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Chapter 1. An Introduction to 

Prostate Disease and the Human 

Microbiome 

 





 

 

 

1.1  Prostate Disease 

Symptomatic cases of enlarged prostate glands, also known as prostate 

disease, were first described in The Medical and Physical Journal in 1800.1,2 

Prostate disease is a broad term encompassing three main disorders: benign 

prostatic hyperplasia (BPH), prostate cancer (PC) and prostatitis. BPH and PC 

are benign and malignant neoplasms, respectively, while prostatitis 

constitutes the infectious or inflammatory pathologies of the prostate. 

Prostate issues are common, and most men will experience some type of 

prostate issue during their lifetime.  

In the US, the prevalence of BPH in men in their 40s is 25%; however, 

the prevalence jumps to 50% between the ages of 51 and 60,3 and reaches 

over 80% among men in their 70s.4 Neither how nor why BPH occurs is well 

understood.4 Furthermore, it is unclear why certain men experience 

symptoms and others do not, irrespective of prostate size. Similar to BPH, 

PC is also a disease of aging and is the most commonly diagnosed solid-

organ cancer in men in the United States (29% of all new cancer diagnoses in 

men annually).5 PC is understood to arise as a result of complex interactions 

between genetics and microenvironmental factors.6 After BPH and PC, 

prostatitis is the third most common urinary tract disease in men and can 

occur at any age.7 Prostatitis is estimated to affect 11-13% of men; however, 

nearly half of all men will suffer from symptoms of prostatitis at some point 

in their lives.8  The National Institutes of Health (NIH) has created four 

classifications for prostatitis – two of the categories have a bacterial 



2 

 

pathology while the remaining prostatitis types are characterized by 

inflammation with or without symptoms.9  

 

Therapy and Outcomes for Prostate Disease 

Treatments for prostate disease are constantly evolving. Currently, medical 

therapy is generally indicated for early stage BPH; whereas, more invasive 

therapies are reserved for refractory cases.  Similarly, prostatitis is treated 

with medical therapy with a very limited role for invasive procedures.  In 

contrast, early stage PC is treated with local therapies such as surgery and 

radiation; while medical therapies are indicated for more advanced disease. 

Despite progress in medical therapies, the current “gold standard” treatment 

continues to be surgical intervention for BPH (i.e. partial gland removal or 

ablation) while non-invasive methods are preferred for PC and prostatitis. 

Surgery is preferred to treat BPH due to issues with current drug therapies, 

such as limited efficacy,10 potential to develop resistance to the medication 

leading to more severe BPH symptoms,11 as well as side-effects such as loss of 

sexual function and neurological and psychological problems.12 Although 

surgery can be associated with risks like bleeding, strictures, ejaculatory 

dysfunction, and sometimes requires multiple surgeries, it has a high success 

rate to treat BPH and improve the patient’s quality of life.13  The specific 

treatments for PC and prostatitis, on the other hand, depend on disease type 

and severity, which also dictate patient outcomes. For instance, the five-year-

survival rate for localized PC is 99%, but this drops to 32% once the cancer 

escapes the prostate.5  A variety of therapies are available for men with 

localized PC, including active monitoring, radiation, androgen-deprivation 
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therapy, and surgery, while androgen-deprivation therapy is the main-stay 

treatment for men with metastatic PC.14 Infectious prostatitis is typically first 

treated with antibiotic therapy, however the infection could also be fungal or 

viral, influencing treatment.15 In contrast, inflammatory (non-infectious) 

prostatitis which can cause the prostate gland to swell, is treated with NSAIDS 

and behavioral modification.  

 

 

Lower Urinary Tract Symptoms (LUTS) in Prostate Disease 

Despite prostate diseases having separate pathologies and etiologies, they 

share common symptoms which makes distinguishing between malignant 

(PC) and benign disease (BPH and prostatitis) a major clinical challenge. The 

primary symptoms of BPH, PC, and prostatitis are lower urinary tract 

symptoms (LUTS), although pain and blood in the urine can also occur.6,16–18 

Due to the location of the prostate and its envolopement of the urethra 

(Figure 1.1), enlargement or inflammation of the prostate can impact the 

bladder and even obstruct the urethra. LUTS describes the specific problems 

with storage and voiding of urine, and LUTS severity is assessed using the 

International Prostate Symptom Score (IPSS) self-administered 

questionnaire. The IPSS scores symptoms such as weak stream, nocturia, 

urinary frequency, and incomplete bladder emptying, to name a few.19 In the 

US, treatments for LUTS have an estimated annual cost of $3.9 billion, 

demonstrating the large economic burden of LUTS.20,21 Outside of prostate 

disease, LUTS alone exerts a negative impact on health resulting in reduced 
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quality of life. Since LUTS is associated with BPH, PC and prostatitis, testing 

to differentiate between diseases is imperative.  

 

 

Figure 1.1. Schematic of the urogenital tract showing how the 

prostate interacts with the bladder.  
Prostate disease, such as BPH (right, an enlarged prostate) can obstruct 

the urethra and press into the bladder causing lower urinary tract 

symptoms. Figure reused with permission.22  

 

Current Clinical Practices in Diagnosing Prostate Disease 

Current standard tests to differentiate BPH from PC and prostatitis include a 

physical exam, urinalysis, and blood test. The physical exam involves a 

digital rectal exam (DRE) which is done to assess prostate size and any 

presence of unusual nodules or masses, that could be an indicator of cancer. 

A voided urine sample is necessary for urinalysis when the patient presents 

with hematuria or if an infection is suspected, and often blood tests are 

recommended to measure levels of prostate specific antigen (PSA).  PSA is a 
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serine protease produced by the epithelium of both the normal and 

malignant prostate. A small amount of PSA enters circulation under normal 

conditions and is often increased in prostate disease. The PSA test for PC was 

first introduced in 1990,23 however it’s utility for PC screening is still under 

discussion.24,25  PSA correlates with prostate size;26 however, PSA can be 

elevated due to inflammation or from infection,27 thus it has been found to 

be abnormal in BPH and in 70% of prostatitis cases.28 Importantly, PSA is not 

always useful for differentiating BPH from PC, as a quarter of men with BPH 

will have increased PSA at levels indicating PC, and will often undergo an 

unnecessary prostate needle biopsy.29 The PSA test can also have false 

positives for clinically meanigful PC, which result in overdiagnosis and 

overtreatment as well as causing fear and lowering quality of life.25  

 

Advancements in Understanding Prostate Disease 

Monitoring prostate disease is challenging and reliance on invasive biopsies 

and PSA has proven to be problematic. Researchers are now looking into 

non-invasive methods to study and surveil prostate disease by utilizing liquid 

biopsy methods. Specifically, studies have investigated extracellular vesicles 

and circulating tumor cells isolated from the blood and urine of prostate 

cancer patients to use as potential biomarkers.30–32 In addition to circulating 

molecules, researchers are also exploring if the quantity of cell-free 

circulating DNA can be useful in determining malignant from benign 

prostate disease.33 There has also been potential in combining cell-free DNA 

assays with PSA to improve diagnostic capability.34  Outside of human-
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associated biomarkers, recent research has started to look to bacteria as a 

means to better understand and possibly even diagnose prostate disease.  

Although prostatitis is mainly associated with inflammation often 

resulting in swelling, studies have shown inflammation in the prostate 

playing a potential role in the development of BPH and PC as well.35,36  

Researchers believe bacterial infections and even bacterial communities 

residing in prostate tissue are a potential catalyst for the inflammatory 

environment, which is also thought to spur changes associated with 

cancer.37,38 Studies are still uncovering the microbial associations with 

prostate disease and how it relates to the human microbiome.  

 

1.2  The Human Microbiome 

The human microbiome is the collection of archaea, fungi, virus, and 

bacteria that inhabit the human body. In fact, the ratio of human cells to 

bacterial cells in the body is approximately 1:1.39  The human body has many 

established microbiomes in different areas, including microbial communities 

that inhabit the gut, oral cavity, lungs, urogenital tract, skin, etc. (Figure 

1.2a).40 Although a microbiome consists of many microbial members, human 

studies have primarily examined bacteria and have focused on the gut 

microbiome. The most common phyla found in the human body are 

Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes (Figure 1.2a), 

however they have different roles depending on which microbiome they are 

associated with. In the gut, the bacteria are highly personalized and have a 

commensal, beneficial, or pathogenic relationship to the host dictated by a 
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complex relationship between the diversity of the bacteria and their relative 

abundances.41 The microbes of the gut are impacted by many factors such as 

genetics, age, gender, diet, medications, and environmental features like 

geographic location of the host (Figure 1.3).42 Together, when in symbiosis 

with the host, the gut microbiota play major roles in human health such as 

shaping the intestinal epithelium, protecting against pathogens, and 

regulating host immunity.41  

The immune response, and consequently disease progression, has 

been shown to vary drastically depending on which bacteria are present in 

the gut.41,43,44 For example, Helicobacter pylori (H. pylori) is a known pathogen 

which causes gastric cancer, however most individuals with an H. pylori 

infection will not develop disease.44 Additionally, co-infection of H. pylori 

with other microbes can tip the balance towards or away from cancer 

development, again highlighting the importance of the composition of 

microbiota in a community.44 As a result, the pathogenesis of dysregulated 

microbes in the gut have been well-studied in relation to intestinal tract 

diseases and have been gaining traction as a unique factor in many other 

diseases.  

The gut microbiome is understood to play a role in cardiovascular 

diseases,45 diabetes,46 respiratory diseases,47 brain disorders,48 and even 

cancer (Figure 1.2b).49 In the context of PC, one study demonstrated the gut 

microbiomes of individuals with PC had altered composition with increased 

Bacteroides compared to healthy subjects.50 In many of these studies, 

correlations have been made between specific bacteria found in the gut and 

disease outcomes. However, as the gut microbiome field has matured, 

researchers are now exploring more direct links, such as distinct functional 
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pathways influenced by bacteria and their metabolites and how that impacts 

disease (Figure 1.3).51,52 Work to better understand the gut microbiome and 

its impact on human health is ongoing; however other microbiomes have 

been garnering interest as well.  

Similar connections seen between disease and the gut microbiome 

have been found in other microbial niches, like the vagina,53 oral cavity,54 

and skin.55 The oral microbiome in particular has shown associations with 

organ systems distant from the oral cavity, bringing into question how far-

reaching changes in specific microbiomes are.56 There has also been reports 

of microbes in internal organ tissue, such as breast and prostate tissue.57–59 

Specifically, DNA from bacteria, fungi, parasites, and viruses have been 

found in the prostate tissue from men suffering from both BPH and PC.58 

Studies on these other microbiomes have lagged behind the gut microbiome 

largely because they have low microbial biomass – meaning they have a low 

abundance of microbes, making them challenging to study. Recent advances 

in methods for investigating the human microbiome are now allowing more 

robust study of these low microbial biomass niches.  
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Figure 1.2. Overview of the microbiomes in the human body and 

how disease impacts their composition. 
a) Pie charts are example representations of the different bacteria 

within each community in the various locations in and on the human 

body. b) Composition of the gut microbiome is altered in certain 

diseases like inflammatory bowel disease, type 2 diabetes, etc. Figure 

reused with permission.60 
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Figure 1.3. Cartoon depicting the many factors which influence the 

gut microbiome (diet, obesity, antibiotics, etc.) and their 

downstream effects. 
When the gut microbiome is in a dysbiotic state, the resulting 

metabolites can potentially impact other organs such as the prostate. 

Figure reused with permission.61  
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1.3  How to Study the Microbiome 

A typical workflow for studying the human microbiome is collecting a 

sample, extracting the DNA, sequencing the DNA, followed by data analysis 

(Figure 1.4a). Specific methods for studying the human microbiome are 

dependent on the sample of interest – mainly if the origin is high or low 

microbial biomass. Gut microbiome samples are high microbial biomass 

samples, with a typical concentration of 1011 cells per milliliter while a 

urinary tract microbiome sample is low microbial biomass with a typical 

concentration of 103-105 cells per milliliter.62 Another consideration is the 

biological question and what taxonomic resolution (genus vs strain-level, for 

example) is needed to answer that question.  

 

DNA Sequencing 

DNA sequencing is the mainstay of how researchers study the human 

microbiome. Specifically, Next Generation Sequencing (NGS) is the gold 

standard for microbiome analysis due to being high-throughput, able to 

examine unculturable bacteria, and increasingly affordable. Different 

sequencing methods include metagenome and marker gene sequencing. 

Metagenome sequencing captures all the DNA in a sample regardless of if it’s 

microbial or not. This is one of the preferred methods for high microbial 

biomass samples, since the majority of the sequencing reads should be 

microbial. While this type of sequencing is more expensive than marker 

gene sequencing, it allows researchers to potentially reconstruct partial or 

even whole genomes for organisms in a sample, resulting in more precise 
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taxonomic resolution. Typically, species and even strain-level information 

about microbes can be determined using metagenome sequencing.  

Targeted marker gene sequencing is often used for low microbial 

biomass samples and samples that have high host DNA or non-microbial 

DNA because it allows for the amplification of microbial DNA. In particular, 

sequencing the 16S rRNA (16S) gene – a 1,500 base pair (bp) gene conserved 

in all prokaryotes – allows researchers to resolve the different types of 

bacteria present in a mixed sample. The 16S gene is made up of 9 regions 

(V1-V9) that are each highly variable and distinct between organisms, but 

flanked by highly conserved regions which primers can target (Figure 1.4b).63 

The standard method is to use Golay primers that target the 250 bp V4 

region of the 16S gene optimized for the Illumina MiSeq sequencing 

platform, validated by the Earth Microbiome Project and the Human 

Microbiome Project. This method is able to accurately describe the 

heterogeneity of bacterial communities,64 typically to the family or genus 

level. Recently, there has been a push to sequence the full-length of the 16S 

gene. Full-length 16S sequencing should allow for the specificity of targeting 

bacteria only, while also enabling species and potentially strain-level 

information to be obtained from the data.  

