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Dissertation Abstract 

 

Immunotherapeutic approaches, aimed at modulating the immune system’s response to 

cancer and other diseases, have garnered increasing attention over the past decade. For some 

cancers such as melanoma, non-small cell lung cancer, and B-cell lymphomas, immunotherapy 

options have been transformative and some patients respond even in the most aggressive and 

refractory cases. Despite the optimism surrounding various immune-based approaches, many 

patients still don’t respond to treatment and the reasons why are poorly understood. The 

disparity in responses across patients and cancer types has highlighted a dire need for a better 

mechanistic understanding of the factors involved in therapeutic response to immunotherapies; 

supported by tools that help define which patients will benefit from these novel treatment 

options. While a variety of approaches exist in the immunotherapy space, some with systemic 

affects and others focused on specific immune targets, all approaches rely heavily on the 

adaptive immune system and response to class I antigens. 

 In chapter I, pepsickle rapidly and accurately predicts proteasomal cleavage sites for 

improved neoantigen identification, I present my peer reviewed work highlighting pepsickle, 

an open-source tool for predicting cleavage sites during protein degradation. The process of 

peptide cleavage by the proteasome is a fundamental precursor to class I antigen presentation 

and ultimately shapes the pool of available targets for immune recognition. Unfortunately, at 

the time of publication few cleavage prediction tools existed and those that did were heavily 

outdated. Through the work highlighted in this chapter, we demonstrated that cleavage sites 

can be accurately characterized through deep-learning approaches, and further show that by 

filtering target candidates based on cleavage likelihood we can enrich the candidate pool for 

truly immunogenic peptides. 
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 In chapter II, Predicting T-cell Cross-Reactivity using Paired Peptide Data: A Multi-Layer 

Perceptron Approach, I take a look at the risks associated with targeted immunotherapeutic 

approaches through the lens of T-cell cross-reactivity. Degeneracy in T-cell receptors, or the 

ability for T-cell receptors to recognize more than one presented class I epitope, is a 

fundamental part of T-cell evolution but can also have dire consequences if not properly 

considered during the target selection process. While there are many emerging approaches 

aimed at better characterizing when and how T-cell cross reactivity occurs, current tools largely 

rely on in-depth sequencing of T-cell receptors in conjunction with cognate antigen 

identification. Although these approaches help give fundamental insight into the mechanics of 

T-cell cross-reactivity, the direct use of T-cell sequences severely limits the application scope of 

such tools. Instead, I demonstrate a proof-of-concept approach that leverages cross-reactive 

epitope pairs to infer key features of cross-reactivity without the direct use of TCR sequences. 

Using paired epitope data allows for broad application of cross-reactivity predictions to a variety 

of important contexts where T-cell receptors cannot be exhaustively sequenced such as during 

the development of mRNA vaccine-based approaches. This method has broad applications 

outside of cancer, including for viral vaccine development and in the investigation of 

autoimmune disorders. 

 Finally, in chapter III, Deciphering the Prostate Tumor Microenvironment: 

Transcriptional Insights into Therapy Response following Androgen Axis Blockade and Immune 

Checkpoint Inhibition, I look at the tumor microenvironment of prostate cancer through the lens 

of single-cells transcriptomics. Using temporal samples from previously unpublished clinical trial 

data, we compare treatment naïve patient samples to paired samples taken after a treatment 

course of androgen axis-inhibition and immune checkpoint therapy. We identify treatment 

responses in identified malignant cells and characterize increases in class I antigen presentation 
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after treatment. We further leverage single cell techniques to characterize immune populations 

residing in tumor and non-tumor tissues and understand how they contribute to pro-

inflammatory signaling and potential tissue dysregulation after treatment.  

 While chapters I and II focus on specific mechanisms of antigen presentation and 

recognition, chapter III takes a step back and contextualizes the environment in which these 

focused mechanisms occur. Each step in the antigen processing, presentation, and recognition 

pathway is complex and multi-faceted. While computational approaches can further our 

understanding of biological processes and help narrow our focus for potential follow up, 

broader context is often neglected. The milieu of activating and suppressing factors found in 

biological tissues ultimately shape the broader immune response in cancer and during other 

host challenges. Taken together, this work details the development of novel tools that help us 

better characterize immunological processes and provides insights into how malignant cells and 

surrounding immune populations respond and interact in the context of the broader tumor 

microenvironment.
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Introduction 

1.1 Class I Antigen processing, presentation, and relevance 

in cancer 

1.1.1 The importance of class I antigen presentation and adaptive 

immune response 

 

The adaptive immune system plays a fundamental role in our ability to respond to host 

challenges, from viral infection to tumor clearance and more. As viruses evolve and tumors 

mutate, our adaptive response is what allows us to keep up with the ever-changing landscape of 

threats to our wellbeing and physical survival. As such, our ability to efficiently and accurately 

present antigens, or processed protein fragments, to the immune system for surveillance is 

instrumental in mounting a protective response.  

While there are multiple ways of presenting foreign antigens, the presentation of 

antigens via class I major histocompatibility complexes (MHC’s) is ubiquitous across nucleated 

cells[1]. The presentation of class I antigens starts with the marking of intra-cellular proteins for 

degradation, followed by cleavage of proteins into fragments by the proteasome, then transport 

to the endoplasmic reticulum, trimming, and mounting of antigens on MHC class I complexes 

(Figure 1.1)[2]. These mounted antigens, called class I epitopes, and their bound MHC class I 

complex are subsequently trafficked to the cell surface where they are presented for interaction 

with surrounding immune cells[3]. Although this process presents foreign and mutated 

peptides, normal self-peptides are also processed and make up the majority of presented 

epitopes, allowing immune cell surveillance of both normal and abnormal epitopes[4]. 
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Furthermore, a variety of factors can influence which epitopes are ultimately presented 

on the cellular surface for further surveillance. Individuals co-expresses up to 6 different 

classical MHC class I complexes, each with a unique binding preference that alters which 

epitopes are ultimately bound[5]. Ubiquitination, one key process by which proteins are marked 

for degradation, also plays a key role in determining which proteins are processed and at what 

rate[6]. Cleavage preference by the proteasome can further affect what fragments of proteins 

ultimately become epitopes; a process that can be complicated by the expression of IFN-gamma 

which can induce the expression of alternative proteasomal subunits shifting cleavage 

preferences and resulting in the assembly of the immuno-proteasome[7].  
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Figure 1.1. Overview of antigen presentation. The presentation of intracellular antigenic 
peptides by MHC class I molecules is the result of a series of reactions. First, antigens are 
degraded by the proteasome. Then, the resulting peptides are translocated via transporter 
associated with antigen presentation (TAP) into the endoplasmic reticulum (ER) lumen and 
loaded onto MHC class I molecules. Peptide–MHC class I complexes are released from the ER and 
transported via the Golgi to the plasma membrane for antigen presentation to CD8+ T cells. 
Figure and caption adapted from Neefjes et al. (2011)[2]. 

 

1.1.2 Antigen presentation in the context of cancer 

 
 Antigen presentation also has an important role in the context of cancer. As mutations 

accumulate due to DNA damage or replication error, cells must not only circumvent apoptotic 

processes, but also avoid detection by the immune system. While resistance to apoptosis has 

long been understood to be a hallmark of cancer as proposed by Hanahan and Weinberg over 

20 years ago, immune evasion has only recently become appreciated for its core role in the 
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development and progression of cancer (Figure 1.2)[8]. This core contribution to cancer 

development is demonstrated by the fact that tumors consistently evolve multiple mechanisms 

for facilitating immune evasion, including creation of a suppressive tumor microenvironment 

through recruitment of fibroblasts and other immunosuppressive cells, downregulation the 

MHC expression, and upregulation inhibitory molecules that impede T-cell activation[9]–[11]. 

Under normal conditions, the downregulation of classical MHC molecules often seen in cancer 

development can induce natural killer (NK) mediated killing of tumor cells, however tumor 

adaptations such as expression of non-classical MHC’s and shedding of inhibitory molecules such 

as MIC A and MIC B can inhibit killing by NK cells even in the when low levels of classical MHC 

molecules are expressed[12]. This concurrent down regulation of presented targets and 

upregulation of inhibitory molecules works in conjunction with the immuno-suppressive 

microenvironment to minimize adaptive immune responses to cancer even when potentially 

reactive immune cells are present. 

 

Figure 1.2. The Hallmarks of Cancer, circa 2022. Left, the Hallmarks of Cancer currently embody 
eight hallmark capabilities and two enabling characteristics. In addition to the six acquired 
capabilities—Hallmarks of Cancer—proposed in 2000 (1), the two provisional “emerging 
hallmarks” introduced in 2011 (2)—cellular energetics (now described more broadly as 
“reprogramming cellular metabolism”) and “avoiding immune destruction”—have been 
sufficiently validated to be considered part of the core set. Figure and caption adapted from 
Hanahan (2022)[8]. 



 5 

 The clonal evolution of cancer cells can also impact the landscape of presented antigens. 

Early in tumor development clonal populations that are highly immunogenic can be weeded out 

by early immune responses[13]. While it’s possible for full tumor clearance to occur at this 

stage, the preferential removal of highly immunogenic clones can also create space for less 

immunogenic clones to thrive, even if their general fitness was lower than other clones 

previously present in the tumor microenvironment[14]. Continued pressure by the immune 

system can then ultimately lead to the evolution of immune resistant clones that continue to 

progress and result in further tumor growth and disease advancement. These steps, often 

termed tumor elimination, tumor equilibrium, and tumor escape, constitute the key 

components of tumor immuno-editing; one of the fundamental processes that contributes to 

hallmark immune evasion (Figure 1.3)[15].  
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Figure 1.3 Mechanism of immune evasion by tumors. Transformed cells are eliminated in the 
first phase by the host immune system (CD4+, CD8+, NK cells, B cells, NK‑T cells, γδ T cells, etc.). 
Equilibrium phase represents surviving tumor cells in dormancy stage. During the second phase, 
the tumor cells incur editing. Escape phase represents the population of immunologically 
sculpted tumor cells with specific immunosuppressive mechanisms, including overexpression of 
PD‑L1, production of TGFβ and IL‑10, and decreased levels of MHC‑I expression. Caption and 
figure adapted from Samec et al. (2020)[15]. 
 

1.1.3 Metrics of antigen presentation and related prediction tools 

 
 Improving our understanding of antigen presentation and refinement of antigen 

predictions in the context of cancer have both been key research focuses[16]. Early attempts to 

incorporate antigen presentation as a prognostic signal in cancer relied primarily on bulk metrics 

such as total tumor mutational burden (TMB) or tumor variant burden (TVB), where whole 

genome or whole exome sequences were used to identify tumor-specific mutations[17]. These 

measures relied heavily on the assumptions that 1) number of mutations correlates closely with 

number of presented epitopes, and 2) epitope quality is less important than epitope quantity. 

Although initial approaches using TMB and other bulk metrics seemed promising, further 
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experimentation has shown mixed results[18]–[21]. This is reiterated by work in our own lab 

which demonstrates that bulk-tumor metrics are only weakly prognostic in some circumstances 

and highly variable between cancer types[22]. More recent comprehensive analysis across 

multiple cancer types also supports the conclusion that bulk tumor metrics are not adequate 

prognostic indicators of patient outcome[23].  

More granular approaches have since been attempted that incorporate additional 

information beyond just simple mutation status. Often termed “neoepitope prediction tools”, 

these software and pipelines usually incorporate germline variant information from the patient, 

the MHC haplotype of the individual, and some form of peptide-MHC binding affinity to help 

determine which mutations are likely to result in presentable epitopes[24]. Additionally, newer 

prediction tool iterations often include some form of “immunogenicity score” intended to 

quantify the likelihood of predicted epitopes to elicit an immune response, however the exact 

meaning of these scores can vary widely between tools and vary greatly in their efficacy when 

applied to cancer contexts[25].  

1.1.4 Challenges with current approaches to antigen identification  

 
Although neoepitope predictions take a step beyond bulk metrics such as TMB, there 

are still multiple challenges that remain largely unaddressed. Early approaches often ignored 

key aspects of epitope generation such as mutational haplotyping, which is important for 

differentiating same-strand from cross-strand mutations in close proximity, and ultimately 

generate different presented peptide sequences. This in part prompted the creation of our lab’s 

own tool neoepiscope[26]. We have also shown that alternative RNA splicing events can 

generate peptide sequences in cancer that are often mis-represented as novel peptides by RNA 

based neoepitope prediction tools, despite expression in other normal or developmental tissues 
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within the body[27]. Furthermore, neoepitope predictions often focus on epitope binding and 

recognition, but lack emphasis on the processing steps that precede presentation such as 

protein degradation by the proteasome and trimming by endoplasmic reticulum associated 

aminopeptidases (ERAP’s). These steps have been shown to play an important role in 

determining and shaping the final epitope landscape despite their exclusion in many prediction 

pipelines[28]. In Chapter I: pepsickle rapidly and accurately predicts proteasomal cleavage sites 

for improved neoantigen identification, I will take an in depth look at current tools available for 

predicting early-stage protein processing steps, their shortcomings, how we can improve upon 

previous approaches, and ultimately how proteasomal cleavage predictions can be applied to 

improve our identification of immunogenic peptides when approaching clinical data. 

 

1.2 Recognition of Class I antigens and TCR degeneracy 

1.2.1 Antigen recognition and TCR diversity 

 

 While the presentation of class I antigens is a complex multi-step process and 

imperative for immune surveillance, successful presentation of an antigen does not mandate an 

immune response. In fact CD8 T-cells, the primary responder to class I antigens, require multiple 

signals to initiate a true antigen response. The accumulation of signals from T-cell receptor (TCR) 

ligation with a cognate antigen and co-stimulatory molecules such as CD28 provide activation 

signals one and two, while cytokine signaling provides the third activation signal[29]. The 

process of T-cell activation is also complicated by the addition of checkpoint molecules which 

can further influence the overall signaling landscape through the inhibitory signaling[30]. 

Ultimately a combination of TCR ligation, co-stimulation, cytokine signaling, and lack of 

inhibitory signals determine the response of a CD8 T-cell to a potential antigen. 
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 The first step in activation, the process of receptor ligation, is complex in its own right. 

Unlike many peptide interactions, the interactions that occur between T-cell receptors and 

presented antigens can be relatively weak[31]. These short interactions are essential as the T-

cell itself must continuously move from one presented complex to another for effective 

surveillance of the presented antigen landscape to take place. During these weak interactions, 

multiple factors play a pivotal role in whether ligation between the TCR and presented antigen 

occurs, including both the epitope and TCR sequences. While the presented epitope sequence 

itself is important, studies have also demonstrated that the T-cell receptor interfaces with both 

the presented epitope, and components of the presenting MHC complex[32]. This means that T-

cell receptors show a preference not only for specific epitopes, but also for specific MHC 

complexes presenting them.  

Additionally, TCR sequences vary immensely due to a developmental process called 

V(D)J recombination, shaping the landscape of receptor sequences available for antigen 

interaction[33]. Unlike most genomic regions which stay stable throughout the life of an 

organism, early in lymphocyte development somatic recombination is induced within the 

variable (V), joining (J) and diversity (D) regions that eventually contribute to the generation of 

full receptor sequences (Figure 1.4)[34]. In particular, a set of regions called the 

complementarity determining regions (CDR’s) within the variable domain interface heavily with 

presented epitopes. CDR loops have been shown to play a particularly important role in 

determining the antigen specificity of a given receptor, with CDR3 representing the most 

important and variable region of the three CDR’s[35]. These uniquely recombined regions in 

each lymphocyte generate novel amino acid sequences and greatly expand the lymphocyte 

receptor repertoire, with studies estimating ~1015 possible receptor combinations[36]. Estimates 

on the number of possible receptor identities greatly outnumber the total T-cell count in the 
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host, and vastly outnumber estimates of unique T-cell clones in any given individual; suggesting 

that T-cell clonal diversity and not receptor sequence is the limiting factor in determining the 

pool of recognizable antigens by a given individual[37].  

 

Figure 1.4. VDJ recombination in the immune system. VDJ recombination requires the RAG 
complex and non-homologous end joining (NHEJ) enzymes to break and recombine the native 
genomic locus in a multistep process. Somatic hypermutation may occur. Immunoglobulin heavy-
chain class-switch recombination results in isotype replacement of the expressed C region for 
another downstream C region involving distinct cis elements and enzymology. Recombined loci 
are then transcribed and spliced for translation into antibody proteins. Related VDJ processes 
affect immunoglobulin light chains (producing VJ joining) and T-cell receptors. Caption and figure 
adapted from Kaeser and Chun (2020)[34]. 
 
 
 Each unique TCR sequence in conjunction with the surface of the peptide-MHC (pMHC) 

interface ultimately defines the strength of the bonds, if any, that form in the context of a TCR-

pMHC interaction (Figure 1.5)[38]. However, bond affinity alone doesn’t determine TCR signal 

transduction either. Studies examining 3D structure and the binding dynamics of TCR’s with 

their cognate antigens have demonstrated that high affinity bonds which do not induce signaling 

occur with high frequency in the human T-cell repertoire[39]. Instead, the formation of catch-

bonds prolong TCR-pMHC interactions under sheer force and are pivotal for signal 
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transduction[39]. These dynamic interactions between the T-cell receptor and peptide-MHC 

complex required for signal transduction complicate our understanding and ability to accurately 

predict receptor-antigen pairs and emphasize the need for complex models to accurately 

capture TCR-pMHC interaction dynamics.  

 

 

 

Figure 1.5. Low- and High-Resolution Views of T Cell Recognition (A) Model of extracellular 
complex architectures within a T cell/antigen presenting cell interface based on known structural 
information of the respective receptor ligand complexes. Trimolecular complexes of 
TCR/MHC/CD8 and TCR/MHC/CD4 have been modeled based on superposition of the MHC in 
each of the respective TCR/pMHC and MHC/CD8 and MHC/CD4 binary complexes. The 
transmembrane segments of the CD3 and CD3 subunits have been drawn in with the charges 
indicated necessary for assembly with the TCR chains. (B) A TCR/pMHC complex (left) and a 
closeup of the interface (right) showing the “germline” CDR1 and 2 TCR loops contacting the 
MHC helices, while the centrally located and genetically recombined CDR3 contact the antigenic 
peptide bound to the MHC. Caption and figure adapted from Garcia et al. (2005)[38]. 
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1.2.2 TCR degeneracy and its evolutionary importance 

 
 The complexity of TCR signal transduction, receptor sequence diversity, and MHC 

complex preferences together imply that T-cells are designed to be highly specific in their 

binding selection. While this is true, T-cells have somewhat counterintuitively been shown to 

frequently respond to multiple cognate antigens; with the exact number of recognizable 

epitopes varying greatly between individual T-cell clones[36], [40]. This ability to recognize 

multiple epitopes, often termed TCR promiscuity or TCR degeneracy, can best be conceptualized 

through the lens of evolutionary host immune challenge. Although we’ve discussed the vast 

theoretical diversity of TCR sequences, we have yet to compare this to the variety of class I 

antigens theoretically in existence. Evidence suggests that class I epitopes most frequently range 

from 8-11 amino acids long, although exceptions that are both shorter and longer have been 

reported in literature[41]. Using the standard 20 amino acids, a 9 amino acid long peptide could 

have over 500 billion (5.12 x 10^11) possible combinatorial identities alone. While the chance 

that all possible sequences are biologically relevant or even exist within the proteome is quite 

low, this potential target space still vastly outweighs the number of T-cells, let alone the number 

of T-cell clones in any given host organism (Figure 1.6)[41]. This imbalance in the ratio of host 

TCR clones compared to potential antigens that may arise from host immune challenge, 

highlights the necessity for TCR degeneracy in the context of immune evolution. As viruses and 

other pathogens continue to evolve, the ability for T-cells to identify multiple potential targets is 

clearly a necessity.  
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Figure 1.6. Relative proportion of required monospecific T-cells. If T cells were monospecific, a 
mouse would require a lymphoid system that was 70 times larger than the cube shown if it 
possessed just one naive T cell for each possible MHC-associated 11-mer peptide. It is assumed 
that a quarter of all lymphocytes are naive CD4+ T cells and that 109 lymphocytes occupy a 
volume of 1 ml. Caption and figure adapted from Mason (1998)[41]. 
 

