
Automatic Speech Recognition for Small

Data and Its Application on Cognitive

Assessment

Liu Chen

M. S., Oregon Health & Science University, 2016

Presented to the

within the Oregon Health & Science University

School of Medicine

in partial fulfillment of

the requirements for the degree

Doctor of Philosophy

in

Computer Science & Engineering

November 2023

Copyright © 2023 Liu Chen

All rights reserved

ii

School of Medicine

Oregon Health & Science University

CERTIFICATE OF APPROVAL

This is to certify that the Ph. D. dissertation of

Liu Chen

has been approved.

Meysam Asgari, Thesis Advisor

Associate Professor

Hiroko Dodge

Professor

Xubo Song

Professor

Steven Bedrick

Associate Professor

Peter Heeman

Associate Professor

iii

Acknowledgements

I would like to express my deepest appreciation to my advisor, Meysam Asgari, for his

guidance during my Ph.D. degree. His support and encouragement have been invaluable

to me.

I would like to thank my dissertation advisor committee — Hiroko Dodge, Xubo

Song, Peter Heeman, and Steven Bedrick — for their invaluable patience and insightful

feedback. I would also like to thank Peter Heeman for countless hours of helping me

revise my dissertation. I would like to thank current and former faculties of Center for

Spoken Language Understanding for their important input and motivation. Many thanks

to Patricia Dickerson for her great administrative support.

I would like to thank Tuan Dinh and Zicheng Ren for all their support and help.

I would like to thank Jessie Walder-Biesanz, Hellen Rogway, and Jodi Walder for their

kindness and support since I came to America. I would like to thank my parents and my

cousin for their unconditional support. I would like to thank all people who helped me

see the world from a different perspective.

iv

Contents

Acknowledgements . iv

Abstract . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Dissertation Problem and Statement . 3

1.3 Contribution Overview . 5

2 Background . 8

2.1 Deep Neural Network . 9

2.2 Seq-to-seq DNN . 10

2.2.1 Autoregressive DNN . 11

2.2.2 Non-autoregressive DNN . 12

2.3 Neural Net Layers . 13

2.3.1 Convolution Layers . 13

2.3.2 Gated Recurrent Unit . 15

2.3.3 Attention Mechanism . 17

2.3.4 The rectified linear unit . 21

2.3.5 Gaussian Error Linear Units . 21

2.3.6 Batch Normalization . 22

2.3.7 Layer Normalization . 23

2.4 Seq-to-seq DNN Architectures . 24

2.4.1 CNN-RNN architecture . 24

2.4.2 Transformers . 25

2.5 DNN Learning Methods . 28

2.5.1 Supervised learning . 28

2.5.2 Contrastive Learning . 28

2.5.3 Weakly-supervised learning . 29

2.6 Loss Functions . 30

2.6.1 Connectionist Temporal Classification 30

v

2.6.2 Cross Entropy . 32

2.7 DNN Transfer Learning . 32

2.8 Data Representation for ASR . 33

2.8.1 Audio Representations . 34

2.8.2 Tokenization . 36

2.9 Seq-to-seq DNN-based ASR Systems . 37

2.9.1 DeepSpeech2 . 38

2.9.2 Wav2Vec 2.0 . 40

2.9.3 Whisper . 43

2.10 Mild Cognitive Impairment . 47

3 Using ASR in Feature Extraction for Cognitive assessment 49

3.1 Introduction . 49

3.2 Background . 50

3.2.1 Verbal Fluency Tests . 51

3.2.2 Semantic Retrieval Process . 51

3.2.3 Optimal Searching Strategy . 53

3.3 Features for Characterizing Verbal Responses 55

3.3.1 Addional Count-based Features . 55

3.3.2 Time-based Features . 56

3.3.3 Feature Selection . 57

3.4 Training Pipeline . 58

3.4.1 Forced Alignment . 58

3.4.2 Normalization . 60

3.4.3 Machine Learning . 61

3.5 Experiment . 62

3.5.1 Data . 62

3.5.2 Performance Criteria . 63

3.5.3 Cross-validation on the Imbalanced Dataset 64

3.6 Results . 64

3.6.1 Statistical Analysis . 65

3.6.2 Classification Results . 66

3.6.3 Impact of the Semantic Threshold 69

3.7 Discussion . 69

4 Refining Automatic Speech Recognition System for Older Adults . . . 72

4.1 Introduction . 72

4.2 Background . 74

vi

4.3 Conditional-independent Attention Mechanism 74

4.3.1 Manual Attention Mechanism . 76

4.3.2 Learnable Attention Mechanism . 77

4.4 Data . 78

4.4.1 Preprocess . 79

4.4.2 Data Splitting . 79

4.5 Experiment . 79

4.5.1 Manual Attention Layer . 80

4.5.2 Learnable Attention Layer . 81

4.6 Conclusion . 82

5 An Efficient Architecture for Small Datasets 83

5.1 Introduction . 83

5.2 Background . 85

5.2.1 Wav2Vec 2.0 . 85

5.2.2 Cross-block Parameter Sharing . 86

5.2.3 Model Interpretation . 87

5.3 Attention Visualization and Analysis . 89

5.3.1 Using Local Attention to Avoid Abnormal Pattern 90

5.3.2 Parameter Sharing Based on Patterns 92

5.4 Experiment Setup . 92

5.4.1 Dataset . 92

5.4.2 Training . 93

5.4.3 Decoding and evaluation . 93

5.5 Experiments and Results . 93

5.5.1 Local Attention . 93

5.5.2 Parameter Sharing . 96

5.5.3 Combining Both Modifications . 96

5.6 Conclusions . 97

6 Adapt a Large ASR for Transcribing fillers 98

6.1 Introduction . 98

6.2 Background . 100

6.2.1 Whisper . 100

6.2.2 Speaker-wise Bootstrap Estimation 102

6.3 Data . 102

6.3.1 Data Process . 103

6.4 Evaluation Matrix . 104

vii

6.5 Preliminary Analyses on Transcribing Fillers 106

6.6 Does the encoder cause the problem? . 108

6.7 Evaluate various fine-tuning strategies . 110

6.8 Conclusion . 113

7 Conclusion And Future Work .114

A Research Summary .118

Bibliography .120

viii

List of Tables

2.1 Configuration of DeepSpeech2’s Conv blocks. 38

3.1 Count-based features that have been well-studied by various researchers. . . 55

3.2 Baseline characteristics of MCI and NC. The Kolmogorov–Smirnov test was

used to calculate p-values . 63

3.3 Kolmogorov–Smirnov test results of features that use ESA for semantic

representation. 65

3.4 Classification results using selected features (mean over 500 leave-pair-out

spatial cross-validation repeats. 68

5.1 Effectiveness of applying local attention to blocks 2 through 12. The model

name is formed as [domain attention type] B[block ID range] where the

attention type can only be either local multi-head self-attention block (L)

or global multi-head self-attention block (G). The block ID range indicates

the blocks that leverage the domain attention type. We always apply global

multi-head self-attention block to unspecified blocks. 95

5.2 Impact of local attention’s window size. We adopt similar naming rule as

Table 5.1, except add the window size at the end. 95

5.3 Effectiveness of parameter sharing and the benefit of modifying the Wav2Vec

2.0 architecture with both local attention and parameter sharing. We adopt

a similar naming rule as Table 5.1, except the second part starts as BS

which stands for blocks[B] that share[S] parameters. The last column is

the model size. 95

6.1 The parameter size of Whisper models that are used in this chapter. 101

6.2 Whisper ASR models’ performances on AMIIHM-en-valid. 107

6.3 Whisper ASR models’ performances on ASCEND-en-test. 107

6.4 Whisper ASR models’ performances on ASCEND-zh-test. 107

6.5 The performance of whisper-large-v1 on synthesized/experimental and con-

trolled testing sets. 110

6.6 Training configuration for fine-tune whisper-large-v1. 110

ix

6.7 Comparing tuned models across multiple testing sets. 111

x

List of Figures

1.1 The general pipeline of an automatic cognitive assessment system. The

audio recordings from various cognitive tests are first transcribed by an

ASR. Then, the audio and transcribed text are passed to multiple feature

extractors and each extractor extracts features for a specific cognitive test.

