sets: A dilution series was created from spleen genomic DNA of 

P14 and OT-1 TCR transgenic mice. Three technical replicates of 300, 600, 900, and 1200 ng of 

DNA from P14, OT1, and a 50:50 mixture of P14 and OT1 DNA were sequenced along with an 

equimolar mixture of ST for a total of 36 samples. 4 mice were used to create the DNA from P14, 

another 4 mice were used to create the DNA from OT1 and 8 mice were used to create 50:50 

mixture of P14 and OT1 DNA. In total, 16 mice were used to create this data set. Appropriate 

amplification of the transgenic clones was assessed. (Supp. Figure 11). 

ST dilution series data set: A dilution series was created from ST at six levels as below:  

* Stock: 3.2 ng/ul (equimolar mixture of all 260 spikes)  

Dil1=     0.1 of stock  

    
Dil2=     0.1 of Dil1 

     
Dil3=   0.01 of Dil1 

     
Dil4=   0.01 of Dil3 

     
Dil5= 0.001 of Dil3 

     
Dil6= 0.001 of Dil5 

     
Three technical replicates of 600 ng of murine blood DNA were added to all levels of dilutions and 

for no ST samples for a total of 21 samples and three technical replicates of 600 ng of mammary 

tumor murine DNA were added to all levels of dilutions and for no ST samples for a total of 21 

samples. In total, 14 mice were used to create this data set. 

WT spleen data set: Wild-type mouse spleen genomic DNA were sequenced for a total of 

five technical replicates. A single mouse was used to create this data set.  
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Byrne et al. data set(82): gDNA from 17 murine pancreatic ductal adenocarcinoma 

specimens were previously sequenced by a commercially available TCR beta platform. Aliquots 

of these gDNA samples were obtained and sequenced along with an equimolar mixture of ST 

using the protocol described above. In total, 17 murine samples were used to create this 

previously published data set. 

Mesothelioma data set: Peritoneal mesothelioma tumors derived from the 40L cell line 

(84)derived genomic DNA samples derived from 12 syngeneic mice were sequenced along with 

equimolar mixture of ST. In total, 12 mice were used to create this data set.  

In total, 60 mice were used to create above datasets to assess methodological 

approaches to normalizing TCR repertoires. No groups of animals were compared to each other 

as the purpose of the study has no biological study endpoint. Therefore, no a priori sample size 

calculations performed.  

3.6.6. Batch mean scaling factors 

This method creates a scaling factor for each ST (and therefore for each primer pair) 

based on that ST’s counts among all samples, relative to all ST counts within a batch. Given a 

matrix �𝐶𝐶𝑖𝑖𝑖𝑖� of ST counts from a batch, where i=1,…,260 labels ST and j=1,…,n labels samples 

in the batch, we denote the batch mean of the counts for ST i by 𝐶𝐶𝑖𝑖• = 𝑛𝑛−1∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑗𝑗  and the batch 

mean of all ST means by 𝐶𝐶•• = (260)−1∑ 𝐶𝐶𝑖𝑖• =𝑖𝑖 (260𝑛𝑛)−1∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗  . The scaling factor (SF) for ST i 

in that batch is 𝑆𝑆𝑆𝑆𝑖𝑖 =  𝐶𝐶𝑖𝑖• 𝐶𝐶•• ⁄ . 

3.6.7. Negative Binomial means 

The above idea of a scale factor is distribution free, but for its use in normalizing counts, 

would require a full set of ST in every sample. We explored the use of a ST-specific negative 
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binomial model to dispense with the use of synthetic templates. Consider the set (C1, …., Cn) of 

counts for single, fixed ST across a batch of n replicate ST-only samples. A plausible model for 

these counts is the negative binomial (NB) distribution. We write 𝐶𝐶 ~𝑁𝑁𝑁𝑁(𝑚𝑚,𝑑𝑑)  for this distribution, 

where m>0 is the mean parameter and d≥0 is the (over-) dispersion parameter, and refer to (89) 

for an explicit formula for the NB probability mass function. For present purposes, S has expected 

value 𝑬𝑬(𝐶𝐶) = 𝑚𝑚  and variance 𝒗𝒗𝒗𝒗𝒗𝒗(𝐶𝐶) = 𝑚𝑚 + 𝑑𝑑𝑚𝑚2. When d=0, the negative binomial reduces to 

the Poisson distribution, for which 𝑬𝑬(𝐶𝐶) = 𝒗𝒗𝒗𝒗𝒗𝒗(𝐶𝐶), and thus the use of the term over-dispersion 

here is relative to the Poisson. Using the methods of generalized linear models(89), we can obtain 

the maximum likelihood estimates (MLE)  𝑚𝑚�  and 𝑑̂𝑑 of m and d from a replicate set of ST such as 

(C1, …., Cn). In the notation of the previous paragraph, the MLE 𝑚𝑚�𝑖𝑖 = 𝐶𝐶𝑖𝑖• , that is, the MLE of the 

ith mean parameter 𝑚𝑚𝑖𝑖 of an NB fitted to (Cij) is the arithmetic mean of the ith set of observed 

counts (assumed independent and identically distributed across j=1,…,n with common mean 