1.2.3 Impacts of TCR degeneracy and its role in cancer 

immunotherapy 

 
Despite the evolutionary importance of TCR degeneracy, there are clear drawbacks to 

TCR recognition of multiple antigens. In the context of auto-immune disorders the recognized 

epitope is a self-antigen expressed on otherwise normal cells. Although it’s possible for these 

self-epitopes to be the primary target of a given T-cell, resulting from issues with initial T-cell 

development, many auto-immune disorders are associated with increased prevalence of specific 

pathogens in patients; leading to the hypothesis that TCR degeneracy is an important 

contributor[42]. This has been emphasized by studies that demonstrate Vibrio cholerae infection 

can exacerbate lupus symptoms and that patients with rheumatoid arthritis have increased 

loads of Epstein-Barr Virus compared to normal controls[43], [44].  
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Off-target toxicities have also been reported in the context of cancers, specifically 

during the use of experimental next-generation treatments that target specific tumor 

antigens[45]. One particularly striking example occurred via the use of affinity enhanced TCR’s 

to target a myeloma and melanoma derived epitope generated from the gene MAGE-A3. These 

TCR’s also recognized and were unintentionally activated by a cardiac protein titin, which 

resulted in the death of two patients before termination of the trial[46]. Retrospective analyses 

confirmed that both proteins were recognized by and activated the affinity enhanced TCR clones 

used during the experimental trial, highlighting the safety risks posed when cross-reactivity is 

not taken into account[47]. 

 Although cross-reactivity poses a clear risk in the cancer context, we still lack a strong 

understanding of how to predict cross-reactive events[48]. Some tools have attempted to use 

epitope similarity as a proxy for likelihood of cross-reactivity, arguing that epitopes with high 

similarity are most likely to cross-react[49]. There is some evidence to suggest that similarity 

plays a role in cross-reactivity, however surveillance of widespread cross-reactivity data 

demonstrates that cross-reactive peptides can be highly varied and that similarity alone is an 

insufficient predictor (Table 1.1)[50]. Alternative approaches have relied heavily on T-cell 

receptor sequences and structure-based predictions to infer a pool of recognized epitopes and 

subsequently predict cross-reactivity[51]. Sequence based approaches have highlighted key 

receptor features that impact cross-reactive potential, such as length of the CDR3 loop, however 

the scope of sequence based approaches is heavily limited by the availability of paired TCR and 

cognate antigen based datasets[52]. In addition, the use of TCR sequencing data also limits 

application in many of the pivotal use cases for cross-reactivity predictions where extensive 

sequencing of T-cell receptors isn’t feasible. While some next generation immunotherapeutic 

approaches rely on expansion of specific T-cell clones exogenously or by the engineering of 
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chimeric antigen receptors (CAR’s) in which case the TCR sequence can be identified, other 

approaches such as cancer mRNA vaccines rely on endogenous TCR’s which can’t be 

exhaustively or feasibly assayed for TCR sequences[53].  

 

Table 1.1. Reported examples of cross-reactive peptides in literature.

 

The columns are as follows: 1) MHC restriction, 2) source pathogen and protein for initial 
infection, 3) source pathogen and protein for subsequent infection, 4) original epitope of initial 
infection, 5) cross-reactive epitope for subsequent infection, 6) Sequence overlap between the 
cross-reactive epitopes, 7) sequence identity (Id), 8) observed peptide similarity (So) and 
expected peptide similarity (Se). So and Se represent similarity scores based on BLOSUM35 
scoring of the cross-reactive peptide and a randomized peptide, respectively. Table and caption 
adapted from Frankilde et al. (2008).[50] 
 

 

While the broader environmental and treatment related factors that impact immune 

activation won’t be addressed until the last chapter, Chapter II: Predicting T-cell Cross-Reactivity 

using Paired Peptide Data: A Multi-Layer Perceptron Approach, will highlight an alternative 

method for cross-reactivity prediction that does not rely on TCR specific sequencing. The 
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aggregation of large-scale database data to identify cross-reactive paired epitope examples 

leverages existing information to help better understand the dynamics of cross-reactive 

epitopes, even in the absence of receptor sequencing. While this approach falls short of 

incorporating other key factors in T-cell cross-activation such as co-stimulation and cytokine 

signaling, it provides important insight into TCR interactions with presented peptides and when 

those interactions may create a fundamental risk of cross-reactive events. 

1.3 Impact of the tumor landscape on immune interactions 

1.3.1 Cellular components of the TME 

 
 While previous sections have painted antigen presentation and subsequent T-cell 

activation as well defined - albeit complicated - processes, herein we will acknowledge the 

messiness that arises when we leave the petri dish and consider isolated components of biology 

in a more holistic manner. Ultimately TCR signal transduction, co-stimulation, and checkpoint 

inhibition all exist on a spectrum where the strength of each can ultimately tip the balance 

towards activation or tolerance. However, cellular interactions with other immune and stromal 

cells can also greatly influence this balance and whether or not cytotoxic cells ultimately carry 

out their goal of killing a recognized target cell. This external influence is especially relevant in 

the context of the tumor micro-environment where a wide range of cells are recruited by the 

developing tumor or subsequently arrive as part of the mounted immune response.  

Although our understanding of cells associated with the tumor microenvironment (TME) 

is ever expanding, fibroblasts, mast cells, macrophages, dendritic cells, myeloid derived 

suppressor cells (MDSC’s), T-regulatory cells (T-regs), CD8 cytotoxic cells, natural killer (NK) cells, 

and helper T-cells (Th) are just some of the well-recognized components known to contribute to 

the overall immune landscape of the tumor (Figure 1.7)[54], [55]. Subsets of dendritic cells and 
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Th cells help support cytotoxic T-cell activation and generally tip the balance towards tumor 

killing by priming cytotoxic T-cells[56]. Some macrophages, often termed tumor-suppressive or 

M1-like, have also been shown to help support tumor clearance through phagocytosis and 

secretion of stimulatory molecules such as IL-6, and IL-12 [57]. In contrast, T-regs, myeloid 

derived suppressor cells, and pro-tumorigenic (M2-like) macrophages all inhibit cytotoxic 

activity through suppression of CD8 T-cell activation and exacerbation of the inflammatory 

TME[57]–[59]. Fibroblasts and Mast cells contribute through the secretion of inflammatory 

signals which can also serve to inhibit effective tumor killing, though this is only one of many 

roles that these cells and inflammation itself can play in the context of the tumor 

microenvironment[60]. The distribution of varying immune cell populations and overall amount 

of immune infiltration are sometimes used to define tumors as immune “cold” or immune “hot” 

based on the overall level of tumor-immune activity[61]. 
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Figure 1.7. Common cellular and structural components in the TME. Mast cells (MCs), natural 
killer cells (NKs), dendritic cells (DCs), myeloid derive suppressor cells (MDSCs), tumor associated 
macrophages (TAMs), and a variety of T-cell populations are all common immune components of 
the tumor microenvironment and interplay with tumor cells and other resident populations such 
as cancer associated fibroblasts (CAFs). Figure adapted from Wang et al. (2023)[55] 

 

1.3.2 The TME and T-cell exhaustion 

 

The Milieu of inhibitory signals present in the tumor can ultimately lead to a 

phenomenon called exhaustion in which T-cells cells that would otherwise support tumor 

clearance show greatly diminished cytotoxic abilities[62]. A consensus definition of exhaustion is 

hard to come by and varies from expert to expert, however, exhaustion generally describes the 

process by which T-cells lose expression of effector and cytokine molecules due to chronic 

antigen and/or inflammatory exposure[63]. The loss of effector signals in T-cells undergoing 
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exhaustion also coincides with the expression of inhibitory markers including but not limited to 

PD-1, CTLA-4, TIGIT, LAG3 and TIM3[62]. Concurrent expression of these inhibitory molecules 

alongside the loss of cytotoxic and effector cytokine expression can ultimately be used to define 

functional exhaustion in the cancer context[64].  

Based on our understanding of exhaustion, an immunotherapeutic approach called 

immune checkpoint inhibitor (ICI) therapy has arisen[65]. ICI therapies aim to prevent 

exhaustion phenotypes from forming and potentially even reverse the phenotype of some 

functionally exhausted cells in the TME by targeting inhibitory molecules such as PD-1, PDL-1, 

and CTLA-4 with monoclonal antibodies[65]. Therapeutic approaches using ICI have 

demonstrated profound benefits for some patients, even for those whose cancer progressed on 

more traditional treatments[66]. Despite these promising results, many other patients do not 

respond to ICI therapy, further highlighting the complexity or the immune response and 

important role of other cell types beyond those directly targeted by ICI[67].  

1.3.3 Single cell approaches to TME profiling 

 
The highly variable response to ICI therapies between patients has emphasized the need 

for a better understanding of the tumor microenvironment and improved profiling of all 

components therein. While traditional techniques for profiling the TME have generated a 

plethora of findings about immune interactions within the greater tumor landscape, novel 

technologies are also drastically reshaping our understanding of tumor-immune interactions as 

well. In particular single-cell RNA sequencing has facilitated the simultaneous transcriptomic 

profiling of thousands of cells in unison; giving a unique perspective into their cell states and 

unique responses to the greater microenvironment (Figure 1.8)[68].  
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Figure 1.8. Single-cell technology applications. Using single cell sequencing technologies, we 
can identify novel subpopulations or cellular states within a seemingly homogeneous cellular 
population. A) shows different ways in which a cell population may exhibit heterogenicity. B) 
shows how cell types within populations may be identified and characterized. Caption and figure 
adapted from Vaga (2022)[68]. 
 

Single-cell transcriptomic analysis relies on a multi-step process, starting with 

mechanical tissue dissociation, followed enzymatic degradation of matrix proteins, and further 

agitation that ultimately results in the generation of a single cell suspension. Suspended cells are 

then combined with unique oligonucleotide barcodes using a microfluidics-based (e.g. 10X) 

approach, giving rise to a cellular emersion[69]. Each oligonucleotide has both a unique cellular 

barcode and a unique molecular identifier that allows for downstream tracking of both cell and 

unique transcript[70]. Cells, in emersion with unique oligonucleotides, are then lysed so that 

reverse transcription and amplification can occur[70]. Samples can then be pooled and 

sequenced with the total throughput of cells varying based on sequencing platform and desired 

sequencing depth. 
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Other approaches have also been used to characterizing single cells such as 

immunohistochemistry (IHC), flow cytometry, and cyclic immunofluorescence (CyCIF), however 

these techniques rely on antibodies and are limited in the number of targets that can be queried 

per cell at a single time. In contrast, single-cell RNA sequencing can identify hundreds or even 

thousands of unique transcripts in a mostly unbiased fashion. Although single-cell RNA-seq 

captures many more targets at a given time, this comes at the cost of selecting specific targets 

of interest. Because specific targets cannot be selected, single cell RNA-seq also relies heavily on 

computational approaches to identify specific cell types of interest and leverages group-based 

analyses to better profile identified cells. 

While Single-cell RNAseq technologies have already provided insight into the inner 

workings of the TME, to date these approaches have rarely examined patients across their 

treatment course. In Chapter III: Deciphering the Prostate Tumor Microenvironment: 

Transcriptional Insights into Therapy Response following Androgen Axis Blockade and Immune 

Checkpoint Inhibition, we will use a paired single cell transcriptomic approach to survey the 

tumor and immune landscape of patients receiving therapy for the treatment of primary 

prostate cancer tumors. These patients have been sampled in both a completely treatment-

naive context, and after an extensive treatment course with a combination of therapeutics. This 

approach gives a unique look into both the baseline microenvironment and a look into how 

therapy shifts the cellular landscape as a whole. Although the work in Chapter III does not yet 

contain clinical follow up data, the analysis provided within highlights dramatic changes 

occurring in both tumor and non-tumor tissues due to the administration of treatment and 

provides further insight into key factors and populations present in the tumor-immune 

landscape.  
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2.1 Abstract 

 
Motivation: Proteasomal cleavage is a key component in protein turnover, as well as antigen 

processing and presentation. Although tools for proteasomal cleavage prediction are available, 

they vary widely in their performance, options, and availability. 

Results: Herein, we present pepsickle, an open-source tool for proteasomal cleavage 

prediction with better in vivo prediction performance (area under the curve) and computational 

speed than current models available in the field and with the ability to predict sites based on 

both constitutive and immunoproteasome profiles. Post hoc filtering of predicted patient 

neoepitopes using pepsickle significantly enriches for immune-responsive epitopes and may 

improve current epitope prediction and vaccine development pipelines. 

Availability and implementation: pepsickle is open source and available at 

https://github.com/pdxgx/pepsickle. 

2.2 Introduction 

 

The constitutive proteasome is a multimeric protein complex best known for its role in 

the cleavage and recycling of cellular proteins marked for degradation[72]. The proteasome also 

generates cleaved peptide fragments (epitopes) for immune surveillance via the major 

histocompatibility complex (MHC) class I antigen presentation pathway[73]. This immune 

presentation functionality is critical for antiviral and other antimicrobial responses, and has 

particular relevance both in the setting of vaccine development and in a cancer context with the 

advent of immune checkpoint[74]–[78]. 

Structurally, the proteasome consists of multiple subunits, a 20S barrel core housing the 

catalytic domains of the proteasome, and two 19S caps which aid in the unfolding of ubiquitin-

https://github.com/pdxgx/pepsickle
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tagged proteins[72]. The barrel shape of the 20S core is derived from the fusion of four 

heptameric rings, the inner two of which contain a β1, β2 and β5 catalytic domain responsible 

for the cleavage of peptide bonds[79]. Although all tissues express the constitutive proteasome, 

hematopoietic-lineage cells can also express the alternative catalytic domains β1i, β2i and β5i in 

response to IFN-γ, which replace their analogues in the constitutive heptameric ring to form the 

immunoproteasome (Fig. 2.1)[80]. Previous studies support the presence of preferred cleavage 

motifs and differences in cleavage preferences between the immuno- and constitutive 

proteasomes; however, our understanding of how these preferences manifest is still not well 

defined[81], [82]. 

 
Figure  2.1. Protein degradation by the constitutive and immunoproteasome. Proteins 
trafficked to the proteasome complex are fed into the main 20S barrel, with the assistance of 19S 
caps (blue) that aid with unfolding and linearization. The catalytic domains of the standard β- 
rings (pink) constituting the 20S barrel cleave the protein sequence and generate the resulting 
digested peptide fragments. In select tissues, exposure to interferon gamma (IFN-γ) results in 
replacement of the standard catalytic domains by alternative ‘immuno’ catalytic domains 
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(green). This transition in catalytic domain usage constitutes the construction of the 
immunoproteasome and may alter cleavage site preference. The differential digestion pattern of 
a single protein sequence (multi-colored) is depicted below the corresponding proteasome 
complex. 
 

While existing tools to predict proteasomal cleavage sites are now widely adopted, each 

has significant limitations affecting the accuracy and/or scope of its predictions, with the 

potential for real world consequences (Fig. 2.2). For example NetChop 3.1, the most cited 

proteasomal cleavage tool, does not differentiate between constitutive and 

immunoproteasomal cleavage when generating predictions[81]. Further, tools such as the 

proteasomal cleavage prediction server (PCPS) provide options for predicting cleavage by the 

immunoproteasome but show poor model performance compared to NetChop when 

benchmarked[81]. Finally, many available tools are either proprietary or otherwise unavailable 

to the public, complicating their use in both academic and industry analysis pipelines. 

 
Figure 2.2. Comparison matrix of available proteasomal cleavage tools and their features. 
Eight proteasomal cleavage tools are shown (columns) along with their corresponding features 
(rows). Specific tools are as follows: pepsickle (presented here), NetChop 3.1[81], the 
Proteasomal Cleavage Prediction Server (PCPS)[28], PCleavage[83], MAPPP[84], PAProC[85] and 
the random forest-based model described in Li et al.[86].Check marks (green) represent available 
features for each tool while X’s (red) represent unavailable features. Warning signs (yellow) 
represent missing information, or features that are mentioned but not currently available. For 
MAPPP, the referenced web server is no longer available and therefore we were unable to 
confirm tool features. For PaPRoC, we were unable to obtain the model despite repeated 



 26 

requests. For the random forest model proposed by Li et al., model weights for the proposed 
model are given, but source code is not available and the type of cleavage sites used (in vivo 
versus in vitro) are undefined. 
 

By leveraging a comprehensive set of proteasomal cleavage data and an ensemble-

based deep learning approach, we developed a set of models that consistently produce more 

accurate cleavage predictions than existing tools regardless of proteasomal context. We have 

deployed these models as an open-source command-line tool (pepsickle) for broad reuse 

and application. 

2.3 Materials and methods 

2.3.1 Collection and processing of in vitro digestion map data for 

training and testing 

We performed a literature search for all studies containing publicly available primary 

data from in vitro digestion experiments using 20S proteasomes. As the proteasome is highly 

conserved among mammalian species, digestion product results from non-human mammalian 

proteasomes were also included along with human-specific datasets[82], [87]. The search terms 

used were ‘proteasome’, ‘proteasomal’, ‘cleavage’, ‘digestion’, ‘immunoproteasome’, ‘20S’, 

‘i20S’, both alone and in various combinations. Ultimately, we identified 35 studies with relevant 

data (Table 2.1), from which we manually extracted individual cleavage sites, along with the 

parent peptide sequences from which they were derived[88]–[122]. Proteasome types present 

in the observed system (constitutive, immunoproteasome or mixed) were also annotated for 

each cleavage experiment. Data from six 20S studies with unique source proteins were held out 

for downstream validation, while the remaining data (from 29 studies) were aggregated for 

model training and testing (Table 2.1). For in vitro digestion peptide fragments, both the N-

terminal and C-terminal cleavage sites were used as cleavage examples. For each cleavage 
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example, a context window was generated with the cleavage residue (C-terminus of the peptide 

fragment) as the ‘central’ amino acid plus an equal number of upstream and downstream amino 

acids (Fig. 2.3). Independent datasets with window sizes of 7 amino acids (3 upstream and 3 

downstream from the central cleavage residue) and 21 amino acids (10 upstream and 10 

downstream) were generated to allow for model optimization based on window size. Only 

unique cleavage windows were retained, yielding a total of 1758 windows that are 7 amino acids 

in length and 1819 windows that are 21 amino acids in length. 