 

Considerations for low microbial biomass samples 

Sequencing low-biomass samples is challenging as contamination can make 

up a larger proportion of the sequencing reads compared to a high biomass 

sample such as stool. This results in a lower signal-to-noise ratio for low 

biomass samples, thus both negative and positive controls are crucial to 
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establish which bacteria are from contamination.65 To account for 

contamination throughout sample processing and sequencing preparation, 

commercial mock bacterial communities of known compositions are often 

diluted in a series, processed alongside the samples of interest, and 

sequenced to act as an in-lane control.65 The dilution series of the mock 

bacterial communities are particularly useful for sequencing low biomass 

samples, as any genera that are not part of the expected mock community 

are contaminants. Other strategies include the use of spike-in controls, in 

which known bacteria that are distinct from what is expected in your samples 

of interest are added at known concentrations.66 Spike-in controls are 

powerful because their input concentration is known, thus they have the 

added benefit of giving you abundance information about your samples. 

However, it requires prior knowledge of the types of bacteria expected in 

your samples.66   
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Figure 1.4. Overview of 16S rRNA gene sequencing and 

experimental workflow.  
a) Workflow for microbiome sequencing experiments.  b) Cartoon of 

the 16S rRNA gene. 
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Alpha and Beta Diversity Metrics: 

Human microbiome analysis borrows many of its analysis metrics from 

ecology, such as alpha and beta diversity measures. These are measures 

which evaluate and describe the diversity of a microbial community, or 

microbiome. Alpha diversity examines within-sample diversity, or how 

many different microbes there are (richness) and the distribution (evenness) 

of those microbes in a sample.67 There are many ways to measure alpha 

diversity – equating to different ways of accounting for microbial richness 

and evenness. Beta diversity metrics measure differences in microbial 

composition and abundance between samples. Certain beta diversity 

measures take into account the evolutionary relatedness, or phylogeny, of 

the microbes (UNIFRAC), while other measures rely on overlap of microbes 

between samples (Bray-Curtis).68 Each alpha and beta diversity metric 

provides a glimpse into the diversity of the communities, and thus it is 

standard practice to calculate and report multiple alpha and beta diversity 

metrics.  

 

1.4  New Microbial Niches 

Overview of the Urinary Microbiome 

As sequencing and microbiome analysis methods improve and allow for 

robust study of low microbial biomass samples, researchers are finding 

evidence of bacteria in new places. Areas of the human body previously 
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understood to be sterile have been found to harbor bacteria, such as in the 

urogenital tract and blood. Traditionally, the lower urinary tract has been 

considered sterile aside from the instance of an active infection. Recent 

research has challenged this dogma and is finding that the lower urinary tract 

and bladder of individuals without infection do contain microbes. This 

community of microbes is now known as the urinary microbiome.69–71 The 

bulk of the research on the urinary microbiome has been on the female 

urinary microbiome, and studies have demonstrated that similar to other 

microbiomes in the human body in which changes are associated with 

diseases or disorders, changes in the microbes residing in the female urinary 

microbiome are distinct in women with LUTS as compared to women 

without LUTS.72,73 The urinary microbiome composition in women has also 

shown associations with treatment efficacy for urinary urgency incontinence, 

a sub-category of LUTS.74  

As disorders and diseases of the prostate can affect the bladder often 

causing LUTS (Figure 1.1), there have been recent studies of the urinary 

microbiome in men investigating LUTS as well as prostate disease.75,76 Efforts 

to use the urinary microbiome to differentiate between BPH and PC have 

identified compositional differences, such as higher Bacteroidetes, 

Alphaproteobacteria, Firmicutes, Lachnospiraceae, Propionicimonas and 

Sphingomonas in men with PC compared to those with BPH.75 However, large-

scale studies (n > 150) of the male urinary microbiome have yet to be 

undertaken and are necessary to understand the heterogeneity of the male 

urinary microbiome and its potential role in prostate disease.  
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Understanding Microbes in Blood 

Like the urogenital tract, blood was previously thought to be sterile, however 

microbes and microbial DNA have been detected in the blood of both 

healthy and diseased patients. There is disagreement over whether there are 

living, proliferating microbes, or only microbial DNA, in the blood of 

healthy people, and if the detected microbial signal is representative of a true 

“microbiome”.77–79 The role that microbial DNA in blood plays in disease is 

not well-studied, yet microbial DNA in blood has been described in type 2 

diabetes, celiac disease, liver cirrhosis, chronic kidney disease, and cancer, 

among many others.80–84 The microbiota in the blood are hypothesized to 

originate from the gut, and a preclinical study in patients with type 2 diabetes 

demonstrated a 28% overlap of the microbial DNA in blood and what’s been 

found in their gut microbiome.80 It is known that bacteria and bacterial DNA 

activate the immune system resulting in inflammation.85 As inflammation 

contributes to the pathogenesis of liver cirrhosis, for example, it is no 

surprise that elevated levels of bacterial DNA have been detected in the 

blood of liver cirrhosis patients compared to healthy individuals.84  

Knowledge of bacteria in blood and its association with prostate 

disease is still emerging. Poore et al. found PC-specific microbial DNA 

signatures in blood, yet their methods are under debate and the sample size 

was small.83 Additionally, most studies on circulating microbial DNA have 

used plasma, and there is potential for bacteria to be in the non-plasma 

blood fractions. Overall, more work is needed to determine a relationship 

and better understand microbial DNA in blood with respect to prostate 

disease.  
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Investigating the Human Microbiome in Prostate Disease through 

Urine and Blood Samples 

In summary, the overlap of symptoms between prostate disease and 

lack of precise testing can cause challenges for accurate diagnosis and thus 

proper treatment.25,86 There have been efforts to develop alternatives to 

current prostate disease tests (DRE, PSA screening, etc.) such as utilizing the 

DNA and microbes found in urine and blood.76,87,88 Understanding how 

microbes change in prostate disease could not only aid in more accurate 

diagnosis, but also could give hints to underlying mechanisms and possibly 

lead to prevention and treatment strategies. 

The human microbiome is clinically important in human health and 

disease. Associations have emerged between the urinary microbiome and 

disease, as well as microbial DNA found in circulation and disease.73,82,88–92 In 

men with prostate disease, both the prostate tissue itself and the urinary 

microbiome have been found to have altered microbial compositions, 

pointing to potential relationships between prostate disease and 

bacteria.75,76,88,93 A limitation of the urinary microbiome studies, however, has 

been small sample size which is necessary to understand normal 

heterogeneity of the male urinary microbiome versus changes due to 

pathology. For microbial DNA in blood, a distinct microbial signature 

associated with PC has been discovered,83 however this study and majority of 

others have relied on plasma as the sample of choice. Interrogation into 

other fractions of blood (red blood cells, buffy coat) have not been done and 

could yield new information.83,92,94,95 We believe foundational studies 
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examining the urinary microbiome and blood in the context of prostate 

disease are needed.  

Here, we investigate the urinary microbiome and circulating 

microbial DNA in blood and their relationship with prostate disease. First, we 

examined the urinary microbiome and associations with LUTS, BPH, PC, 

and prostatitis in a cohort of 500 community-dwelling men (Chapter 2). 

Next, we robustly evaluated microbial DNA in blood fractions (plasma, red 

blood cells, and buffy coat) from men with low- and high-grade PC, as well as 

their urinary microbiomes (Chapter 3). We also benchmarked a recent 

microbiome analysis method to enhance our data analysis pipeline (Chapter 

4). Together, we believe this work will help lay the foundation for a deeper 

understanding of how prostate disease and the human microbiome can be 

studied using low microbial biomass samples. 
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2.1  Abstract 

Several studies have identified bacteria and other microbes in the bladder and lower 

urinary tract in the absence of infection. In women, the urinary microbiome has 

been associated with lower urinary tract symptoms (LUTS), however, similar studies 

have not been undertaken in large cohorts of men. Here we examine the urinary 

microbiome and its association with LUTS in a subset of 500 men aged 65 to 90 

years from the Osteoporotic Fractures in Men (MrOS) study. We identified 

significant associations between benign prostatic hyperplasia (BPH), age, and body 

mass index (BMI) with several diversity metrics. Our analysis revealed complex 

relationships between BMI, BPH, LUTS, and alpha diversity which give insight into 

the intricate dynamics of the urinary microbiome. By beginning to uncover the 

interrelationships of BPH, BMI, LUTS, and the urinary microbiome, these results 

can inform future study design to better understand the heterogeneity of the male 

urinary microbiome. 
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2.2  Introduction 

The bladder and urinary tract have long been considered sterile in the absence of 

infection; however, several studies have found evidence of a resident microbiome in 

both males and females.69,96,97 The urinary microbiome encompasses the bacteria, 

archaea, fungi, and viruses that inhabit the bladder and urinary tract, and these 

microbes may play a role in diseases and disorders affecting the urogenital system. 

The majority of urinary microbiome studies have examined the female urinary 

microbiome and found there are various healthy microbiome compositions 

commonly dominated by Lactobacillus, Gardnerella, Streptococcus, Staphylococcus, 

Corynebacterium, and Escherichia.73,98 Urinary microbiome studies in men have 

revealed several of the same bacteria found in women, such as Escherichia, 

Lactobacillus, and Streptococcus, but the male urinary microbiome can also be 

dominated by genera such as Prevotella and Enterococcus.99–101  

Importantly, differences in the types of bacteria found in the bladders of 

women have been associated with recurrent urinary tract infections,102 as well as 

lower urinary tract symptom (LUTS) such as urge incontinence (the sudden urge to 

urinate followed by leakage of urine).72,103 The composition of the female urinary 

microbiome has also been found to be predictive of response to urgency urinary 

incontinence treatment, with a positive treatment response observed in patients 

with a less diverse microbiome.102 These studies have identified specific associations 

between the urinary microbiome and urological diseases, and indicate more broadly 

that the urinary microbiome may play a role in human health and disease.  

Despite the numerous studies undertaken in women, far less is known about 

the urinary microbiome in men.12 A “male urinary microbiome” literature search in 

2023 resulted in 22 primary research articles. Similar to the female urinary 
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microbiome, there are studies demonstrating that alterations in male urinary 

microbiome composition have been associated with diseases and disorders. 

Researchers have identified potential relationships between the male urinary 

microbiome and kidney stones,104 benign prostatic hyperplasia (BPH),88 as well as 

bladder and prostate cancers,90,105  among many other disorders. Nonetheless, the 

urinary microbiome studies undertaken in men have had small cohorts (n < 100) 

and few have directly investigated the potential link between body mass index 

(BMI), age, and the male urinary microbiome. These associations could impact 

future study design and analysis. Larger studies are needed to both study and 

evaluate the broad applicability of these findings in males.  

Additionally, although clear associations have been found between the 

female urinary microbiome and LUTS, the same associations have not been 

identified in a large cohort of men. Approximately one-third of men over the age of 

50 experience moderate to severe LUTS.106 The main cause of LUTS is thought to 

be BPH, which is hypothesized to cause symptoms primarily by pressing on the 

bladder and/or urethra; however, this may not be the underlying etiology for all 

LUTS in all men. Here, we evaluated the urinary microbiome from a large cohort of 

older community-dwelling men using urine samples from the NIH-funded 

Osteoporotic Fractures in Men (MrOS) study 107.  Our goals were to identify 

microbiome associations with clinical characteristics such as age, BMI, BPH, and 

general medical history, as well as identify associations with LUTS, including 

symptoms related to both urgency (irritation) and pushing or straining (obstruction) 

to void. 
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2.3  Results 

Clinical Characteristics of Study Participants 

We utilized urine samples and phenotypic data from 500 men at baseline as part of 

the MrOS study.107,108  These 500 men were randomly selected from the overall 

cohort of 5994 MrOS participants. The average age of the participants in the current 

analysis was 73.0 ± 5.7 years, with an average BMI of 27.9 ± 3.8 kg/m2. (Table 2.1). 

Participants completed a questionnaire detailing medical history, current health 

status, and overall quality of life. All participants provided a morning second-voided 

urine sample and completed a LUTS assessment using the International Prostate 

Symptom Score (IPSS). Just over half of participants (55.8%) had IPSS scores of 7 or 

lower and were designated as men with no/mild LUTS, while 44.2% of participants 

had scores higher than 7 and were designated as men with moderate to severe 

LUTS. All voided urine samples underwent 16S rRNA amplicon sequencing of the 

V4 region to determine urinary microbiome composition (see Methods). None of 

the participants reported a current urinary tract infection or recent use of 

antibiotics.  

Grouped by LUTS status, the mean age in men with moderate to severe 

LUTS (73.7 years) was slightly but significantly higher (n=0.013) compared with 

those with mild to moderate LUTS (72.4 years). There was a significant difference (p 

< 0.001) in the prevalence of self-reported BPH between the two groups, with 60.5% 

of men with moderate to severe LUTS having a history of BPH, compared with 

38.1% in the no to mild LUTS group. Significantly more men with moderate to 

severe LUTS also had a self-reported history of prostatitis (27.6%) compared with 

those with no/mild LUTS (17.7%, p = 0.014).  The men with moderate to severe LUTS 

having both higher rates of BPH and prostatitis is expected, as an enlarged prostate 
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and inflammation are common risk factors for more severe LUTS.109 There was, 

however, no correlation between BMI and LUTS severity, as both groups had a 

similar BMI (no to mild- 27.9 kg/m2; moderate to severe- 28.0 kg/m2) in contrast to 

one prior study which showed a higher incidence of LUTS in more obese 

patients.106 There were also no significant differences in multiple baseline clinical 

characteristics, such as prevalence of diabetes, which was approximately 14% of the 

men in each group, or race (Table 2.1).  

 

BPH, BMI, and Age Are Drivers of Male Urinary Microbiome Diversity 

Of the total cohort, 25 samples were removed due to insufficient sequencing reads 

(<1000 reads), leaving a total of 475 samples for subsequent analysis. Like other body 

sites, the male urinary microbiome composition varied between individuals and is 

highly heterogenous (Figure 2.S1a, Figure 2.S2).  Twenty-one phyla and 571 genera 

were identified in the male urinary microbiome, with 54 genera being core 

members (present in at least 10% of samples). Firmicutes was the most abundant 

phyla with a mean of 40.2% ± 25.7%, followed by Proteobacteria, Actinobacteria, and 

Bacteroidetes (27.4% ± 27.9%, 15.0% ± 15.4%, and 13.4% ± 15.7%, respectively Figure 

2.S1b). In the majority of samples, either Firmicutes or Proteobacteria was the 

dominant phyla, consistent with prior male urinary microbiome studies.89,96,110 The 

five most abundant genera identified were Staphylococcus, Neisseria, Corynebacterium, 

Prevotella, and Streptococcus (Figure 2.S1c).1,21 
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Table 2.1. Clinical characteristics of the men from the MrOS study 

with urinary microbiome data.  