𝑚𝑚𝑖𝑖 and common dispersion parameter. Where no confusion will result in what follows, we will not 

distinguish the parameters (mi) from their (maximum likelihood) estimates (𝑚𝑚�𝑖𝑖). These ST or 

primer-pair-specific means estimated from ST-only data can be used as scaling factors for 

normalization, even when there are no ST present in samples. Consistent with the notation in the 

previous paragraph, we write 𝑚𝑚• = (260)−1∑ 𝑚𝑚𝑖𝑖 𝑖𝑖   for the average of the 260 (estimated) mean 

parameters. The 260 NB mean scaling factors are (𝑚𝑚𝑖𝑖 𝑚𝑚•) ⁄ .  

3.6.8. Normalization 

To normalize a set of clonotype counts from a single sample, we first calculated the primer-

pair totals (Ci), where Ci denotes the total count of all clonotypes amplified with primer-pair i, 

where i=1,…,260. We then normalize the 260 counts (Ci) using the batch scaling factors (SFi) by 

dividing by the corresponding scaling factor: 𝐶𝐶𝑖𝑖′ = (𝑆𝑆𝑆𝑆𝑖𝑖)−1𝐶𝐶𝑖𝑖 = (𝐶𝐶•• 𝐶𝐶𝑖𝑖•) 𝐶𝐶𝑖𝑖⁄  . Similarly, we 

normalize the (Ci) using the (estimated) NB mean scaling factors (𝑚𝑚𝑖𝑖 𝑚𝑚•) ⁄  by dividing: 𝐶𝐶𝑖𝑖′′ =
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(𝑚𝑚• 𝑚𝑚𝑖𝑖) 𝐶𝐶𝑖𝑖⁄  . After these primer-pair totals were normalized, the counts for distinct clonotypes 

sharing the same primer-pair were normalized: if one such clonotype accounts for a proportion p 

of the total count C corresponding to its primer pair, then it will be assigned a normalized value 

equal to the same proportion p of the normalized primer-pair total C’ or C”.  

The same normalization could be used for ST counts if available. That is, divide the 

observed count of the fragments arising from primer pair i by the SFi or 𝑚𝑚𝑖𝑖 𝑚𝑚• ⁄ for primer pair i for 

both ST and clonotype counts alike. Since the mean count of ST i will be proportional to 𝑚𝑚𝑖𝑖 , 

normalization should preserve the total count of ST, exactly for batch mean normalization, on 

average for NB normalization. As long as the observed clonotype counts exhibit the same relative 

over- and under-representation after amplification as that exhibited by the ST, any bias will be 

reduced by this normalization. 
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 Discussion 

4.1.  Contribution of Statistical Modeling of AML 
Signature Study 

Using supervised and unsupervised statistical modeling on methylation array data from 

the BeatAML cohort, we developed methylation signatures of AML patients. Our findings 

demonstrate that computational modeling of methylation impact of AML drivers can reveal novel 

pathways while also validating previously known associations, and enhancing AML risk-

stratification. 

In this study, we systematically annotated the genes involved in leukemogenesis to 

elucidate the methylation pathways, using statistical techniques. Additionally, we utilized topic 

modeling to identify methylation signatures of infrequent mutations, and improve methylation-

based subtyping. To the best of our knowledge, this is the first study to systematically annotate 

the genes important in leukemogenesis and use topic modeling to enhance methylation-based 

subtyping.  

Our study resulted in several key contributions:  

(i) Supervised and unsupervised models reveal new methylation pathways of AML driver 

events and validate previously known associations. 

(ii) Individual DNMT3A and TET2 signatures are precise and robust—They yielded high 

AUROCs and testing error was consistent with training error across multiple training rounds. 

This performance, despite the complex genetic and epigenetic make-up of post-diagnosis AML 

samples and relatively small cohort size, was highly encouraging for future applications. 

(iii) Unsupervised topic modeling factorizes covarying methylation changes and isolates 

methylation signatures caused by rare mutations. 
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 (iv) Topic modeling reveals a group of mutations with similar downstream methylation 

impacts and mapped to adverse-risk class by ELN. 

(v) Topic modeling uncovers methylation signatures of infrequent cytogenetic events, 

significantly improving methylation-based subtyping. 

(vi) Our models can be leveraged to build predictive models for AML-risk.  

(vii) Our models show that cytogenetic events, such as t(15;17) have widespread trans 

downstream methylation impacts. 

Our study will be highly useful to the scientific community due to the significant interest 

in using methylation for various applications, including characterizing aberrant methylation in 

cancers, sub-classifying tumors, distinguishing the tissue of tumor origin, developing 

methylation-based early detection tools, as well as subtyping patients in drug response studies.  

4.2. Contribution of Normalization of TCR Sequencing 
Study 

We developed a non-commercial and inexpensive protocol for measuring and monitoring 

adaptive dynamics in TCR clonotype repertoire using genomic DNA-based bulk sequencing. 