A classification module that takes the extracted features as input and makes

the assessment. 4

2.1 An example of DNN . 11

2.2 The general structure of autoregressive and non-autoregressive DNN. “SOT”

and “EOT” refer to the dummy start and end symbols. 12

2.3 A example of 2d convolution operation with 3 input channels and 2 output

channels. Picture courtesy: [3] . 14

2.4 An example of the unfolded recurrent mechanism process. A single unit,

A, iteratively processes the input xi and si−1. Picture courtesy: [1] 15

2.5 An example of the bidirectional recurrent mechanism process. Two RNN

units, A and A′, process the same input sequence x0, . . . , xi from opposite

directions. yi is obtained through concatenating both units’ outputs of xi.

Picture courtesy: [1] . 16

2.6 The attention region difference between global attention (full n2 attention)

and local attention (sliding window attention). The x-axis is the index of

queries and the y-axis is the index of keys. Picture courtesy: [20] 20

2.7 This graph shows how the eleinput (i.e., x-axis) is transformed into the

eleoutput (i.e., y-axis) by ReLU [110]. 21

2.8 This graph shows how GeLU [58] transforms the eleinput (i.e., x-axis) to the

eleoutput (i.e., y-axis). 22

2.9 The general architecture of CNN-RNN DNN for ASR task. Picture cour-

tesy: [91] . 24

2.10 The general architecture of autoregressive Transformer. Picture courtesy: [155] 26

2.11 The general architecture of non-autoregressive Transformer. We follow sim-

ilar color codes as Vaswani et al. [155] . 27

xi

2.12 Examples of a waveform and two spectrograms with different window sizes.

Picture courtesy: [121] . 35

2.13 The architecture of DeepSpeech2 and the blocks in detail. 38

2.14 The general architecture of Wav2Vec 2.0 and its training process. 40

2.15 The detail architecture of Conv1d block and Transformer block. 41

2.16 The general architecture of Whisper and the text formatting rules. Picture

courtesy: [122] . 43

2.17 The detailed architecture of Conv1d block and Transformer encoder/decoder

blocks. 44

2.18 Information of pre-trained models offered by Radford et al. [122]. English-

only models refer to models trained with the English-only subset. Picture

courtesy: [122] . 47

3.1 In this example, we set the threshold for this subject to be 0.05. Based on

the threshold, there are two switching positions, which are marked as red

arrows. The SD of the first switching is 0.7 which is the time difference

between falcon and cat. The ICRT of the first switching is 0.2 which is the

time difference between bat and falcon. So the OSR of the first switch is

0.5 which is the absolute difference between the SD and ICRT that we just

calculated. 54

3.2 Diagram of the computational framework including to distinguish partici-

pants with MCI from those with NC based on audio recording and tran-

scription of their responses to an AF test. The first module of this plot,

Feature Representation module (shown by the black box), represents the

characteristics of the response using Time-based and Count-based features.

The second module, Machine Learning module (shown by the green box),

predicts the participant’s cognition status (MCI or NC). 59

3.3 Probability distribution of features (y-axis) selected by the feature selection

algorithm. The dynamic range of features has been normalized according

to the RobustScaler approach. The dotted line from left to right are 25%

quantile, 50% quantile and 75% quantile. 66

3.4 The x-axis is the different threshold setting (xx% of mean cosine similarity

of an individual’s answer). The y-axis is the ROC AUC score. 68

4.1 The left graph is the architecture of DeepSpeech2 which is our base model.

The right graph shows the modified DeepSpeech2 architecture to leverage

intermediate outputs. Each box contains the block’s nickname and type. . . 75

xii

4.2 The left graph shows the backbone of the general attention mechanism.

The right graph is the backbone of our conditional-independent attention

mechanism. 76

4.3 Model performance for manual attention settings. The red dotted line is

the WER of the standard weight transfer learning model (26.8%). The red

solid line is WER of the base model (39.42%). 80

4.4 Performance on learnable attention settings. The red dotted line is WER

of the standard weight transfer learning model. 81

5.1 It shows the model architecture of Wav2Vec 2.0 and its training process.

We use green to indicate there are learnable weights in these subnetworks

and adopt gray to mark processing steps. And a purple ellipse represents a

loss function. 86

5.2 The five patterns found by Kovaleva, Olga, et al. [79]. Figure taken from

their paper. 88

5.3 The heatmaps of 6 randomly selected audio inputs. A heatmap’s x-axis is

K’s timestep and y-axis is Q’s. Block 1 is the bottom MSAB in Figure 5.1

and Block 12 is the top one. While the duration of these recordings are

different, we present all heatmaps with the same figure size in order to show

the similarity of attention patterns. 90

6.1 The general architecture of Whisper ASR models. The details of the train-

ing method including text formatting and training configurations are pre-

sented in Section 2.9.3. Picture courtesy: [122]. 101

6.2 A example to compare the difference between WER and FER. The x-axis

presents the groundtruth transcription with the word index and the y-axis

presents the ASR transcription. An ASR can make three types of errors:

transcribes non-existent words (i.e., ins), does not transcribe existent words

(i.e., del), and mistranscribes words (i.e., sub). “OK” refers to correct

transcriptions. 105

xiii

Abstract

Automatic Speech Recognition for Small Data and Its Application on

Cognitive Assessment

Liu Chen

Doctor of Philosophy

within the Oregon Health & Science University

School of Medicine

November 2023

Thesis Advisor: Meysam Asgari

Automatic speech recognition (ASR) is an essential component for building automatic

cognitive assessment systems designed to monitor older adults’ cognitive status. While, in

the ASR field, remarkable achievements have been reported on publicly available academic

datasets, there are two under-explored problems that are important to building automatic

cognitive assessment systems: ASRs’ performance on aging voice and accuracy in tran-

scribing keywords. Both problems are important to deliver high-quality transcriptions for

assessment purposes.

In this dissertation, we focus on developing transfer learning techniques/methods to

build ASRs that perform well on older adults with possible cognitive impairment. Firstly,

we present a transfer learning technique to improve an open-source ASR’s performance

on older adults (80+ years old) with limited data (i.e., about 10 hours of audio record-

ings). We demonstrate the aging voice dramatically impacts an ASR’s performance and

adapting the ASR with older adults’ recording data through fine-tuning can improve the

performance. We propose a transfer learning technique that utilizes intermediate outputs

xiv

to increase the fine-tuning efficiency with limited training data. This technique achieves

better performance than the standard fine-tuning.

Secondly, we refine the DNN architecture of Wav2Vec 2.0 in order to improve the

training efficiency on a small training dataset (i.e., about 100 hours of recorded audio),

and a small DNN architecture (i.e., having a small number of parameters). We refine

the DNN architecture with the local attention mechanism and parameter sharing. As a

preliminary study, we compare the training efficiency difference between our refined DNN

architecture and the original architecture through comparing their models that are trained

on a small academic dataset. Our model performs 16% better than the other.

Thirdly, we propose a transfer learning strategy that can effectively resolve the not-

transcribe-filler problem while causing minor negative side effects to Whipser ASRs which

are the state-of-the-art DNN-based ASRs. Evaluating models on English and Chinese

testing datasets, we show that both large training datasets and scaling the model size

of ASRs do not guarantee these models transcribe the keyword accurately. Analyzing

the Whisper-large-v1, we show that the acoustic encoder cannot generate general hidden

representations for fillers. Moreover, we show that tuning the encoder not only increases

the transcription accuracy of fillers on in-domain and out-of-domain testing sets but also

moderately impacts the model’s native ability of multilingual transcription.