 Participants 

(n=475) 

No/mild LUTS 

(n=265) 

Moderate/Severe 

LUTS (n=210) 

p-

value 

Age (y), mean 

(s.d.) 

73.0 ± 5.7 72.4 (5.2) 73.7 (6.1) 0.013 

BMI (kg/m2), 

mean (s.d.) 

27.9 ± 3.8 27.9 (3.6) 28.0 (4.1) 0.693 

Race/ethnicity, 

white (%) 

420 (88.4%) 231 (87.2%) 189 (90.0%) 0.416 

Diabetes (%) 

      No 

      Missing 

69 (14.5%) 

366 (77.1%) 

40 (8.4%) 

39 (14.7%) 

207 (78.1%) 

19 (7.2%) 

30 (14.3%) 

159 (75.7%) 

21 (10.0%) 

0.544 

Prostatitis history 

(%) 

105 (22.1%) 47 (17.7%) 58 (27.6%) 0.014 

BPH history (%) 228 (48.0%) 101 (38.1%) 127 (60.5) <0.001 

Cancer history (%) 

        Other 

        Prostate 

 

89 (18.7%) 

65 (13.7) 

 

47 (17.7%) 

35 (13.2) 

 

42 (20.0%) 

30 (14.3) 

0.736 
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We next evaluated if the diversity of the male urinary microbiome was 

associated with specific clinical characteristics (Table 2.S2, Figure 2.1a). We 

identified significant associations between BPH and several measures of alpha 

diversity of the urinary microbiome (Shannon, Inverse Simpson, and Pielou indices, 

p < 0.05). We found that men with BPH tended to have increased alpha diversity 

when compared with men without BPH. We did not identify any significant 

associations between BPH and any beta diversity measures (weighted UNIFRAC, 

Unweighted UNIFRAC, Bray-Curtis), but all three beta diversity measures were 

significantly associated with both BMI and age (Figure 2.1a).  We also did not 

identify any significant associations with urinary alpha diversity and age, BMI, 

diabetes, prostatitis, or race.  

Based on the associations between BMI and beta diversity, we next compared 

the relative abundances of the five most abundant phyla and 10 most abundant 

genera between men with BMIs in the healthy, overweight, and obese ranges. We 

found no significant differences in relative abundances at the phylum level. 

However, we identified differences at the genus level for three genera 

(Corynebacterium, Staphylococcus, and Streptococcus, (Figure 2.1b, Figure 2.S3). Overall, 

obese men had the lowest abundance of Corynebacterium, Staphylococcus, and 

Streptococcus, whereas healthy men had the highest relative abundances. All three 

genera are known members of a healthy male urinary microbiome,96,101 and 

significant differences in relative abundances of these taxa have been described in 

the gut microbiomes between obese individuals and those with lower BMIs.111 We 

also examined the 5 most abundant phyla and 10 most abundant genera between 

individuals with and without BPH and of different age groups (determined by 

tertile). We found no significant differences with BPH (data not shown); however, 

the urinary microbiomes of men 76 to 90-years old had significantly higher relative 
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abundance of Actinobacteria compared to men 71 to 75-years-old (p = 0.03, Figure 

2.S4).  

We next determined how specific taxa in the male urinary microbiome were 

associated with age, BMI, BPH, and the remaining clinical characteristics reported in 

Table 2.1. To accomplish this, we employed an exploratory analysis using the 

machine-learning method, Hierarchical All-against-All (HAllA) association testing, 

which is high-sensitivity pattern discovery in large, paired multi-omic datasets.112 

HAllA detects possible associations with specific taxa and accompanying metadata 

using a statistical method for discovery. After applying HAllA at the phylum, family, 

and genus levels, we discovered a significant association between BMI and the genus 

Dialister (p = 0.026). Dialister has previously been reported in both the female and 

male urinary microbiome, as well as in the gut microbiome.99,113 In the gut, higher 

abundances of Dialister were found in people with a higher BMI and is associated 

with difficulty in losing weight.114–116 Similarly, in our data we found Dialister to be 

present in 23.2% of samples (Figure 2.1c), with the highest proportion in obese men, 

followed be overweight men, and lastly healthy weight men (37.3%, 20.9%, and 12.5% 

respectively, p<0.0001, Figure 2.1c). We also identified an association between the 

prevalence of diabetes and the phylum Bacteroidetes (p = 0.017), which has been 

shown to have a similar association in the gut microbiome, but has not been 

previously described in the male urinary microbiome.117 We did not identify 

associations between specific taxa and age or BPH using HAllA. Although age and 

BPH are significantly associated with beta diversity and alpha diversity, respectively, 

these HAllA results do not point to any specific bacteria. This suggests that multiple 

bacteria in the microbiome community likely contribute to the differences seen 

above in diversity. 
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Clustering Reveals 8 “Urotypes” 

After examining specific taxa and their associations with clinical characteristics of 

this MrOS cohort, we sought patterns in the overall urinary microbiome 

composition. In view of the associations between the urinary microbiome and BPH, 

BMI, and age, we determined if the associations between BMI, age, and BPH vary in 

the context of different microbiome compositions. We used Dirichlet multinomial 

modeling (DMM) to cluster samples with similar urinary microbiome compositions 

into “urotypes.”118 DMM clustering on members of the core urobiome revealed eight 

urotypes each dominated by a specific bacterium (Figure 2.2a). Each urotype 

contains between 19 and 89 samples. Urotypes 1, 2, and 7 were dominated by 

Staphyloccocus, while the rest were dominated by Corynebacterium, Neisseria, Prevotella, 

and Anaerococcus. Many clusters are dominated by a single bacterium while others 

are more diverse – for example cluster 5 is predominantly Neisseria, while cluster 4 

is more diverse with high proportions of Neisseria, Streptococcus, and Escherichia.  
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Figure 2.1: BMI is a dominant influence on beta diversity in this population.  
a) Table of p-values of PERMANOVA testing the relationship of the clinical 

characteristics with the beta diversity metrics of the urinary microbiome. BMI 

and age are both significantly associated with all three beta diversity metrics 

(bolded). b) Boxplots of relative abundance of Corynebacterium, Staphylococcus, 

and Streptococcus for men at healthy weight (red), overweight (green), and 

obese (blue) BMIs. c) Lollipop plot showing the percent of samples that 

contain Dialister by BMI grouping. A significantly higher proportion of obese 

individuals have Dialister in their urinary microbiomes as compared with 

both overweight and healthy weight individuals (p < 0. 00001).   
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Next, we investigated clinical characteristics within the urotypes, and 

observed no significant differences in age, diabetes, prostatitis, BPH, or cancer. 

However, in line with our previous findings which established BMI is correlated 

with the composition of the male urinary microbiome, we determined the urotypes 

had significantly different proportions of samples belonging to healthy weight, 

overweight, and obese individuals (p = 0.02, Figure 2.2c).  Earlier we determined a 

relationship between Dialister and the urinary microbiomes of obese men; thus, we 

wanted to explore that connection within these urotypes. We discovered that 88.1% 

of the individuals of urotype 5, which has the highest percentage of obese men 

(42.4%) and lowest percentage of healthy weight men (10.2%, Figure 2.2c), had 

Dialister in their urinary microbiomes (Figure 2.2d). Interestingly, urotype 8 has the 

second most obese men (31.6%), yet none of those men had Dialister in their urinary 

microbiomes.  

 

BMI, BPH and LUTS Characteristics are Associated with the Diversity of the 

Male Urinary Microbiome 

Next, we wanted to determine if there was an association between LUTS and the 

male urinary microbiome.  Since our results demonstrated that BPH, BMI, and age 

are associated with the overall male urinary microbiome composition, and previous 

studies have shown that BPH and BMI can also impact LUTS, we incorporated these 

variables into subsequent analysis. 

To evaluate whether there are associations between the microbiome and 

LUTS, we first looked at the complexity of the samples. Men with no to mild LUTS 

had an average of 16,369 reads per sample (minimum 1,018; maximum 101,017), 
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while men with moderate to severe LUTS averaged 19,367 reads per sample 

(minimum 1,184; maximum 81,167; p = 0.04, Figure 2.S5). 
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Figure 2.2. Distinct patterns of the male microbiome are present and are 

associated with BMI.  
a) Stacked bar plots of the eight urotypes created using Dirichlet Multinomial 

modeling. Each urotype is dominated by specific bacteria b) Table 

summarizing the clinical characteristics for each urotype. BMI is significantly 

different between urotypes (p = 0.02, bolded) c) Traces of the percent of 

samples in each urotype colored by BMI group. d) Bar graph of the percent of 

Dialister in each urotype. Urotype 5 has the highest percentage of Dialister 

and obese men.  
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We then inspected the urinary microbiome compositions in men with no to 

mild LUTS compared with those with moderate to severe LUTS and did not find 

significant differences (Figure 2.3a). We also examined alpha diversity metrics 

(Kruskal-Wallis test) and beta diversity metrics (PERMANOVA analysis) of the 

urinary microbiome composition in these two groups, and found no significant 

differences were found even when adjusted for BPH, BMI, and age (Figure 2.3c and 

Figure 2.3d).  
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Figure 2.3. The alpha diversity of the male urinary microbiome is 

associated with irritative and obstructive LUTS when adjusted for BMI and 

BPH. 
a) Stacked bar plot of the male urinary microbiome subset by LUTS status. b) 

Pie chart showing percentage of men in the MrOS cohort who experience no 

symptoms (green), obstructive symptoms only (orange), irritative symptoms 

only (blue), and both obstructive and irritative symptoms (pink). c) P-values 

for alpha diversity metrics and d) beta diversity metrics for broad LUTS (no 

to mild LUTS versus moderate to severe LUTS) and obstructive and irritative 

symptoms. Adjusted model includes interaction terms for BMI and BPH e) 

Significant interactions between BMI, BPH, and irritative or f) obstructive 

symptoms influence inverse Simpson index. 
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LUTS is defined broadly, encompassing both irritative and obstructive 

symptoms, and we hypothesized that there may be differences in the microbiome 

that were related to these characteristics rather than overall severity. For example, 

studies on LUTS and the urinary microbiome in women have found significant 

differences in women with stress incontinence versus urgency incontinence;119 

however, differences are not typically found when examining overall 

incontinence.120 After separating the IPSS questions into those addressing irritative 

versus obstructive symptoms, we found the majority of men experienced some 

degree of both symptoms. Fewer had irritative symptoms alone, while less than 1% 

of men experienced only obstructive symptoms (Figure 2.3b). Irritative symptom 

scores ranged from 0 to 15, while obstructive symptoms ranged from 0 to 18.  

Taking a closer look at how obstructive and irritative symptoms are 

associated with alpha and beta diversity, we used a Kruskal-Wallis Test and adjusted 

for BPH, BMI, and age. We found the Inverse Simpson alpha diversity measures 

significantly associated with obstructive symptoms and irritative symptoms 

independently (Figure 2.3f). Obstructive symptoms were also associated with the 

Shannon index, while the association with irritative symptoms was weaker, and not 

statistically significant (Shannon, p = 0.06). In PERMANOVA comparisons, we 

found no associations with beta diversity and obstructive nor irritative symptoms 

(Figure 2.3d).  In addition to the alpha diversity, we also discovered significant 

interactions between irritative symptoms and BPH and BMI (Figure 2.3e), as well as 

similar results with obstructive symptoms (Figure 2.3f). In other words, men with 

BPH have varying associations between alpha diversity and symptom severity 

depending on BMI, and there are different associations if the individual does not 

have BPH. For example, in the healthy weight population, men with a higher 

Inverse Simpson index tended to have increased irritative symptoms if they do not 
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have BPH (Figure 2.3e). However, the converse is true if they have BPH. We see the 

opposite trends for men in the overweight category and found that BPH does not 

have the same impact in the obese group.  

 

Enterococcaceae and Caulobacteraceae are Associated with Irritative 

Symptoms 

In light of irritative and obstructive symptoms and their potential role in the 

diversity of the male urinary microbiome, we re-examined the eight urotypes by 

HAllA. There were no significant differences in the obstructive and irritative 

symptom scores between urotypes (p>0.05), nor when investigating broad LUTS 

severity. 

To discover relationships with specific taxa and LUTS severity or irritative 

and obstructive symptoms in the older male urinary microbiome, we again 

employed (HAllA).112 Supporting our previous results, no significant associations at 

any taxonomic resolution were identified with overall LUTS score. We investigated 

irritative versus obstructive symptom scores independently, which resulted in 

associations at the family level, between irritative symptoms and the presence of 

Enterococcaceae (p = 0.002) and Caulobacteraceae (p < 0.001) independently. 

Enterococcaceae has previously been described in the female urinary microbiome 

of women with mild and moderate to severe LUTS.121 Caulobacteraceae has been 

found in the healthy canine urinary microbiome,122 as well as the urinary 

microbiome of spontaneously tolerant kidney-transplant recipients;123 however, no 

research has shown any relationship to urgency or LUTS. 

We further assessed each of the questions from the American Urological 

Association symptom index (AUA-SI) questionnaire for a more granular analysis 
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and found an association at the genus level between the urge to urinate frequently 

and Mobiluncus (p < 0.01). Mobiluncus is primarily found in post-menopausal women 

and women with bacterial vaginosis and has not previously been reported to persist 

in the male urinary microbiome.124,125  

2.4  Discussion 

Our analysis of a relatively large cohort of older community-dwelling men revealed 

that the male urinary microbiome is heterogeneous and exhibits a great deal of 

inter-individuality in the present microbes. We found that the male urinary 

microbiome is dominated by Staphylococcus, Corynebacterium, Prevotella, and 

Finegoldia, which supports previous research (Figure 2.S1c).96,126  We also identified 

complex relationships between the male urinary microbiome and BMI, BPH, age, 

and LUTS. While previous studies have found age-specific compositional 

differences in the urinary microbiome regardless of gender,69 associations between 

BMI and the urinary microbiome have been established only in women.119 

A major finding of our study is the significant association between BMI and 

the male urinary microbiome composition (Figure 2.1a). Similar associations have 

been identified in other microbiome communities in the human body127 and in the 

urinary microbiome in women, 119 but have not yet been reported in the male 

urinary microbiome. This means that men with similar BMIs have similar urinary 

microbiome compositions, compared to men with different BMIs regardless of age, 

BPH, and medical history.   