 

Figure. 2.3. Generation of the in vitro dataset. Each identified cleaved peptide fragment (red) 
was mapped back to its source sequence (gray). Using the C-terminus of the fragment, as well as 
the amino acid prior to the N-terminus of the fragment as cleavage sites (green, with each of 
their respective downstream bonds cleaved by the proteasome), cleavage windows (blue) were 
generated using three amino acids upstream and downstream of the cleavage sites identified. 
Candidate non-cleavage windows (yellow) were generated using the same windowed approach 
on internal amino acids within the epitope. Before candidate negatives were included in the 
dataset, they were screened against all positive identified cleavage sites from both N- and C-
termini of reported fragments. Note that * indicates the lack of an amino acid (i.e. amino acid 
position is beyond the peptide terminus). 
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Table 2.1. Summary of in vitro data. 

Source Dataset Fragments Proteasome types 

Toes et al. (2001) Train/test 251 (1) Constitutive, Immuno 

Berko et al. (2012) Train/test 236 (2) Constitutive 

Sesma et al. (2003) Train/test 184 (4) Mixed 

Lucchiari-Hartz et al. (2003) Train/test 145 (1) Mixed 

Tenzer et al. (2004) Train/test 129 (1) Constitutive, Immuno 

García-Medel et al. (2012) Train/test 121 (1) Constitutive 

Guillaume et al. (2012) Train/test 103 (10) Constitutive, Immuno 

Chapiro et al. (2006) Train/test 96 (3) Constitutive, Immuno 

Niedermann et al. (1996) Train/test 91 (3) Mixed 

Ehring et al. (1996) Train/test 84 (1) Mixed 

Pinkse et al. (2005) Train/test 81 (2) Constitutive, Immuno 

Emmerich et al. (2000) Train/test 63 (1) Constitutive 

Niedermann et al. (1995) Train/test 56 (8) Immuno 

Kessler et al. (2001) Train/test 47 (4) Immuno 

Hassainya et al. (2005) Train/test 35 (1) Immuno 

Paradela et al. (2000) Train/test 34 (1) Mixed 

Lucchiari-Hartz et al. (2000) Train/test 30 (1) Constitutive 

Theobald et al. (1998) Train/test 24 (2) Immuno 

Popović et al. (2011) Train/test 23 (2) Immuno 

Alvarez-Castelao et al. (2014) Train/test 22 (1) Constitutive 
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Source Dataset Fragments Proteasome types 

Marcilla et al. (2007) Train/test 21 (1) Immuno 

Dick et al. (1996) Train/test 20 (3) Mixed 

Bruder et al. (2006) Train/test 18 (2) Constitutive 

Morel et al. (2000) Train/test 17 (1) Constitutive, Immuno 

Asemissen et al. (2006) Train/test 14 (1) Constitutive, Immuno 

Michaux et al. (2014) Train/test 13 (1) Constitutive 

Macconi et al. (2009) Train/test 12 (1) Constitutive 

Kimura et al. (2005) Train/test 8 (2) Mixed 

Vigneron et al. (2004) Train/test 6 (1) Constitutive 

Wada et al. (2018) Validation 334 (11) Immuno 

Ayyoub et al. (2002) Validation 49 (1) Constitutive 

Zimbwa et al. (2007) Validation 48 (1) Immuno 

Alvarez-Castelao et al. (2012) Validation 32 (1) Constitutive 

Strehl et al. (2008) Validation 16 (4) Constitutive, Immuno 

Warren et al. (2006) Validation 16 (1) Immuno 

Note: All data used for training, testing and validating in vitro models is summarized above. 
Fragments represent the number of cleavage by-products reported in each primary literature 
source, with the number in parentheses representing the number of whole proteins or pre-
digestion protein fragments used in each study. Proteasome type(s) denotes what proteasome 
was queried during experimentation with ‘constitutive’ and/or ‘immuno’ denoting isolated 
contexts, while ‘mixed’ denotes testing in a non-isolated/heterogenous proteasomal context. 
 

To generate companion non-cleavage examples for modeling, internal sites from each 

reported peptide fragment were considered as candidates. As above, 7 amino acid and 21 

amino acid windows were generated for each non-cleavage example, and subsequently filtered 



 30 

to remove any duplicate sequences or overlaps with the set of non-cleavage examples. Before 

these candidates were included as null examples in the dataset, they were further filtered 

against all positive windows generated across all other studies, controlling for proteasome type, 

so that positive and negative cleavage examples were mutually exclusive. 

2.3.2 Collection and processing of epitope data for training and 

testing 

To study in vivo cleavage sites, we extracted endogenously processed T-cell epitopes 

from three independent public databases: The Immune Epitope Database (IEDB)[123], 

AntiJen[124] and SYFPEITHI[125] as well as two primary literature sources[126], [127]. Data 

from Bassani-Sternberg et al. was maintained separately and used for downstream validation, 

while all other sources were aggregated for training and testing purposes. We restricted 

attention to mammalian endogenously processed and presented peptide ligands of the MHC 

class I pathway using the flags: assay_type.category = ‘Naturally Processed’, 

mhc_allele_restriction.class = ‘I’ and organism_finder_host_ancestry.obi_id = 

‘http://purl.obolibrary.org/obo/NCBITaxon_40674’. Epitopes were filtered to retain only those 

with an unambiguous position among the known source protein sequence(s). Centered windows 

were generated around each C-terminal cleavage example as above but using the full series of 

balanced window sizes from 7 amino acids to 21 amino acids, given the larger scale of the data 

and its accompanying power to detect significant differences in model performance. Only 

unique cleavage window sequences were retained, resulting in a total of 357,253 unique 

epitopes with C-terminal cleavage events. Note that epitope N-termini were not processed as 

cleavage examples due to the uncertainty resulting from N-terminal trimming by endoplasmic 

reticulum aminopeptidases (ERAP)[128]. 
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To perform non-cleavage site inference, we first sampled internal amino acids for each 

epitope (Fig. 2.4). Because the overwhelming majority of proteasomal digestion products have a 

length of at least two amino acids[129]–[131] and because peptides may be threaded into the 

proteasome in either the N- or C-terminal directions[92], we excluded 1 N-terminal and 1 C-

terminal amino acid residue of each epitope from consideration in the potential non-cleavage 

data. As above, windows were generated for each remaining amino acid position for each 

potential window size. These potential non-cleavage windows were then filtered to remove any 

identical sequence matches within the set of positive cleavage examples from above. To 

additionally account for uncertainty in N-terminal cleavage position(s) due to ERAP[128], we 

removed any candidate sequence that matched with the set of windows generated by upstream 

positions from the N-terminus of an epitope up to 16 amino acids upstream of each epitope’s C-

terminus. Only unique non-cleavage window sequences were retained. 
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Figure. 2.4. Generation of the epitope dataset. Each identified epitope (red) was mapped back 
to its source sequence. Using the C-terminus of the epitope as the cleavage site (green), with the 
downstream bond as the one cleaved by the proteasome), cleavage windows (blue) were 
generated using eight amino acids up and downstream from the site identified. Candidate non-
cleavage windows (yellow) were generated using the same windowed approach on internal 
amino acids within the epitope, with the exclusion of the first two and last two amino acids 
which served as a buffer region to account for minimum proteasomal fragment size. Before 
candidate negatives were included in the dataset, they were screened against all positive 
identified cleavage sites as well as against a set of potential upstream cleavage sites (gray); 
generated by using the same windowed approach on the upstream window that could 
encapsulate the N-terminal cleavage site prior to ERAP trimming. 

 

2.3.3 Feature encoding 

A vector of features was generated for each amino acid across windows in the cleavage 

and non-cleavage example sets (Appendix A, Table 6.1). Amino acid identity was one-hot 

encoded as a bit vector of size 20, with each bit representing one of the standard amino acids. 
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The null character (*) was used for padding, with all values as zero, while ambiguous amino 

acids were encoded as relevant combinations of non-zero values corresponding to their 

ambiguous components (e.g. B represents either aspartic acid or asparagine). Physical 

properties of amino acids were encoded as follows: side chain polarity was recorded as its 

isoelectric point (pI)[132], the molecular volume of each side chain was recorded as its partial 

molar volume at 37°C[133], the hydrophobicity of each side chain was characterized by its 

simulated contact angle with nanodroplets of water[134] and conformational entropy was 

derived from peptide bond angular observations among protein sequences without observed 

secondary structure (e.g. alpha helix)[135]. Proteasomal context was also included where 

relevant as a single categorical feature with ‘C’ representing the constitutive proteasome, ‘I’ 

representing the immunoproteasome and ‘M’ representing mixed systems with both 

proteasome types expressed. 

2.3.4 Gradient boosted decision tree structure and training 

All gradient boosted classification models were implemented using the Scikit-learn 

package (v0.22.1)[136] for Python version 3.7. The aggregated positive and negative cleavage 

examples were randomly split to retain 80% of the examples for training and the remaining 20% 

for model testing. For each model, inversely balanced class weights were used, and the 

‘RandomizedSearchCV’ class was used to determine the best option for the 

‘max_features’ parameter (chosen from ‘auto’, ‘sqrt’ or ‘log2’) and the 

‘n_estimators’ parameter (chosen from values of 100–1000, by 100) of the 

‘GradientBoostingClassifier’ class. Randomized 10-fold cross validation was run for 

all combinations of parameters, and the best model (as determined by the 
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‘best_estimator_’ attribute) was retained. Model performance was evaluated based on 

Area under the curve (AUC), using the pROC library (v1.16.2)[137] in R version 4.0.2. 

Two distinct classification models were trained. One was based on the one hot encoded 

amino acid sequence identities, and another on the physical/chemical property encodings as 

previously described, normalized using the ‘fit_transform’ method of Scikit-learn’s 

‘MinMaxScaler’ class. For epitope data, models were trained on amino acid window sizes 7 

through 21 in length and compared to each other to identify the model with optimal 

performance. For in vitro data, only the minimum (7) and maximum (21) length window libraries 

were assessed, also accounting for constitutive versus immunoproteasomal context. 

2.3.5 Neural network structure and training 

All neural network models were implemented using the PyTorch package (version 

1.3.1)[138] for Python version 3.7. The aggregated positive and negative cleavage examples 

were randomly split to retain 80% of the examples for training and the remaining 20% for model 

testing. We next trained two distinct cleavage classification models based on the proteasome 

type and either (i) amino acid identity encodings, or (ii) amino acid physical property encodings 

as described previously. Each model consisted of an input layer, two hidden layers and an 

output layer (Appendix A, Fig. 6.1). For all non-output layers, we applied batch normalization 

and a 20% dropout layer during each successive forward pass to improve model training and 

reduce overfitting (for layer sizes, see appendix A, Table 6.2 and 6.3, respectively). ReLU 

activation functions were employed at each step except for the output layer, where a softmax 

function was applied prior to final output. For the physical property-based model an additional 

convolutional layer (1D convolution with a three amino acid window and one amino acid step 

size) was applied to each physical property independently prior to passing values to the rest of 
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the model. Cross entropy loss was used for backpropagation during training, with inverse class 

weights to account for class imbalance in the training set. Both models were trained for 36 

epochs before training was halted. AUC assessed on a new subset of the test data after each 

epoch and compared to the performance at the previous epoch, with the best performing 

model saved for downstream analysis. 

For the two best-performing models (one identity-based and one based on physical 

properties), final testing performance was then assessed using a consensus approach, where the 

predicted probability of a test window representing a cleavage site was taken as the average 

probability across both models. For epitope data, models were trained on window sizes of 7 

through 21 amino acids and subsequently compared to identify the window size with optimal 

performance. Due to the relatively small size of the in vitro dataset, only the minimum (7) and 

maximum (21) length window libraries were assessed, with additional information on 

constitutive versus immunoproteasomal context included as in the same manner used for the 

gradient boosted approach. 

2.3.6 Analysis of sampled feature space 

Because models were studied using variable window lengths up to 21 amino acids, we 

evaluated all data in a unified feature space, noting that the largest feature space would be 

guaranteed to provide the most robust assessment across all window lengths. To qualitatively 

assess how well our training data represented the broader space of possible peptides, we 

therefore identified all unique 21 amino acid windows within the human proteome 

(https://www.uniprot.org/proteomes/UP000005640). Using these windows as background, we 

compared the shared UMAP space calculated with the first 10 principal components across the 

human proteome, as well as both in vitro and in vivo training sets using the four chemical 

https://www.uniprot.org/proteomes/UP000005640
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properties at each amino acid position within the window, described previously, as the input 

feature set (Fig. 2.5). Furthermore, we compared the sampling density for both datasets to the 

human background set across the first 4 principal components to demonstrate the distribution 

of sampling in our training sets (Appendix A, Fig. 6.2). In addition to plots comparing the 

sampling space based on chemical properties, we also generated logo plots based on the amino 

acid frequencies for positive and negative examples in each training set (Appendix A, Fig. 6.3, 

6.4). These plots were generated using the ultimate window sizes retained in modeling; 7 amino 

acids for in vitro data and 17 amino acids for in vivo data. 
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Figure. 2.5. Training set projections in UMAP space. Amino acid windows (21 residues long) 
were generated for the whole human proteome (gray), all epitope training examples (blue) and 
all 20S training examples (green). Principle components were generated from the physical 
properties of each amino acid at each window position. UMAP projections were generated from 
the first 10 principal components. 
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2.3.7 Collection and processing of in vitro digestion map data for 

validation 

Data from six 20S studies was held out from previous steps to be used in validation. In 

order to accommodate the analysis of performance for models using multiple different window 

sizes, window lengths of 21 amino acids were generated for each validation set cleavage 

example using reported peptide fragments and their source protein contexts. Companion non-

cleavage windows were generated in the same way as before, with the exception that only one 

internal site was sampled at random during non-cleavage window generation to create an 

initially balanced set of positives and negatives. For validation windows, the additional step of 

filtering all validation windows with a non-unique interior window of 7 amino acids (smallest 

centered window size for the models to be assessed) was also taken to ensure no redundant 

windows were present in the validation set for any training window sizes from 7 to 21 amino 

acids. These windows were then screened against all training and testing examples to only 

retain unique, never before seen, entries in their respective sets. Ultimately this generated 171 

constitutive 20S cleavage windows and 54 immunoproteasome 20S cleavage windows. 

2.3.8 Collection and processing of epitope data for validation 

Data from Bassani-Sternberg et al. (2016)[126] was held out from previous steps to be 

used in validation. As described above, 21 amino acid windows were generated using reported 

epitopes and their source protein contexts. These windows were then screened to only retain 

unique entries in their respective sets and companion non-cleavage examples were generated 

as described previously, with the exception that only one internal site was sampled at random 

during non-cleavage window generation to create an initially balanced set of positives and 

negatives as with the in-vitro validation set. For validation windows, the additional step of 
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filtering all validations windows with a non-unique interior window of 7 amino acids (smallest 

centered window size for the models to be assessed) was also taken to ensure no redundant 

windows were present in the validation set for any training window sizes from 7 to 21 amino 

acids. Finally, each window was also screened against those used in the training or testing sets 

to ensure none had been previously seen by the trained models. Ultimately, this generated 7951 

cleavage windows for validation. 

2.3.9 Model implementation and availability 

Our in vivo and in vitro cleavage models were implemented in Python version 3.7. All 

deep learning models were generated using PyTorch version 1.3.1[138], while all machine 

learning models were generated using Scikit-learn version 0.22.1[136]. The full instructions and 

code for replication of the analyses contained herein can be found 

at https://github.com/pdxgx/pepsickle-paper, while the fully deployed command line version 

of pepsickle, along with relevant installation instructions can be found 

at https://github.com/pdxgx/pepsickle. To better handle a variety of use cases, including 

analysis of long and short peptides, the deployed version of pepsickle recognizes two 

different padding characters: (*) for terminal sequences with no adjacent amino acids and (X) 

for sequences flanked by unknown amino acid residues (see pepsickle readme for full 

details). pepsickle is open source and available under the MIT user license. 

2.3.10 Comparison of cleavage prediction tools 

A literature search and browser query were performed to identify currently available 

tools for proteasomal cleavage prediction (search terms included ‘cleavage prediction’, 

‘proteasomal prediction’, ‘cleavage prediction tool’ and ‘proteasomal cleavage prediction’). 

https://github.com/pdxgx/pepsickle-paper
https://github.com/pdxgx/pepsickle
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Through this search, six tools were identified including: NetChop 3.1[81], the Proteasomal 

Cleavage Prediction Server (PCPS)[28], PCleavage[83], MAPPP[84], PAProC[85] and the random 

forest-based model described in Li et al. (2012)[86]. NetChop version 3.1 was downloaded 

from http://www.cbs.dtu.dk/services/NetChop/ and installed as a command line tool on a Linux 

server running CentOS 7.7.1908 after which cleavage windows for both in vitro and in 

vivo validation examples were given in FASTA format to their respective model types. 

Predictions were saved and assessed only for the point of potential cleavage in each window. 

PCPS was run via its web server implementation at http://imed.med.ucm.es/Tools/pcps/ with 

both constitutive proteasome and immunoproteasome options selected. For each in vitro data 

type, the model corresponding to the proteasome type was used, with only the midpoint of 

each window reported and recorded as described above. For in vivo epitope windows, both 

models were assessed in the same fashion, with results reported for the model achieving the 

best AUC. PCleavage was also run via its web server implementation 

at http://crdd.osdd.net/raghava/pcleavage/, however validation assessment was only 

performed for in vivo epitope windows using the default threshold of 0.3. For both constitutive 

proteasome and immunoproteasome data; PCleavage did not accept windows that spanned the 

C- or N-termini of a given source protein, which reduced the validation set size substantially and 

prevented paired comparisons with the other models available. Additionally, we were unable to 

confidently reproduce the training dataset(s) for NetChop 3.1, PCPS, and PCleavage, and thus 

could not guarantee our validation set was mutually exclusive with training data for these tools 

across all trained models. Three cleavage prediction tools were ultimately not functional in our 

hands: the MAPPP server is no longer available, and we were unable to locate a publicly 

downloadable version of the tool, we were unable to obtain a working copy of PAProC II despite 

http://www.cbs.dtu.dk/services/NetChop/
http://imed.med.ucm.es/Tools/pcps/
http://crdd.osdd.net/raghava/pcleavage/
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repeated requests, and we were unable to locate any web server or public tool implementing 

the model from Li et al. 

Computational performance was assessed for all tools not reliant on a web server (i.e. 

NetChop 3.1, pepsickle). Using a dedicated node (Intel Xeon E5-2697 v2 2.70 GHz, single 

thread mode) on a Linux server running CentOS 7.7.1908, both in vitro and epitope-based 

models for NetChop 3.1 and pepsickle were applied to a performance test set consisting of 

all proteins in the human proteome (https://www.uniprot.org/proteomes/UP000005640). Total 

CPU times were calculated as the ‘user’ time + ‘sys’ time for each prediction model (Appendix A, 

Table 6.4). 