Our results show that the concordance between bulk clonality metrics obtained from using the 

commercial kits and that developed herein is high. For the first time, an open, publicly available 

protocol to process and analyze raw sequencing data generated by genomic DNA-based bulk 

sequencing, which remains the most cost-effective method to profile TCRs, is described.  

Our study has several key contributions:  

  (i) We describe the Open TCR Sequencing Protocol (OTSP) that efficiently corrects for 

amplification bias post sequencing. 
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(ii) The OTSP pipeline provides a transparent protocol enabling clonality metrics and is 

reproducible across samples. 

(iii) A high concordance between bulk clonality metrics across a commercial platform 

and OTSP is observed. 

Given extensive interest in measuring and monitoring adaptive dynamics in patient TCR 

repertoires and its potential significant impact on response and resistance monitoring for 

patients receiving various forms of immunotherapy in the treatment of cancer or auto-immune 

diseases, our work is strong utility to the scientific community. 

4.3. Conclusions 

In contemporary cancer biology research, statistical methods, bioinformatics, and 

machine learning have become indispensable tools. They help in the integration and 

interpretation of a wide range of high-dimensional data types, and aid in identifying the 

molecular characteristics of tumors, predicting patient outcomes, and developing personalized 

treatments. In the future, these techniques will continue to play a critical role in advancing 

cancer research and improving patient outcomes. 
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 Future Applications 

5.1. Potential Future Applications of Statistical 
Modeling of AML Signature Study 

Aberrant epigenetic control has clinical implications in diagnostics, prognostics and 

therapy. Our models revealing the methylation impact of AML drivers can be used for 

methylation-based subtyping of patients for drug response studies as well as as a biomarker for 

early detection and risk-stratifying.  

5.1.1. Using methylation signatures for subtyping for drug 
response studies  

In recent years, there has been a strong interest in targeting particular mutations 

or epigenetic machinery for therapeutics.  

 Epigenetic alterations are reversible. This facet underscores the considerable potential 

of therapeutic strategies that aim to target and correct these alterations. Such interventions 

predominantly include drugs that specifically interact with the epigenetic machinery, often 

through enzymatic regulators. Enzymes, as catalytic proteins, offer a substantial scope for 

interaction with small molecule inhibitors due to their intricate structure and functional activity. 

Therefore, they present an attractive and viable target for drug design and development.  

However, caution is necessary when administering these drugs systemically. Epigenetic 

mechanisms play a pivotal role in the functioning of all tissues, and as such, they have the 

potential to cause a wide range of side effects if not appropriately regulated. It is crucial to 

balance the therapeutic efficacy of these drugs against potential systemic complications. The 
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primary aim of developing these epigenetic drugs, ultimately, is to improve patient survival. 

Therefore, rigorous research is ongoing to develop therapeutic strategies that maximize this 

objective while minimizing adverse effects.  

Another pivotal consideration in the successful design of targeted therapies involves the 

contemplation of the distinct functions of each epigenetic modifier in diverse cell 

types. Epigenetic modifiers may target different genes in different cell types. The target genes, 

in turn, determine whether a particular epigenetic modifier serves as a tumor suppressor or an 

oncogene in that particular cell type and state.  For example, we can't universally say inhibiting 

Enhancer of Zeste Homolog 2 (EZH2) would be beneficial because inhibiting EZH2 might be 

advantageous in treating some solid malignancies and lymphomas at certain stages(90) but 

might be a poor choice in treating myelodysplastic syndrome. Therefore, it is essential to 

carefully evaluate the context-dependent function of these epigenetic modifiers. 

 
Figure 5-1. Epigenetic machinery and therapeutic agents: Epigenetic machinery along with 
therapeutic agents at various clinical trial stages and with FDA approval are shown. Adapted 
from Dr. Marnie Blewitt’s Fall 2021 lecture notes from Epigenetic Control of Gene Expression 
class offered by the University of Melbourne. 
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Over recent years, pharmaceutical entities have been intensely mobilizing resources 

towards the exploration of epigenetic machinery, particularly with the utilization of small 

molecule inhibitors. Figure 5-1 elucidates this machinery along with the current therapeutic 

agents at various clinical trial stages, extending to those that have received FDA approval. 

These agents, with the potential to target distinct components of the epigenetic machinery, 

encompass DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), 

histone methyltransferase inhibitors (HMTi), histone acetyltransferase inhibitors (HATi), and 

histone demethylase inhibitors (HDMi), all derived from publicly available information. 

Focusing on DNA methyltransferase inhibitors, Decitabine and Vidaza, in particular, 

have procured approval for treating myelodysplastic syndrome that has progressed to AML. 

Vidaza and Decitabine are nucleoside analogs that bind irreversibly to DNMTs post-

incorporation into the DNA, thereby rendering their action replication-dependent. Hence, cancer 

cells, due to their rapid replication, are more susceptible than normal cells. However, to optimize 

anti-neoplastic effects accompanied by DNA demethylation, the dosage of DNMTi should be 

cautiously maintained at lower levels to preclude nonspecific and toxic consequences. The 

efficacy of DNMTi is markedly observed in myelodysplastic syndrome, potentially due to its 

reliance on CpG island hypermethylation, a prognostic indicator linked to adverse outcomes.  