In addition to improving ASRs when there is training data available, we also encounter

a project that does not have any training data available. We utilize ASR as a tool to extract

handcrafted time-based features from the animal fluency test to improve the accuracy

of cognitive assessment. Combining count-based features and our proposed time-based

features achieves the best performance in distinguishing older people with mild cognitive

impairment from those with normal cognition.

xv

Chapter 1

Introduction

1.1 Motivation

Before the 2010s, the dominant ASR systems were based on representing speech sig-

nals using Gaussian Mixture Models (GMMs) that are based on Hidden Markov Models

(HMMs) [112]. Such systems, which are called the GMM-HMM ASRs, are based on the

fact that a speech signal can be considered as a piecewise stationary signal which can be

modeled by a GMM [112] and HMM is used to model the temporal dependencies. In the

early 2010s, research demonstrated that the benefit of replacing GMMs with DNNs in

HMM-based ASR systems increased with the size of the training dataset [112]. The DNN-

HMM ASR achieved a one-third error rate reduction on the Switchboard conversational

transcription task over the state-of-the-art GMM-HMM ASRs [134].

In the middle 2010s, Hannun et al. [57] developed a carefully engineered DNN-based

ASR, called DeepSpeech, that utilized DNNs to also model the temporal dependencies

and this ASR outperformed various HMM-based ASRs including both GMM-HMM and

DNN-HMM ASRs [57]. Amodei et al. [7] further improved this DNN-based ASR by focus-

ing on three components: the DNN architecture, size of training data, and computation

power, and named the improved DNN DeepSpeech2. Through applying distributed train-

ing across 16 Nvidia GPUs and increasing the training data to 12,000 hours, Amodei et

al. demonstrated continuing improvements by increasing the training data and parameter

size of the DNN.

Since then, in the ASR field, the benefits of increasing computational power, the size

of the DNN, and training data have been constantly reported. In the 2020s, Baevski et

1

2

al. [17] proposed a training method that used unlabeled datasets to train a DNN and

chose a DNN architecture that was designed to deploy distributed training across multiple

GPUs. Through applying distributed training across 128 GPUs and scaling to 53,000

hours of unlabeled training data, Baevski’s best ASR, which is named Wav2Vec 2.0 Large,

achieved state-of-the-art performance on testing sets of Librispeech which is a widely used

academic dataset in the ASR field. Various methods based on Wav2vec 2.0 were proposed

and further improved the performance on the same testing sets. On the other hand,

Radford et al. [122] put their focus on improving the robustness of DNN-based ASRs (i.e.,

reasonable performance across multiple testing sets). Radford scaled the labeled training

data to 680,000 hours through combining multiple types of data including transcription

datasets from 97 languages and translation datasets. Compared with the best Wav2vec

2.0 ASR, the best Whisper ASR achieved an average relative error reduction of 55.2%

when evaluated on 12 academic speech recognition datasets.

Even with such remarkable achievements, there are a number of deficits of current

systems. Two problems explored in this dissertation are: the ASR’s performance on older

adults with possible cognitive impairment and the performance on certain types of words

(e.g., fillers, repeated words). Nowadays, researchers report their ASR’s performance on

academic testing sets whose audio recordings mostly belong to healthy working adults.

Older adults’ vocal characteristics are different from those adults. Age-related speech

deterioration begins around 60 years old [104], resulting in significantly different voice

characteristics in comparison to the younger generation [88]. Moreover, the plausible in-

fluence of impaired cognitive functioning on acoustic features of mild cognitive impairment

(MCI) subjects [126] may serve as an additional source of acoustical mismatch. Feng et

al. [40] showed that an ASR performance varies among different age groups: teenagers’

speech is the best recognized and the performance on older adults (over 65 years old) is

worse than the former. Moreover, they demonstrated that the articulation changes among

older adults, especially those over 75 years old, negatively impact their ASR’s perfor-

mance [40]. Wang et al. [159] also reported a similar observation. In the same recording

environment, an ASR performs noticeably better on recognizing adults’ recordings than

recordings from older adults with possible cognitive impairment.

3

A second under-explored problem is that state-of-the-art ASRs perform badly at tran-

scribing disfluencies, especially filler, and the word error rate cannot correctly reveal an

ASR’s performance on transcribing those words. For example, let’s assume that we have

a testing set that has 1000 recordings/utterances where each utterance has 10 words and

a 50% chance it has a filler. If an ASR does not transcribe any filler and makes no other

errors, the error rate of this ASR on this testing set is 5%. We can consider the ASR

performs well on this testing set because its error rate is low and it makes no errors that

change any utterance’s semantic meaning. But, since no fillers are transcribed, researchers

cannot use the ASR’s transcriptions to study anything related to fillers.

ASRs in automatic cognitive assessment systems: An ASR is essential to an

automatic cognitive assessment system that monitors older adults’ cognitive progress and

can also contribute to improving assessment accuracy. While cognitive assessment is

important to help older adults prepare themself for potential cognitive impairment (e.g.,

mild cognitive impairment, Alzheimer’s disease) that may be treatable for a period of time,

the manual assessment only covers parts of the older population. Lang et al. [84] showed

that the undetected dementia population rate in the U.S. is 61%. Automatic cognitive

assessment systems provide a convenient as well as less labor-intensive way for monitoring

older adults’ cognitive progress and can potentially cover more older adults.

The general pipeline of an automatic cognitive assessment system, which is presented

in Figure 1.1, contains three major components. The first component is an ASR that

transcribes an older adult’s audio. The second component is a group of feature extractors,

which take text/audio as input, for various cognitive tests (e.g., describe a given picture,

recall animal names, recall a told story, etc). The third component is a classification

module that takes the extracted features as input and makes the assessment.

1.2 Dissertation Problem and Statement

Both under-explored problems are essential to automatic cognitive assessment systems.

First, if an ASR does not transcribe recordings accurately, feature extractors that were

4

Figure 1.1: The general pipeline of an automatic cognitive assessment system. The audio
recordings from various cognitive tests are first transcribed by an ASR. Then, the audio
and transcribed text are passed to multiple feature extractors and each extractor extracts
features for a specific cognitive test. A classification module that takes the extracted
features as input and makes the assessment.

evaluated on manual transcriptions cannot extract meaningful information from an an-

swer, resulting in reduced assessment accuracy. Second, various cognitive research has

demonstrated that several types of keywords (e.g., fillers, repeated words) have achieved

promising results in cognitive assessment. If an ASR mistranscribes these keywords, those

well-studied features cannot contribute to improving the performance of assessment sys-

tems.

Data scarcity is the major problem that we have to face when building an ASR that

performs well on older adults with possible cognitive impairment. While the mainstream

idea of building DNN-based ASR is training a large DNN model with big data (i.e., 1000+

hours of transcribed recordings from thousands of speakers), the available training data

from older adults is much smaller than the size of big data. Empirically, we can hardly

gather 100 hours of recordings from older adults. Thus, it is essential to develop techniques

for improving DNN-based ASR in order to fully utilize the available small data.

In this dissertation, we utilize transfer learning to improve ASRs for older adults and

make them suitable for the automatic cognitive assessment system. Transfer learning has

5

been well-studied in resolving the data scarcity problem, thus we develop transfer learning

techniques/methods to resolve both under-explored problems. For the first problem, we

propose a transfer learning method that can efficiently adapt a pre-trained DNN model to

the target domain (Chapter 4) and we also propose a DNN architecture to fully utilize small

training data (Chapter 5). For the second problem, we propose a transfer learning strategy

that causes minor negative side effects to a large pre-trained DNN model (Chapter 6).

1.3 Contribution Overview

In this dissertation, we make the following contributions.