2.3.11 Model cross-comparison assessments 

The cross performance of both constitutive-based and immuno-based in vitro models 

were assessed using the same in vivo validation set used for our epitope trained model 

(Appendix A, Table 6.5). Cleavage predictions were generated using the internal 7 amino acid 

window centered within each larger 21 amino acid validation window. Predictions were 

reported at the same central amino acid with the default prediction probability threshold of 0.5 

used for determining cleavage versus non-cleavage predictions. We reasoned that positive 

epitope cleavage examples should be predicted with good accuracy while negative examples 

would not be due to the complex selectivity of the downstream antigen processing and 

presentation pathway (e.g. MHC binding); therefore, only the percentage of correctly captured 

positive cleavage examples was assessed (sensitivity). This removes the possibility of 

misreporting true cleavage events that are filtered during post-cleavage processing as model 

misclassifications. 

https://www.uniprot.org/proteomes/UP000005640
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2.3.12 Collection of patient-derived immune response data and model 

application 

Three primary literature articles including patient specific predicted tumor neoepitopes 

and epitope-specific immune responses were identified for model application, including: (i) the 

Ott et al. patient-specific melanoma vaccine study[139], (ii) the MuPeXI neoepitope prediction 

study[140] and (iii) a large scale neoepitope prediction comparison from the Tumor Neoantigen 

Selection Alliance (TESLA)[141]. From sources 1 and 2 where gene/protein sources for each 

predicted epitope were provided, each mutated candidate was mapped back to its original 

proteomic position to retrieve upstream (10 amino acids) and downstream (10 amino acids) 

contexts. For predicted neoepitopes within 10 amino acids from the start or end of the protein, 

positions were buffered using ‘*’ prior to model input. For predicted neoepitopes reported in 

the TESLA study the original source proteins were not provided. Instead, candidate neoepitope 

sequences were queried against the human reference proteome using the BLAST[142] 

command line tool with the following parameters: ‘-matrix BLOSUM62’, ‘-evalue 

200000’, ‘-comp_based_stats F’. Only ungapped alignments were retained, allowing 

for a singular mismatch at the mutated position with exact matches at all other positions. 

Protein contexts around each candidate neoepitope were generated as described for the other 

two studies, however all candidate neoepitopes resulting in more than one unique context 

window were filtered out to remove any candidate neoepitopes with an ambiguous source in 

the proteome. All predicted neoepitopes across the three studies were also annotated as 

‘responsive’ or ‘non-responsive’ based on the reported patient specific immune response. This 

resulted in 762 candidate neoepitopes, of which 45 (5.9%) were reported as inducing a patient-

specific immune response. 
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After all context windows were collected, our in vivo pepsickle model was applied to 

the C-terminal position of each proposed neoepitope candidate, returning the predicted C-

terminal cleavage probability. Median cleavage probabilities for predicted neoepitopes that 

elicited a patient specific immune response were compared to those that were predicted but for 

which an immune response was not verified using a Wilcoxon ranked sum test. Additionally, the 

use of cleavage probability as a classification threshold was assessed using the 25th percentile of 

predicted cleavage probabilities across all candidate neoepitopes as a cutoff. The proportion of 

responsive versus non-responsive neoepitopes that were properly identified using this 

thresholding approach was assessed using a Chi-square test for independence. 

2.4 Results 

2.4.1 In vitro digestion-based cleavage prediction 

We identified 35 publicly available in vitro digestion datasets, constituting both 20S 

constitutive and 20S immunoproteasomal cleavage experiments (Table 2.1). From these, six 

studies were reserved for external validation (validation set), while the rest were aggregated to 

generate a training and testing dataset containing cleavage information from 1984 peptide 

fragments generated across constitutive, immuno- and mixed proteasomal contexts. We then 

trained a gradient boosted classifier based on windows of seven amino acids in length centering 

on each cleaved site. Residues within the window were encoded as the physical properties 

(polarity, molecular volume, hydrophobicity, and conformational entropy) of each amino acid at 

each given position in the window. Using annotated proteasome types, the model was trained 

to differentiate between sites cleaved by the immunoproteasome and those cleaved by the 

constitutive proteasome, returning the probability of cleavage at the center of each window. 

This model achieved a test set AUC of 0.759 (Appendix A, Table 6.6). We explored whether 



 44 

additional peptide context around each cleavage site (21 amino acid windows) improved model 

performance; however, a comparison of models trained with both 7 amino acid and 21 amino 

acid window sizes showed no increase in AUC when applied to testing the data (DeLong’s T-

test, P = 0.558). Similarly, we assessed whether a fully connected feed-forward deep learning 

model could improve cleavage predictions over the initial machine learning approach. The use 

of this feed-forward network model also did not appear to increase performance significantly 

(P = 0.558). We therefore report and discuss the results from our seven amino acid gradient 

boosted classifier (pepsickle) hereafter. 

We next assessed in vitro pepsickle performance on an independent validation set, 

consisting of 171 constitutive proteasome and 54 immunoproteasome examples, respectively. 

Our model achieved an AUC of 0.821 on the constitutive proteasome validation set and 0.789 on 

the immunoproteasome validation set, respectively. Using the same validation sets, we assessed 

the corresponding performance of existing tools including NetChop 3.1 and the Proteasomal 

Cleavage Prediction Server (PCPS) (Fig. 2.6). Note that PCleavage was omitted from these in 

vitro-based comparisons due to its inability to process cleavage sites whose context windows 

span a peptide fragment’s N- or C-termini (54.4% of the constitutive and 81.5% of the immuno 

validation data respectively). We found that pepsickle has significantly higher predictive 

performance on constitutive proteasomal data compared to PCPS, but similar performance 

compared to NetChop 3.1 (Fig. 2.6). When applied to immunoproteasomal data, our model 

compared similarly to both PCPS and NetChop 3.1, acknowledging limited statistical power to 

detect a difference given the small sample size (Fig. 2.7; Appendix A, Table 6.7). 
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Figure 2.6. Performance comparison of cleavage prediction models on constitutive proteasome 
data. Receiver operating characteristic (ROC) curves are shown for each of three cleavage 
prediction models, as denoted in legend, with corresponding area under the curve (AUC) values 
reported in parentheses. Sensitivity (y-axis) and specificity (x-axis) were both evaluated using a 
validation set (n = 171) consisting of 80 cleavage and 91 non-cleavage in vitro examples not seen 
during the training or testing of our models (see Methods). For pepsickle (our model) and PCPS, 
the constitutive proteasome models with default settings were used. For NetChop 3.1, the in 
vitro model was used with default settings (no specification is available for proteasome type). 
PCleavage was omitted from this comparison due to restrictions on window sizes and the 
inability to process the full set of validation examples. Statistical pairwise comparisons of ROC 
curves (Delong’s tests) are shown in corresponding table values (Z-score), with significance 
reported as P-values after Benjamini–Hochberg correction for multiple comparisons. 
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Figure 2.7. Performance comparison of cleavage prediction models on immunoproteasome 
data. Receiver operating characteristic (ROC) curves are shown for each of three cleavage 
prediction models, as denoted in legend, with corresponding area under the curve (AUC) values 
reported in parentheses. Sensitivity (y-axis) and specificity (x-axis) were both evaluated using a 
validation set (n = 54) consisting of 36 cleavage and 18 non-cleavage in-vitro examples not seen 
during the training or testing of our models (see Methods). For pepsickle (our model) and PCPS, 
the immunoproteasome models with default settings were used. For NetChop 3.1, the in vitro 
model was used with default settings (no specification is available for proteasome type). 
PCleavage was omitted from this comparison due to restrictions on window sizes and the 
inability to process the full set of validation examples. Statistical pairwise comparisons of ROC 
curves (Delong’s tests) are shown in corresponding table values (Z-score), with significance 
reported as P-values after Benjamini–Hochberg correction for multiple comparisons. 
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2.4.2 Epitope-based cleavage prediction 

To better interrogate in vivo proteasomal cleavage, we identified 357 253 naturally 

processed human and mammalian class I epitopes from publicly available data (Table 2.2). Using 

a deep learning framework, we trained a consensus-based neural network on amino acid 

sequence and physical properties to predict epitope C-terminal cleavage events, independent of 

proteasome type (Appendix A, Fig. 6.1). Performance of our deep learning model was compared 

across all odd window sizes ranging from 7 amino acids to 21 amino acids, with windows 

centered on the cleavage site as described above (Appendix A, Table 6.8). When applied to 

testing data, the model trained on 17 amino acid windows performed significantly better than 

the model trained on 7 amino acid windows, however increasing window size beyond 17 amino 

acids did not improve performance further (Appendix A, Fig. 6.5). This is consistent with the 

average cleaved peptide length of 8 amino acids[92] and the potential for bi-directional 

proteasome entry and processing[143]. We additionally studied the influence of model 

complexity, finding that the consensus-based deep learning approach performed better than a 

more simplistic random forest model trained using the same window size (DeLong’s T-

test, P = 0.021). We therefore report and discuss results from the consensus-based model 

(pepsickle) using 17 amino acid windows hereafter. 

We next assessed performance of the pepsickle epitope model on an independent 

validation set. This dataset consisted of 7951 examples not present in either the training or 

testing datasets used by our study. Notably, since training sets for all other tools were not 

explicitly available, we cannot guarantee that our validation set was entirely unseen by other 

models during their respective training processes. Nonetheless, when applied to this validation 

data, our deep learning-based ensemble net achieved an AUC of 0.878, representing a 
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significant improvement in AUC over the corresponding performances of existing tools including 

NetChop 3.1, PCPS and PCleavage collectively (Fig. 2.8). In addition, pepsickle showed better 

recall and F-1 score than the other models compared (Appendix A, Table 6.9). 

Table 2.2 Summary of epitope data sources. 

Source Dataset Fragments reported 

Immune epitope database (IEDB) (Köhler et al., 2001) Train/test 4 98 419 

SYFPEITHI database (Nussbaum et al., 1998) Train/test 4433 

Rozanov et al. (2018) Train/test 3254 

AntiJen database (Kisselev et al., 1999 Train/test 1492 

Bassani-Sternberg et al. (2016) Validation 99 356 

Note: Sources of epitope data used for training, testing and validation. 
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Figure  2.8. Performance comparison of cleavage prediction models on epitope data. Receiver 
operating characteristic (ROC) curves are shown for each of four cleavage prediction models, as 
denoted in legend, with corresponding area under the curve (AUC) values reported in 
parentheses. Sensitivity (y-axis) and specificity (x-axis) were both evaluated using a validation set 
(n = 7951) consisting of 3566 cleavage and 4385 non-cleavage epitope examples not seen during 
the training or testing of our models (see Methods). Default epitope-based models were used for 
pepsickle (our model), Netchop 3.1 and PCleavage predictions, while constitutive model 
predictions from the default model 1 were used for PCPS (PCPS immunoproteasome predictions 
were inferior and therefore omitted). Statistical pairwise comparisons of ROC curves (Delong’s 
tests) are shown in corresponding table values (Z-score), with significance reported as P-values 
after Benjamini–Hochberg correction for multiple comparisons 
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2.4.3 Computational performance of pepsickle 

In addition to predictive ability, we also assessed the computational speed 

of pepsickle, for both in vitro and epitope-based cleavage predictions. Using a list of all 

protein sequences in the human proteome as a benchmark dataset (n = 113 576, including all 

isoforms and computationally predicted sequences), pepsickle was able to achieve a total 

processing time of 154 m 46 s for in vitro predictions (approximately 124 ms per 1000 

predictions) and 158 m 21 s for epitope predictions (approximately 127 ms per 1000 predictions) 

(Appendix A, Table 6.4). These times were compared to NetChop 3.1 run in an identical 

controlled computing environment. We found that pepsickle is 68.5% faster than NetChop 

3.1 for in vitro cleavage predictions (154 m 46 s versus 260 m 50 s) and 242% faster for epitope-

based predictions (158 m 21 s versus 542 m 40 s). 

2.4.4 In vitro digestion and in vivo epitope-based models differ in 

prediction performance, but with similar feature importance 

Despite the substantial differences between sources and structure of training data for 

both in vitro digestion and in vivo epitope-based models that hinder the creation of a unified 

model, we sought to evaluate commonalities in the learned feature sets by evaluating cross-

performance of our in vitro model on epitope validation data. Acknowledging that epitope-

based data is implicitly subject to multiple components of the antigen processing pathway 

following proteasomal cleavage[144], we evaluated the accuracy of the in vitro model 

exclusively on positive cleavage examples from the in vivo epitope validation set (i.e. all positive 

examples which must have necessarily undergone proteasomal cleavage). Based on this metric, 

our in vitro constitutive model was able to correctly identify 69.9% of the cleavage events 

observed in the epitope validation set, while our immunoproteasome model was able to 
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correctly identify 54.5%. Performance by both in vitro models on this data is substantially lower 

than the performance of the original epitope-based model, which was able to capture 82.8% of 

true cleavage events. However, we acknowledge that the epitope validation data contains an 

unknown mixture of both constitutive and immunoproteasome-based cleavage, which may 

contribute to the relatively lower performance of both in vitro models in this case. 

Because cross-data assessments for both in vitro models represent a substantial 

performance decrease compared to assessment on like-kind data, we sought to further qualify 

the distinct commonalities and differences between in vitro digestion and in vivo epitope-based 

datasets. Using 21 amino acid windows, we compared both training sets to a set of all possible 

21 amino acid windows from the human proteome. By overlapping UMAP projections of the 

windows sampled in the in vivo epitope set with those generated by the human proteome, we 

were able to visually demonstrate that the majority of the sample space constituted by the 

human proteome was sampled; however substantial portions were under sampled in the in 

vitro dataset compared to the in vivo data (Fig. 2.5). Similarly, the underlying density distribution 

for samples in the in vitro dataset differed substantially from that seen in both the in 

vivo dataset and human proteome background (Appendix A, Fig. 6.2). 

To further investigate whether differences in the training set representations altered 

the learned features for each prediction model, we plotted the feature importance for both 

our in vivo and in vitro models (Appendix A, Fig. 6.6, 6.7). Acknowledging that model weights are 

not directly comparable, we found that similar patterns of amino acid physical properties 

identified cleavage sites across both models: in particular, low molecular volume and low 

hydrophobicity were important at the C-terminal amino acid, along with low conformational 
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entropy at the ‘1’ position and high polarity at the ‘2’ position compared to other features at the 

same locations. 

2.4.5 Proteasomal cleavage helps predict epitope-specific immune 

responses 

We next assessed the potential additive contribution of our model to predicting 

epitope-specific immune responses in real-world patient data. We identified 762 candidate 

epitopes from three studies with extensive immunoprofiling data: (i) the Ott et al. patient-

specific melanoma vaccine study[139], (ii) the MuPeXI neoepitope prediction study[140] and (iii) 

a large scale neoepitope prediction benchmarking effort from the Tumor Neoantigen Selection 

Alliance (TESLA)[141]. From these studies, we identified 45 epitopes that elicited an immune 

response, as well as 717 non-responsive epitopes. 

Using the pepsickle epitope-based cleavage model, we predicted C-terminal 

cleavage probability for all predicted epitopes regardless of corresponding immune response 

status (Fig. 2.9). We demonstrated that the median terminal cleavage probability is significantly 

higher for immune responsive epitopes compared to those that were predicted but did not elicit 

an immune response (Wilcoxon ranked sum test, P = 0.036). Despite the heavy pre-selection of 

these epitopes using a collection of predictive methodologies, we find that pepsickle-based 

cleavage thresholding (≥25th percentile threshold) significantly enriched the proportion of 

immune responsive epitope candidates with 40% of responsive versus 24.4% of non-responsive 

candidates falling in the top quartile ( ⁠χ1
2 = 4.86, P = 0.027). This represents a 59.6% increase in 

the positive predictive value after cleavage-based filtering. Notably, we find that cleavage 

predictions for two studies follow the trend seen in the aggregate data[139], [141], but the third 

study does not[140]. While this heterogeneity warrants further investigations, these findings 
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suggest that even when used as a post hoc filter, pepsickle-based cleavage predictions may 

help improve the identification of patient-specific, immune-responsive neoepitopes. 

 

Figure  2.9. C-terminal cleavage predictions on patient neoepitopes. Predicted neoepitopes 
from three studies were accumulated. Cleavage predictions at the C-terminus of each epitope 
were generated using pepsickle and plotted, with predicted epitopes divided based on whether 
or not they elicited an immune response. Box plot results are shown in aggregate (left) as well as 
on a per-study basis (right) with values indicating median (horizontal black lines), 25–75%ile 
(box) and range (‘whiskers’), and with colors corresponding to the study origin (green = MuPeXI, 
orange = Ott et al., magenta = TESLA). For the aggregated dataset, the median C-terminal 
cleavage probability is significantly higher (*) for responsive epitopes compared to non-
responsive epitopes (Wilcoxon ranked sum test, P = 0.036). 
 

2.5 Discussion 

To the best of our knowledge, the data aggregated for this study represents the largest 

compilation of in vitro and in vivo cleavage events to date. Applying machine and deep learning 

techniques to this data, we have improved upon the current state of the field by developing 

an in vivo model of proteasomal cleavage prediction with improved performance (AUC) over 
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currently available tools. In addition, we have created an in vitro model with performance 

comparable to the current best-in-class model, NetChop 3.1, but with significantly decreased 

computational costs and the ability to differentiate between immunoproteasome and standard 

proteasome cleavage profiles. Although further investigation is needed, application of our in 

vivo model to patient-derived neoepitope data suggests that including cleavage information in 

the epitope prediction process may improve novel target identification when applied as an 

additional filter and may be a key component missing from the majority of current prediction 

tools. This is consistent with recent evidence demonstrating the value of incorporating 

proteasomal cleavage predictions into epitope prediction pipelines[145]. 

Despite pepsickle’s promising performance using both in vivo and in vitro models, 

we note several limitations to our work. The primary challenge given the structure of the in 

vivo data, is that non-cleavage events must be determined heuristically. Although we use 

stringent filtering criteria throughout our pipeline, accurate negative examples are reliant on 

sufficient sampling of true cleavage events and may be biased by lack of reporting for less 

studied portions of the proteome. We also note that differences in the definition of non-

cleavage training sites between tools may affect some comparison statistics such as precision 

and F1-score. While this issue could potentially be addressed by re-training other model 

architectures using a consistent non-cleavage site definition, this is not possible with closed 

source tools such as NetChop 3.1. The inability to re-train closed source models and a lack of 

specific details on model architectures also means that we could not delineate the effects of a 

larger training set size from differences in model design across tools. Similarly, we did not assess 

the relative performance differences of explicitly encoded amino acid physical properties that 

we used versus the implicitly encoded physical properties (e.g. BLOSUM matrices) used in other 

tools. 
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While our in vivo model performs substantially better than our in vitro model on its 

respective validation set, we note that in vivo data was used exclusively for C-terminal cleavage 

event prediction leaving N-terminal events largely unrepresented in this context. We suspect 

the difference in optimal window sizes between the in vivo and in vitro models is a reflection of 

the shorter peptide fragment inputs to in vitro cleavage experiments compared to full protein 

contexts in in vivo datasets but note there may be stochastic or additional latent technical or 

biological explanations for this distinction. We also note that immunoproteasomal training data 

was particularly limited due to the scarcity of source data and may help explain the poorer 

immunoproteasomal cross-performance on in vivo epitope data. 