In the light of our model-generated methylation signatures, we can investigate potential 

disruptions in DNMT function post-treatment. Furthermore, our topic models can be leveraged 

to categorize secondary AML and high-grade MDS patients based on their methylation profiles, 

aiding decision-making processes regarding patient selection, optimal dosing strategy, latency 

to optimal response, and therapy duration post-disease progression. Ongoing clinical trials 

involving combinations with conventional therapeutics or other epigenetically active agents, and 

in concert with bone marrow transplantation, continue to offer hope for the optimization of these 

agents for patients with myeloid disease. Despite controversies surrounding the mechanisms 
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responsible for the proven efficacy of these agents—whether they induce DNA hypomethylation, 

direct DNA damage, or possibly even immune modulation—it remains indisputable that they 

have secured their position in the therapeutic arsenal against myeloid neoplasms(91). Given 

that there are multiple epigenetic modulators in the drug development pipeline, it will be 

important to have computational means to match patients to correct epigenetic drugs or drug 

combinations – and our results from regression models and topics suggest a strong potential for 

using methylation profiles for guiding these decisions and subtyping patients.  

5.1.2. Using methylation signatures as a biomarker 

Relative to genomic profiles, the use of methylome profiles conveys two primary 

advantages that are particularly beneficial for liquid biopsy applications. Initially, a single 

genomic alteration has the potential to lead to myriad methylation changes, thereby launching 

substantial signal diversity provided the methylation alterations confer a selective advantage. 

Subsequently, a range of low-frequency genomic alterations that culminate in similar 

downstream impacts can be collectively categorized into methylation factors. These advantages 

are integral for applications involving early detection of cancer and disease monitoring as they 

heightened the ability to detect rare subclonal expansions associated with pre-malignant 

conditions. 

 The impact of a genetic mutation changes through tumor progression and methylation 

marks are not always mirrored by gene expression. Recent studies suggested that for 

assessing the impact of a mutation, threshold definitions of clonal hematopoiesis are not 

sufficient and we need to know clonal fitness or growth speed in addition to clone size(90,91). 

Therefore, directly monitoring the downstream methylation impact of epigenetic regulators, 

rather than the clonal size of the upstream mutation provides key benefits. It is especially 

important in AML as the most frequently mutated early drivers are epigenetic regulators. Our 
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supervised models find methylation signatures of epigenetic regulators and they quantify the 

relationship between a mutation and its downstream methylation impact. Implementations of our 

regression models to early detection cohorts can reveal whether these regulator mutations 

maintain their importance in all stages of the disease and the certain shifts in epigenetic states 

leading to malignant transformation. Similarly, our models could be implemented to build time-

to-AML models to uncover a predictive signature which is indicative of early AML before the 

usual time of diagnosis. This way we could determine which patients are prime candidates for 

frequent monitoring and early intervention. We could also use mutation specific signatures to do 

a risk stratification for each patient. For instance, if a person is carrying a DNMT3A mutation but 

his/her inferred methylation signature is similar to WT methylation patterns, it might imply 

relatively less AML risk or in the opposite scenario, it might signify an unprofiled mutation on the 

same pathway with DNMT3A leaving similar methylation signature and thus pose a similar risk 

to DNMT3A mutant tumors.  

Our unsupervised topic models can be used to build a pan-AML signature using larger 

cohorts with matched normal. Historical cohorts with longitudinal blood samples, such as the UK 

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS(92)) can be analyzed using these 

topics to assess the clinical value of these signatures as early biomarkers of the disease. 

Additionally, we can learn about the progression trajectories of different subtypes by studying 

the methylation changes in those cohorts. By surveying the whole genome with bisulfite 

sequencing methods, more information about the variances between normal and disease states 

can be gathered. We can use the pan-AML signature identified by the matched models and 

perform risk stratification indicated by topics to develop a methylation based liquid biopsy 

assays for early detection purposes.  
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5.2. Potential Future Applications of Normalization of 
TCR Sequencing Study 

Measuring T-Cell Clonotype Repertoires is vital for studying immune response 

dynamics. Our NB mean normalization methodology and the OTSP were deployed in studies 

with various biological context by Coussens Lab(83,93,94). Some other examples of clinical 

applications utilizing TCR sequencing are for monitoring the impact of treatments to 

immunomodulators(95,96) and monitoring Minimal Residual Disease (MRD) in T-ALL 

patients(78) to name a few. Recently, Adaptive Tech.’s T-detect has been approved for Covid-

19 response monitoring(97). Considering the profound interest in assessing and tracking the 

adaptive dynamics within patient TCR repertoires undergoing diverse forms of immunotherapy 

for conditions such as cancer and autoimmune diseases, our research presents substantial 

utility to the scientific community by providing an open, reproducible and affordable protocol.  
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Appendix A: Chapter 2 Supplementary 
Information 