We found that BMI is linked to specific genera as well as to the overall 

microbiome composition. Using a Kruskal Wallis rank sum test, the relative 

abundances of Corynebacterium, Staphylococcus, and Streptococcus were significantly 
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different in healthy weight, overweight, and obese men; obese men had a decreased 

abundance of all three genera, whereas healthy weight men had an increased 

abundance (Figure 2.1b). Since these genera are typically found in a healthy urinary 

microbiome, and BMI is significantly associated with beta diversity, we can 

hypothesize that the lower relative abundance of these three genera allows other 

bacteria, like Dialister, to create a niche in those communities. A machine-learning 

approach, HAllA, revealed a significant relationship between the abundance of 

Dialister and higher BMI (Figure 2.1c), an association which has not been previously 

reported in the context of the urinary microbiome.114–116 In the gut, many studies 

have shown Dialister in individuals with higher BMIs and who have difficulty losing 

weight.111,115,127,128 One study surmised that Dialister aggravates the host inflammatory 

response and insulin resistance by releasing more lipopolysaccharides,115 which are 

known to be an important feature in metabolic disease and weight gain.129 

Interestingly, in the DMM clustering that revealed eight urotypes (Figure 2.2), 

urotype 5 contained the highest percentage of obese men and the highest 

percentage of men with Dialister. Although this mechanism has not been studied in 

the urinary microbiome, a similar one could be at play. Interestingly, in the DMM 

clustering that revealed eight urotypes (Figure 2.2), in the second highest cluster of 

obese men (urotype 7) Dialister was not detected. We believe this is something to 

investigate further and examine if other bacterial communities in the urinary 

microbiome could have an association with BMI.  

We also observed that men with BPH tended to have a higher alpha diversity 

in their urinary microbiome as compared to men without (Table 2.S2) – a finding 

that had previously not been reported in studies.130 BPH has previously been 

associated with significant changes in the urinary microbiota and in the microbes of 

the prostate tissue itself.75,130 In rats, BPH has been associated with the beta diversity 



41 

 

of the gut microbiome; however, no such studies have been undertaken in 

humans.131 

We did not identify significant associations between overall LUTS score and 

the urinary microbiome composition in men.  Previous work has shown an 

association between more severe LUTS and the following genera: 

Haemophilus, Staphylococcus, Dolosigranulum, Listeria, Phascolarctobacterium, 

Enhydrobacter, Ruminococcus, Bacillus, Faecalibacterium, and Finegoldia.130 We did not 

find Listeria nor Ruminococcus in our dataset, and there were no associations between 

the other genera and LUTS severity. However, we believe the overall IPSS severity 

score may not allow for the detection of associations with specific causes of urinary 

symptoms (e.g., irritative and obstructive symptoms), which could have different 

etiologies. We considered the hypothesis that individual elements of the LUTS 

symptoms score could have different associations with the microbiome. For 

instance, irritative symptoms could have more inflammatory bacteria, while 

obstructive symptoms could be the result of bacteria more likely to create a biofilm 

which could create some blockage while voiding. Or perhaps these bacteria could 

lead to increase tissue growth and swelling which could cause urinary obstruction.   

In support of this idea, we did find significant associations between alpha diversity 

metrics and specific obstructive and irritative LUTS symptoms when the analyses 

were adjusted for BMI, BPH, and age. The inverse Simpson index was significantly 

associated with both obstructive and irritative symptoms; however, different trends 

were observed depending on BMI grouping and BPH (Figure 2.3e-f). Similar to 

what was discussed earlier with Dialister and BMI, these results suggest that there 

could be different mechanisms causing irritative or obstructive symptoms in obese 

men as compared to overweight men with or without BPH.  
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HAllA unveiled associations at the family level between Enterococcaceae and 

Caulobacteracaea with irritative symptoms; however, no associations were found at 

the phylum or genus level, nor any associations with obstructive symptoms. The 

HAllA analysis was restricted to 54 of the 571 genera, so this may have contributed to 

our limited findings. More work is needed to determine which taxa are important 

for irritative and obstructive symptoms; however, the heterogeneity of bacteria 

between individuals and other characteristics of the microbiome may not yield 

consensus. In other words, biological functions may be more homogenous and may 

be more indicative of phenotype or symptoms, despite being caused by a number 

of different bacteria.  

The large sample size of this study allowed us to investigate broad trends 

across the urinary microbiome of older community-dwelling men. Although we 

had a rich dataset, there were some limitations that may have affected our analysis. 

Elements of the phenotypic data (e.g., history of diabetes and cancer) were self-

reported and thus subject to possible errors. The samples collected were voided 

urine, which have been reported to not represent only the male bladder 

microbiome, but instead be a mixture of the bladder and urethral communities.89 

Also, as with any 16S rRNA sequencing study, analysis was limited to the genus level, 

and resolution to the species level may improve findings. For example, there are 

many different species of Dialister. Finally, the LUTS score is based on a set of 

symptoms that may be the result of multiple biological pathways, and thus difficult 

to disentangle.   

In summary, the male urinary microbiome is complex and challenging to 

investigate. There is considerable individual variation in the urinary microbiome in 

men, and that variation may be related to the presence and character of LUTS. Our 

study indicates that considering the specific type of LUTS is important in 
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understanding the contribution of urinary microbiota to urinary disorders in men. 

We also revealed there is an intricate connection between BMI, BPH, urinary 

microbiome diversity, and severity of irritative and obstructive symptoms. More 

studies are needed to further investigate these covariates, and we believe future 

urinary microbiome studies in men should heavily consider BMI and BPH in study 

designs and analyses. 

 

2.5  Methods  

Study Population 

We acquired samples and data from 500 randomly selected participants from the 

prospective NIH-funded MrOS study. The MrOS study recruited a total of 5,994 

men between the ages of 65 and 100 years from 6 clinical sites in the United States 

to assess risk factors for fracture and other conditions related to aging. The cohort 

and recruitment methods have been previously described.132 At baseline, 

participants were at least 65 years of age, able to consent, walked without assistance 

of another person, and did not have bi-lateral hip replacement or any condition that 

in the judgment of the site investigator would likely impair participation in the 

study.133 The Institutional Review Boards at all sites reviewed and approved the 

study, and all participants provided written informed consent.  Enrolled participants 

completed a series of medical questionnaires, including medical history of 

prostatitis and BPH and the AUA-SI questionnaire, and provided specimens such as 

blood and urine which were banked for future research. Participants were recruited 

between 2000 and 2002 and followed longitudinally. Morning, second-voided 
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urine specimens were collected in sterile containers and frozen at -80 °C for future 

analyses.  

 

DNA Isolation and Sequencing 

Bacterial DNA was isolated from 4-mL aliquots of urine specimens. The V4 region 

of the 16S rRNA gene was selectively amplified to evaluate microbial composition of 

the urine. DNA from the 500 urine samples was submitted to Baylor University for 

paired-end 250 base-pair sequencing using Illumina MiSeq by Dr. Nadim Ajami.  

 

Classification of LUTS 

LUTS was assessed using the IPSS. The IPSS is a seven-question examination that 

evaluates both irritative and obstructive aspects of LUTS. Each question is given a 

score from zero to five in terms of how severe that specific symptom is, and the 

scores for all questions are totaled. No/mild LUTS were assigned to scores 0 ≤ 7, 

while moderate/severe LUTS corresponds to scores greater than 7. LUTS was then 

divided into irritative versus obstructive symptoms for sub-analyses based upon the 

IPSS questionnaire. Scores from questions 1, 3, 4, and 6 were totaled for an overall 

obstructive symptom score, and the scores from the remaining questions made up 

the irritative score.  

 

Bioinformatics and Statistical Analyses 

Raw sequences were processed into amplicon sequence variants (ASVs) using 

DADA2. The RDP Classifier was used to map the ASVs to the SILVA 128 16S rRNA 
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reference set for taxonomic identification. The 500 samples were rarefied to 1000 

reads, which removed 25 samples and left 475 samples for downstream analyses. All 

subsequent analyses were done on ASVs agglomerated at the genus level in R, 

except for application of HAllA which uses Python.112 Data were further processed 

using phyloseq (version 1.42.0) and visualized using microshades (version 1.10).134 The 

Vegan R package version 2.6.4 and rstatix version 0.7.2 were used for all statistical 

analyses. 

 

Testing for Associations Between Taxa and Clinical Characteristics 

We implemented HAllA version 0.8.20 as an exploratory analysis to investigate 

associations between individual taxa and the clinical characteristics. HAllA was 

carried out separately at the genus, family, and phylum levels, and we exported both 

our metadata and ASV tables to text files. The metadata included the clinical 

variables of Table 1, and separate ASV tables were generated for each taxonomic 

level.  

We also looked at relative abundance of the top 5 phyla and top 10 genera for 

BMI, BPH, and age. A Kruskal-Wallis test was used to test for a significant 

association between relative abundance and clinical characteristic of interest, and 

then a pairwise Wilcoxon Rank Sum test with false discovery rate correction.  

 

Clustering of Samples by Microbiome Composition 

Treating each urinary microbiome as a community, we decided to cluster based on 

these communities and then look for associations with clinical characteristics and 

LUTS. We used the DirichletMultinomial version 1.40.0 for DMM clustering on the 
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“core” taxa, or the bacteria present in at least 20% of samples, to improve processing 

speed. We evaluated the model fit for two through 12 clusters using the Laplace 

approximation and chose eight clusters based on a global minimum (Figure 2.S6)118 

and found that qualitatively eight clusters exemplified eight different community 

types dominated by different taxa (Figure 2.2a). The samples were separated into 

eight clusters based on the core taxa, and the bacterial communities in each cluster 

were tested for associations with clinical characteristics using the tableone R package 

(version 0.13.2). 

 

Data Availability 

Data will be released through MrOS online (https://mrosonline.ucsf.edu/) upon 

publication. 
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2.7  Supplemental Figures and Tables 

 

 

 

 

Figure 2.S1. The male urinary microbiome is highly heterogenous. 
a) Stacked bar plot of the male urinary microbiome at the Phylum level 

ordered by Firmicutes abundance. b) Boxplots of the most abundant Phyla 

and c) Genera in the male urinary microbiome. 
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Figure 2.S2. The male urinary microbiome is highly variable demonstrated 

by abundance of different genera.  
A stacked bar plot of the male urinary microbiome organized by Firmicutes 

abundance. Each phylum is assigned a color, and within each phylum the 

darker shades are assigned to the most abundant genera. The lightest shade of 

each color is the rest of the genera corresponding to that phylum. The 

overabundance of light shades (i.e. in Firmicutes and Proteobacteria) 

demonstrates that the male urinary microbiome is highly heterogenous.      
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Figure 2.S3. Boxplots of the most abundant genera in the MrOS cohort by 

BMI group (healthy weight, overweight, and obese).  
There were significant differences in abundance between groups detected for 

Corynebacterium, Staphylococcus, and Streptococcus highlighted in Figure 2b.   
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Figure 2.S4. Boxplots of relative abundances of the top five most 

abundance phylum by age range. 
Age ranges were determined by tertiles.  The relative abundance of 

Actinobacteria in men aged 76 to 90 is significantly higher than in men aged 

71 to 75 (p = 0.03).  
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Figure 2.S5. Boxplot and histogram of the number of reads by LUTS severity. 
No/mild LUTS (red) has significantly less reads than moderate/severe LUTS 

(blue, p = 0.04).  
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Table 2.S1. Associations of clinical characteristics and urobiome 

alpha diversity.  
Categorical data are reported as median [interquartile range (IQR)] of the 

diversity measure for the specified group, continuous variables (age) are 

reported as correlation coefficients. Significant associations were identified 

between BPH and Shannon, Inverse Simpson, and Pielou indices are 

significant (p < 0.05, bolded) determined by Wilcoxon rank sum test.  

 Age Race BMI 

 p-value White Other p-

value 

Healthy 

Weight 

Overweight Obese p-

value 

Observed -0.06 0.17 23.0 

[16.0, 30.0] 

26.0 

[17.0, 30.0] 

0.42 22.0 

[16.0, 33.0] 

22.0 

[16.0, 29.0] 

24.5 

[18.0, 30.0] 

0.63 

Shannon -0.06 0.22 2.1 

[1.7, 2.4] 

2.2 

[1.7, 2.4] 

0.70 2.1 

[1.7, 2.4] 

2.0 

[1.7, 2.4] 

2.0 

[1.6, 2.4] 

0.48 

Inverse 

Simpson 

-0.05 0.24 5.1 

[3.3, 7.2] 

5.0 

[3.2, 7.8] 

0.97 5.0 

[3.0, 7.1] 

5.5 

[3.5, 7.4] 

4.9 

[3.3, 7.0] 

0.31 

Pielou -0.06 0.19 0.67 

[0.57, 0.75] 

0.68 

[0.55, 0.76] 

0.92 0.66 

[0.55, 0.74] 

0.69 

[0.58, 0.76] 

0.64 

[0.56, 0.74] 

0.12 

 

 Diabetes Prostatitis 

Yes No p-value Yes No p-value 

Observed 24.0 

[18.0, 30.0] 

22.0 

[16.0, 30.0] 

0.30 22.0 

[16.0, 31.0] 

23.0 

[17.0, 33.0] 

0.67 

Shannon 2.2 

[1.8, 2.4] 

2.1 

[1.7, 2.4] 

0.40 2.1 

[1.6, 2.4] 

2.1 

[1.7, 2.4] 

0.69 

Inverse Simpson 5.2 

[3.5, 7.3] 

5.1 

[3.3, 7.1] 

0.44 5.5 

[3.4, 7.5] 

5.1 

[3.3, 7.2] 

0.46 

Pielou 0.66 

[0.58, 0.75] 

0.66 

[0.56, 0.75] 

0.82 0.69 

[0.58, 0.75] 

0.66 

[0.56, 0.75] 

0.39 

 

 BPH* Cancer 

Yes No p-value None Other Prostate p-value 

Observed 22.5 

[16.0, 30.0] 

23.0 

[17.0, 29.5] 

0.85 23.0 

[17.0, 30.0] 

23.0 

[17.0, 28.0] 

23.0 

[15.0, 30.0] 

0.83 

Shannon 2.2 

[1.8, 2.4] 

2.0 

[1.7, 2.3] 

0.04 2.1 

[1.7, 2.4] 

2.1 

[1.7, 2.4] 

2.2 

[1.7, 2.5] 

0.78 

Inverse 

Simpson 

5.8 

[3.6, 7.4] 

4.8 

[3.1, 6.9] 

0.04 5.1 

[3.2, 7.2] 

5.2 

[3.5, 7.1] 

5.8 

[3.5, 7.7] 

0.55 

Pielou 0.69 

[0.61, 0.75] 

0.64 

[0.55, 0.75] 

0.03 0.66 

[0.56, 0.74] 

0.67 

[0.58, 0.77] 

0.69 

[0.58, 0.77] 

0.33 
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Table 2.S2. Overall LUTS and obstructive and irritative symptom 

scores summarized for each urotype.   
There were no significant differences in the number of men with moderate to 

severe LUTS in each cluster, nor in the obstructive and irritative symptom 

scores.   