We present an efficient transfer learning technique and develop DNN architecture for

training the base model (i.e., the pre-trained model). In Chapter 4, based on the hypothesis

that a pre-trained DNN model’s intermediate outputs contain useful information related to

a target domain, we present a technique to improve a DNN-based ASR’s performance on

older adults (75+ years old) with limited data (i.e., 10 hours of audio recordings). We first

demonstrate the aging voice dramatically impacts an ASR performance. This performance

difference supports the domain difference between the pre-trained DNN-based ASR model

and the aging voice. Then, we show that the pre-trained DNN-based ASR’s performance

on aging voices can be improved through adapting this ASR with older adults’ recording

data through transfer learning. Third, we propose a transfer learning technique that

improves the adapting efficiency through leveraging the intermediate outputs from the

pre-trained model. Our technique performs better than the standard fine-tuning technique

when there are only 10 hours of training data.

In Chapter 5, our goal is to build pre-trained/base ASR models for transfer learning

purposes. We hypothesize that the domain difference between older adults with normal

cognition and those with cognitive impairment is small. Collecting data from the for-

mer population is easier than gathering data from the latter. If we train a DNN-based

ASR for the former population, we can easily adapt this model to the latter population

due to the small domain difference. Empirically, we think that collecting 100 hours of

transcribed recordings from older adults with normal cognition for training is achievable

6

and fully utilizing this training dataset is essential to build the pre-trained model for the

transfer learning purpose. As a preliminary study, we refine Transformer [155], which is

a well-studied DNN architecture, in order to improve the training efficiency on a small

training dataset (i.e., 100 hours of recorded audio) and evaluate it on a small academic

dataset. Though analyzing a publicly available Transformer-based ASR, we propose two

modifications: applying local attention mechanism and parameter sharing across atten-

tion blocks. We evaluate each modification separately and show the improvement over the

original DNN architecture through comparing the performances of trained DNNs. Then,

we show that applying both modifications results in the most efficient DNN architecture

in this chapter.

Ensuring transcription accuracy of keywords is essential but gains much less attention

than it should be. Because various research has shown scaling training data and DNN

model size increase the performance and robustness when evaluating on word error rate

(WER), which is the mainstream evaluation matrix. But, low WER does not guarantee

high transcription accuracy on keywords. In Chapter 6, we propose a transfer learning

strategy that can efficiently improve the transcription accuracy of fillers while causing

minor negative side effects to Whisper ASRs, which are autoregressive ASR models. We

analyze multiple Whisper ASR models, in which their parameter sizes are different, and

each model consists of an acoustic encoder and a linguistic decoder. We first demonstrate

the importance of this problem through comparing these ASR models’ performance on

transcribing fillers, which are well-studied keywords in cognitive research, on both English

and Chinese testing sets. We show that both large training datasets and enlarging model

size do not guarantee good accuracy of transcribing fillers on either language and demon-

strate that WER cannot reveal the problem accurately. Then, considering the largest

ASR model as the research target, we analyze the causes of this transcribing problem. We

show that the ASR model’s acoustic encoder does not generate general representations

for fillers. Based on the analyzing result, we propose an effective transfer learning strat-

egy (i.e., only fine-tune the encoder). Training on an English dataset, the tuned model

not only performs well on various in-domain and out-of-domain Engish testing sets but

also preserves the base/pre-trained model’s abilities of multilingual transcription (i.e., no

7

performance drop on a Chinese testing set).

In addition to improving ASRs when there is training data available, we also encounter

a project that does not have any training data available. Thus, we utilized an HMM-based

ASR as an aligner to extract timestamps of manual transcriptions, which is widely used

in phonetic studies [19, 81, 142] and focus on improving the cognitive assessment. In

Chapter 3, we utilize HMM-based ASR as a tool to extract handcrafted time-base features

from the animal fluency (AF) test to improve the accuracy of cognitive assessment. We

propose time-based features based on early cognitive studies on the AF test and utilize

these features to distinguish older people with mild cognitive impairment (MCI) from

those with normal cognition (NC).

Over the last 5 years, the remarkable progress of ASR has been achieved through

improving training approaches in order to scale DNN, training data, and computational

power. We conducted our research with the state-of-the-art approaches at that time.

In Chapter 4, we use a pre-trained DeepSpeech2 [7] as the base model and develop our

transfer learning technique that utilizes intermediate outputs during fine-tuning the model

for the target domain. In Chapter 5, we conduct our research on training base models

with a small dataset based on Wav2Vec 2.0 [17]. In Chapter 6, we analyze Whisper

models [122] and propose a tuning strategy that makes minor side effects on the models’

original capability. Since each chapter focuses on different aspects of transfer learning, we

can apply our works in Chapter 4 and 5 to Whisper.

Chapter 2

Background

In this chapter, we present background related to our research. The background contains

three major parts: general knowledge about DNN, DNN-based ASRs, and a brief overview

of mild cognitive impairment.

First, we present general knowledge of DNN, which is slanted towards what is needed

for DNN-based ASRs. In Section 2.1, we present the general pipeline of DNN, which

serves as the overview for coming sections. In Section 2.2, we present seq-to-seq DNNs

and two subcategories: autoregressive and non-autoregressive DNNs. In Section 2.3, we

present DNN layers used in seq-to-seq ASR systems. Moreover, we present the attention

mechanism in detail since it is one of the core components used in our research. In

Section 2.5, we describe the training approaches for seq-to-seq DNNs, including supervised

learning, contrastive learning and weakly-supervised learning. In Section 2.6, we present

loss functions related to our research. Last, we present transfer learning in Section 2.7.

Second, we present approaches about automatic speech recognition (ASR), which is

the task where machines (i.e., digital computers) accurately convert a speech signal into a

text transcription [121]. More specifically, we present DNN-based seq-to-seq ASR systems.

In Section 2.8, we present commonly used data representation methods in seq-to-seq ASR

systems. In Section 2.9, we present three architectures that are used in our research in

detail: DeepSpeech2 [7], Wav2Vec 2.0 [17] and Whisper [122].

Last, we present the background about mild cognitive impairment in Section 2.10.

8

9

2.1 Deep Neural Network

A Deep Neural Network (DNN) is a machine learning technique inspired by the human

brain structure that provides computational systems with artificial intelligence. A DNN

aims to approximate a groundtruth function f∗ that people are interested in. For example,

let y = f(X), where f() represents a complicated function that maps an input X to an

output y. Both input and output can either be vectors or matrices. The task itself decides

the shape of y. If it is a classification task, y is presented as a one-hot vector where only

the element representing the corresponding category is one. ASR is a classification task

where y is a stack of one-hot vectors. If it is a representation task that DNN learns to

represent an X with a meaningful vector/matrix, then a y is a vector/matrix. The DNN

defines a mapping y∗ = f∗(X; θ) and the weights, θ, are used to learn to approximate f

as good as possible from a lot of sample pairs (i.e., (X,y)) provided by a training dataset.

The DNN f∗(θ) can be multiple functions chained together. For example, let’s assume

there are four functions: f (1), f (2), f (3) and f (4), and f∗(X) = f (4)(f (3)(f (2)(f (1)(X)))).

In this example, f (1) is called the first layer of the network, f (2) is called the second layer,

f (3) is called the third layer and f (4) is called the fourth layer. Each function has its

weights θ(l) where l = 1, 2, 3, 4. For this example, we use the linear layer (also known

as the fully-connected layer), f (l)(input) = input Wl + bl, to linearly transforms an input

matrix input to a new representation matrix through matrix multiplication. Both Wl and

bl are this layer’s weights. In addition to linear layers, a DNN also incorporates non-linear

functions. This is because a composition of linear functions is still a linear function and its

expressive power is limited. Adding non-linear functions (commonly known as activation

layers) to a DNN (i.e., f∗() in this example) increases the expressive power [105].

In our example, let f (3) be an activation layer. The input X is first transformed by

f (1) and f (2), and then, processed by the activation layer f (3). The output is transformed

by the fourth linear layer, f (4), which is also known as the output layer, and this layer

yields the final output y∗. It is worth noting that, while there is no constraint on adding

activation layers anywhere in a DNN, empirically, researchers add an activation layer after

every linear function. Moreover, nowadays, a DNN can have more than a hundred layers.

10

A four-layer DNN is presented in Figure 2.1 and the training and inference process.