 

Supp. Figure 1. Top 10 most enriched loci for 15 topics  
The top 10 probes with the highest assigned topic values and their methylation status (whether they are 
hyper or hypo methylated) are indicated for all 15 topics. We observe that topics 1, 5 and 6 map to 
gender and predictably have DMRs located on chromosomes X and Y. Topic 3 is exclusively associated 
with t(9;11). Notable enriched DMRs are located near: MSI2, a translocation partner with HOXA9, EVI1, 
TTC40, and PAX5 in leukemias(98–101); PPARG – a key regulator for apoptosis and survival and 
CNKSR3 – a gene that was identified as a commonly upregulated target in all AF9/AF10 rearranged 
AMLs that includes t(9;11)(102). Topic 9, enriched for t(15; 17) driver events have DMRs near JARID2, a 
known tumor suppressor in AML(103), LRPAP1 and LPIN1, regulators of lipid hematopoiesis implicated 
in AML progression(104). Topic 15, enriched for inv (16) driver events have DMRs around HOXA9 and 
MEIS1, a frequently implicated pathway in AML progression. Another gene was OPA1 that is known to be 
upregulated in AML and a mechanistic component for venetoclax resistance(105). Topic 11, enriched for 
co-mutations in DNMT3A and NPM1 has a highly specific signature composed of multiple DMRs centered 
around HOXB3 gene – another key homeobox family protein in AML progression(106). Topic 4 is strongly 
associated with NPM1 and IDH1/IDH2 mutations and interestingly include a DMR close to CD34, the 
definitive marker for hematopoietic stem/progenitor cells. Other AML associated genes selected in Topic 
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4 include HDAC4, a key epigenetic regulator in AML(107,108). Topic 13, enriched for NPM1 and WT1 
mutations, also has DMRs near HOXB3. Other notable genes include OSCAR, a regulator of osteoclast 
differentiation(109) and MIRLET7BHG, an autophagy regulating lncRNA implicated as an AML survival 
marker(110). Topic 7, associated with co-occurring mutations in NPM1 and TET2, has a DMR near 
JARID2 a known tumor suppressor in AML(103), and TBC1D8, a known target of HDAC2 in AML(111). 
Topics 2, 8 and 12 have shared components and is associated with ELN adverse category and a complex 
set of associated mutations in RUNX1, BCOR, ASXL1, TP53, SRSF2 and 5q and 7q deletions. Topic 2 
has multiple DMRs near PTH2R, parathyroid hormone receptor, which was shown to be the most 
upregulated gene in MDS and AML(112) and differentially expressed in patients with IDH2 
mutations(113). Topic 8 has DMRs in close proximity to KDM2B, a key lysine demethylase in AML; 
BCL7A, a BAF remodeling tumor suppressor(114),  and TCF7L2, a WNT pathway transcription factor 
implicated in regeneration of hematopoietic stem cells(115). Topic 12 has DMRs near immunoglobulin 
heavy constant gamma as well as T-Cell Receptor Beta locus. Other notable genes include WNK4(116), 
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DYRK1(117) and GIMAP7(118) all indicated in stem cell-like signatures. Weak enrichments for CEBPA 
mutations and t(8;21) exist for topics 14 and 10 respectively.  

 

Supp. Figure 2. Mutations and events associated with ELN intermediate to adverse risk 
category: RUNX1, BCOR, ASXL1, TP53, SRSF2, 5q and 7q deletions, having a prior MDS and 
ELN2017 adverse risk category associated topics are clustered together, shown in black 
rectangles. 
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Supp. Figure 3. Cytogenetic events associated with ELN favorable risk category: t(15, 
17), (inv 16) and t(8, 21) and ELN2017 favorable risk category associated topics are clustered 
together, shown in the black rectangle.  
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Supp. Figure 4. Methylation signature of FLT3: FLT3 mutant samples (in pink) doesn’t have 
a distinguisahble methylation signature. 
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Appendix B: Chapter 3 Supplementary 
Information 

 