We did not see evidence that our models learned features unrelated to cleavage, such 

as MHC binding[146], but it remains possible that these and other latent biological features may 

have been partially learned by our models in addition to true cleavage-specific features 

(Appendix A, Fig. 6.6, 6.7). Additionally, our in vitro models are based on relatively small 

datasets with heterogeneous experimental methodologies, and only a small subset cleanly 

evaluate the respective roles of the constitutive and immunoproteasomes on the same source 

proteins. For both in vivo and in vitro data, poor sampling from some regions of the proteome is 

also of concern, due at least in part to a scientific focus on proteins relevant for cancer and 

autoimmunity, as well as the experimental limitations of mass spectrometry[147]. While the 

data suggests our model should perform well on previously unseen data, the discrepancies seen 

in model application to per-study immune response data raise questions of broader 

generalizability in certain applied contexts. Ultimately, epitope immunogenicity relies on 

additional immune context and not epitope sequence alone. The data presented herein 

demonstrates that using pepsickle as an additional filtering step can enrich for 
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immunogenic peptides, however the true immunogenicity of a given epitope relies on more 

than just sequence and cleavage profile alone. 

pepsickle provides a promising, open-source, tool for proteasomal cleavage 

prediction, which may be implemented on its own or otherwise integrated into existing epitope 

prediction pipelines. Given the recent successes and increasing emphasis on developing and 

deploying mRNA-based vaccines for individual patients[148] and whole populations[76], [149], 

any concrete improvements in the accuracy of these epitope prediction pipelines could carry 

transformative clinical value. We also note that an improved capacity to predict proteasomal 

cleavage could contribute to our understanding of protein turnover and recycling in healthy and 

diseased contexts[150], [151] and lead to improvements in rational protein design[152]. 

The performance and potential of pepsickle described in this text are encouraging, 

however many questions remain unanswered. The heterogeneity of C-terminal cleavage profiles 

seen in our study specific pepsickle application raises the question of whether cleavage 

prediction is universally helpful in target identification, or if specific study or design contexts are 

required to see benefit from cleavage predictions. In addition, whether or not there is an impact 

of using proteasomal prediction ad-hoc (via integration with existing neoepitope prediction 

pipelines[26], [153]) versus post hoc remains to be seen. Application of pepsickle to more 

patient derived data in the future will help us better understand the broader potential of 

applying cleavage prediction in this space, with the potential for broad implications in the 

research and clinical communities. 
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2.6 Data availability 

Source code is available at https://github.com/pdxgx/pepsickle-paper under the Massachusetts 

Institute of Technology (MIT) license, including data extracted from primary literature 

at https://github.com/pdxgx/pepsickle-paper/tree/master/data/raw and scripts for parsing 

public databases mentioned herein at https://github.com/pdxgx/pepsickle-

paper/tree/master/scripts/database_pulls. 
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3.1 Abstract 

 

Individual T-cell receptors have the potential to recognize multiple antigens, enabling 

broad immunological surveillance and powerful adaptation to evolving threats. However, this 

potential cross-reactivity poses a simultaneous risk for the development of autoimmunity and 

immune-related adverse events. While we have a growing understanding of how TCR sequences 

may influence their degeneracy, predictive methods relying on receptor sequence have limited 

applicability for most real-world use cases. Here we present crossreactor, a multi-layer 

perceptron approach to cross-reactivity modeling that leverages paired peptide antigens mined 

from large-scale databases. By relying on epitope intrinsic features and a paired dataset 

structure, we demonstrate how cross-reactive events can be accurately modeled and predicted 

in novel application contexts. This proof-of-concept approach allows for application of cross-

reactive modeling to much broader contexts, including auto-immunity, infectious disease, mRNA 

vaccination, and cancer immunotherapy. 

 

3.2 Introduction 

 

The mammalian adaptive immune system has evolved to defend against a vast array of 

potentially harmful microorganisms. In particular, the ability for nucleated cells to present self 

and foreign antigens via class I major histocompatibility complexes (MHCs) is a highly conserved 

and essential mechanism for fighting viral infection and even aiding in the clearance of 

malfunctioning host cells[154], [155]. These class I antigen-MHC complexes are then surveyed 

by CD8 T-cells to differentiate normal from abnormal presented peptides. 
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To facilitate their ability to recognize a wide array of targets, T-cells undergo a complex 

process during early development called V(D)J recombination[156]. In this process the variable 

(V), diversity (D) and joining (J) regions of the genome, which are ultimately used to construct 

the T-cell receptor (TCR), undergo genomic rearrangement resulting in unique receptor 

identities. These randomly rearranged receptor sequences are then screened during further T-

cell development in the thymus via both positive and negative selection. During positive 

selection T-cells and their presented TCR are screened for functionality against host MHC 

complexes, while negative selection screens against host auto-reactivity[157]. Ultimately, CD8+ 

T-cells that recognize host MHC’s, but don’t react to self-antigens in the thymus continue 

through the full maturation process. 

Given the incredible number of potential unique TCR sequences possible (~1x1015), and 

the intense selection process during thymic development, T-cells are often described as highly 

specific[37]. Despite this, TCR’s are regularly reported as being activated by multiple epitope 

sequences[158]. While the concept of highly specific TCR’s that demonstrate sequence 

degeneracy seems initially counterintuitive, this phenomenon is consistent with an evolutionary 

understanding of T-cell biology. Combinatorial estimates show that using all 20 canonical amino 

acids, over 500 billion possible 9 amino acid long epitopes can be constructed. While it’s unlikely 

that all possible combinations of 9 amino acid epitopes are biologically relevant, studies have 

shown that class I epitopes regularly range from 8-11 amino acids long - the biological 

combinations of which dramatically dwarf the number of possible T-cells in a given host[36]. 

Although T-cell specificity is highly desired, the evolutionary necessity of TCR degeneracy to 

address a disproportionate ratio of host T-cells to potential targets is clear.  

Beyond its role in expanding the possible pool of recognizable peptides, cross-reactivity 

also plays a key role in combating ever-evolving viral strains. Viral studies have demonstrated 
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conferred immunity to novel viral sequences through exposure to similar viral strains in the 

same family[159]. Given the disparity in evolutionary time span between humans and viruses, 

this functionality is pivotal in host defense. Unfortunately cross-reactivity can also have negative 

consequences, seen in some examples of autoimmunity where T-cells mis-recognize self-

antigens despite passing negative thymic selection. It is thought that similarities between self-

peptides and pathogenic peptides that have elicited a successful immune response may be key 

drivers in many of these autoimmune events[160]. 

As novel therapeutics arise that facilitate the direct targeting of specific antigens, 

regardless of the disease context, it’s important to consider the role of TCR degeneracy in the 

target selection process. Notable examples of off-target toxicity such as cross-reactivity with the 

cardiovascular protein TITIN while targeting melanoma epitope from MAGE-A3 highlight both 

the safety risk surrounding improper target selection and the importance of understanding 

cross-reactivity during the therapeutic design process[46]. While progress has been made to 

improve TCR binding predictions and better understand the mechanics of TCR activation, our 

ability to computationally screen for cross-reactive candidates remains lacking[48]. Sequence 

similarity alone is not sufficient to predict cross-reactive peptides[50]. In addition, many newer 

approaches to understanding TCR recognition also rely heavily on TCR sequencing techniques 

which can’t be applied in some therapeutic contexts such as the use of mRNA vaccines to induce 

a response from endogenous T-cells[51].  

Herein we leverage paired sets of epitopes to help identify epitope-intrinsic features 

that drive T-cell cross-reactivity. Given that epitope sequences determine peptide-MHC binding 

and ultimately define the pMHC-TCR interface, we hypothesize that leveraging paired sequence 

identities in the training of a deep learning model will provide key features for the identification 

of cross-reactive epitopes without the need for complete TCR sequences or fragment sequences 
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therein. In addition, this approach will allow for the application of cross-reactive predictions to 

additional contexts where the collection of TCR sequences is not feasible such as the induction 

of endogenous T-cells through vaccination. 

 

3.3 Methods 

3.3.1 Identification of T-cells and associated epitopes from database 

data 

 
Examples of cross-reactive T-cells were aggregated from three unique database sources: 

the immune epitope database (IEDB)[123], VDJdb[161], and the pan immune repertoire 

database (PIRD)[162]. For all sources the search space was restricted to human entries that 

included class I antigen presentation (Figure 3.1).  

Data was downloaded from IEDB on 05/05/2021. All entries with a curated receptor ID 

available were queried for multiple epitope entries. This resulted in a total of 8,700 epitope 

entries and 3,902 unique TCR identities. Data was downloaded from VDJdb on 06/22/2021. 

Unique identifiers were constructed using reported CDR3, V, and J annotations for both alpha 

and beta chains where relevant. Unique identifiers with more than one reported epitope entry 

were retained as examples of cross-reactive T-cells, resulting in 3,153 total entries across 1,330 

unique TCR identifiers. Data from PIRD was frozen on 11/30/2021. As with data from VDJdb, 

unique identifiers were constructed from reported elements of both alpha and beta chains, then 

used to identify TCR’s that were reported to respond to more than one epitope. This resulted in 

38 entries across 19 unique TCR sequences. 

For all databases entries were checked for duplicates and missing data, then merged 

resulting in a total of 11,891 entries for further analysis (Appendix B table 7.1). 
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3.3.2 Construction of positive and negative epitope pairs across TCR 

examples 

 
Modeling data was formatted as pairs of epitopes where the initial epitope is always an 

example that elicits a TCR response, and the second epitope is either cross-reactive for positive 

examples (also an epitope that elicited a response from the same TCR) or a non-reactive epitope 

for negative examples. For each unique TCR identity within the aggregated dataset, all 

combinatorial pairs of listed reactive epitopes were generated to constitute the positive 

example space. After pairs were constructed, each was duplicated in reverse order to create a 

“mirrored” positive dataset.  

For both the mirrored and non-mirrored datasets, negative examples were selected by 

querying the human proteome as a reference background. For each positive epitope, a random 

human protein was chosen, and an accompanying fragments were selected based on the length 

of the positive reference, with a 20% chance of length mismatch (+/- 1aa). Epitopes were then 

compared with the associated positive for similarity and scored based on BLOSUM-62 similarity 

weights compared to an ideal match, retaining negatives within at least 90% of the exact match 

score with no length mismatch penalty. This process was repeated until negative epitopes 

matching the search criteria were identified and paired with the given positive epitope, resulting 

in an initial 2:1 ratio of negative to positive examples. 

After all positive and negative epitope pairs were constructed, the dataset was queried 

for duplicate pairs. All duplicated positive pairs were dropped from the data to prevent 

overrepresentation of specific epitopes. Furthermore, duplicate negative pairs and generated 

negative pairs that were shared with the positive sample space were removed to prevent 

contradictory example pairs.  
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3.3.3 Padding and feature encoding of paired sequences 

 
To accommodate variable length epitope targets, all epitopes within pairs were padded 

to a length of 11 amino acids using a generic null character (*). Paired epitope sequences were 

then concatenated and physical properties were encoded as numerical vectors based on side 

chain polarity[132], molecular volume[133], hydrophobicity[134], and conformational 

entropy[135] as described in our previous publication[71]. This resulted in an ultimate feature 

matrix of 22 by 4 for each paired epitope entry. 

3.3.4 Model architecture and training schema 

 
A multi-layer perceptron (MLP) was used for cross-reactivity predictions and 

implemented using the PyTorch package (v1.12.1) in Python (v3.9.12). In total, the MLP consists 

of an input layer (88 nodes), two internal layers (32 nodes and 16 nodes, respectively) and an 

output layer; all of which are fully connected. All layers except for the final layer underwent 

batch normalization, followed by 30% dropout, and use a ReLU activation function. The final 

layer uses log(SoftMax) to output a relative log probability of cross-reactivity for each given 

sample. 

For model training, data was split into training and validation sets based on unique T-cell 

identifiers instead of unique entries. Examples for 80% of unique T-cell identifiers were used for 

training, while the remaining 20% were held out for validation data to avoid training spillover. 

Training data was pre-normalized using the scikit-learn (v1.1.2) normalizer function, with the fit 

normalizer saved for future application to validation data and cross-dataset applications. Post 

normalization, training data was next injected with gaussian noise to mitigate overtraining 

potential. Training occurred across 36 epochs with negative log likelihood used to calculate loss 

based on inversely weighted class imbalance and Adam optimization of parameters with a 
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learning rate of 0.001 and weight decay of 0.01. The most performant model across epochs was 

captured by retaining the model with the highest AUC for previous epochs and comparing to the 

most recent epoch performance.  

3.3.5 Identification and processing of comprehensive cross-reactivity 

data 

 
Manuscripts surveilling the cross-reactive landscape of TCR’s were identified through 

literature search using the terms ‘cross-reactivity’, ‘t-cell degeneracy’, and ‘PS-SCL assay’, 

‘peptide scan’, and ‘T-cell specificity’, alone or in combinations thereof. Candidate studies were 

further filtered to identify those that used comprehensive techniques such as combinatorial 

peptide libraries (Figure 3.1). These manuscripts were not restricted by disease of study, species 

type, or the MHC restriction of presented epitopes. Ultimately data from 8 studies were 

identified as having usable data of TCR clones with reported cross-reactive epitopes. Positive 

and negative epitope pairs were constructed and featurization was performed using the same 

approach used for database data, without mirroring for positive pairs. 

3.3.6 Model assessment on comprehensive data 

 
The fully trained MLP model was independently applied to data from each of the 8 

comprehensive studies previously extracted[163]–[170] . Predicted cross-reactive probabilities 

were then aggregated across metadata contexts including model species and assay type to 

determine differences in performance by metadata label and in order to determine sensitivity, 

specificity and AUC for each metadata label as well as for independent data sources.  
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Figure 3.1 Extraction and processing of cross-reactive epitope data. The database extraction 
workflow is shown at left, with data from multiple large-scale TCR-epitope databases 
aggregated and subsequently mined for cross-reactive epitope examples (two or more distinct 
cognate epitopes reported for the same TCR identity, indicated in this schema by shared color). 
Training and validation datasets were constructed by integrating cross-reactive examples 
(green/green epitope pairs) with non cross-reactive examples from the background human 
proteome (green/red epitope pairs; see methods) to create a positive and negative dataset. The 
manuscript extraction workflow is shown at right, with a set of studies using PS-SCL assays to 
assess cross-reactivity identified via literature search. Data from the PS-SCL assay results in each 
study were extracted to define lists of cross-reactive epitope pairs, then combined with 
constructed negative pairs (see methods). The modeling and application workflow is shown at 
bottom, with training and validation data serving as input for a multi-layer perceptron (MLP) 
model (note that depicted network connectivity is not reflective of actual MLP architecture; see 
methods). Once fully trained, the MLP was applied to held-out data extracted from PS-SCL 
assays. 
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3.4 Results 

3.4.1 crossreactor accurately predicts cross-reactivity from large-

scale database data 

 
Our first goal was to train and assess a cross-reactivity prediction model on epitopes 

derived from large scale databases. These entries represent pre-reported examples of cross-

reactivity across a wide array of studies and sample contexts. Using a total of 5,251 aggregated 

TCR clones that showed signs of cross-reactivity, we constructed a total of 20,412 pairs of 

known cross-reactive epitopes and 40,824 pairs of inferred and cross-referenced non-reactive 

epitopes for model training, validation and testing. After featurization of the dataset, a multi-

layer perceptron was trained to differentiate pairs of cross-reactive epitopes from pairs that 

contained one activating epitope but did not constitute cross reaction.  

After model training and selection, we applied our trained model to a set of like-kind 

data that had not been seen during training or model validation. In total cross-reactivity 

predictions were made for 102 examples of cross-reactive pairs and 125 constructed pairs that 

don’t constitute cross reaction. Overall AUC of predictions made for the 227 examples was 

0.967, with an F1-score of 0.88 (Figure 3.2). Notably, the model showed high sensitivity, 

identifying 93% of cross-reactive pairs in the test data set.  

3.4.2 crossreactor demonstrates strong performance on 

comprehensive human datasets  

 
While database derived examples of cross-reactivity represent a wide array of epitope 

sources, interaction contexts, and assays used, these examples often don’t encompass a 

comprehensive approach to epitope screening. To address this issue, we next applied our 

trained model to cross-reactivity examples derived from two manuscripts using comprehensive 



 68 

screening approaches to assess human TCR clones via PS-SCL chromium-release assays (Figure 

3.2). Application of our crossreactor to 1,096 extracted epitope pairs resulted in an AUC of 

0.936, with comparable performance to our database test set performance (AUC = 0.967). These 

results demonstrate that crossreactor is capable of accurately detecting a wide variety of 

cross-reactive epitopes recognized by human T-cells. 

3.4.3 Model generalizability is dependent on host system and assay 

type 

 
Although performance on comprehensive human datasets remains strong, we wanted 

to assess the generalizability of our model outside of the original training context. To further 

investigate performance we applied crossreactor to six other manuscript derived datasets 

that annotate cross-reactive epitopes from a variety of host and assay contexts (TABLE 3.1).  

Strikingly, model performance on datasets that used IFN-gamma secretion as an assay readout 

were substantially lower than for all other data sources, highlighted by low sensitivity and AUC 

relative to all other extracted contexts (Figure 3.2B). In addition, model performance was lower 

on aggregated mouse data than on human derived datasets, however performance partially 

recovered when IFN-gamma based assays were excluded from mouse data aggregation 

(Appendix B figure 7.1). Given that model training data is restricted to human derived examples 

and largely based on chromium release assays these findings coincide with our expectations, 

while also highlighting that our model can be used to reasonably extrapolate cross-reactive 

predictions within other host contexts.  
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FIGURE 3.2. crossreactor performance on database-derived and comprehensive datasets. A) 
Our model (crossreactor) was applied to a held out set of cross-reactive epitope examples from 
database data (n= 227), as well as PS-SCL data derived from 2 manuscripts using human T-cells 
from chromium (Cr) release assays (see table 3.1; n=1096), and 3 mouse/humanized mouse 
models using Cr-release assays(see table 3.1; n=8910). AUC’s for each respective subset are 
reported. Model performance on mouse-only data deteriorated substantially when compared 
with human database and PS-SCL data. B) performance of crossreactor was assessed on PS-SCL 
data separated on Cr-release assay (see table 3.1; n=7810) vs. IFN-gamma release assay (see 
table 3.1; n=2779) readout, as well as aggregated across all comprehensive manuscript data. 
Performance on studies using IFN-gamma secretion as an assay readout was substantially lower 
than performance on chromium (Cr) release assays. 
 