Urotype LUTS score (%), 

Moderate/severe 

Score (median, [IQR]) 

        Obstructive                          Irritative 

1 (n=85) 35 (41.2%) 1.0 [0.0, 5.0] 4.0 [2.0, 6.0] 

2 (n=89) 43 (48.3%) 3.0 [1.0, 7.0] 4.0 [3.0, 7.0] 

3 (n=65) 27 (41.5%) 1.0 [0.0, 4.0] 4.0 [3.0, 7.0] 

4 (n=61) 24 (39.3%) 3.0 [0.0, 5.0] 3.0 [2.0, 6.0] 

5 (n=59) 33 (55.9%) 3.0 [1.0, 6.0] 5.0 [3.0, 7.0] 

6 (n=58) 27 (46.6%) 3.0 [0.0, 5.8] 3.0 [2.0, 6.0] 

7 (n=37) 16 (43.2%) 2.0 [0.0, 5.0] 4.0 [2.0, 6.0] 

8 (n=19) 4 (21.1%) 2.0 [0.0, 4.5] 3.0 [2.0, 5.0] 

p-value 0.23 0.10 0.31 
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Figure 2.S6. Evaluation of the DMM model fit of varying numbers of clusters 

using the Laplace approximation, Aikaike Information Criterion (AIC), and 

Bayesian Information Criterion (BIC). 
Smallest dotted line represents AIC, middle line is the BIC, and solid line is 

the Laplace approximation. 
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3.1  Abstract 

In the absence of infection, blood has previously been understood to be absent of 

proliferating microbes. Recent studies have challenged that dogma and researchers 

are now interrogating microbial DNA in the blood of both healthy and diseased 

individuals. Researchers have started to establish associations between circulating 

microbial DNA and prostate cancer, among other diseases. However the majority of 

these studies have relied on plasma. Here, we examine microbial DNA from the 

blood of 5 men without prostate cancer (PC), 5 men with low-grade PC, and 5 men 

with high-grade PC. To fully survey microbial DNA in blood we separated blood 

into fractions (plasma, red blood cells, and buffy coat) as well as added DNase to a 

subset of these fractions to determine if microbial-DNA is cell-free. We measured 

16S rRNA gene (16S) copy number and submitted DNA samples for 16S rRNA gene 

sequencing. Our analyses revealed plasma had the least number of copies of 16S and 

least number of genera, while red blood cells had the most. We also established that 

the majority of microbial DNA in blood is cell-free and the composition of these 

samples is associated with PC.  Our study demonstrates that microbial DNA can 

potentially be used as a biomarker in PC, however larger studies are needed to 

confirm our findings.   
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3.2  Introduction 

Blood has long been considered sterile, or free of living and proliferating microbes. 

Recently, the potential existence of circulating microbes and microbial DNA in 

blood and its link to health and disease has garnered much interest. This is in part 

due to advances in sequencing technology allowing researchers to interrogate low-

microbial biomass samples, like blood, more reliably.135–137 Despite progress in 

sequencing and bioinformatic methods, microbes in blood remain controversial 

due to the lack of consensus on how best to handle low-microbial biomass samples 

and the high levels of contamination in such samples.65 Although controversial, 

many believe the microbes found in circulation are part of a circulating 

microbiome,138 while other researchers consider the microbes in circulation to be 

transitory.78 Regardless, researchers are uncovering associations between circulating 

microbial DNA in blood and aspects of human health with potential clinical 

implications, such as being predictive of response to chemotherapy treatments.95,139  

In relatively healthy populations, studies have shown up to 100% of samples 

having microbial DNA in blood while others determine as few as 16% of human 

blood samples have microbes.78,79,140 This variation is likely due to differences in 

experimental approaches in sequencing, sample processing, and decontamination 

procedures. Although studies have pointed to the presence of Staphylococcus and 

Cutibacterium, there has not been agreement in specific bacteria found in the blood 

of healthy individuals indicating significant compositional heterogeneity.78 When it 

comes to evaluating microbes and microbial DNA in blood in individuals with 

disease, researchers have identified associations between specific genera found in 

circulation and hypertension as well as type 2 Diabetes.92,141 There have also been 
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associations between both abundance and diversity of the microbes in blood with 

liver cirrhosis, respiratory diseases, and chronic kidney disease.82,84,91  

When it comes to cancer, approximately 16% of newly diagnosed cancers are 

caused by infectious agents, such as microbes.142 In fact, bacteria have been found in 

tumors themselves,59 and specifically implicated in prostate cancer (PC) as playing a 

role in inflammation which is important for the development of PC.93 Importantly, 

Poore et al. found a distinct bacterial signature in the bloodstream of PC patients.83 

Additionally, microbial associations between the urinary microbiome and PC have 

been found.76 To build on this work, we designed a study to rigorously evaluate 

microbial DNA from blood and urine as a potential biomarker for PC.  

Overall, little is known about microbial DNA in blood, so we set out to 

uncover the localization of microbial DNA in blood. The majority of studies have 

relied on plasma as a proxy for blood, even though other components of blood also 

have microbial DNA.79,83,94  Few studies have investigated other blood fractions 

(buffy coat and red blood cells), and none have investigated these fractions in 

disease. To build and improve on the knowledge of microbial DNA in blood, we 

measured the microbial load in each fraction treated with and without DNase, in 

non-cancer and prostate cancer patients. We also obtained matched urine samples 

from patients and performed a comparative analysis on bacteria found in blood and 

urine. Additionally, many studies have used 16S amplicon gene sequencing, which 

targets a small region of the 16S gene. We evaluated the microbial composition 

using synthetic long-read sequencing, which may improve signal to noise in low 

microbial biomass studies.  
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3.3  Results 

Study Participants and Sequencing Overview: 

Blood samples were taken from 15 men before undergoing prostate biopsy at 

Oregon Health & Science University. Age and PSA were recorded for all men 

(Figure 3.1a). The average age of participants was 65.8 years-old, with an average 

BMI of 28.8, and average PSA of 9.2 ng/mL. There were no significant differences in 

age, BMI, nor PSA found between disease status. The blood samples were processed 

producing plasma, red blood cell pellet (RBC), buffy coat layer (BF), and one aliquot 

of whole blood was retained (WB). Copies of 16S rRNA genes were measured with 

droplet-digital PCR (ddPCR) and the remaining sample was sent to Loop Genomics 

for synthetic full-length 16S rRNA gene sequencing (Figure 3.1b). All blood fraction 

samples generated sequences, with a median sequencing depth of 3684 reads (range 

22-18,787 reads).  
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Figure 3.1. Experiment overview. 
a) Table of clinical characteristics of patient cohort. There were no significant 

differences in age, BMI, nor PSA between groups. b) Cartoon depicting how 

blood was processed and the subsequent data generation. 
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DNase-Treated Blood Samples Indicate the Presence of Cell-Free 

Microbial DNA in Blood 

First, we measured the copies of 16S rRNA genes in each sample. The samples were 

normalized to volume of whole blood used to produce each fraction. Surprisingly, 

BF had the lowest copies of 16S with a mean of 23.3 copies/µL (interquartile range 

[IQR] 15.8, 62.8 copies/µL) with plasma having slightly more (median 32.5, IQR: 16.7, 

38.8 copies/µL, Figure 3.2a). RBCs followed (median 55.9, IQR: 14.7, 80.4 copies/µL), 

and as expected, WB had the highest copies of 16S (median 167.9, IQR: 132.0, 209.8 

copies/µL). The amount of 16S genes in each fraction was significantly different (p-

value = 6.095e-06).  

To identify if the microbial DNA in each fraction was intracellular or 

extracellular, we compared each fraction with and without DNase added (Figure 

3.2b). The DNase should remove extracellular DNA and leave only the intracellular 

microbial DNA to be measured by ddPCR. As plasma contains only cell-free DNA, it 

should have no copies of 16S genes when DNase has been added. As expected, the 

DNase-treated plasma samples had a median of 0.0 copies/µL of 16S (Figure 3.2b). 

The RBC DNase samples had the second lowest number of 16S copies (median 1.2 

copies/µL, IQR: 0.0, 14.2 copies/µL). After plasma and RBC, the BF DNase samples 

had a median of 12.8 copies/µL, and lastly WB had the most copies of 16S after 

DNase treatment with a median of 44.0 copies/µL of 16S (IQR: 8.8, 165.9 copies/µL). 

All the DNase samples had significantly less copies of 16S than their non-DNase 

counterparts (Figure 3.2b-c), which indicates the presence of cell-free microbial 

DNA in every blood fraction.  
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Figure 3.2. Evaluation of microbial load in blood.  
a) Boxplot displaying the number of copies of 16S rRNA genes per µL across 

blood fraction types. The blood fractions had significantly different number 

of copies determined by Kruskal-Wallis test (p-value = 6.095e-06). b) Boxplot 

comparing each fraction to its associated DNase-treated counterpart. All 

fractions had significant differences in copies/µL of 16S when compared to 

DNase samples.  
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Negative Controls Look Distinct from Blood Fractions 

After establishing the presence and quantity of microbial DNA in the blood 

fractions, we evaluated the composition of the samples using 16S rRNA gene 

sequencing. We first examined the positive and negative controls to assess 

confidence in these low-microbial biomass sample sequencing results. The positive 

controls were mock microbial dilution series sequenced along with the blood 

fraction samples (Figure 3.S1). Sequencing revealed all eight expected genera in the 

positive controls regardless of dilution. The average percentage of unexpected taxa 

detected in the positive controls was less than 0.5%.   

Negative controls were microbial-free water blanks that were processed 

alongside the blood fraction samples. The majority (87.0%) of the negative controls 

generated sequences with an average of 1,121 reads (minimum 1 read, maximum 

7,693 reads). The five most abundant genera in our negative controls were Bacillus, 

Legionella, Prevotellaceae, Prauserella, and Escherichia-Shigella, of which Bacillus, 

Legionella and Escherichia have previously been described as typical contaminating 

sequences.143  The top five most abundant species in the negative controls were 

Lactobacillus fermentum, Bacillus mycoides, Rubrobacter bracarensis, Pseudomonas lutea, 

and Methylobacterium adhaesivum. To determine if the genera associated with the 

negative controls should be removed, we examined how prevalent these genera 

were in the associated fraction (Figure 3.3a). Outside of Prauserella and Rubrobacter, 

we did not identify substantial overlap between the taxa found in the samples and 

those of the negative controls. Prauserella was present in 35.0% of samples and in 

53.8% of negatives (Figure 3.3b). As Prauserella has only been reported to be found in 

lakes and sediment,144 we removed all sequences mapping to Prauserella. Similarly, 

sequences mapping to Rubrobacter were present in both negative controls and 

samples and were removed from the data. Nitrosomonas, Rhodospirillum, 
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Rhodobacter, and Salinispora were also removed as they have not been previously 

found to be associated with the human body.145–147 
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Figure 3.3 Bacteria from negative controls across samples.  
a) Stacked bar plots of the abundance of genera for each sample. All genera 

selected for these plots were based on the negative controls for the associated 

blood fraction. b) Pie charts demonstrating that the majority of samples had 

Prauserella, Rubrobacter, or both – which are considered contaminant genera in 

this dataset.  
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Diversity of Microbial DNA Varies by Blood Fraction 

After removal of contaminants, we found there were significantly different numbers 

of reads for each fraction (p = 0.0005, Figure 3.S2a), which was similar to the 

ddPCR results. Plasma had the least number of reads (median 1313 reads), followed 

by RBC, WB and finally BF (Figure 3.S2b, RBC: median 3391; WB: median 6807, 

and BF: median 7166;). All samples were rarefied to 50 reads, which removed 13.3% 

of plasma and BF samples, 40.0% of RBC samples, and 53.3% of WB samples.  No 

association was found with health status and successfully sequenced samples, nor 

sampling depth, regardless of fraction. The sequencing data revealed 12 phylum, 

103 genera and 159 species present in the blood samples. Compositionally, 

Firmicutes was the most abundant phylum followed by Proteobacteria, 

Actinobacteria, and Bacteroidota (Figure 3.4a). The most abundant genera for all 

fractions were Escherichia-Shigella, Bacillus, Bifidobacterium, Pseudomonas, and 

Staphylococcus. All have previous been found in the human body.148 In terms of 

individual fractions, there was significant overlap of the top five genera, shown in 

Figure 3.4b. There were however no significant differences in the relative 

abundances of the top 10 genera between the fractions. The most abundant species 

were Bifidobacterium adolescentis, Escherichia coli, Bacteroides thetaiotaomicron, Bacillus 

subtilis, and Staphylococcus aureus. Interestingly, only 47.8% of the taxa were assigned 

at the species level, and the rest could not be assigned, hence we continue the 

remaining analysis at the genus level.  