In the training process, many (X, y) pairs are used to train the DNN. A learning method

guides the DNN to learn an optimal approximation through having a loss function to

measure the difference between the ys and y∗s from Xs. The difference is called error in

Figure 2.1 and is then used to update the f∗() through a technique called backpropagation

which is also known as the backward process [128]. The backward process first calculates

gradients of all weights and then updates these weights with scaled gradients. The scaler

is called the learning rate and the way of scaling gradients is called the optimizer. The

training process is repeated multiple times until the updated DNN cannot reduce the error

anymore or researchers decide to stop the process. The trained DNN is called a model

and this term will be used throughout the dissertation. This model is an approximation

of f among various possible approximations and is used to yield ys for unseen Xs. To

increase the training stableness, multiple pairs are sampled in each training process and

the average of errors over these pairs are used to update the DNN. The sampled pairs in

a process are commonly known as batch or minibatch. Moreover, a DNN can be trained

with multiple datasets of different tasks (i.e., various types of (X, y) pairs). This type

of DNN usually has multiple output layers one for each task and this training style is

called multi-task training. Neither types of datasets nor tasks impact the general training

process. The inference process is similar to the training process, except there is no loss

function and backward process.

2.2 Seq-to-seq DNN

In the previous section, we present the general idea of DNNs. In this section, we present

the general concept of seq-to-seq DNNs, which are specific types of DNNs. The seq-to-seq

DNN is a task-oriented concept. It refers to DNNs that map input sequences (e.g., a raw

speech waveform, acoustic speech representation or words) into the corresponding output

sequences (e.g., characters, words, or sub-word sequences). Based on the way of making

predictions, seq-to-seq DNNs can be categorized into two categories: autoregressive (Sec-

tion 2.2.1) and non-autoregressive DNN (Section 2.2.2). The major challenge of seq-to-seq

11

Figure 2.1: An example of DNN

DNN is that the length of the sequence pairs (i.e., the input and corresponding output

sequences) is different. Both categories solve this challenge with different solutions based

on their innate characteristics.

2.2.1 Autoregressive DNN

An autoregressive DNN makes next-output predictions based on the input sequence and

predicted history. The DNN contains two components: an encoder and a decoder. The

left graph in Figure 2.2 shows the general architecture. The encoder encodes the input

sequence, (x1, x2, x3, x4), into hidden representations that contain essential information

for the decoder and passes the representations to the decoder. Intuitively, the encoder

can be considered as an independent DNN that transforms an input sequence into hidden

representations. There is no constraint on the encoder’s DNN architecture. Researchers

can use a simple DNN (e.g., a DNN that only has one linear layer) as an encoder, while

they can also use more complicated DNNs. Moreover, there is no constraint on the form of

12

Figure 2.2: The general structure of autoregressive and non-autoregressive DNN. “SOT”
and “EOT” refer to the dummy start and end symbols.

hidden representations. The decoder takes the representations and a dummy start symbol

as inputs and predicts the next label. Each prediction depends on previous predictions

and inputs. The prediction/inference process continues until a dummy end symbol is

predicted. This means there is no requirement on the length of the output sequence.

In other words, autoregressive DNN does not have any restriction on the input/output

lengths. Similar to the encoder, there is no constraint on the decoder’s DNN architecture.

2.2.2 Non-autoregressive DNN

A non-autoregressive DNN makes a new prediction only based on the input sequence.

Unlike autoregressive DNN, the non-autoregressive DNN unifies the encoder and decoder

into one component. The right graph in Figure 2.2 shows the general architecture. After

DNN processes the input sequence, it directly outputs predictions. Moreover, no dummy

symbol is needed. In other words, the length of input and output sequence must be the

same and the sequence mismatch is a problem for non-autoregressive DNN. To resolve

13

the problem, researchers develop sequence expansion processes along with paired loss

functions. These solutions rely on the characteristics of the task. Popular solutions for

ASR will be presented in Section 2.6.

Both autoregressive and non-autoregressive DNNs have irreplaceable advantages. On

the one hand, the inference speed of non-autoregressive DNNs is faster than autore-

gressive DNNs. Because, while autoregressive DNNs generate outputs iteratively, non-

autoregressive DNNs generate all outputs simultaneously. On the other hand, autore-

gressive DNNs can resolve the length mismatch problem, while researchers have to de-

sign non-autoregressive DNNs for different situations (i.e., the input sequence is always

shorter/longer than the output sequence). To our knowledge, no non-autoregressive DNN

can handle unclear length differences between input and output sequences, and using au-

toregressive DNNs is the only option. In the ASR field, researchers generally agree that

the input sequence is always longer than the output sequence. Thus, autoregressive and

non-autoregressive DNNs can be used to build ASR systems.

2.3 Neural Net Layers

In this section, we present DNN layers used in the DNN architectures that will be presented

in Section 2.9. We have introduced the linear layer in Section 2.1.

2.3.1 Convolution Layers

Convolution layers were proposed 30 years ago. It was initially proposed for image pro-

cessing tasks to extract general characteristics from training images, such as detecting

edges and shapes. Then, its use case has been expanded into ASR for extracting acoustic

characteristics. In the rest of the section, we present both 2D convolution (Conv2d) and

1D convolution (Conv1d) layers, as they are used in the ASR field.

Conv2d layer was proposed by Lecun et al. [85] for handwriting recognition and nowa-

days is commonly used in image recognition and ASR. The layer applies filters, also known

as kernels, to each small region of an input and produces an output value representing a

feature in that region. Figure 2.3 shows how a kernel produces output from an input. In

14

Figure 2.3: A example of 2d convolution operation with 3 input channels and 2 output
channels. Picture courtesy: [3]

the example, the input size is 6× 6× 3 (e.g., a colored image (i.e., 3 color representations)

with a dimensionality of 6 × 6) and the kernel size is 3 × 3 × 3. The last “3”s in both

the input and the kernel are referred to the number of input channels. When a kernel

scans across the input, an element-wise product between each element of the kernel and

the input matrix is calculated at each location and summed to obtain the output value in

the corresponding position of the output. In the example, there are 2 kernels, thus, the

output size is 4 × 4 × 2. The number of output channels is 2, the same as the number of

kernels. Formally, the kernel size is (num kernel,Hk,Wk, Cin) where Hk and Wk are the

height and width of the kernel. num kernel and Cin are the number of input channels

and output channels.

Conv1d layer is a variation of Conv2d and is widely studied [72, 70, 71, 13, 12, 4]. The

significant difference between Conv2d and Conv1d is the shape of the kernel. Kernel of

Conv1d is (num kernel,Wk, Cin) where Wk is the width of the kernel. Cin and num kernel

are the number of input channels in the input and number of kernels. Other than this

difference, the math operation of Conv1d is the same as Conv2d. Thus, we refer readers

to the previous paragraph for more details. Similar to the Conv2d layer, the two key

15

hyperparameters are kernel size and the number of kernels.

2.3.2 Gated Recurrent Unit

In this section, we first present the concept of the recurrent mechanism [66], which is the

foundation of all recurrent neural networks (RNNs), and then, present two DNN layers

based on the recurrent mechanism: the RNN layer and the Gated recurrent unit [32]

(GRU) layer.

The recurrent mechanism [66] is designed to process a variable-length sequence input

using hidden states whose activation at the current time depends on the previous time. As

shown in Figure 2.4, there is one RNN unit, A, and, at each time step, the unit processes

both input of the current step, xi, and the hidden state from the previous step, si−1, and

then, yields the hidden state of the current step, si. The output state is sent to the above

Figure 2.4: An example of the unfolded recurrent mechanism process. A single unit, A,
iteratively processes the input xi and si−1. Picture courtesy: [1]

layer and sent back to unit A again for yielding hidden state si+1.