Table 3.1 crossreactor performance on comprehensive manuscript data. 
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3.5 Discussion 

 
Herein we have demonstrated an alternative approach to cross-reactivity prediction, 

leveraging the use of paired epitope data. By using a multi-layer perceptron model to predict 

cross-reactive epitope pairs, we have circumvented the need for in-depth TCR sequence data 

while retaining high predictive accuracy of cross-reactive events. This proof-of-concept 

highlights how epitope intrinsic features can capture fundamental aspects required for 

determining epitope recognition. Although our approach is limited in scope, approaches that are 

agnostic to receptor sequencing could play a key role in target selection for methods that use 

endogenous T-cell priming and don’t easily facilitate characterization of all cells that will 

interface with a selected target.  

Other architectures for modeling cross-reactive data were not exhaustively tested or 

compared and therefore a more optimized modeling approach may exist. Modeling approaches 

such as natural language processing (NLP) and recurrent architectures have shown promising 

results in other applications using amino acid sequences and may also perform well in the 

context of epitope cross-reactivity predictions[171], [172]. Additionally, approaches such as 

variable ablation or regularization were not attempted, either of which may result in a more 

simplified model if featurized inputs contain redundant properties. 

Although model performance remains relatively high when applied to mouse derived 

datasets, high variance in performance depending on assay approach highlights the need for 

additional investigation.  While studies using Cr-release as a readout for cytotoxicity performed 

well, our model performed poorly on data derived from IFN-gamma based readouts. This may 

have to do with differences in the functional thresholds represented by each assay type. While 

chromium release marks direct killing of a target cell, IFN-gamma is only correlatively associated 

with killing efficiency and has been shown to be an insufficient indicator of target clearance in 
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some in vivo settings[173]. The direct vs. indirect nature of these two readouts may be 

responsible for drastic differences in model performance and warrants further investigation to 

determine how our model can best leverage heterogeneous data sources.  

In addition to challenges with application to disparate data types, our approach is also 

limited by the availability of data related to cross-reactions as a whole. By extracting examples 

of cross-reactivity from databases traditionally structured for other uses we were able to 

expand the pool of usable cross-reactive examples, however the total pool of reported cross 

reactive peptides still remains small. Furthermore, many cross-reactive peptides of interest are 

restricted to a few specific disease contexts like Type I diabetes[174], HIV[175], and CMV[44] 

among others. This focus on a limited pool of diseases, and by proxy limited pool of peptides, 

may also limit the broader application of all models designed for cross-reactivity prediction. This 

restricted focus is also exacerbated by database HLA bias, with disproportionate representation 

of popular HLA’s like HLA-A:02:01; a problem that plagues many other immune related 

predictions such as MHC binding predictions and immunogenicity predictions as well.  

Ultimately, in vitro approaches to cross-reactivity prediction also neglect to account for 

the role of co-stimulatory molecules and other immune cells that contribute to overall T-cell 

activation when antigens are encountered. Effective priming by antigen presenting cells and the 

presence of T-regulatory and helper T-cell populations can ultimately shift CD8 T-cell responses 

towards activation or tolerance by contributing to overall T-cell stimulation[176], [177]. The 

importance of co-stimulation and cytokine signaling in T-cell activation are therefore not 

appropriately captured when modeling cross-reactions via in vitro data. 

While TCR sequence-based approaches to T-cell epitope identification and cross-

reactivity prediction play a fundamental role in improving our understanding of T-cell dynamics, 

the applications of such approaches are fundamentally limited. The ability to apply our paired 



 72 

epitope-based approach to contexts where TCR sequencing isn’t feasible highlights a key use 

case not addressed by most tools that are currently available. Furthermore, strong model 

performance on human derived comprehensive data highlights the ability of crossreactor 

to make meaningful predictions even with minimal available input and adapt to a variety of 

applications.  
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4.1 Abstract 

 

Aggressive prostate cancers often exhibit progression and recurrence, including evolving 

resistance to therapy. Unfortunately, we lack a detailed understanding of the cellular 

composition and cell-cell interactions within high-risk prostate tumor microenvironments and, in 

particular, how populations change in response to therapy. In this study we perform single-cell 

transcriptomic profiling of paired temporal samples from subjects receiving androgen axis 

inhibition in combination with immune checkpoint inhibition. By leveraging single cell 

approaches, we show how treatment leads to a significant reduction in malignant cells and 

results in concurrent reduction in AR activity and upregulation of antigen presentation 

machinery within the malignant population, even in the absence of IFN-gamma response. We 

also highlight how mast cells and other components in the tumor microenvironment contribute 

to tissue dysregulation through angiogenic and immune-suppressive signaling. 

4.2 Introduction 

 

Many prostate cancer patients have lower risk disease that can be managed through 

active surveillance or local therapies, however patients with more aggressive disease have a 

higher risk of progression even after standard treatment options. Approaches such as androgen 

deprivation therapy (ADT) are often met with initial success but may result in eventual hormonal 

resistance and continued disease progression[178]. The treatment-refractory nature of prostate 

cancer in some cases highlights the need for novel solutions. 

Immune checkpoint inhibition (ICI) therapy has been considered as one potential option 

for patients with aggressive disease, however clinical trials using ICI in prostate cancer have 

shown minimal success in the metastatic setting[179]. It is hypothesized that this may be due to 
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the generally immune “cold” environment of prostatic tissue. Studies have shown that prostate 

tumors have generally low T-cell infiltration and often harbor pro-inflammatory and pro-

tumorigenic immune populations such as myeloid derived suppressor cells and M2-like 

macrophages, especially after long periods of ADT therapy[180], [181]. In addition to a 

suppressive tumor microenvironment, late-stage prostate cancers are also characterized by high 

levels of T-cell exhaustion, a mechanism by which cytotoxic cells lose their cytokine expression 

and upregulate key checkpoint molecules such as PD-1 and CTLA-4[182]. Although ICI therapy 

can help mitigate the impact of T-cell exhaustion, the lack of response in many patients who 

have received ICI suggests that exhaustion may not be the sole barrier to ICI response in 

prostate cancer patients.  

This highlights the fundamental need for a better understanding of the prostate tumor 

landscape and how its intrinsic properties and cellular interactions may support resistance to 

current therapy options. Unfortunately, the dynamics of the prostate tumor microenvironment 

(TME) and its changes in response to treatment remain incompletely characterized, with 

previous single cell RNA-sequencing studies often limited by a lack of temporal sampling. 

Understanding how prostate cancer responds, adapts, and develops resistance to therapy 

remains a critical area of research with implications for therapy design and selection and 

ultimately patient outcomes. 

Here, we analyze both tumor and non-tumor specimens from subjects with localized but 

aggressive prostate cancer, both prior to and after initial course of treatment. This gives a 

unique look into the naïve tumor landscape and how prostatic tumors fundamentally change 

after androgen axis blockade alongside the anti-PD-1 immune checkpoint inhibitor 

pembrolizumab. Transcriptional analysis, in conjunction with inference of structural variations 

has allowed us to confidently annotate malignant cells and better understand the direct effects 
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of treatment on the tumor epithelium. Unenriched transcriptional profiling in conjunction with 

receptor-ligand cross-talk analysis also provides fundamental insight into broader interactions 

within the TME and their potential implications in therapeutic response or resistance.  

 

4.3 Results 

4.3.1 Subject sampling and overview 

 

Recent work has demonstrated that T cell intrinsic androgen receptor (AR) activity limits 

the effectiveness of PD-1 targeted immunotherapy in metastatic castration resistant prostate 

cancer patients[183].To gain insight into the effects of AR on the  prostate cancer immune 

landscape, we performed single cell RNA sequencing (scRNA-seq) on cells isolated from both 

tumor and non-tumor specimens from subjects enrolled in a Phase II single-arm, open label, 

neoadjuvant hormonal plus immunotherapy clinical trial for high-risk localized prostate cancer 

(NCT03753243).  

Longitudinal specimens were collected prior to the initiation of androgen axis inhibition 

(GNRH agonist therapy plus AR inhibition) and pembrolizumab, and at the time of 

prostatectomy after sixteen weeks of treatment (Fig. 4.1A). In total, 47 prostate specimens were 

collected across 18 individuals (Fig. 4.1B). After scRNA-seq and processing of these specimens, 

we successfully recovered single cell transcriptomes for 158,838 cells with 108,317 cells (69.5%) 

passing all filtering criteria.  

Integration of subject samples and unsupervised clustering revealed 27 distinct groups 

of cells. These clusters were merged into 8 super groups shared broadly across samples and 

annotated using canonical markers and top differentially expressed genes, with resulting cell 

type identities including: fibroblasts, mast cells, B-cells & plasma cells, endothelial cells, 
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epithelial cells, myeloid cells, and T-cells & NK cells (Fig. 4.1C, 1D). Notably, epithelial cells also 

sub-clustered distinctly based on prostate specific antigen (PSA) expression status giving distinct 

PSA-high and PSA-low subsets of epithelial cells (Fig. 4.1C, 1D). 

Across samples, epithelial, myeloid, and NK & T cells were consistently the most 

abundant cell types captured, however we also observed high variability in cell type abundance 

between subjects, and even for samples within the same subject (Fig. 4.1E; Appendix C Fig. 8.1). 

4.3.2 Neoadjuvant androgen axis inhibition with aPD1 therapy 

changes both tumor and non-tumor cellular compositions 

 

Previous work analyzing the effects of androgen deprivation therapy has highlighted the 

immunosuppressive characteristics of androgen and characterized increases in both T-cell 

abundance and transient proliferative ability under androgen suppression[184]. Other reports 

have also described increased proportions of tumor-associated macrophages and T-regulatory 

cells in biopsies from subjects on androgen deprivation therapy (ADT) compared to those on 

other treatment protocols[185]. 

To assess the effect of androgen axis inhibition alongside anti-PD1 therapy, we assessed 

relative abundance of each cell type between tumor and non-tumor labeled specimens, and 

across pre- and post-treatment timepoints. Surprisingly, the baseline proportion of each cell 

group was largely consistent between tumor and non-tumor tissues, with no significant 

differences in overall proportions between locations (Appendix C, Fig. 8.2). In contrast, the 

administration of neoadjuvant androgen axis inhibition with aPD-1 was associated with multiple 

changes in the cellular landscape of the prostate, including a significant drop in PSA-high 

epithelial cells, consistent with previous reports showing tissue atrophy in androgen sensitive 

tumor and non-tumor tissues (Fig. 4.1F)[186]. Notably, PSA-low epithelial cells did not change 
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significantly with treatment and remained consistent in both tumor and non-tumor locations 

(Fig. 4.1F). We also observed an increase in myeloid cells across all tissues, consistent with 

previous findings that also show an increase in macrophage populations such as tumor 

associated macrophages after ADT (Fig. 4.1F)[187]. In addition, we observed a tumor sample 

specific increase in NK & T-cells following treatment (Fig. 4.1F). Previous work has similarly 

demonstrated an influx of T-cells in tumor tissues as a response to ADT, driven primarily by 

increases in CD4+populations[188].  
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FIGURE 4.1. Sampling overview and heterogeneity of prostate samples. A) Tumor and non-tumor biopsies were taken 
from treatment naïve tissues for subjects with stage IIIA high-risk localized prostate cancer (HRLPC), Gleason score ≥ 8 
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and PSA ≥20 ng/mL. Subjects underwent 16 weeks of androgen axis inhibition (GNRH agonist + enzalutamide) with 
concurrent aPD-1 therapy (Pembrolizumab). After drug course, subjects underwent radical prostatectomy where both 
tumor and non-tumor tissues were again sampled. Single cell suspensions were generated from biopsy and radical 
prostatectomy samples and sc-RNAseq was performed using an Illumna NovaSeq 6000. B) Heatmap representing the 
presence or absence of a subjects’ samples (y-axis) by timepoint and location (x-axis). Green squares represent subject 
samples that were successfully collected, processed and sequenced. C) UMAP projection of clustered and annotated cell 
types: B/plasma cells, T/NK cells, myeloid cells, mast cells, fibroblasts, endothelial cells, epithelial cells (PSA-high and PSA-
low). D) Expression of 12 canonical markers (y-axis) was used to annotate each of eight cell types (x-axis). PSA-high and 
PSA-low cells were categorized based on shared expression of EPCAM with differential KLK3 (PSA) expression. E) Relative 
cellular composition (y-axis) for each subject (x-axis) is shown as a series of stacked bars, with each color representing an 
annotated cell type according to the key as shown. F) Baseline versus post-treatment proportions of each cell population 
within tumor (top) and non-tumor (bottom) specimens are shown as a series of boxplots, where each pair of boxplots 
corresponds to a specific cell type along the x-axis.  Proportions are reported as the relative quantity of each cell type 
across all cells from a given specimen. Asterisks (*) indicate significant difference (Wilcoxon rank-sum test, p<0.05) in cell 
composition between baseline and post-treatment timepoints.  

 

4.3.3 Malignant epithelial cells show responsiveness to androgen 

deprivation 

 

Given that the goal of androgen deprivation therapy (ADT) is to starve androgen 

dependent tumor cells of a necessary hormone, we sought to confirm the ‘on target’ drug effect 

of androgen blockade. We focused on the epithelial cell population, interrogating nuances 

among five distinct sub-populations including: two different luminal cell clusters (high KLK2, 

KLK3, and KLK4), basal cells (KRT5, KRT14, and TP63 positive), and two other epithelial clusters 

(OE1 and OE2) with less defined cellular characteristics but clear pan-epithelial marker 

expression (EPCAM, CDH1, and CEACAM1 positive) (Fig. 4.2A, 4.2B). To clarify the cell identities 

of both the OE1 and OE2 clusters, all epithelial subsets were scored using gene signatures for 

club cells; a population previously identified in normal prostatic as well as lung tissues[189], 

[190]. The OE1 subset had a significantly higher club signature score than all other identified 

subsets, suggesting this cluster may consist of predominantly club-like epithelial cells (Fig. 4.2C). 

OE2 cells expressed genes associated with neuroendocrine cells but could not be confidently 

annotated.  
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To identify a malignant subset within the tumor-specific epithelial cell population, we 

interrogated expression of a malignancy signature constructed from genes previously defined in 

literature (see methods)[191]. One subset of luminal cells, denoted as luminal (1), expressed a 

high malignancy signature (Fig. 4.2D) compared to the second subset, subsequently referred to 

as luminal (2) cells. (Fig. 4.2D). Moreover, the prevalence of luminal (1) cells was heavily 

enriched in subject tumor samples compared to non-tumor samples and similarly enriched at 

baseline prior to treatment when compared to samples taken post-treatment at time of 

prostatectomy (Fig. 4.2E). In contrast, luminal (2) cells did not show significant changes in 

prevalence across tissues or sampling timepoints, suggesting that changes in luminal cell 

proportions are specific to cells expressing high malignancy signature. We also observed a 

significant increase in the proportion of club-like OE1 cells with treatment (Fig. 4.2E). We further 

confirmed the malignant nature of luminal (1) cells via copy number variation (CNV) analysis 

using inferCNV. Inferred aberrations for subjects with paired tumor and non-tumor biopsies, 

demonstrated that luminal (1) populations harbored unique subject-specific aberrations, while 

other epithelial populations did not.  

While the specific decrease in the proportion of malignant epithelial cells after 

treatment suggests on-target therapeutic effects, we also investigated the effects of androgen 

axis inhibition directly on epithelial cell androgen pathway signaling. Average androgen 

response scores for each subject showed a notable reduction in AR signaling with treatment, 

primarily driven by luminal populations (Appendix C, Fig. 8.3) and reflecting on-target androgen 

axis inhibition (Fig. 4.2G). This result was consistent across tumor and non-tumor tissues with no 

significant difference in response signatures between sampling locations. Repeating this analysis 

specifically for malignant epithelial cells confirmed downregulation of androgen response 

signature (Fig. 4.2G). Taken in conjunction with proportional differences, this suggests that all 
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luminal populations are responding to androgen axis inhibition, however population loss is 

preferentially occurring in malignant luminal cells. 

4.3.4 Antigen presentation machinery is upregulated with treatment 

and correlated with androgen response 

 

Previous literature has also shown that inhibition of AR activity in prostate tumors is 

associated with increased antigen presentation and may aid with improved immune-driven 

tumor clearance[192]. To investigate whether we see similar responses in our data we scored all 

epithelial cells using an antigen processing and presentation score using genes defined in the 

Reactome database[193]. Pseudobulk comparisons of antigen presentation scores showed 

significant increases in antigen processing and presentation across subjects following treatment 

(Fig. 4.2G). This upregulation of antigen presentation signature with treatment was also seen in 

malignant cells, suggesting this a common treatment response across both malignant and non-

malignant epithelial cells. Additional analysis also demonstrated a significant inverse correlation 

between androgen pathway score and antigen presentation score across subjects (r=-0.49, 

p=0.013). 

Although AR activity has been shown to directly modulate antigen pathway expression 

in vitro[194], one alternative explanation for increased antigen presentation in vivo is through 

intrinsic IFN-gamma response[195]. We therefore assessed an IFN-gamma response score using 

a signature constructed from epithelial response to exogenous IFN-gamma application in 

epithelial cells from previous literature[196].  Although we see indications of IFN-gamma 

response in pseudobulk data, IFN-gamma response scores in malignant cells alone do not 

change significantly with treatment (Fig. 4.2G). Notably we also see higher levels of FOXA1 

expression in malignant epithelial cells compared to combined non-malignant epithelial sub-
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populations, a gene associated with inhibition of IFN response in previous literature 

(log2FC=0.37, p<1e-16)[197]. This suggests that while IFN-gamma may play a role in the overall 

upregulation of antigen presentation in bulk epithelial cells, it may not contribute to the same 

antigen upregulation in malignant subsets. 
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Figure 4.2. Epithelial cell identities and responses to treatment. A) Identified epithelial cells were re-clustered into five 
subtypes (two luminal, one basal, and two other epithelial cells [OE]) and projected into UMAP space. B) Heatmap 
demonstrates relative expression of malignancy associated genes (PCA3, AMACR, ERG, CACNA1D, COL9A2, GCNT1, 
GABP5, PHGR1) and other canonical markers (x-axis) among each of the five epithelial sub-populations (y-axis). C) Violin 
plot demonstrating the distributions of relative club cell signature expression[191] (y-axis) among epithelial 
subpopulations as labeled (x-axis). D) Violin plot demonstrating the distributions of relative malignancy signature 
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expression (y-axis; see methods) among epithelial subpopulations as labeled (x-axis). E) Baseline versus post-treatment 
(prostatectomy) proportions of each epithelial cell subpopulation within tumor (top) and non-tumor (bottom) specimens 
are shown as a series of boxplots, where each pair of boxplots corresponds to a specific cell type along the x-axis.  
Proportions are reported as the relative quantity of each cell type across all epithelial cells from a given specimen. 
Asterisks (*) indicate significant difference (Wilcoxon rank-sum test, p<0.05) in cell composition between baseline and 
post-treatment timepoints. F) Hallmark gene set enrichment analysis (GSEA), with normalized GSEA enrichment score (x-
axis) depicted for each of seven hallmark gene sets (y-axis).  Size of points represents the number of genes differentially 
expressed within an altered gene set. All presented gene sets are significantly altered (Wilcoxon rank-sum test, adj. p < 
0.05). G) Androgen pathway, antigen presentation, and IFN-gamma response scores (see methods) are plotted as 
aggregate values, either across total epithelial cells or identified malignant cells per subject sample. Dotted lines connect 
subjects with paired baseline and prostatectomy samples. Asterisks (*) indicate significant changes in the proportion of a 
given cellular population between baseline and prostatectomy (Wilcoxon rank-sum test, p < 0.05). 