Supp. Figure 5. ST Count Distribution in presence of DNA: ST counts were obtained from 
samples described in the Transgenic TCR data sets, where 24 samples of gDNA from P14 and 
OT1 TCR transgenic mice were processed along with an equimolar mixture of ST. OT1 was 
amplified by the primer pair (V12-1,2, J2.7), and P14 was amplified by the primer pair (V13-3, 
J2-4). As with the ST-only samples, when TCR clonotypes were present in the samples along 
with the ST, the observed variation in the ST counts was caused by the amplification biases of 
the different primer pairs, rather than by sample to sample variation.  
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Supp. Figure 6. Normalization reduces spread in presence of DNA: gDNA from 12 murine 
mesothelioma specimens were amplified along with ST (described in the Data Sets section) 
where the reduction in ST count spread in the presence of DNA before (red) and after (cyan) 
normalization was plotted. 
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Supp. Figure 7. Concordance analysis of T cell repertoire metrics: Concordance analysis 
comparing commercial and in-house pipelines. gDNA from PDAC tumor samples were 
evaluated based on a commercial platform (Adaptive Biotech.) where sequences were 
compared based on output from Adaptive Biotechnology versus OTSP for Clonal index (R=1) 
and Shannon diversity index (R=1) (A-B), concordance between the Adaptive Biotech platform 
versus OTSP for Clonal index (R=0.7) and Shannon diversity index (R=0.9) (C-D), and 
concordance between the two pipelines for the frequency of hyperexpanded clones (R=0.8) (E). 
p<0.001 for all comparisons with Spearman correlation analysis. Data derived from samples 
described in the Byrne et al. data set.  
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Supp. Figure 8. Competition between gDNA and ST during TCR sequencing: Three 
replicates of 600 ng of gDNA isolated from peripheral blood leukocytes was added to all levels 
of dilutions (described in the Data Sets section) and for no ST samples for a total of 21 samples 
plus three replicates of 600 ng of mouse mesothelioma tumor DNA were added to all levels of 
dilutions and for no ST samples for a total of 21 samples. When the gDNA amount was kept 
constant at 600 ng, the increasing (relative) concentration of ST lead to decreasing detectability 
of clonotypes for both type of tissues, showing the competition between DNA and ST occurring 
during TCR sequencing.  
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Supp. Figure 9. Reproducibility analysis: Drop-outs are frequent even for the top clones: 
The detectability of distinct clones in five replicates for the most frequent 0.3% clonotypes from 
wild type spleen tissue is shown. (Data derived from samples described in the WT spleen data 

set.) Vertical bars indicate the frequency of distinct clones detected in replicates, where the 
number on top of the vertical bars indicates the total number of distinct clones detected in the 
replicates. On the bottom left, the five replicates (samples cf51-cf55) and the number of distinct 
clones detected in each replicate is represented by horizontal bars with set size scale. The 
round dots are black if a particular clone was detected in the corresponding replicate shown at 
the very left. The connected black dots indicate how many and in which replicates distinct 
clones were detected out of five replicates. For example, going from right to left, only 119 
distinct clonotype were detected in all 5 replicates, 63 clonotypes were detected in 4 samples, 
69 in 3 and 90 in 2, respectively. These drop-outs come from the stochastic nature of the 
sampling.  
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Supp. Table A and B:. Forward Primer Sequences 
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Supp. Figure 10. TCR sequencing pipeline schema: Depiction of TCR sequencing pipeline 
constructed from both extant software tools (configured for use within the pipeline), and dedicated 
programs written in-house. Multiple samples are processed in parallel, and quality-control checks 
provide visibility into the pipeline’s operation. Computation is performed on the 5000 cores using 
ExaCloud computing cluster. Steps in the pipeline include: A. Verification of file integrity and merging 
of paired-end reads; B. ST reads are then identified, quantified, and removed; C. Clonotypes are 
then aligned to reference segments, clustered, and quantified; D. Clonotypes containing frameshifts 
and stop codons flagged, and output converted for use by visualization and analysis software E. 
Clonotype frequencies are then adjusted to account for PCR amplification; F. Analytic metrics 
computed (diversity, clonal expansion and other as applicable) using various tools indicated within 
the text. Figure created with BioRender.com 

  



98 

 

 

 

Supp. Figure 11. Monoclonal amplification check: Appropriate amplification and 
identification of clonal TCR segments was verified using OT1 and P14 monoclonal samples, 
where OT1 was amplified by the primer pair (V12-1,2, J2.7), and P14 amplified by the primer 
pair (V13-3, J2-4). One example of each monoclonal sample for appropriate amplification is 
shown. 
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Supp. Material 1 

Suppose that we have three equimolar spike-in only datasets with possibly different 

concentrations consisting of 20, 10 and 10 replicate libraries, respectively. Denote their ST 

counts by  {𝐶𝐶𝑖𝑖𝑖𝑖
(𝑘𝑘):𝑖𝑖 = 1,… 260,𝑗𝑗 = 1, …, 𝑛𝑛(𝑘𝑘)}, where 𝑖𝑖 = 1, …260 labels ST, 𝑗𝑗 = 1, …, 𝑛𝑛(𝑘𝑘) labels 

replicate libraries within datasets, 𝑘𝑘 = 1, 2, 3, and 𝑛𝑛(1) = 20, 𝑛𝑛(2) = 𝑛𝑛(3) = 10. 

Our basic assumption is that for any given ST (i.e. primer-pair) the expected values of the 

counts for are essentially the same, i.e. that we have 

 

𝑬𝑬 �𝐶𝐶𝑖𝑖𝑖𝑖
(𝑘𝑘)� = 𝑐𝑐(𝑘𝑘)𝑚𝑚𝑖𝑖, 𝑖𝑖 = 1, … ,260,𝑗𝑗 = 1, … ,𝑛𝑛(𝑘𝑘),𝑘𝑘 = 1,2,3, 

 

up to the concentrations 𝑐𝑐(1),𝑐𝑐(2) ,  and 𝑐𝑐(3). Within dataset k, natural unbiased  estimates of the 

𝑐𝑐(𝑘𝑘)𝑚𝑚𝑖𝑖 are the averages  𝐶𝐶𝑖𝑖• 
(𝑘𝑘) = �𝑛𝑛(𝑘𝑘)�−1𝐶𝐶𝑖𝑖+ 

(𝑘𝑘),  where 𝐶𝐶𝑖𝑖+ 
(𝑘𝑘) = ∑ 𝐶𝐶𝑖𝑖𝑖𝑖

(𝑘𝑘)𝑛𝑛(𝑘𝑘)

𝑗𝑗=1  . 