While, in theory, the recurrent mechanism can process any sequence without length

limitation, in practice, it cannot handle long sequences well. One practical solution, which

was proposed by Schuster et al. [133], is having two recurrent mechanisms and process-

ing a sequence simultaneously in both positive and negative time directions. Figure 2.5

presents how bidirectional recurrent mechanisms process on the same input sequence. One

mechanism scans the input sequence from the start to the tail and the other scans the

same input from the end to the start. Through concatenating both RNN mechanisms’

hidden states which are yielded from the same input xi, more information related to xi

16

Figure 2.5: An example of the bidirectional recurrent mechanism process. Two RNN
units, A and A′, process the same input sequence x0, . . . , xi from opposite directions. yi
is obtained through concatenating both units’ outputs of xi. Picture courtesy: [1]

is preserved in the concatenated state, yi. Due to the popularity of this solution, putting

the word “bidirectional” at the front of any RNN variation refers to using this solution

with that RNN variation.

In addition to the bidirectional RNN mechanism, researchers have explored various

RNN units (i.e., unit A in previously presented figures.) for modeling sequences. The

simplest RNN unit is:

si = σ(Winxi + Wsnh(i−1) + bn) (2.1)

The Win, Wsn and bn are learnable weights. σ refers to the Sigmoid activation function.

The hidden state, si, contains information from previous hidden state, si−1, and current

input xi. The initial state, s0, is a zero vector where all elements are zeros. It means

that s0 contains no information. The si is the output, yi, and is also the hidden state si

processed by unit A in the coming step (i.e., i+ 1). The output yi is the same as si and si

is also processed by unit A in the coming step (i.e., i+ 1). The recurrent mechanism that

uses this unit is commonly called the RNN layer. The RNN layer is straightforward and

is mathematically Turing Complete [69]. But, the RNN layer suffers from the vanishing

gradient problem that leads to oscillating weights and unstable learning [60].

The GRU unit is one of the RNN unit variations that was proposed to ease the vanish-

ing gradient problem. The layer that uses the GRU unit is called GRU layer. Following

17

is the mathematical expression of the GRU unit:

ri = σ(Wirxi + Wsrs(i−1) + br) (2.2)

zi = σ(Wizxi + Wszs(i−1) + bz) (2.3)

s̃i = f(Winxi + ri ∗ (Wsns(i−1)) + bn) (2.4)

st = (1 − zt) ∗ s̃i + zi ∗ s(i−1) (2.5)

The si is the hidden state and xi is the input at ith step, respectively. h(i−1) is the

hidden state of the previous step. s̃i is the candidate hidden state. ri and zi are the

reset and update gates, respectively. σ is the Sigmoid function, and ∗ is the Hadamard

product. f() refers to the activation function. The hidden state, si, contains compressed

information from previous inputs (i.e., x1, . . . , xi−1). The initial state, s0, is a zero vector

where all elements are zeros. Compared with the RNN unit presented in Equation 2.1,

where the new hidden state si is a non-linear function of si−1, the GRU unit explicitly

modifies the hidden state si through an explicit addition with a candidate hidden state,

s̃i. This ensures the constant error flow in the backpropagation process. The reset gate

ri controls how much information from the previous hidden state si−1 is irrelevant in the

future and should be dropped. In other words, the candidate hidden state s̃i contains

information that is useful to the future. If the reset gate ri is close to 0, the candidate

state s̃i would contain information mostly from the current input xi and ignore most

information from the previous hidden state si−1. The update gate zi controls how much

information from the previous hidden state si−1 would be carry over to the current hidden

state si. Both ri and zi control how the information flows through time. Amodei et al. [7]

demonstrated empirically that using the GRU layer in their DNN increases the training

speed and reduces the likelihood of training diverges. The DNN used in Chapter 4 uses

bidirectional GRU layers.

2.3.3 Attention Mechanism

The attention mechanism layer has become popular in recent years. It has been explored

for two use cases: 1) using the attention mechanism to manage memories without forget-

ting [52]; 2) using the attention mechanism to replace RNN for sequential modeling [155].

18

Our dissertation is involved in both directions. In Chapter 4, we use an attention mech-

anism for managing memory. In Chapter 5 and Chapter 6, we use DNNs that utilize

attention mechanisms for sequential modeling. In the rest of the section, we present two

variations of the attention mechanism one for each use case, respectively.

Luong et al [93] proposed using the attention mechanism to manage encoders’ outputs

(i.e., memories) in an autoregressive DNN for machine translation tasks. They showed the

effectiveness of attention mechanisms on translation tasks (i.e., English to German and

German to English). Let the encoder’s hidden outputs be a list of vectors (h̄1, h̄2, . . . , h̄s)

where s = 1, 2, . . . , S and the decoder’s hidden outputs be (h1, h2, . . . , ht) where t =

1, 2, . . . , T . The context vector, which is represented as ct, is the sum of the encoder’s

hidden outputs weighted by alignment scores for ht and is defined by the equations below.:

scoret,s = ⟨ht, h̄s⟩ (2.6)

αt,s = softmax(scoret,∗) (2.7)

=
scoret,s∑s′=S

s′=1 scoret,s′
(2.8)

ct =
∑
s=1

αt,s ∗ h̄s (2.9)

The softmax converts a vector of numbers into a vector of probabilities that sums up to 1

as expressed in equation 2.8. The function scoret,s is referred to a content-based function

for which Luong et al [93] consider three different alternatives:

scoret,s = hth̄s (2.10)

scoret,s = htWαh̄s (2.11)

scoret,s = Wα,2tanh(Wα,1[ht; h̄s]) (2.12)

where Wα, Wα,1 and Wα,2 are learnable parameters. This layer is called the global atten-

tion layer as it draws dependencies across all encoder’s hidden outputs.

The attention mechanism is also explored as a sequence modeling method. Vaswani et

al. [155] proposed the global multi-head attention (GMA) layer that provides significant

parallelization and is designed to replace RNN to draw global dependencies between input

and output. GMA layer is the key component of Transformers [155] which will be presented

19

in later sections. Let Xq ∈ RTq×dmodel , Xk ∈ RTk×dmodel and Xv ∈ RTk×dmodel be input

sequences for query, key and value, respectively. Tq refers to the length of the query

sequence and Tk refers to the length of the key/value sequence. Vaswani et al. [155]

found that, instead of performing query, key and value to a single attention function, it

is beneficial to linearly project the query, key and value H times with different learned

weight matrices. These groups of projected query, key and value are fed in attention

functions in parallel, resulting in H output sequences. These outputs are concatenated

and projected by another weight matrix, resulting in the final output that is represented

by O. In this dissertation, h refers to the hth attention head. The following shows the

details of the GMA layer:

Qh = XqWqh (2.13)

Kh = XkWkh (2.14)

Vh = XvWvh (2.15)

alphah = softmax(QhK
T
h /

√
dk) (2.16)

Headh = alphah ∗ Vh (2.17)

O = Concat([Head1, . . . ,Headh, . . . ,HeadH])Wo (2.18)

The projections are parameter matrices Wqh ∈ Rdmodel×dk , Wkh ∈ Rdmodel×dk , Wvh ∈

Rdmodel×dv and Wo ∈ Rdmodel×dv . The ith attention alphai is obtained from linearly

projected queries (Qh) and keys(Kh) through Equation 2.16. The hth attention head

generates outputs Headh through applying the Hadamard product between alphah and

Vh. Outputs from all attention heads are concatenated through the function Concat() and

once again projected through Wo, resulting in the final values. For example, if we have

8 attention heads and the hidden size of the model, dmodel, is 1024, we define dk = dv =

dmodel/8 = 128.