Many of the studies examining microbial DNA in blood use plasma or 

serum, therefore we were curious if the alpha diversity of plasma was similar to the 

other fractions. All three of the alpha diversity metrics (observed, shannon index, 
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and inverse simpson index) were significantly different between blood fractions, 

with plasma having the least observed genera (mean 7.4 genera, range 2-11 genera) 

and RBC having the most of the blood fractions (mean 10.8 genera, range 1-15 

genera), Figure 3.4c). Next, we were interested in whether fractions are more similar 

to each other or to the patient they came from, so we performed beta diversity 

analysis.  However, we did not find any significant associations between any beta 

diversity metric (weighted UNIFRAC, unweighted UNIFRAC, and Bray-Curtis) and 

patient nor fraction (Table 3.S1).  
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Figure 3.4. The blood fractions share similar genera; however their alpha 

diversity is significantly different.  
a) Stacked bar plot of the microbial DNA found in all blood fractions ordered 

by Firmicutes abundance. b) Bubble plot of the top 10 genera separated by 

blood fraction. The fractions share the majority of the same genera and the 

bubbles display the relative abundance of each genus. c) Boxplots of the three 

alpha diversity metrics (observed, shannon, and inverse Simpson indices) 

demonstrating plasma has the lowest alpha diversity of all the fractions.  
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Composition of DNase-Treated Samples Reveal Majority of Microbial DNA 

in Blood is Cell-Free 

Little is known about where microbial DNA in blood is located. We sought to 

understand if there are compositional differences between intracellular versus 

extracellular microbial DNA. Only 54.9% of the DNase samples were successfully 

sequenced (Figure 3.S3), whereas 100% of samples without DNase successfully 

sequenced. The DNase samples had significantly less reads than those without 

DNase (p = 0.001, Figure 3.5a), which is expected as the samples had less overall 

microbial DNA (Figure 3.3a). By number of reads, the DNase samples seemed to be 

largely dominated by a few genera (Figure 3.5c), with the top five being Clostridium, 

Bacteroides, Escherichia-Shigella, Bacillus, and Bifidobacterium. Interestingly, 

Clostridium had higher relative abundance in DNase treated samples than samples 

without DNase, suggesting a potential mechanism for intracellular translocation 

(Figure 3.5d).  We next measured alpha diversity and identified a significant 

difference between the diversity of samples and DNase samples (Figure 3.5b). 

DNase samples had a median of 3 observed genera (range 1-16) while the samples 

without DNase had a median of 10 observed genera (range 1-19) – a trend that held 

true for the Shannon and inverse Simpson indices (Figure 3.5b).   
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Figure 3.5. DNase blood samples have less diversity than non-DNase 

samples.  
a) Boxplot displaying the significant difference in sequencing reads between 

DNase and non-DNase samples (p= 0.0001). b) Summary of alpha diversity 

metrics between DNase and non-DNase samples, demonstrating the 

significant decrease in alpha diversity in DNase samples. c) Stacked bar plot of 

microbial DNA found in paired DNase and non-DNase blood fractions for 

patients 10, 14, and 4. d) Boxplot showing that DNase samples have higher 

relative abundance of Clostridium than non-DNase samples. e) Venn diagram 

indicating the number of distinct and shared taxa between DNase and non-

DNase samples.  
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We evaluated beta diversity metrics of samples with and without DNase and 

found significant associations with both weighted UNIFRAC and the Bray-Curtis 

beta diversity metrics (Figure 3.S3b-c). We also identified 76 genera found only in 

the non-DNase samples, meaning these genera are only located extracellularly in 

this patient population (Figure 3.5e). Of those 76, 15 were not assigned at the Genus 

level. Conversely, we identified 5 genera present only in the DNase samples. This 

could be due to the DNase samples having less diversity, which potentially allows 

for more rare genera in these samples to be resolved.  

 

Prostate Cancer-Associated Patterns in Beta Diversity of Microbial DNA in 

Blood 

Next, we wanted to examine if there are any disease-associated patterns in microbial 

DNA in blood. Our patient population consists of 15 men, made up of three groups 

of five men each. The groups consist of individuals who are screen-negative for PC, 

low-grade PC, and high-grade PC. Each individual should have four samples – one 

for each blood fraction – for a total of 20 samples per disease group. After 

sequencing, we were left with 13 screen-negative samples, 18 low-grade PC samples, 

and 14 high-grade PC samples (Figure 3.6a). We evaluated alpha diversity between 

disease groups and did not find any associations (Figure 3.S4c). We did however 

identify significant associations between all three beta diversity metrics (weighted 

UNIFRAC: p = 0.01, unweighted UNIFRAC: p = 0.003, and Bray-Curtis: p = 0.04) 

and disease type (Figure 3.6b, Figure 3.S4a-b). This indicates that there are 

compositional differences in the microbial DNA between men that are screen-

negative, diagnosed with low-grade PC, and diagnosed with high-grade PC. Next, we 
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created a biplot at the phylum level to begin to uncover which taxa could be 

responsible for the compositional difference between disease states (Figure 3.6c). 

This biplot, along with an overview of the data (Figure 3.6d) demonstrated that 

many of the high-grade PC samples were missing Bacteroidota, and it could 

potentially be a marker of more severe disease. However, the differences in relative 

abundance of Bacteroidota across all fractions was a trend and not significantly 

different (p = 0.07, Kruskal-Wallis test, Figure 3.6d-e). We did discover an 

association with the relative abundance of Proteobacteria of all fractions combined 

between disease types (p = 0.02, Figure 3.6f), with high-grade PC having the highest 

abundance. We also examined associations between alpha diversity and PSA, BMI, 

and age, but did not find any significant associations (Figure 3.S4).  
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Figure 3.6. Beta diversity analysis reveals disease associated patterns in 

microbial DNA in blood.  
a) Table of the final number of blood fraction samples in each disease group 

used for analysis. b) Unweighted UNIFRAC principal coordinate analysis 

(PCoA) plots of all blood fractions colored by disease status (p=0.003). c) 

Biplot demonstrating the phyla associated with each sample’s composition. d) 

Stacked bar plots faceted by disease for all fractions. e) Boxplots showing the 

relative abundance of Bacteroidota and f) Proteobacteria for all disease status.  
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Microbial DNA in Urine is Distinct from Blood 

The prostate is located right underneath the bladder, thus we decided to investigate 

the microbiome in urine samples from the men in our cohort. Of the cohort, three 

urine samples were removed due to insufficient sequencing reads (<50). We were 

interested in the overlap between the microbial DNA found in blood and urine 

samples, as well as if there are disease-associated patterns in urine. We found 

interestingly that nine of the 12 urine samples had overlap in genera present with its 

corresponding blood samples for individuals in our cohort (Table 3.S2). The genera 

overlap between blood and urine samples ranged from 0.0% to 25.0% of the 

individual’s total genera, with a mean overlap of 6.8%. Bacillus, Prevotella, and 

Staphylococcus each had overlap in three individuals. Despite the overlap, we found 

that the composition of urine is distinct from the blood samples as evaluated by 

beta diversity (Table 3.S3).  

 

3.4  Discussion 

The results from our study indicate that there is measurable microbial DNA in 

circulation. We identified 103 genera and 159 species, however not all taxa had 

taxonomic assignment. If we look at assigned taxa, we identified 85 genera and 76 

species. In a similar study, Tan et al found 56 genera and 117 species. However, this 

study had a much larger number of participants (10,000) and used a different 

sequencing modality and decontamination parameters which could explain the 
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disparity in number of taxa.78 This discrepancy again points to the importance of 

sequencing and data processing and how they can impact the resulting data.  

We found that BF contains the least amount of microbial DNA (Figure 3.2a), 

although plasma had a lower mean (28.4 copies/µL versus BF at 41.5 copies/µL) and 

had the fewest number of genera (Figure 3.4c), indicating a potential limitation of 

prior work that relied only on plasma. Our results also demonstrated that the RBC 

fraction has more copies than BF (Figure 3.2a). These results are contrary to a 

previous study, although we utilized ddPCR which is known to produce more 

precise and reproducible results as compared to qPCR.79,149  We had expected BF to 

have the highest copy number and number of genera since white blood cells as part 

of the immune system are understood to engage with microbes, so we had assumed 

there would be more associated microbial DNA. Unexpectedly, we also discovered 

the RBC fraction to have on average more observed genera than BF (median 13 

genera compared to 10 genera, Figure 3.4c) – a finding that is similar to the blood 

fraction study by Paisse et al.79 These findings suggest an interaction between RBCs 

and circulating or transitory microbes. In fact, in conditions of bacteriemia, RBCs 

have been documented interacting with bacteria by either entrapping, killing, then 

releasing the dead bacterium back into circulation,150 or the RBCs use their electric 

charge to attract and kill bacteria.151  Our findings could point to similar mechanisms 

of RBCs as seen in bacteremia. Not only this, but RBCs have a life cycle of 

approximately 120 days, thus studying the RBC fraction for microbial DNA could 

serve as a recent history of the types of microbes that have translocated in the 

body.152  

A major finding of our study is that the majority of microbial DNA in blood 

is cell-free. No other studies have used DNase to explore the question of intra- 

versus extracellular microbial DNA. We found the DNase-treated samples to have 
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significantly less copies of 16S per µL (Figure 3.2b-c) and complexity (Figure 3.5b-

c). We did however discover the DNase-treated samples shared 84.4% of their genera 

with the non-DNase treated samples (Figure 3.5e), and had higher relative 

abundance of Clostridium. We used NCBI Blast and found the Clostridium sequence 

to map to Clostridium sporogenes – which is a spore-forming bacteria and while 

uncommon, has previously been documented to cause bacteremia.153 C. sporogenes is 

a member of the normal gut microbiome, however in the spore state, C. sporogenes 

are dormant and can survive in hostile environments even in the absence of 

nutrients,154 perhaps allowing it to go undetected in blood. Many of our DNase-

treated samples did not successfully sequence, which inhibited the analysis we could 

perform. Future studies in this area should include examining how disease 

potentially affects the composition in DNase-treated samples, which could indicate 

changes to the cells that make up the RBC and BF fractions.  

Supporting prior research of circulating microbial DNA associations with 

disease, we did determine compositional differences between PC-negative samples 

as well as those with low- and high-grade disease. With a larger sample size, a more 

robust analysis of the alpha diversity differences in specific fractions with respect to 

disease could give us insight into how disease impacts these transitory microbes. 

Specifically, more samples are needed to study the potential trend of Bacteroidota 

missing from high-grade PC samples regardless of fraction (Figure 3.6b-c). What is 

unclear is if the patterns we discovered are a general cancer-related finding, or 

specific to PC. Regardless, we believe this supports previous work demonstrating 

that microbial DNA in blood has disease associations.82–84,92,141 

A limitation of this study was the small sample size, which was a trade off we 

made to increase rigor. As we processed every fraction in triplicate and doubled that 

to treat samples with DNase, we processed a total of 360 samples not including the 
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controls. We believe the replicates are important for capturing the diversity of these 

low-microbial biomass samples, however a small study of 15 patients quickly 

became cumbersome. We also believe in the future alternative taxonomic 

classification methods should be explored achieving species level assignments for 

long read sequencing.  

In summary, our study indicates the presence of circulating microbial DNA 

in both PC negative and positive men. Our results suggest microbial DNA in blood 

is sparse, heterogenous, and present in all fractions of blood. We revealed that not 

only is the majority of microbial DNA in blood cell-free, but also that the majority 

of the microbial diversity stems from the RBC fraction (as opposed to plasma or BF 

fraction). More studies with larger sample sizes are needed to further investigate 

these associations with specific fractions of blood and disease. 

 

3.5  Methods 

Patient Cohort 

Our research complies with all relevant ethical regulations of Knight Cancer 

Institute at Oregon Health & Science University. Patients were undergoing prostate 

biopsy and were consented through VAPORHCS/OHSU: Cancer Early Detection 

Advanced Research (CEDAR) Specimen and Data Repository. The associated IRB# is 

18048 at Oregon Health & Science University, and IRB# 4214 at Portland VA 

Medican Center. Participants were not compensated. 
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DNA Isolation and Sequencing 

Blood was drawn from men with high-grade PC, low-grade PC, and without cancer 

(n=5 per group). Samples were processed into the plasma, buffy coat, red blood cell 

pellet (RBC) and whole blood fractions in six 200 µL aliquot per fraction prior to 

freezing. For each sample, 5 mL of blood was removed from the tube and 600 µL 

whole blood was removed, followed by a room temperature 1200 rpm 

centrifugation step for the plasma fraction.  The remaining 8-10 mL underwent 

density gradient centrifugation using Ficoll-Paque PLUS (Cytiva) for the buffy coat 

and red blood cell pellet fractions. To examine if microbial DNA was extracellularly 

or intracellularly located, DNase (New England Biosciences) was added to three of 

the six replicates for each fraction, and the product protocol used. Once all blood 

fractions were aliquoted into three replicates and DNase added to the remaining 

three, samples were frozen. Microbial-free water (Qiagen) was used as negative 

controls and a mock microbial community (Zymo) was serially diluted per previous 

research,65 and processed alongside blood samples. Microbial DNA was extracted 

using the QiAMP DNA mini kit (Qiagen). Extracted DNA from the blood fractions 

was submitted to Element Biosciences for their 16S rRNA synthetic long-read 

sequencing using LoopSeq technology.  

 

Droplet-Digital PCR 

Droplet-digital PCR (ddPCR) was used to measure 16S rRNA copies. Each PCR 

reaction was prepared in a PCR hood in a dedicated ddPCR room. For the mock 

bacterial community dilution series, each dilution was diluted either 1:1000 or 1:100 

in microbial-free water (Qiagen).  The QX200 Digital PCR System with Auto 

Droplet Generator and Reader along with the QX200 ddPCR EvaGreen Supermix 
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(Biorad) was used. The PCR protocol uses a 2°C/second ramp rate and starts with a 

10-minute 95°C enzyme activation step followed by 40 cycles of a two-step protocol 

(94°C for 30 seconds and 59°C for 1 minute), and lastly cycles up to 98°C for 10 

minutes. V6 primers from the Sfanos lab at Hopkins were used (Forward: 

CAACGCGWRGAACCTTACC; Reverse: CRRCACGAGCTGACGAC). The results 

were then normalized to starting whole blood volume required to produce 200 µL 

of each blood fraction for comparison across fractions.  

 

Bioinformatics and Statistical Analyses  

Loop Genomics provided us with assembled full-length 16S rRNA gene sequences. 

These raw sequences were processed into amplicon sequence variants (ASVs) using 

DADA2.137 The RDP Classifier was used to map the ASVs to the SILVA 138 16S rRNA 

reference set for taxonomic identification. All analyses were completed on 

sequences between 1400 and 1550 basepairs as per LoopSeq protocol (Element 

Biosciences). The mock community dilution series and negative controls were 

analyzed to determine how to handle biological samples using phyloseq (version 

1.42.0) and visualized using microshades (version 1.11).134  All subsequent analyses 

were done on ASVs agglomerated at the Species or Genus level in R. The replicates 

for each sequencing sample were combined prior to rarefaction to represent one 

microbiome composition per fraction per individual. Rarefaction to 50 reads was 

based on retaining the maximum number of samples while accurately representing 

the composition (Figure 3.S5). The Vegan R package version 2.6.4 and rstatix version 

0.7.2 were used for all statistical analyses. We also looked at relative abundance of 

the top 5 phyla and top 10 genera. A Kruskal-Wallis test was used to test for a 
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significant association between relative abundance and clinical characteristic of 

interest, and then a pairwise Wilcoxon Rank Sum test with FDR correction.  