These are maximum likelihood estimates (MLE) under the assumption that all the counts are 

mutually independent Poisson or Negative Binomial random variables with a common 

overdispersion parameter for each ST.  Our goal here is to show how to combine the three 

estimates of 𝑚𝑚𝑖𝑖 for any given 𝑖𝑖 taking into account the possibly different concentrations.  Without 

loss of generality we can take 𝑐𝑐(1) = 1, and we will write 𝑐𝑐(2) = 𝑐𝑐  and 𝑐𝑐(3) = 𝑑𝑑 .    Here are two 

approaches to combining the estimates.  

Assuming independent Poisson or Negative Binomial distributions.  In this case it is a 

straightforward calculation to show that the MLE of 𝜇𝜇𝑖𝑖 based on all the counts is  

𝑚𝑚�𝑖𝑖 = (𝑛𝑛∗)−1𝐶𝐶𝑖𝑖+ 
(+)  where  𝑛𝑛∗ = 20 + 10 𝐶𝐶++ 

(2)

𝐶𝐶++ 
(1) + 10 𝐶𝐶++ 

(3)

𝐶𝐶++ 
(1). 
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This makes sense. We sum all the counts observed for ST 𝑖𝑖 and divide that by the sum of the 

effective number of replicates in each dataset, relative to the concentration for dataset 1.  

Avoiding strong independence and distributional assumptions.  Here we begin by noting 

that  𝑙𝑙𝑙𝑙𝑙𝑙𝑬𝑬�𝐶𝐶𝑖𝑖• 
(𝑘𝑘)�= 𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐(𝑘𝑘) +𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑖𝑖, 𝑖𝑖 = 1, …,260,𝑘𝑘 = 1,2,3 and make our goal the linear 

combination of the three approximately unbiased estimates of 𝜇𝜇𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙  𝑚𝑚𝑖𝑖 , namely the 

quantities  𝑙𝑙𝑖𝑖
(𝑘𝑘) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖• 

(𝑘𝑘), 𝑘𝑘 = 1,2,3, correcting for the two offsets 𝛾𝛾 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐 and 𝛿𝛿 = 𝑙𝑙𝑜𝑜𝑜𝑜 𝑑𝑑 of the 

second and third datasets relative to the first, and taking into account the fact that the first 

dataset has twice their number of observations.  A straightforward weighted least squares 

estimation process leads to the combined estimate of 𝜇𝜇𝑖𝑖 as  

                                               𝜇𝜇�𝑖𝑖 = 1
4

[2𝑙𝑙𝑖𝑖
(1) + �𝑙𝑙𝑖𝑖

(2) −𝛾𝛾�� + (𝑙𝑙𝑖𝑖
(3) − 𝛿̃𝛿)]  

where 𝛾𝛾� =  1
260

(𝑙𝑙+
(2) − 𝑙𝑙𝑖𝑖+

(1))   and 𝛿̃𝛿 = 1
260

(𝑙𝑙𝑖𝑖
(3) − 𝑙𝑙𝑖𝑖

(1)). Once we have a combined estimate of 𝜇𝜇𝑖𝑖 =

 𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑖𝑖  , we antilog to obtain our estimate 𝑚𝑚�𝑖𝑖 of 𝑚𝑚𝑖𝑖 . 

 

Although the individual ST counts were plausibly negative binomial, they seemed far from 

independent. As a result, we used the second method to combine the three sets of estimated 

count means. Recall that in practice, all we need are the estimates of ratios 𝑚𝑚𝑖𝑖 𝑚𝑚•⁄ , so that the 

concentration terms cancel.  
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Supp. Material 2 

Let 𝐶𝐶𝑖𝑖 be the count for spike (primer-pair) i, i=1,…,n=260.  Our basic assumption is that the {𝐶𝐶𝑖𝑖}  

are mutually independent, with 𝐶𝐶𝑖𝑖~𝑁𝑁𝑁𝑁(𝑚𝑚𝑖𝑖,𝑑𝑑𝑖𝑖). Thus 𝑬𝑬(𝐶𝐶𝑖𝑖) =  𝑚𝑚𝑖𝑖 and 𝑽𝑽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝑖𝑖) =

 𝑽𝑽(𝐶𝐶𝑖𝑖) =  𝑚𝑚𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑚𝑚𝑖𝑖
2. For the moment, we assume that the parameters {𝑚𝑚𝑖𝑖  ,𝑑𝑑𝑖𝑖  : 𝑖𝑖 = 1, … ,𝑛𝑛} are 

all known, with 𝑚𝑚• and 𝑑𝑑•  being the average of the {𝑚𝑚𝑖𝑖} and {𝑑𝑑𝑖𝑖} respectively.  