Vaswani et al. [155] further distinguished two use cases of the GMA layer with dif-

ferent names: global multi-head cross-attention (GMCA) layer and global multi-head

self-attention (GMSA) layer. GMCA layer is used for autoregressive DNNs and manages

memory from the encoder for the decoder. That is, the GMCA layer takes the encoder’s

20

Figure 2.6: The attention region difference between global attention (full n2 attention)
and local attention (sliding window attention). The x-axis is the index of queries and the
y-axis is the index of keys. Picture courtesy: [20]

hidden representations as key and value and the output of the previous decoder layer as

the query. GMSA layer, on the other hand, is used to replace recurrent neural networks

in modeling long-range dependency due to the ability of being parallelized and the path

length of the forward and backward signals. In terms of the sequential operation, while

the GMSA layer connects all with a constant number of sequentially executed operations,

a recurrent layer requires O(n) sequential operations [155]. For the path length between

long-range dependencies in a DNN, the shorter these paths between any two vectors in

the input and output sequences, the easier it is to learn long-range dependencies [74]. The

maximum path length for the GMSA layer is O(1) while the maximum length for any

recurrent layer is O(n).

In addition to studying the GMA layer, the local multi-head self-attention (LMSA)

layer was proposed to extract contextual representations through drawing dependencies

on local receptive fields [124, 33, 127, 20], due to the importance of local context [79]. Fig-

ure 2.6 shows the attention region difference between global attention and local attention.

The x-axis is the index of queries and the y-axis is the index of keys. For global attention,

for any query, attention scores are calculated with every key. However, for local attention,

21

Figure 2.7: This graph shows how the eleinput (i.e., x-axis) is transformed into the eleoutput
(i.e., y-axis) by ReLU [110].

attention scores only consider keys close to a query. Window size defines the local region.

2.3.4 The rectified linear unit

The rectified linear unit (ReLU)[110] layer is an activation layer that separately does the

non-linear transformation to every element in an input matrix, and increases a DNN’s

capability to learn complicated tasks. It is commonly used to process output from linear

operations (e.g., outputs from Conv2d). It was proposed by Nair et al. [110] for pre-

serving information about relative intensities as the information travels through multiple

DNN layers and remained a competitive engineering solution that enables more effective

convergence than other types of activation layers (e.g., sigmoid, tanh). The mathematical

equation of a ReLu is:

eleoutput = max(0, eleinput) (2.19)

where eleoutput is the output value and eleinput is the input value. The function max()

outputs the largest value between 0 and eleinput. Figure 2.7 shows how ReLU transforms

the eleinput (i.e., x-axis) to the eleoutput (i.e., y-axis).

2.3.5 Gaussian Error Linear Units

Gaussian Error Linear Units (GeLU) [58], which was proposed years after ReLU, is a

popular activation layer that has been widely used in seq-to-seq DNNs in recent years

22

Figure 2.8: This graph shows how GeLU [58] transforms the eleinput (i.e., x-axis) to the
eleoutput (i.e., y-axis).

and shows better performance than ReLU. Dan et al. [58] empirically showed that GeLU

outperforms ReLU across a range of computer vision, natural language processing, and

speech tasks. Like other activation layers, it is also used to process output from linear

layers. GeLU’s math equation is:

eleoutput = 0.5 ∗ eleinput ∗ (1 + Tanh(
√

(2/π) ∗ (eleinput + 0.044715 ∗ ele3input))) (2.20)

where eleoutput is the output value and eleinput is the input value. Figure 2.8 shows how

GeLU transforms the eleinput (i.e., x-axis) to the eleoutput (i.e., y-axis). The GELU weights

eleinput by its values instead of gates by their sign as in ReLU.

2.3.6 Batch Normalization

Batch Normalization [64] (BatchNorm) layer was proposed to reduce internal covariate

shift during the training process and can be used to process any layers’ outputs. Ioffe et

al. [64] evaluated this layer by comparing the difference between a state-of-the-art image

classification DNN at that time and the same DNN with BatchNorm layers. The DNN

with BatchNorm layers achieves the same accuracy with 14 times fewer training steps

as the original DNN and outperforms the DNN model with significantly fewer training

steps [64]. This layer is widely used in DNNs, especially in the computer vision field. Let

the mini-batch contains N inputs, B = X1, X2, . . . , Xn, . . . , XN , and the following shows

23

how BatchNorm normalize this mini-batch:

EB =
1

N

N∑
n=1

Xn (2.21)

VarB =
1

N

N∑
n=1

Xn (2.22)

X̂n =
Xn − EB√
VarB + ϵ

(2.23)

Yn = X̂n ∗ γ + β (2.24)

Given N inputs, the mean EB and variance VarB of the mini-batch (i.e., N inputs) are

first calculated. Then, all inputs are normalized to have mean 0 and variance 1, which is

denoted as X̂ns. ϵ refers to a small number (e.g., 1 × 10−8) that is used to prevent the

denominator from being 0. After X̂ns are scaled and shifted by γ and β, which are two

learned parameters, the outputs, Yns, are passed to the DNN layers. It is worth noting

that, in order to calculate the mean and variance, BatchNorm requires a mini-batch to

have more than one input. According to Ioffe et al. [64], the normalized X̂ns are internal

to the transformation but their presence is crucial.

2.3.7 Layer Normalization

Layer Normalization [14] (LayerNorm) is a variation of BatchNorm layer and is proposed

for sequence modeling. While, empirically, adding BatchNorm to an existing DNN boosts

the trained model’s performance, it is not obvious how to apply BatchNorm to RNN in

which the lengths of inputs are not the same. Jimmy et al. [14] modified BatchNorm into

LayerNorm by computing the mean and variance from hidden representations of a RNN

layer. In other words, while BatchNorm considers an input sample as the basic unit, Lay-

erNorm considers a hidden representation as the basic unit. LayerNorm directly estimates

the normalization of the representations. Thus, it does not require any dependency on the

number of training samples (i.e., the size of the mini-batch). The normalization process

is the same as the BatchNorm. Jimmy et al. [14] shows that LayerNorm can substantially

reduce the training time compared with RNNs without it. This layer is widely used in

seq-to-seq DNNs, including all DNNs that we will present in later sections.

24

2.4 Seq-to-seq DNN Architectures

In this section, we present the general architecture of two seq-to-seq DNNs used in ASR.

DNN layers used in these architectures are presented in Section 2.3. We present the general

architecture of CNN-RNN DNN in Section 2.4.1. We present the general architecture of

Transformer in Section 2.4.2.

2.4.1 CNN-RNN architecture

Figure 2.9: The general architecture of CNN-RNN DNN for ASR task. Picture cour-
tesy: [91]

In this section, we present the general idea of CNN-RNN DNN. A CNN-RNN DNN is

25

a type of DNN architecture that has at least one convolution layer for processing the input

and multiple RNN layers to process the output of the last convolution layer. It was first

proposed by Donahue et al. [37] for video activity recognition, image caption generation,

and video description tasks. Convolution layers capture the spatial information from the

input images and RNN layers capture the temporal information from a sequence of image

representations [37]. Due to the innate characteristics of CNN-RNN DNN (i.e., mapping an

input sequence to an output sequence), it is widely used in sequence-related tasks, such as

ASR. In the ASR field, CNN-RNN DNN is used to map the speech signals to transcriptions.

Figure 2.9 shows the general architecture. Convolution layers at the bottom serve as

feature extractors that extract low-level local acoustic features from the input sequences

(i.e., sequences of audio representations) and serve as a sub-sampling method that shortens

the length of input sequences and is essential to make RNN computationally tractable with

high-sampling rate audio [7]. RNN layers above convolution layers take the sub-sampled

low-level acoustic features as input and map features to labels/transcriptions through

modeling long-range dependencies. Long short-term memory [60] (LSTM) and GRU are

two popular RNN layers, and, in the ASR field, GRU is more popular than the other.

Bidirectional GRU is commonly used to model the long input sequences, which is the exact

case in ASR. The output layer is a linear layer (i.e., FC layer in Figure 2.9 that maps the

hidden representation to labels). The detailed architecture of a CNN-RNN DNN depends

on the characteristics of tasks and researchers’ experiences. We will present a well-known

CNN-RNN architecture (i.e., DeepSpeech2) used in this dissertation in Section 2.9.1.