 

3.6  Supplemental Figures and Tables 

 

 

 

Figure 3.S1. Stacked bar plot of mock community dilution series faceted 

by extraction batch. 
The samples were separated into six different batches for DNA extraction. 

Each extraction batch and four mock community dilutions, with D02 being 

the most concentrated and D10 the most dilute. All eight expected taxa were 

present in every dilution and batch.  
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Figure 3.S2. Overview of sequencing reads by blood fraction.  
a) Box plot of sequencing reads for each fraction (n=15). b) Table with a 

summary of the mean and range of sequencing reads for each fraction.   

 
 
 
 
 
 

Table 3.S1. Summary of the p-values of beta diversity metrics.  
The microbial composition of the plasma, RBC, and BF samples were tested 

for associations with fraction and patient. No significant associations were 

detected.  

 Fraction Patient 

Weighted UNIFRAC 0.09 0.44 

Unweighted UNIFRAC 0.30 0.99 

Bray-Curtis 0.14 0.22 
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Figure 3.S3. DNase-treated samples had significantly different 

compositions than untreated samples.  
a) Table showing that the majority of DNase-treated samples were not 

sequenced successfully. b) NMDS plot of the bray-curtis index demonstrating 

the compositional differences between DNase-treated samples and untreated 

samples. c) Table of the beta diversity metrics showing significant associations 

between the weighted UNIFRAC and bray-curtis metrics and DNase-treated 

and untreated samples. 
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Figure 3.S4. Diversity plots of microbial DNA in blood fractions by disease 

status.  
a) Weighted UNIFRAC (p=0.01) and b) unweighted UNIFRAC principal 

coordinate analysis (PCoA) plots of all blood fractions colored by disease 

status (p=0.003). c) Box plots showing no difference in alpha diversity 

between disease status for all four alpha diversity indices. 
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Table 3.S2. Summary of the genera unique to blood, urine, or 

shared between both specimens for each individual.  

Patient 

ID 

Unique in 

Blood 

Unique in 

Urine 

Shared 

2 5 1 2 (Lactobacillus, Escherichia) 

3 23 6 2 (Prevotella, Streptococcus) 

4 13 12 0 

5 18 6 4 (Prevotella, Veillonella, 

Campylobacter, 

Porphyromonas) 

6 13 36 2 (Bacillus, Clostridium) 

9 21 8 3 (Negativicoccus, Aerococcus, 

Staphylococcus) 

11 19 2 1 (Staphylococcus) 

12 13 3 0 

13 30 1 5 (Bacillus, Listeria, 

Enterococcus, Lactobacillus, 

Staphylococcus) 

14 30 5 1 (Prevotella) 

15 23 39 1 (Bacillus) 

16 13 6 0 
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Table 3.S3. Summary of the p-values for beta diversity analysis 

including both urine and blood samples from our patient cohort.  
 

Fraction Patient 

Weighted 
UNIFRAC 

0.003 0.83 

Unweighted 
UNIFRAC 

0.001 0.97 

Bray-Curtis 0.001 0.63 
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Figure 3.S5. Stacked bar plots of plasma samples rarefied to 25, 50, 100, 

and 150 reads.  
Similar patterns were seen in the remaining fractions. Small compositional 

difference were seen between 50 and 150 reads, which justified using 50 reads 

for rarefaction to retain more samples.  
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4.1  Abstract 

16S rRNA gene sequencing is often used to study bacteria in mixed communities. 

To measure the abundance of specific bacteria more accurately, many researchers 

have started combining quantitative methods with sequencing data, called 

quantitative microbiome profiling (QMP). However, there is little guidance on how 

proposed QMP methods perform. We have benchmarked a QMP method from Ott 

et al. by evaluating flow cytometry, droplet-digital PCR, and qPCR with 16S rRNA 

gene sequencing data of an eight-fold dilution series of a mock microbial 

community.155 We established that flow cytometry and ddPCR were highly accurate 

and precise, while qPCR was not accurate nor precise, but had low variability. When 

combined with sequencing, we determined that qPCR should not be used with this 

QMP method with high-microbial biomass samples, and flow and ddPCR are 

appropriate for low-microbial biomass samples.  
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4.2  Introduction 

Culture-independent methods are changing the way scientists interrogate microbes 

in and on the human body. Specifically, targeted sequencing of a conserved 

bacterial gene, the 16S rRNA gene (16S), has led to growth in the microbiome field as 

researchers can now inexpensively study microbes with unknown culture 

conditions. Sequencing of the 16S rRNA gene also proves useful in samples with 

high amounts of host DNA contamination since it only targets prokaryotes. 16S 

sequencing is both inexpensive and high throughput, generating massive amounts 

of microbiome compositional information. Many researchers also use 16S 

sequencing to determine relative abundances of taxa in a community, which is the 

proportion of sequencing reads for a specific taxon relative to all taxa present in the 

sample. However relative abundance has questionable biological relevance.156  

Although advances in sequencing technologies have allowed for cheaper and 

more high-throughput data creation, data analysis methods have not advanced at 

the same rate. Majority of microbiome publications focus only on the most 

abundant microbes when evaluating either 16S or whole genome sequencing data.157 

16S sequencing has led to improvements in our understanding of the host-microbe 

interactions, however it has many limitations. These limitations include ill-defined 

biased towards certain taxa during both DNA extraction and amplification, as well as 

throughout sequencing.156,158 For example, bacteria differ in how easily they are able 

to by lysed as well as in how many copies of 16S they have, which can skew 

sequencing results.159 To overcome these limitation, quantitative microbiome 

profiling (QMP) – methods which combine sequencing and quantification of 16S 

copies or bacterial cells – have been proposed.155,160 
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While QMP is a desirable method to obtain more relevant data about the 

microbiome, incorporating measurements of the microbiota needs to be done so 

reliably. Recent QMP methods include correcting sequencing reads by 16S gene 

copy number and subsampling sequencing reads based on quantity of bacterial 

cells.155,160 As QMP is gaining popularity, we have benchmarked one method of 

combining sequencing and quantitative data proposed by Ott, et al. (2021).155 We use 

samples with a known composition and in known quantities to investigate if this 

QMP method is appropriate for both high- and low-microbial biomass samples, as 

well as the limitations of the methods. We have compared three quantitative 

modalities: quantitative PCR (qPCR), droplet-digital PCR (ddPCR), and flow 

cytometry (flow), and evaluated each method on precision, accuracy, and variability 

as modeled on a mock bacterial community dilution series. We also combined each 

of the three modalities independently with mock microbial dilution series 

sequencing data and evaluated how well they performed.  

 

4.3  Results 

Overview of Mock Microbial Dilution Series 

To understand how well QMP works on both high- and low-microbial biomass 

samples, we serially diluted a commercially available ZymoBIOMICS Microbial 

Community Standard. This mock community underwent eight rounds of serial 3-

fold dilutions with dilution zero (D0) being the undiluted and most concentrated 

sample, and dilution 7 (D7) as the most dilute sample (Figure 4.1a). The expected 

concentration of the mock community ranges from D7 (1.60x105 cells per mL or 

4.64x109 copies of 16S per mL), to D0 (1.05x1010 cells per mL or 3.05x105 copies of 
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16S per mL). The abundance of the eight genera of the mock community vary 

depending on measurement by genomic DNA, cell number, or copies of 16S rRNA 

gene (Figure 4.1b). 

 

 

 

Figure 4.1. Overview of the mock microbial community dilution series.  
a) Adapted from Karstens, et al (2019), a schematic showing the dilution series 

and naming of each sample. b) A table describing the theoretical composition 

of the mock community sample. The eight genera should be equally present 

by genomic DNA, however varies by cell number and 16S gene copies.  

 

 

Quantitative methods 

We first performed the quantitative methods of qPCR, ddPCR, and flow cytometry, 

then evaluated for precision and accuracy. The mock microbial dilution samples for 

ddPCR and qPCR samples were run in triplicate at 1:100 and 1:1000 dilutions due to 

the large variance in copy number by dilution and the machines detection ranges, 
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while the samples run on flow cytometry were in triplicate. Figure 4.2a displays an 

overview of the quantitative results compared to the expected bacterial cells per mL. 

We found that ddPCR and qPCR had low variation in their replicates but flow had 

high variation (Figure 4.2a-b). Our results demonstrate that both ddPCR and flow 

had high accuracy and high precision (Figure 4.2c-d), however qPCR struggled with 

both. Noticeably, flow had no change in accuracy regardless of dilution (Figure 

4.2d), however ddPCR had the best results with the middle dilutions, and worse 

accuracy on either end of the dilution series.  
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Figure 4.2. Overview of ddPCR (green), qPCR (orange), and flow (blue) 

measurements compared to expected (black) for average bacterial 

cells/mL at each dilution.  
a) Scatter plot demonstrating the variance in methods compared to expected. 

b) Summary of the log-fold of precision, log-fold change in precision, and 

variation of each method. c) Scatter plots of the precision and d) accuracy of 

each method by dilution. e) Schematic summarizing how well the quantitative 

methods did in terms of accuracy, precision, and variation.  
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Sequencing overview 

We next evaluated the composition of the mock microbial dilution series with 16S 

sequencing before combining with the quantitative methods to perform QMP. The 

eight dilutions from the mock microbial dilution series were sequenced and eight 

known genera identified in each sample (Figure 4.3a-b). The average reads of the 

mock community dilutions were 166578.9 per sample (interquartile range 152127.5, 

187004.8 reads). Interestingly, D4 has the most reads while D7 has the least (Figure 

4.3b). Despite having only eight expected genera from two phyla, we identified 11 

phyla and 73 genera. The inflated phyla and genera is most likely from 

contaminating sequences, which is typically seen as microbial biomass decreases.65  

 
 
 

 

Figure 4.3. Sequencing overview of the mock microbial dilution series.  
a) Relative abundance and b) raw read count stacked bar plots of the mock 

microbial dilution series. The expected genera are Firmicutes (purple) and 

Proteobacteria (blue).  

 



97 

 

Applying QMP 

To apply QMP, we combined quantitative measures of microbial load (ddPCR, flow, 

and qPCR) with the sequencing data. This involves rarefying the samples based on a 

ratio of the sample’s sequencing depth to its cell counts, and then multiplying by the 

cell counts.155  We then compared the resulting QMP abundance from each method 

to the expected cell counts (Figure 4.4). The composition of the qPCR samples at D0 

through D4 are distinct from the expected composition as well as the other 

methods. Overall, both flow and ddPCR looked similar to the expected at all 

concentrations of the mock community dilution series, however ddPCR had less 

Pseudomonas in D0 than flow and the expected.  
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Figure 4.4 Stacked bar plots of each quantitative method for each dilution 

from the mock microbial dilution series using QMP abundance.  

 

4.4  Discussion 

Our results demonstrated that ddPCR and flow performed better than qPCR with 

regards to accuracy and precision in measuring bacterial cells in a sample (Figure 

2b). Although flow cytometry did well with precision and accuracy, it is generally 

more expensive and takes certain expertise as compared to both ddPCR and qPCR. 

Many more labs have ddPCR and qPCR machines and running multiple replicates is 

feasible, whereas flow cytometers are often a shared resource between many labs.   
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We found that applying the QMP method was straightforward, however 

there were some issues with qPCR. As the qPCR bacterial cell counts for D0 were so 

high (Figure 4.2a), rarefying by the ratio of sequencing depth to cell counts meant 

we had to rarefy D0 to 0.60 sequencing reads. This doesn’t make biological sense, 

therefore we rarefied to one read, which also has issues. We believe this means 

researchers should be careful about using this specific QMP method and qPCR 

when studying high-microbial biomass samples.   

Many different QMP methods have been published since this work began. 

Some QMP methods rely on knowing what will be in your sample – something 

which is not always possible when surveying a less characterized microbiome, like 

the urinary microbiome.156,161,162 Ideally, QMP methods would be able to be applied 

to any sample set and not require that prior knowledge. In the future, we would like 

to benchmark these newer methods on the mock microbial dilution series, as well as 

apply them to biological samples. Specifically, future work includes applying these 

methods to high- and low-microbial biomass biological samples, such as fecal and 

urine samples.  

 

4.5  Methods 

DNA Extraction 

A commercially available mock microbial community (Zymo, Cat# D6300) was 

serially diluted per previous research prior to DNA extraction.65  The mock 

community has 8 bacterial species (Pseudomonas aeruginosa, Escherichia coli, Salmonella 

enterica, Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria 

monocytogenes, and Bacillus subtilis) and was diluted with microbial DNA-free water 
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(Qiagen) in 8 rounds (D0-D7) of a serial 3-fold dilution. Microbial-free water 

(Qiagen) was used as negative controls and processed alongside mock community 

samples. Microbial DNA was extracted using the QiAMP DNA mini kit (Qiagen).  

 

Library Preparation and Sequencing 

The extracted DNA was quantified using a NanoDrop spectrophotometer (Thermo 

Fisher Scientific, USA) prior to PCR amplification. Bacterial DNA was amplified by 

PCR with Golay primers which target the V4 region of 16S rRNA genes (Forward: 

GTGCCAGCMGCCGCGGTAA; Reverse: GGACTACHVGGGTWTCTAAT).64 

Template DNA was amplified in triplicate using the GoTaq Hot Start polymerase kit 

(Promega, USA). Amplified DNA from the mock community and negative controls 

were submitted for 16S rRNA gene sequencing on an Illumina MiSeq at Oregon 

State University.  

 

Droplet-Digital PCR Protocol 

Each PCR reaction was prepared in a PCR hood in a dedicated room for ddPCR. 

Each dilution of the mock community was diluted either 1:1000 or 1:100 in 

microbial-free water (Qiagen).  In total, the ddPCR reaction mixture used was 22 µL 

containing primers, template, and QX200 ddPCR EvaGreen Supermix (Bio-Rad). 