The normalized counts are 𝑁𝑁𝑖𝑖 = �𝑚𝑚•
𝑚𝑚𝑖𝑖
�𝐶𝐶𝑖𝑖. Clearly 𝑬𝑬(𝑁𝑁𝑖𝑖) = 𝑚𝑚𝑖𝑖  for all i, i.e. the normalized values 

have the same expected value as the original counts.   

How variable are they?     

Their average is 𝑁𝑁•  and their empirical variance is 𝑠𝑠2 = (𝑛𝑛 − 1)−1∑(𝑁𝑁𝑖𝑖 −𝑁𝑁• )2.  

We give a lower bound to the expected value of 𝑠𝑠2, which implies that we cannot use 

normalization to produce values that are guaranteed to be arbitrarily close together.  

Assertion.  𝑬𝑬(𝑁𝑁•) =  𝑚𝑚•  ,   𝑬𝑬(𝑠𝑠2)≥  𝑚𝑚• + 𝑑𝑑•𝑚𝑚•
2 .  

Note. The last expression is the variance of an 𝑁𝑁𝑁𝑁(𝑚𝑚•,𝑑𝑑•). 

Proof.  The equality 𝑬𝑬(𝑁𝑁•) =  𝑚𝑚• follows by averaging both sides of 𝑬𝑬(𝑁𝑁𝑖𝑖) = 𝑚𝑚𝑖𝑖 . 

Now 𝑽𝑽(𝑁𝑁𝑖𝑖) = �𝑚𝑚•
𝑚𝑚𝑖𝑖
�
2
𝑽𝑽(𝐶𝐶𝑖𝑖) = 𝑚𝑚• 

2

𝑚𝑚𝑖𝑖
+ 𝑑𝑑𝑖𝑖𝑚𝑚•

2 , while 

𝑽𝑽(𝑁𝑁• ) = 𝑛𝑛−2∑𝑉𝑉(𝑁𝑁𝑖𝑖) = 𝑛𝑛−2∑�𝑚𝑚• 
2

𝑚𝑚𝑖𝑖
+ 𝑑𝑑𝑖𝑖𝑚𝑚•

2� =𝑛𝑛−1𝑚𝑚•
2 �𝑛𝑛−1∑� 1

𝑚𝑚𝑖𝑖
� + 𝑑𝑑• �.      

The harmonic mean of the {𝑚𝑚𝑖𝑖}  is  𝐻𝐻 = 𝑛𝑛/∑� 1
𝑚𝑚𝑖𝑖
�, and so 𝐻𝐻−1 = 𝑛𝑛−1∑� 1

𝑚𝑚𝑖𝑖
�, and we can write 

𝑛𝑛𝑽𝑽(𝑁𝑁• ) = 𝑚𝑚•
2(𝐻𝐻−1+ 𝑑𝑑• ). .       

We now expand ∑(𝑁𝑁𝑖𝑖 − 𝑁𝑁• )2 in a familiar way as 

∑(𝑁𝑁𝑖𝑖 −𝑁𝑁• )2  =  ∑((𝑁𝑁𝑖𝑖 − 𝑚𝑚•)− (𝑁𝑁• −𝑚𝑚• ))2 =∑(𝑁𝑁𝑖𝑖 −𝑚𝑚•)2 − 𝑛𝑛(𝑁𝑁• − 𝑚𝑚•)2     
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as the cross term vanishes. Taking E of both sides, we get  

                  𝑬𝑬∑(𝑁𝑁𝑖𝑖 −𝑁𝑁• )2 =  ∑𝑽𝑽(𝑁𝑁𝑖𝑖)−𝑛𝑛𝑽𝑽(𝑁𝑁• ) .                 

The rest is algebra. The right-hand side above is 

∑𝑽𝑽(𝑁𝑁𝑖𝑖)−𝑛𝑛𝑽𝑽(𝑁𝑁• ) = ∑(𝑚𝑚• 
2

𝑚𝑚𝑖𝑖
+ 𝑑𝑑𝑖𝑖𝑚𝑚•

2)− 𝑚𝑚•
2(𝐻𝐻−1 + 𝑑𝑑• ) = 𝑚𝑚•

2(𝑛𝑛− 1)(𝐻𝐻−1+ 𝑑𝑑• ).   

Hence 𝑬𝑬{(𝑛𝑛 − 1)−1∑(𝑁𝑁𝑖𝑖 − 𝑁𝑁• )2} =  𝑚𝑚•
2(𝐻𝐻−1 + 𝑑𝑑• ) ≥ 𝑚𝑚• + 𝑑𝑑•𝑚𝑚•

2 , since 𝑚𝑚• ≥ 𝐻𝐻, 

with equality if and only if the  {𝑚𝑚𝑖𝑖} are all equal. 
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