 

4.3.5 Evidence of activated CD8 T-cell influx after neoadjuvant 

androgen axis inhibition with aPD1 therapy. 

 

In previous studies investigating T-cell exhaustion, ICI therapy has been shown to 

increase the expression of proliferative markers such as Ki67 and is matched with restoration of 

cytotoxic signaling through re-invigoration of T-cells[198]. Since subjects received treatment 

that also includes aPD-1 therapy, we sought to investigate exhaustion and potential aPD-1 

response among the T-cell populations present in tumor samples.  

Upon re-clustering CD3+ NK and T cells into distinct subtypes (Fig. 4.3A, 4.3B), we 

identified multiple CD8 T-cell populations at varying stages in the activation spectrum according 

to relative expression of early effector genes (IFN-gamma, IL2, TNF) compared to activated 

cytokine expression (GZM family genes); these cell types included: naïve CD8 T-cells, recently 

activated CD8 effector cells, cytotoxic T-cells, and terminally differentiated T-cells (Fig. 4.3D). 

Other populations were also characterized and annotated in detail (see methods). 

Interestingly, we saw a significant increase in what we defined as recently activated CD8-

effector cell populations across both tumor and non-tumor tissues with response to treatment 

(Fig. 4.3C). In tumor, CD8-effector changes were in conjunction with a proportional decrease in 
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CD4-naïve and gamma-delta T-cell populations. In non-tumor tissues, we saw a similar loss of 

naïve and gamma-delta populations, as well as an increase in terminally differentiated CD8 T-

cells and Tregs (Fig. 4.3C).  

With the abundance of literature highlighting the relevance of T-cell exhaustion in the 

context of aPD-1 treatment, we also wanted to assess any signs of functional exhaustion in our 

data. Interestingly, we found negligible expression of PD-1, LAG3, and TIGIT (Appendix C, Fig. 

8.4), all markers generally associated T-cell exhaustion[62]. Only one cluster, annotated as CD8-

cytotoxic-2, expressed any level of exhaustion associated markers, however these cells retained 

expression of IFN-gamma, FASLG, and multiple GZM family genes normally lost in functional 

exhaustion phenotypes (Fig 4.3D). While PD-1, LAG3, and TIGIT are associated with exhaustion 

in T-cells, they are also important markers of cognate antigen encounter. Unfortunately, we are 

unable to differentiate early exhaustion from antigen encounter in CD8-cytotoxic-2 cells given 

the available data. 
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FIGURE 4.3. Neoadjuvant androgen axis inhibition with aPD1 therapy results in an influx of recently activated T-cells. 
A) UMAP projection of 11 broadly annotated NK and T-cell clusters as labeled. B) Row-normalized heatmap showing 
expression of canonical and functional T-cell markers (y-axis) by annotated high-resolution cluster identities merged for 
broad cell annotations (x-axis). C) Boxplot of proportional changes in annotated NK & T cell sub-types across tumor (top) 
and non-tumor (bottom) with treatment. Baseline versus post-treatment (prostatectomy) proportions of NK&T cell 
subpopulations, grouped by broader cell type, within tumor (top) and non-tumor (bottom) specimens are shown as a 
series of boxplots, where each pair of boxplots corresponds to a specific cell type along the x-axis.  Proportions are 
reported as the relative quantity of each cell type across all NK&T cells from a given specimen. Asterisks (*) indicate 
significant difference (Wilcoxon rank-sum test, p<0.05) in cell composition between baseline and post-treatment 
timepoints. D) Row-normalized heatmap showing expression of cytokine and effector genes (y-axis) in identified CD8 T-
cell populations (x-axis). 
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4.3.6 Myeloid sub-population proportions remain constant across 

treatment 

 

Not considered canonical aPD1 targets, myeloid cells nonetheless have a complex and 

important role in both suppressing and assisting with tumor growth and metastasis. Previous 

studies have shown that M2-like macrophages and MDSC’s can alter the balance of pro- vs. anti- 

tumorigenic signaling and assist in tumor resistance to therapy[185], [199]. We therefore 

investigated the distribution of distinct myeloid subpopulations across our samples, including 

immature myeloid suppressor-like cells (iMSCs), dendritic cells, innate lymphocytic cells (ILC’s), 

patrolling monocytes, resident macrophages, and tumor associated macrophage (TAM)-like cells 

with high expression of APOE (APOC1, APOE high) and alternately with low expression of APOE 

(Fig. 4.4A, Fig. 4.4B). 

While the global proportion of myeloid cells across subject samples increases with 

treatment, we do not observe significant proportional changes in the vast majority of myeloid 

subsets, with the exception of non-tumor APOE-high TAM-like cells (Fig. 4.4C). This suggests that 

treatment stimulated influx of myeloid populations occurs in a non-specific manner and not 

through recruitment of specific sub-populations. Notably, we see relatively stable proportions of 

iMSCs across treatment in both tumor and non-tumor tissues, a population characterized by 

high their expression of genes associated with MDSC’s (Fig. 4.4D). These cells are often 

associated with resistance to therapy and tumor metastasis in late-stage disease, however we 

observe their presence even in treatment naïve biopsy samples, consistent with previous 

treatment naïve observations from single cell prostate cancer biopsies[191]. 
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Figure 4. Inflammatory myeloid subsets are present in treatment naïve tissues and remain constant with 
treatment. A) UMAP projection of re-clustered myeloid populations with broad annotations. B) Heatmap represents 
expression of common myeloid markers (y-axis) across 12 high-resolution myeloid cell clusters ultimately merged for 
broad annotations (x-axis). C) Baseline versus post-treatment (prostatectomy) proportions, after grouping by 
broader myeloid cell type, of 7 myeloid subpopulations within tumor (top) and non-tumor (bottom) specimens are 
shown as a series of boxplots, where each pair of boxplots corresponds to a specific cell type along the x-axis.  
Proportions are reported as the relative quantity of each cell type across all myeloid cells from a given specimen. D) 
Gene signature score for MDSC-like phenotype was constructed and applied to cells aggregated by sub-population 
annotation (see methods). iMSCs had significantly higher levels of MDSC-score than other myeloid populations 
(Wilcoxon rank-sum test, adj. p < 0.05).  
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4.3.7 Angiogenesis, inflammation and wound healing are upregulated 

with treatment 

 

Cellular processes such as angiogenesis and inflammation have been well described in 

the context of various cancers, including prostate cancer[60], [200]–[202]. In particular, 

inflammatory signaling has been emphasized as a key driver of immunosuppression and 

dysregulated angiogenesis has been linked with tumor growth and metastasis[203]. In prostate 

cancer specifically, androgen deprivation therapy has been associated with increased 

angiogenesis and studies have suggested a role for anti-angiogenic targeting in conjunction with 

aPD1 therapy as a potential treatment for further investigation[204], [205]. 

Leveraging gene set enrichment analysis (GSEA) of pre- versus post-treatment 

pseudobulk samples, we identified suppression of androgen response and activation of 

apoptotic signaling, in keeping with our prior observations among isolated epithelial cells. 

Additionally, we saw activation of signals associated with inflammation and tissue dysregulation 

(i.e. TNF-alpha signaling, hypoxia, and IFN-gamma response), consistent with previous reports 

demonstrating the prevalence of chronic inflammation and oxidative stress in human prostate 

cancer (Appendix C, Fig. 8.5)[206], [207].   

To further investigate how specific cell types might be driving tissue dysregulation in the 

tumor microenvironment we scored each annotated cell type using an inflammatory signaling 

score, as well as an angiogenic signaling score through the application of gene sets previously 

defined in Hirz et al.[191]. Although myeloid cells contributed the most to overall inflammatory 

signaling, consistent with our identification of pro-inflammatory myeloid populations, we did 

not observe an increase in myeloid inflammatory signature after treatment. In contrast, PSA-

high epithelial cells, endothelial cells, B/plasma cells, mast cells, and T&NK cells all showed 
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relatively low levels of baseline inflammation but signs of increased inflammatory signaling at 

time of prostatectomy, indicating broad upregulation of inflammatory signaling across the 

majority of cell types with treatment (Fig. 4.5A). Similarly, we observed broad upregulation of 

angiogenic signaling with treatment across a variety of cell types including both PSA-high and 

PSA-low epithelial cells, myeloid cells, T&NK cells, and mast cells (Fig. 4.5B). Importantly, these 

phenomena were highly consistent across all subjects (Fig. 4.5C, 4.5D). Notably, we did not 

observe any changes in endothelial proportions despite changes in angiogenic signaling. 

Alongside upregulation of angiogenic and inflammatory signaling pathways, we also saw 

upregulation of multiple genes associated with growth factor signaling and wound healing 

responses (VEGF, EGF, S100 family genes, MMP family genes)[208]. To investigate the 

contributions among different cell populations, we next analyzed inferred receptor-ligand 

interactions via CellChat[209]. Most notably, cross-talk inference highlighted mast cells as a key 

contributor of VEGF signaling to endothelial cells and EGF signaling to epithelial cells at time of 

prostatectomy (Fig. 4.5E, 4.5F). In particular, EGF signaling was primarily driven by interactions 

between EGFR and AREG (Appendix C, Fig. 8.6). Notably, AREG expression has been previously 

associated with cancer migration and metastasis and is also upregulated in other cell 

populations including myeloid cells and B/plasma cells at time of prostatectomy[210]. Although 

we do not see signs of strong cross-talk between AREG expressing cells and T-cells, expression of 

AREG in literature has also been shown to upregulate Treg activity and further facilitates their 

suppressive function[211]. For mast cells specifically, their presence and expression of VEGF has 

also been associated with increased micro vessel density and resistance to anti-angiogenic 

therapies, as well as resistance to aPD-1 therapies[212], [213].   
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Figure 4.5. Receptor-ligand interactions highlight mast cells as key drivers of growth factor signaling. A) 
Baseline versus prostatectomy inflammatory (top) and angiogenesis (bottom) signatures adapted from Hirz 
et al.[191] are shown as a series of boxplots, where each pair of boxplots corresponds to a specific cell type 
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along the x-axis.  B) Inflammatory (top) and angiogenesis (bottom) signatures (see methods) are plotted as 
aggregate values across all cells per subject sample. Dotted lines connect subjects with paired baseline and 
prostatectomy samples. Epidermal growth factor (EGF) signaling (C) and vascular endothelial growth factor 
(VEGF) signaling (D) were assessed through receptor-ligand interactions using CellChat[209]. Cell types 
initiating pathway signaling are represented on the left-hand side of each plot (y-axis), while cell types 
receiving pathway signal are represented on the bottom of each plot (x-axis). Within the heatmap, each 
value represents the relative pathway signaling strength of each sender-receiver pairing. Bars on the right 
and top of each plot represent the cumulative signal sent and cumulative signal received for each cell type, 
respectively. For both EGF and VEGF, plots on the left side represent baseline receptor-ligand interactions 
while the right hand represents receptor-ligand interactions at prostatectomy. 

 

 

4.4 Discussion 

 

To the best of our knowledge, this represents the first single-cell transcriptomic study to 

report on temporal sampling of paired naïve and post-treatment samples in prostate cancer. We 

characterize compositional and transcriptional changes throughout the prostate cancer cellular 

landscape, including malignant epithelial cells and key immune cell populations.  

Across subjects, we were able to identify a sharp and consistent decrease in PSA-high 

epithelial cells consistent with on-target treatment response. While proportional changes 

suggest a response to therapy, re-clustering of epithelial cells allowed for the identification of 

malignant cells and direct analysis of treatment response in both malignant cells and 

psuedobulk epithelial cells. Using this approach, we were able to identify a significant drop in 

androgen pathway activity indicative of androgen axis inhibition and a correlated increase in 

expression of antigen presentation machinery. Although we cannot comment on a causal link 

between androgen pathway expression and antigen presentation, the observed correlation is 

consistent with previous in vitro findings that show androgen receptor activity can directly 

modulate the expression of genes related to antigen processing and presentation through 

upstream androgen response elements[194] . While there are other known mechanisms that 

upregulate antigen presentation, such as response to IFN-gamma, malignant epithelial cells in 
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our dataset do not show signs of increased IFN-gamma response with treatment and 

subsequently show increased expression of FOXA1, a gene linked with IFN-gamma resistance in 

previous literature[197]. 

Within the tumor, we also see an increase in NK & T-cells with treatment, primarily 

driven by CD8+ T-cells with an effector like phenotype. Previous studies on the effects of ADT in 

prostate cancer patients have demonstrated similar increases in T-cell proportions after 

treatment, however these changes driven primarily by changes CD4+ populations in a tissue 

agnostic manner, instead of CD8+ in tumor tissues specifically [188]. While NK & T cell 

proportions increased in tumor tissue, we saw a much broader influx of myeloid cells across 

both tumor and non-tumor tissues. Unlike with NK & T-cell populations this shift appeared to be 

driven by a broad influx across a variety of cell types already present in baseline samples. 

Additionally we observed the presence of both iMSC’s and TAM-like populations at both 

baseline and prostatectomy time points, both of which have also been identified in previous 

single-cell prostate cancer analyses and associated with poor prognosis in bulk tumor 

analyses[185], [199].  

Although our analysis of T-cell populations indicates signs of activation, the presence of 

multiple immune-suppressive myeloid populations highlights the importance of the tumor 

microenvironment and complex interplay between immune populations therein. This is further 

emphasized by post-treatment upregulation of both inflammatory and angiogenic signaling 

across a variety of different cell types. Interestingly, myeloid populations did not show a 

significant change in inflammatory signaling, but instead showed consistently high expression of 

inflammation related genes both pre- and post- treatment while other cell subsets contributed 

to an overall increase in inflammatory signaling. In particular, mast cell expression of both VEGF 

and AREG highlights the broad ability for immune cells in the TME to influence other cell 
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populations. VEGF is perhaps the best known regulator of endothelial growth and associated 

with both normal and tumor-associated angiogenesis[214]. Similarly, under normal conditions 

AREG is associated with wound healing and tissue normalization, however in tumor contexts 

increased AREG expression has also been associated with tumor migration and resistance to 

therapy[210], [215]. The association of AREG and VEGF expression with poor disease prognosis 

in other studies, and the treatment-related upregulation of cross-talk related to both receptor-

ligand pathways in our data warrants further investigation.  

Our study has several limitations.  Given current clinical trial is under ongoing subject 

accrual and additional time needed to reach study endpoints, we are unable at this time to 

report on clinical outcomes or other subject-level clinical details. This unfortunately limits our 

ability to link observed proportional and transcriptional changes with clinical response. In 

addition, we are blinded to measurable tumor burden, potentially reducing our power to detect 

differences between tumor and non-tumor specimens, as some subjects were reported to have 

diffuse prostatic disease which may have impacted the ability to take purely non-tumor 

biopsies. In addition, while we attempted to use objective clustering approaches with minimal 

bias, single cell annotations are inherently subjective and clustering itself may misattribute cell 

identities for intermediate or outlier cell states. Our interpretations of results are based on a mix 

of both canonical and differential genes, but ultimately constrained by gaps in current biological 

knowledge. Our results are further constrained by the current limits of scRNA-seq, including 

limited per-cell sampling depth, transcriptional dropout, and variance in read quality, among 

other phenomena. In future studies we plan to link clinical outcomes with transcriptional 

biomarkers to identify potential prognostic markers of response or early indicators of resistance 
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4.5 Methods 

4.5.1 Subject samples 

 
Treatment-naïve, high-risk prostate cancer subjects with Gleason grade > 8-10 enrolled 

on clinical trial NCT03753243 underwent biopsy of a primary tumor lesion and non-tumor tissue 

prior to treatment. Following 14 to 16 weeks of treatment with neoadjuvant pembrolizumab 

(QW3) with anti-androgen therapy (enzalutamide plus GNRH inhibitor), subjects received a 

radical prostatectomy procedure. At the time of prostatectomy, biopsies from tumor lesions and 

paired non-tumor tissue were obtained. 

4.5.2 Biopsy processing 

 
Fresh biopsy specimens were collected immediately following the biopsy or 

prostatectomy procedure and processed same-day. Biopsies were mechanically dissociated 

using forceps and scissors into pieces that could be pipetted in phosphate buffered saline (PBS, 

Hyclone #SH30028FS) using a serological pipette. Biopsies were further dissociated by shaking at 

300 rpm for 30 minutes at 37°C in PBS containing 30 U/mL DNAase I (Roche #04536282001), 

hyaluronidase (Sigma # H6254-500MG), and 1 mg/mL collagenase IV (Sigma #C5138-1G). Tissue 

digests were then filtered through 70 μm mesh filters (BD Biosciences ##352350) to obtain 

single cell suspensions. Samples were then cryopreserved in 90% FBS + 10% DMSO for later 

batch processing. 

 

4.5.3 10x Genomics Library Preparation and Sequencing 

 
Single cell capturing and library preparation were performed using the Chromium Next 

GEM Single Cell 3’ v3.1 kit (10X Genomics, PN-1000128) according to the manufacturer’s 
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instructions. Cryopreserved single cell suspensions of biopsies were thawed and filtered through 

a 30 μm filter prior to loading up to 30,000 cells per sample onto the Next GEM chip. Libraries 

were pooled and sequenced using an Illumina NovaSeq 6000 with 2 x 100 bp paired-end 

sequencing. Raw sequencing reads were aligned to the human reference genome GRCh38 and 

quantified using CellRanger (10x Genomics, v6.2.1). 

 

 

4.5.4 Sample pre-processing and integration 

 
Unless otherwise specified, all single cell analysis was performed using R v.4.2.2 and 

Seurat v.4.3.0[216]. Initial samples were filtered to remove ambient RNA contamination using 

SoupX[217] (https://github.com/constantAmateur/SoupX) with default recommended settings. 

After ambient de-contamination, individual samples were filtered to keep only cells with greater 

than 500 features and less than 25% of reads aligning to mitochondrial genes. Filtered samples 

next underwent doublet identification and prediction using DoubletFinder[218] 

(https://github.com/chris-mcginnis-ucsf/DoubletFinder) with default settings and an expected 

doublet formation rate of 7.5%, filtering out all droplets with a high doublet likelihood. Samples 

were then merged and normalized by batch based on the 2000 most variable genes using the 

Seurat ScaleData() function. Merged data was then integrated across batches by performing 

principal component analysis and using Harmony[219] v0.1 on the first 30 principal components 

(PC’s). 