The QX200 Digital PCR System with Auto Droplet Generator and Reader (Biorad) 

was used. The PCR protocol uses a 2C/second ramp rate and starts with a 10-minute 

95C enzyme activation step followed by 40 cycles of a two-step protocol (94C for 30 

seconds and 59C for 1 minute), and lastly cycles up to 98C for 10 minutes. V6 
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primers from the Sfanos lab at Hopkins were used (Forward: 

CAACGCGWRGAACCTTACC; Reverse: CRRCACGAGCTGACGAC). 

 

Quantitative PCR Protocol 

Previously extracted DNA from the mock community dilution series were used 

along with PerfeCTa SYBR Green SuperMix (QuantaBio) and measured in triplicate. 

Forward (ACTCCTACGGGAGGCAGCAGT) and reverse 

(ATTACCGCGGCTGCTGGC) primers targeting the 16S rRNA gene were used.163 

Triplicates of each sample were run on the ViiA 7 (Applied Biosystems) and 

resulting data was generated and analyzed using the QuantStudio(TM) Real-Time 

PCR Software. Denaturing, annealing, extension temperatures and time optimized 

for the amplification process is shown in Table 4.1.  

 

Table 4.1. A table describing the qPCR amplification settings. 

   Temperature   

(°C)  

Time 

(minutes)   

   

   

Ramp          95   5m      

Denature  95   45s   40 

cycles   Annealing  60   30s   

Extension  72   45s   

Final   72   6m   

Rest   8   Infinity   
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Flow Cytometry 

Flow cytometry was used to count whole bacterial cells from mock microbial 

dilution samples prior to DNA extraction. These samples were stained with SYTO 

BC and a known concentration of beads was added to the sample. The mixture is 

then applied to the flow cytometer (Cytoflex). Each sample was run for 30 seconds 

and a threshold of 1000 events was applied. Fluorescence events were monitored 

using the FL1 488-1/640-1 nm optical detector. To exclude background events and 

obtain an accurate microbial cell count, we evaluated the fluorescence events using 

the forward–sideways density plot. Instrument and gating settings were identical for 

all samples. 

 

Bioinformatics 

Precision, accuracy, and variation were calculated with the equations in Figure 4.5. 

All analysis was performed in R with the sequencing data agglomerated at the genus 

level.  
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Figure 4.5. Equations for accuracy, precision, and variation.  

 

 





 

 

Chapter 5. Discussion 

5.1  Summary and Key Findings 

Prostate disease is ubiquitous in aging men.5,164 Prostate disease includes BPH, PC, 

and prostatitis, and these diseases share many symptoms such as LUTS and blood in 

urine.4,6,18 There have been efforts to develop better prostate disease tests, including 

interrogating the composition of bacteria in urine and in blood. In the three studies 

above, we evaluated the urinary microbiome and its relationships with LUTS and 

prostate disease in a large cohort of men, evaluated microbial DNA in fractions of 

blood of men with PC, and benchmarked microbiome analysis methods.  

The studies in which we examined microbes in urine and blood in the 

context of prostate disease have yielded several main findings. Starting with the 

urinary microbiome (Chapter 2) the findings are as follows: 1) The composition of 

the urinary microbiome is associated with BPH, BMI, and age, 2) Specifically, 

Dialister is more prevalent in the urinary microbiomes of obese men than 

overweight and healthy men, and 3) LUTS symptoms are not only dependent on 

BMI and the diversity of the urinary microbiome, but also whether the individual 

has BPH.  

In our study of circulating microbial DNA in men with prostate cancer 

(Chapter 3), we discovered: 1) The presence of cell-free circulating microbial DNA, 

2.) RBCs have the highest microbial diversity of the blood fractions, 3) There are 

prostate-disease associated microbial signatures in blood, and 4) There is overlap 

between the bacteria found in urine and in blood.  
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We believe the urinary microbiome and microbial DNA in blood both have 

the potential to be informative with respect to some prostate diseases. In our urinary 

microbiome study, 22.1% of men had a history of prostatitis, and rates of prostatitis 

were higher in the men with more severe LUTS (Table 2.1). Our study, however, 

was not able to detect any association with the urinary microbiome. For BPH, 

almost half of the participants had BPH with significantly more men in the more 

severe LUTS having a BPH diagnosis. As mentioned earlier, we determined the 

urinary microbiome diversity to be associated with BPH and identified a complex 

association with LUTS and BMI.  Only 13.7% of men in the urinary microbiome 

study had a history of PC, which could explain why no associations were identified. 

We did however establish circulating microbial DNA compositional differences in 

men with and without PC. So while associations were discovered between the 

human microbiome and both BPH and PC, more work is needed to determine if the 

same is true for prostatitis.  

 

Interpretation of Results 

The DNase-treated samples were invaluable for getting closer to addressing where 

microbial DNA is in blood (Figure 3.2b), and we did not expect the majority of the 

microbial DNA to be cell-free. One of the many ways the innate immune system 

responds to infectious agent is by sensing microbial DNA and degrading it.165 Due to 

this, we had believed that the immune system would have “cleaned up” the 

extracellular DNA. Instead, microbial DNA being cell-free could indicate that these 

bacteria recently entered circulation and the immune system had not yet activated 

or had a chance to degrade the microbial DNA. Another potential explanation is 

there is immune dysregulation in the men with disease, however we did not detect 
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differences in copies of 16S by disease status.  Although we were able to measure 

copies of 16S for all DNase-treated samples, we did not submit all samples for 

sequencing and DNase samples often failed to generate reads. This limited the 

conclusions we could make regarding the composition of these samples.  

It's clear from our results that BMI has a strong association and potentially 

impacts the urinary microbiome composition in men. Specifically, we 

demonstrated a complex relationship between BMI, BPH, irritative and obstructive 

LUTS, and alpha diversity of the urinary microbiome (Figure 2.3e-f). Our results 

show that within the healthy weight and overweight populations, presence of BPH 

impacts the trend direction for the irritative and obstructive symptoms with respect 

to alpha diversity. However, BPH no longer has that effect within the obese 

population. This could be because at higher BMIs, the weight has a larger impact on 

the composition of the urinary microbiome than the effect of the enlarged prostate 

from BPH. Unfortunately, very few studies have examined the relationship of BMI 

with the male urinary microbiome composition, however BMI has been 

documented to be associated with changes in the gut and oral microbiomes.115,116,166  

With respect to Dialister, we postulate that there may be metabolites in the 

bladders of obese men that Dialister utilizes, like succinate. Dialister is known as a 

“succinate-consumer” and it uses succinate as nutrients as opposed to 

carbohydrates.167,168  Succinate is a metabolite which is associated with impaired 

metabolism and has been found elevated in the circulation of obese individuals.169 

Succinate has also been found in urine under conditions of stress and 

inflammation.170  Interestingly, one study found the bladder to be a primary target 

of succinate due to the amount of succinate receptors in the urothelial cells.171 

Another study using rats discovered that in rats with hypertension, succinate 

decreased bladder function and led to LUTS, however the mechanism is unclear.172 
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We believe succinate should be investigated further as potentially playing a role in 

altering the urinary microbiome composition especially in men with metabolic 

disorders.  

We did identify Dialister in the blood and matched urine sample of one 

patient who was diagnosed with high-grade PC (Chapter 3). Interestingly, Dialister 

was found in a DNase-treated buffy coat sample meaning it is most likely 

intracellular DNA, however Dialister was not present in the non-DNase sample 

(Figure 3.5c, patient 4). This patient had a BMI of 25.3 at time of sample collection, 

which is technically overweight, however we have no other clinical information 

regarding the possibility of a metabolic disorder.   

We were not surprised to find there was overlap between the bacteria found 

in the blood and the bacteria found in urine of matched patients, because the 

prostate shares half of its blood supply with the bladder.173 We sequenced matched 

urine samples for 14 out of 15 men and found the most common shared genera were 

Lactobacillus, Prevotella, Bacillus, and Staphylococcus. Additionally, we found that 11 of 

the 15 shared genera between blood and urine is from the Firmicutes phyla, and 

Firmicutes was the most abundant overlapping phyla regardless of disease status. 

Cavaretta et al. found Firmicutes to be the second most abundant phylum in 

prostate tissue,174 so one explanation could be that the bacteria are coming from the 

bladder and colonizing the prostate.  

 

5.2  Ongoing Technical Considerations 

Many of the most common microbiome analysis methods have been optimized for 

high microbial biomass samples, such as stool. As discussed in Chapter 4, often what 
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works well for high microbial biomass samples is not appropriate for low microbial 

biomass samples. Overall, there is no clear guidance on how best to handle low 

microbial biomass samples and associated contamination. There has been effort 

into publishing the most common contaminants introduced by the “kitome”,175,176 

and new computational methods of identifying contaminants,177,178 however 

contamination is seemingly personalized to each laboratory environment and 

changes over time.175,179 

Despite our many positive and negative controls, we experienced challenges 

with contamination in our work. Namely, a portion of the reads generated from 

sequencing our blood samples were from marine bacteria and these bacteria were 

not always present in our controls. Anecdotally, we have however discovered that 

using full-length 16S sequencing on our low microbial biomass samples decreases 

the overall contaminants in our samples and often our negative controls will fail to 

generate reads. Part of the pre-processing of full-length sequencing data is to 

remove any sequences below 1500 bps – or the length of the 16S gene – therefore 

we believe the majority of contaminant DNA is fragmented. We believe using full-

length 16S sequencing could be the way forward for low microbial biomass samples, 

however full-length may only be appropriate for sample types in which bacteria is 

intact and will thus have long DNA sequences for successful 16S full-length 

sequencing.  

Although the benefit of using full-length 16S sequencing is handling of 

contamination, we had quality issues with our blood fraction samples (Chapter 3). 

We noticed significant amounts of short reads (<400 bps) generated from the full-

length 16S sequencing of blood fractions, and very few short reads from our mock 

microbial dilution series. The DNA from the mock microbial dilution series is 

isolated from intact microbial cells which could explain the discrepancy with 
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sequencing read length. We have found that the short DNA sequences do 

correspond to known microbes. We hypothesize the short sequencing reads in the 

blood fractions indicate the microbial DNA in blood is fragmented and there may 

not be intact microbes. More work is needed to investigate the short sequencing 

reads and if they are from human-associated microbes.    

Additional issues in the microbiome field to consider is the reliance on 

taxonomic databases, which can cause many different problems. Taxonomic 

databases are often updated every few years, which while helpful, can cause issues 

because taxonomic names are changing constantly. For example, I used an updated 

version of the SILVA database (138.1) and was shocked when I could not find 

Lactobacillus in my positive controls, when in fact, Lactobacillus had been renamed 

Lactobacillaceae in this newer version of the database. Not only does this cause an 

issue for reproducibility, but also for researching a specific microbe by name across 

many years of studies.  

  

5.3  Next Steps and Future Directions 

First, we will discuss specific next steps for our projects using urine and blood to 

better understand aspects of prostate disease. Then we will mention exciting future 

directions for the field.  

 

Specific Next Steps 

In our studies, we examined the urinary microbiome and microbial DNA in blood 

in the context of prostate disease. Although associations were found with BPH and 
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PC, there was not enough men in our urinary microbiome study cohort who had 

prostatitis to draw conclusions on associations with the urinary microbiome 

(Chapter 2). It would be beneficial to have an even larger cohort for evaluating 

associations with prostatitis and/or PC, especially given the heterogeneity of the 

urinary microbiome.  Fortunately, there are at least one thousand more urine 

samples from the men of the MrOS cohort (Chapter 2) which have been collected at 

many time points and there is data available on if these men went on to eventually 

develop PC. This cohort of men has been heavily genotyped and phenotyped, 

which includes medication and diet data – neither of which have been explored to 

have an impact on the urinary microbiome. Prior work has demonstrated diet 

impacts risk of developing urinary tract infections, therefore diet is most likely an 

important covariate to consider.180 We believe using full-length 16S sequencing on 

these samples would allow us to tackle a few goals: 1) Determine urinary 

microbiome stability over time – important for putting previous work in context, 2) 

test associations between urinary microbiome composition and prostatitis, 3) Begin 

to unravel the complex relationships between BPH, BMI, LUTS, and urinary 

microbiome diversity.  

The next steps for the interrogation of circulating microbial DNA (Chapter 3) 

would be to first explore the short sequencing reads mentioned previously. This 

would include evaluating each of the controls using only long read (>1500 bps) 

versus only short reads (<1500) and observing how the microbial composition 

changes. We would repeat this for all samples for all fractions. It will also involve a 

literature review of the microbes assigned to the short sequencing reads and if they 

are known to be human associated. There is potential that these short sequencing 

reads will change our interpretation of the data, so pending those results, we would 

scale up our blood fraction study. Specifically, more investigation is needed into the 
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RBC fraction and how it has the highest alpha diversity of the other fractions, and 

how this could provide the most information about microbial DNA in blood.  

Future Directions 

The landscape for human microbiome research in prostate disease is vast. We are 

particularly excited about the work determining the impact of other microbial 

members in circulation and the urogenital tract, such as fungus and phage.181,182 The 

mycobiome has yet to be charactered in the bladder and efforts to characterize 

phage are underway.183 Another exciting direction for microbiome research is 

exploring the role hormones play in both affecting microbial communities and 

disease. For instance, higher levels of testosterone, which is known to drive PC,184 

have been associated with abundance of Firmicutes in the gut microbiome,185  and 

microbes in the gut have been found to produce androgens and facilitate the 

development of treatment resistant-PC.186 There have already been studies of the 

excreted androgens through the urine with respect to PC,187 however no research 

into the effect on the urinary microbiome.  

Thinking more broadly, we believe we can also look to the most recent gut 

microbiome research for new ways to interrogate low microbial biomass samples. 

Studies on the gut microbiome have been moving towards functional studies and 

microbiome genetics. In contrast, many of the studies on the urinary microbiome 

and circulating microbial DNA have been association-based, and better 

understanding of the functions of microbial communities is needed. We believe 

moving towards metagenomic sequencing and combining that data with 

metabolomics holds great promise to move the low microbial biomass field 

forward.  
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In conclusion, these lesser studied microbial niches in the human body are a 

rich area for exploration in their interactions with prostate health. We feel the 

studies presented have identified key elements for consideration in study design, 

sample processing, and data handling as well as generated new areas of focus. We 

look forward to continued exploration in this field and to see how others build on 

this body of knowledge. 
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