4.5.5 Initial clustering and cell identification 

 

https://github.com/constantAmateur/SoupX
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Clustering was performed using the Louvain algorithm after calculating nearest 

neighbors using the first 10 Harmony components as input to the FindNeighbors function. A 

clustering resolution of 0.68 was selected after optimizing to reduce the average root mean 

square deviation (RMSD) of clusters, then fine tuning resolution for cluster stability using the 

Clustree package v0.5.0, ultimately identifying 27 clusters.  Positive differentially expressed 

markers for each of the identified clusters were determined using Seurat’s FindAllMarkers 

function and manual cell type annotation was performed based on the top markers for each 

cluster as well as canonical markers. Ultimately, clusters with shared canonical markers were 

merged to into 8 broad supergroups. Gene set enrichment analysis (GSEA) was performed using 

the GSEA() function from cluster profiler to compare psuedobulk baseline to prostatectomy 

samples. Only genes with a log2FC threshold of at least +/- 0.5 between baseline and 

prostatectomy were used and all hallmark gene sets were queried for enrichment. 

4.5.6 Epithelial re-clustering and identification 

 
Identified epithelial cells from the initial clustering step were re-normalized and re-

clustered using the same approach as above, but instead using the 5000 most variable features 

during normalization and re-integration. A clustering resolution of 0.35 was ultimately selected, 

again based on RMSD minimization and clustering stability. Positive differentially expressed 

markers for each of the identified clusters were determined using Seurat’s FindAllMarkers 

function and manual cell type annotation was performed based on the top markers for each of 

15 graph based clusters, as well as using key genes from previous literature[191], [220]. 

Grouping based on shared gene signatures resulted in 5 broader epithelial groups including two 

subsets of luminal cells, one subset of basal cells, and two subsets of other epithelial cells that 

did not directly fit pre-defined cell identities. Luminal subsets were differentiated based on a 
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shared luminal gene signature including (KLK2, KLK3, and KLK4, AR), in conjunction with 

expression of defined malignancy genes including (PCA3, AMACR, ERG, CACNA1D, COL9A2, 

GCNT1, FABP5, and PHGR1) that were consistently expressed in the luminal (1) subset but not 

luminal (2) cells. Scores used to assess club and malignancy phenotype in epithelial cells were 

defined using the genes defined in Hirz et al.[191] and scoring cells using the AddModuleScore 

function in seurat. Gene set enrichment analysis (GSEA) was performed using the GSEA() 

function from clusterProfiler to compare psuedobulk baseline to prostatectomy samples. Only 

genes with a logFC threshold of at least +/- 0.5 between baseline and prostatectomy were used 

and all hallmark gene sets were queried for enrichment. 

4.5.7 Inference of chromosomal aberrations in epithelial subsets 

 
For subjects with paired tumor and non-tumor samples, chromosomal aberrations were 

inferred using inferCNV v1.3.3 (Trinity CTAT 

Project, https://github.com/broadinstitute/inferCNV). For each subject, non-tumor epithelial 

cells, excluding luminal (1) cells, were used as background reference while all tumor epithelial 

cells were assessed for chromosomal aberrations. Copy number variants were inferred using the 

inferCNV “subcluster” mode with a cutoff of 0.1 as recommended for 10X derived data and use 

of HMM for inference smoothing. After inference and smoothing, CNV’s were compared visually 

for regional amplifications/deletions. 

4.5.8 Quantification of androgen response, antigen presentation, and 

IFN-gamma response in epithelial subsets 

 
Epithelial cells were scored for antigen presentation and androgen pathway expression 

using the AddModuleScore function in Seurat, and the 

https://github.com/broadinstitute/inferCNV
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“REACTOME_ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTIDE_LOADING_OF_CLA

SS_I_MHC ” and “HALLMARK_ANDROGEN_RESPONSE ” gene sets from the Molecular Signatures 

Database (MSigDB) respectively. To aggregate scores on a per sample basis, mean expression 

was calculated across all scored cells, sub-setting by cell type and time point where relevant.  

Wilcoxon ranked sum tests were used to compare mean scores at baseline and prostatectomy in 

order to incorporate both paired and unpaired samples. IFN-gamma response signature in 

epithelial cells was again calculated using Seurat’s AddModuleScore(), using a list of 453 genes 

differentially upregulated (Log2FC > 0.5, FDR < 0.01) in HCC1143 cells treated with 10ng/mL of 

IFN-gamma for 72 hours compared to PBS vehicle control[196]. 

4.5.9 NK and T cell re-clustering and identification 

 
Identified NK and T cells were further analyzed through re-normalization and re-

clustering using the approach previously described for epithelial re-clustering with the 5000 

most variable features and a cluster resolution of 0.99. Using the same graph-based clustering 

approach and RMSD minimization, we identified 3 NK and 18 T-cell clusters. Each cluster was 

identified using a mix of top differentially expressed genes and relative expression of canonical 

markers. Cells annotated based on activation spectrum including naïve, early/recently activated 

effector, cytotoxic, and terminally differentiated T-cells were all characterized based on their 

position on a spectrum of early effector signal expression (IFN-gamma, IL2, and TNF) compared 

to cytotoxic gene expression (GZMA, GZMB, GZMH, and GZMK). 

 

4.5.10 Myeloid re-clustering and identification 
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As with epithelial and NK&T cell subsets, myeloid populations were re-normalized and 

re-clustered using the same approach RMSD based approach and a clustering resolution of 0.56. 

In total, we identified 14 myeloid clusters. Using canonical marker expression we identified two 

clusters of immature myeloid suppressor-like cells (iMSC’s) (S100A8, TREM1, CSF3R positive), 

three clusters of dendritic cells, two tumor associated macrophage (TAM)-like clusters with high 

expression of APOE (MSR1, APOC1, APOE positive), and two TAM-like clusters characterized by 

low expression of APOE. In addition, we identified clusters including innate lymphocytic cells 

(ILC’s), patrolling monocytes (high levels of CXCL markers), and resident macrophages. MDSC 

signature was defined using genes previously detailed in Hirz et al.[191] and applied using the 

AddModuleScore() function. 

4.5.11 Cell-cell communication inference 

 
Cell to Cell communication analysis between initially identified cell types was performed 

using CellChat with the default receptor-ligand database. The integrated single-cell dataset was 

split into baseline and prostatectomy subsets and receptor-ligand interactions were estimated 

using the identifyOverExpressedInteractions() function on each respectively. Cell to cell 

communication probabilities were assessed using the computeCommunProb() function. Baseline 

and prostatectomy communication inference objects were then merged, and interactions 

upregulated with treatment were identified using the rankNet() function with statistical 

estimation. 
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Conclusion 

5.1 Summary 

 

In this dissertation I’ve examined tumor-immune interactions across multiple scales, 

assessing factors involved in both efficacy and safety. I demonstrated how small steps in antigen 

processing are often ignored and can have a significant impact on the landscape of targetable 

epitopes; aggregating the largest available dataset of cleavage examples at time of publication 

and leveraging it to develop an open-source tool for improved proteasomal cleavage 

predictions. We further showed how this tool, pepsickle, outperformed currently available 

models and could be applied to previous study data investigating novel neoepitopes in order to 

enrich candidate pools for truly immunogenic targets. Since its release pepsickle has seen 

active use and continued interest, with multiple manuscript citations and consistent package 

downloads. 

 Shifting the focus from efficacy to safety, I next highlighted the importance of 

considering cross-reactivity during novel target selection for directed immunotherapies. Using 

crossreator, I showed how the use of a multi-layer perceptron model and paired epitope 

structures could be leveraged for accurate cross-reactivity predictions even in contexts that are 

traditionally challenging. While other approaches to cross-reactivity prediction, relying heavily 

on T-cell receptor sequencing, can give important insight into the dynamics of cross-reactive 

interactions, these tools are limited in their application to important treatment contexts. 

Crossreactor demonstrates how unique approaches to leveraging epitope data allow for 

the application of cross-reactivity models to emerging immunotherapy applications where TCR 

sequencing isn’t feasible, such as mRNA vaccine design.  
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 Lastly, I discuss the importance of considering the broader picture and how in vivo 

environment helps define tumor-immune interactions. While in silico tools such as pepsickle 

and crossreactor are important in the therapeutic research and development ecosystem, 

the success or failure of cancer treatment isn’t determined by the output of a computer. 

Leveraging single-cell transcriptomic analysis of temporally sampled prostate cancer specimens, 

we characterized the treatment naïve landscape of prostate tumors and demonstrated how 

tumors change in response to a combination therapy with androgen axis inhibition and immune 

checkpoint inhibition. This work highlights dynamic changes in response to therapy such as 

broad increases in antigen presentation across patients concurrent with decreases in androgen 

pathway activity. While the structure of our data does not facilitate causal inference, previous in 

vitro work by our collaborators demonstrates how androgen response elements can directly 

modulate the expression of genes related to antigen processing and presentation. Furthermore, 

this work characterizes a post-treatment influx of recently activated CD8-effector cells and 

details transcriptomic signs of potential antigen encounter.  

Together this body of work highlights multiple aspects of class I antigen interactions, 

from presentation to (mis)recognition, and ultimately modulation by therapeutic and 

environmental factors. In total, we show how each component of the complex antigen 

presentation process is important and impactful, but also how each in isolation neglects to tell 

the full biological story.  While much more is required to provide the full picture of antigen 

processing, presentation, and immune activation, this body of work takes important steps 

towards filling in the pieces and adds to the vast body of work trying to comprehensively 

describe and model the complex process of antigen presentation and recognition. 
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5.2 Future Directions 

 

 The work detailed in this dissertation only scratches the surface. While the focus here 

has been on class I antigen presentation, class II antigens also play an important role in adaptive 

immune response. Although the underlying mechanisms are different, class II antigens must 

similarly be cleaved and processed prior to presentation. Data on class II antigen processing is 

more difficult to come by, however the modeling of class II cleavage motifs is a natural 

extension of our work on proteasomal cleavage predictions. The process of class II antigen 

preparation also involves a milieu of multiple different proteases, providing an opportunity for 

the application of unique modeling architectures and mixture models.  

 Similarly, our work on cross-reactivity is also focused on class I antigens leaving a natural 

extension to class II cross-reactive applications open for the future. Beyond this obvious 

extension, there are also multiple additions can be made within the class I antigen presentation 

space. As it stands crossreator is trained on human data only and while cross-applied 

performance mouse data is reasonable, we have yet to perform extensive comparisons or assess 

performance of a model trained on data from combined human and mouse data. Given the 

relative lack of observations in the cross-reactivity space, leveraging data across multiple model 

organisms may lead to more robust predictions if done in a thoughtful and thorough manner. 

Furthermore, the work presented as is does not take an in-depth look at what factors of epitope 

structure are most important for cross-reactive prediction accuracy. Looks into model learning 

and key epitope features may help in improving future models or defining key features of cross-

reactive epitopes. In addition, examination of MHC allele representation in currently extracted 

data and assessment across a balanced MHC repertoire might help better define the 

generalizability of our work to broader contexts. 
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 The analysis of prostate cancer specimens presented here will also benefit from a 

variety of follow up work. A lack of clinical correlates heavily restricts the conclusions made so 

far. While the data available is primed for investigation into markers of clinical response, 

prognostic indicators, and a search for markers of emerging tumor resistance, these approaches 

all require extended clinical data that has not yet been collected. As more patient data is 

collected and information on patient response is aggregated, the work presented already will 

serve as a steppingstone for further investigation. While many consistent responses to therapy 

were observed across patients, other genes and signatures demonstrated divergent responses 

that require further investigation. At this time, it’s unclear if these divergent signals represent 

disparate treatment outcomes or simply transcriptomic noise, however marriage of the current 

computational analysis with future clinical responses will give the opportunity to address this 

question more clearly.   

5.3 Concluding Remarks 

 

 The field of cancer immunotherapy is still rapidly changing. While the work presented in 

this dissertation addresses key challenges the field faces, the ever-evolving landscape of 

treatment targets and methodologies requires continued innovation and support. As we 

continue to search for more effective therapy options, we must keep in mind patient safety as 

well. Our immune system is ubiquitous, with unbridled access to almost every tissue in the 

body. It’s not enough to consider how immune modulation will affect a tumor or organ of 

interest; we must consider how our approaches affect the system as a whole.  

 Computational methods have exploded in popularity the past decade and their adoption 

has accelerated even faster in the past few years. Despite the novelty and promise of deep-

learning and high-throughput techniques, we must also remain grounded in relevant biology. 
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Computational approaches are most impactful when leveraging our foundational 

understandings of biological processes, and biological approaches can be expedited by 

intelligent use of in silico tools. At the end of the day science is a collaborative effort requiring 

thought, input, and insight from all.  
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Appendix A: Supplemental Figures and Tables 

from Chapter I 

 
 

 

Appendix A, Figure 6.1. Epitope consensus model layout. Features from amino acid windows in the 
epitope datasets were extracted to identify the one-hot encoded amino acid sequences, as well as the 
physical properties at each window position. One-hot encoded sequences were fed directly into the first 
layer of the deep learning model, while physical properties underwent a 1D convolution (span = 3) across 
each property prior to first layer input. For each internal layer, ReLU activation functions were used with 
20% dropout. For final layers, log(SoftMax) was used to give class probability outputs. For exact layer 
numbers and sizes based on input window size see Appendix A, Table 6.2 & 6.3.  
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Appendix A, Figure 6.2. Training set sample densities compared to human background. A) Principle 
components were constructed using the physical property values across 21 amino acid windows 
generated from all proteins in the human proteome. Using the first and second principle components 
(PC1 and PC2, respectively), sample density was calculated and plotted in PCA space. B) The density 
distribution for all 21 amino acid windows in the epitope based training set are shown using the same 
encoding and PCA approach. C) The density distribution for all in vitro based training examples are 
shown based on the same encoding approach.   
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Appendix A, Figure 6.3. Epitope training set features. A) Amino acid identities (top) and chemical 
properties (bottom) from positive cleavage windows were plotted as the average frequency (sequence) 
or average normalized value (chemical properties) across all amino acids at a given position. B) Non-
cleavage windows were plotted using the same schema and ranges used for cleavage events.   
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Appendix A, Figure 6.4. Digestion training set features. A) Amino acid identities (top) and 
chemical properties (bottom) from positive cleavage windows were plotted as the average 
frequency (sequence) or average normalized value (chemical properties) across all amino acids 
at a given position. B) Non-cleavage windows were plotted using the same schema and ranges 
used for cleavage events.  
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Appendix A, Figure 6.5. Effect of window size on in vivo deep-learning model performance. 
AUC values for deep learning models (y-axis) trained on window sizes ranging from 7 amino 
acids to 21 amino acids (x-axis). (*) indicates a significant difference in AUC between models, 
while n.s. indicates no significant difference. For statistical comparisons of models across 
window sizes, see table S5. 
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Appendix A, Figure 6.6. Epitope consensus model feature importances. Feature importances 
were calculated as the absolute values of the model saliencies for the sequence identities (top) 
and chemical properties (bottom) at each given position in the input window of our 17 amino 
acid consensus model. For sequences, the total height of each bar corresponds to overall 
importance of a given position in the model, while the height of each letter corresponds to 
importance of the corresponding amino acid at that position. Chemical property feature 
importance is indicated by color gradient from most important (yellow) to least important 
(black).  

 

 

 

 

  
Appendix A, Figure 6.7. Chemical property feature importances for in vitro digestion model. 
Feature importances were calculated as the normalized absolute values of the model weights for 
chemical properties at each given position in the input window of our 7 amino acid digestion 
based in vitro model. Feature importance is indicated by color gradient from most important 
(yellow) to least important (black).  
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Appendix A, Table 6.1. Amino acid feature matrix. 
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Appendix A, Table 6.2 Epitope sequence-based deep learning layer sized by input window size. 

 
Appendix A, Table 6.3. Epitope chemical-based deep learning layer sizes by input window size. 

 
 

Appendix A, Table 6.4 Command line computational performance. 
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Appendix A, Table 6.5. In vitro model performance on epitope validation data. 

 
 
Appendix A, Table 6.6. In vitro model performances by window size. 

 
 
Appendix A, Table 6.7. Immunoproteasome validation set power analysis. 
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Appendix A, Table 6.8. Epitope model test-set comparisons by window size. 
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Appendix A, Table 6.9. Epitope validation performance metrics. 
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Appendix B: for Supplemental Figures and 

Tables from Chapter II 

 

Appendix B, Table 7.1.  

 
Number of T-cell receptors (TCRs) identified and isolated from each database for further 

aggregation.  

 

 

 
Appendix B, Figure 7.1. Crossreactor performance on manuscript derived mouse data. Receiver 
operating characteristic (ROC) curves are shown for mouse data derived from: Chromium-release 
(Cr release) assays, IFN-gamma release assays,or the aggregation of the two. Sensitivity (y-axis) 
and specificity (x-axis) were evaluated on paired epitope examples, with a total of 6714 Cr-based 
examples and 2196 IFN-gamma based examples. Model performance deteriorates substantially 
on example datasets generated either partially or entirely from IFN-gamma based assays but 
recovers when restricting to mouse-based Cr-release assay data only. 
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Appendix C: for Supplemental Figures and 

Tables from Chapter III 

 

 

 

 
 

Appendix C Figure 8.1 Distribution of identified cell types across patient samples. Each bar represents an individual 
patient sample (x-axis). Colors represent individual cell types identified through single-cell transcriptomic 
characterization. The proportion of a given sample constituted by a specific cell type is represented from 0-1 on the y-
axis. 
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Appendix C Figure 8.2. Cell type proportions aggregated by tissue and time. Each of the 8 broadly identified cell types is 
represented by a set of boxes. Each sample is represented by a dot and aggregated by timepoint (top) or location 
(bottom). For time based aggregations samples aggregated at baseline are represented in blue and those aggregated at 
prostatectomy are represented in red. For location based comparison non-tumor and tumor aggregations are 
represented by yellow and green respectively. Asterisks (*) indicate significant difference (Wilcoxon rank-sum test, 
p<0.05) in cell composition between baseline and post-treatment timepoints or tumor and non-tumor locations. 
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Appendix C Figure 8.3 Treatment based changes in androgen pathway and antigen presentation scores by epithelial 
sub group. Androgen pathway score (top) and antigen presentation score (bottom) are compared across baseline (blue) 
and prostatectomy (red) for each sub-population of epithelial cells. 

 

 

 

 

 



 122 

 
Appendix C Figure 8.4 CD8 T-cell expression of exhaustion markers. Y-axis shows each of the identified CD8 T-cell 

populations. X-axis represents normalized expression of each exhaustion-associated gene: PDCD1 (PD-1), LAG3, and 

TIGIT. 

 

 
Appendix C Figure 8.5. Gene set enrichment analysis of hallmark pathways in psuedobulk tissue. Enrichment of 

hallmark pathways was assessed using differentially expressed genes identified through psuedobulk comparison of all 

cell types in aggregate between baseline and prostatectomy tissues. 
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Appendix C. Figure 8.6. Relative receptor-ligand contributions to pathway signaling. Receptor-ligand pairs (y-axes) active 

in VEGF signaling (top) and EGF signaling (bottom) are each represented by a bar. The relative size of bars within each 

plot represent the relative contribution of pairs within and not overall strength of receptor-ligand signaling. Left plots 

represent receptor-ligand pairs at basline and right plots represent receptor-ligand pairs at prostatectomy 
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