2.4.2 Transformers

In this section, we present the achievements of Transformers and two types of Transform-

ers: an autoregressive Transformer and a non-autoregressive Transformer. Since Trans-

formers was first proposed and evaluated on NLP tasks, certain modifications are made

when adapting them to transcription tasks (i.e., ASR). Thus, in this section, we focus

on presenting general architectures of Transformers as the foundation for Section 2.9.2

and 2.9.3, where we present Transformer-based architectures for ASR in detail.

An autoregressive Transformer has an encoder and a decoder, and both consist of

26

multiple blocks which are stacked multi-head attention layers and linear layers. The

overall architecture is shown in Figure 2.10. The encoder block contains a multi-head

Figure 2.10: The general architecture of autoregressive Transformer. Picture cour-
tesy: [155]

self-attention layer and two linear layers. On the other hand, the decoder block contains

a multi-head self-attention layer, a multi-head cross-attention layer and two linear layers.

Moreover, to ensure that the decoder only relies on known outputs to predict current

output, a mask is deployed during training. In order to ensure the awareness of the order

of the sequence, Vaswani et al. [155] add positional encoding to the input embeddings.

Except for the autoregressive Transformer, researchers also developed non-autoregressive

27

Transformers. Figure 2.11 shows the general architecture that was first proposed by De-

vlin et al. [35]. Devlin et al. [35] designed the non-autoregressive Transformer to learn

Figure 2.11: The general architecture of non-autoregressive Transformer. We follow similar
color codes as Vaswani et al. [155]

bidirectional representations through joint conditioning on both left and right contexts in

all layers. The main difference between these two types of Transformers is that the non-

autoregressive Transformer excludes the multi-head cross-attention mechanism. Wav2Vec

2.0 [17], which is one of the popular ASR architectures, utilizes the non-autoregressive

Transformer.

28

2.5 DNN Learning Methods

In this section, we present general ideas of various learning methods that are used in this

dissertation. In Section 2.5.1, we present supervised learning. In Section 2.5.2, we present

contrastive learning. In Section 2.5.3, we specify the definition of weakly-supervised learn-

ing that we use in our research.

2.5.1 Supervised learning

Supervised learning refers to learning methods that train a DNN with labeled data. Dif-

ferent tasks will have different input and output label pairs. For ASR, the pair consists of

an audio recording (i.e., input) and the corresponding transcription (i.e., output labels).

The learning method guides a DNN to map the input to the output as accurately as pos-

sible. The loss functions that are used with the supervised learning method measure the

similarity between predicted labels and the groundtruth labels. It is a well-studied area

and has been widely used in various tasks. In Section 2.6, we present commonly used loss

functions for ASR for supervised learning.

2.5.2 Contrastive Learning

Contrastive learning has become a prominent method for training large models and it also

enlarges the size of training data in the fields of natural language processing, computer

vision and ASR. The general process is: first, train a large DNN model to learn hidden

representation through deploying contrastive learning on unlabeled large datasets, and

then, adapt the model to downstream tasks through deploying supervised learning and

transfer learning on labeled but small datasets. The core idea of contrastive learning

is learning representation through comparing similar/dissimilar samples, which will be

presented in the next paragraph. Enlarging the data size is one of the benefits that

contrastive learning provides because no label is required.

The basic hypothesis of contrastive learning is that the quality of a DNN model’s

representation can be approximated through measuring the representation’s performance

on separating similar and dissimilar input samples. Unlike supervised learning methods

29

that measure a model’s ability on mapping input samples to output labels, contrastive

learning measures how easily a model’s hidden representation can pull similar samples

together while pushing dissimilar samples away. In other words, the goal of contrastive

learning is: given a function that measures the distance between two representations, the

distance of two similar samples should be close, while, at the same time, the distance of

two dissimilar samples should be far away. In general, a loss function that belongs to

the contrastive learning method contains two parts: measurement functions for measuring

the distance and selecting methods that pick similar (positive) and dissimilar (negative)

samples.

The contrastive loss function that is widely used in ASR is proposed by Wav2Vec

2.0 [17]. Since the selecting method is bounded with the architecture of Wav2Vec 2.0, the

loss function will be presented in Section 2.9.2, where the architecture of Wav2Vec 2.0 is

presented.

2.5.3 Weakly-supervised learning

Unlike supervised learning and contrastive learning, which have generally agreed defini-

tions, weakly supervised learning covers a wide range of techniques. In this dissertation,

weakly supervised learning refers to training a model with a supervised loss function on

a large dataset where the quality of labels is low (i.e., more labeling/transcription errors

than found in typical publicly available data sets). The key challenge of weakly supervised

learning is how to balance the quality and quantity of data.

In the ASR field, researchers [44, 54, 166] have shown that training an ASR through the

combination of multiple datasets shows higher robustness and generalizability. However,

due to the limitation of high-quality data (i.e., few transcription errors), the size of training

data still is much smaller than the unlabeled dataset, which can be more than 1,000,000

hours [166]. To enlarge the size of labeled data, researchers reduce the requirement of data

quality in exchange for quantity. Chen et al. [54] selected 10,000 hours acceptable data

from podcasts, YouTube and audiobooks using sophisticated automated pipelines, and

demonstrated that a model trained with large data outperforms the model’s siblings who

are trained with smaller datasets. To have even larger training dataset, Galvez et al. [44]

30

selected data from The People’s Speech [2] and showed that the model trained with 20,000

hours of data achieves acceptable performance on out-of-domain (OOD) testing set (i.e.,

Librispeech [117]). However, the data size is still much smaller than the unlabeled dataset.

Radford et al. [122] closed the gap by expanding the data quantity to 680,000 hours

through collecting data from the Internet and adopting multilingual and multitasking

(i.e., audio transcription and translation) training. They showed that models trained on

large datasets with low label quality can outperform models trained on relatively small

datasets with high label quality as long as the former can balance the data quantity

and quality. In addition to demonstrating the power of joint multilingual and multitask

training, Fadford [122] published models used in their research providing a firm ground

for study transfer learning. Detail of Radford’s DNN models, which are called Whispers,

will be presented in Section 2.9.3.

2.6 Loss Functions

In this section, we introduce supervised loss functions that are commonly used in ASR

field and this dissertation. In Section 2.6.1, we introduce Connectionist Temporal Classi-

fication [51] (CTC) loss, which is a popular loss function in ASR field. In Section 2.6.2,

we introduce cross-entropy (CE) which is a classic loss function that has been around for

decades.

2.6.1 Connectionist Temporal Classification

Connectionist Temporal Classification [51] (CTC) loss is designed to resolve the length

mismatch between the input sequence and the output sequence. More specifically, it

resolves the problem that input sequences (e.g., audio representations) are longer than

output sequences (i.e., transcriptions) which is a characteristic of various tasks (e.g., ASR).

To resolve the length mismatch problem, CTC utilizes placeholders (i.e., special blank

labels) and the repetition of labels to expand the output sequence to be the same length

as the input sequence. This means that there is more than one expanded sequences

for any output sequence. For example, let the input sequence’s length to be 5 and the

31

output sequence to be “cat”. Following CTC’s rules, the expanded sequences can be

“c aat”, “ccaat”, “c at” and so on, where “ ” represent the black label. Since all possible

expanded sequences are valid outputs, CTC loss maximizes the probability of all possible

expanded sequences during training.

To formally describe the loss function for training, let the input speech sequence be X,

and the output label sequence be Y . The function B(Y) refers to the expanding process

and Ỹ is mapping to the set of all possible expansions of Y. The total probabilities of all

expanded sequences related to Y is:

P (Y |X) =
∑

Ỹ ∈B(Y)

P (Ỹ |X) (2.25)

Moreover, the CTC also assumes that the outputs of the network at different times are

conditionally independent. Thus, the P (Ỹ |X) is calculated through:

P (Ỹ |X) =
T∏
t=1

P (ỹt|X) (2.26)

where t refers to the index of output labels and there are T labels in Ỹ . ỹt is the tth output

label in Ỹ . In practice, since the training process should minimize the loss function, CTC

loss is defined as a form of negative log probabilities to minimize the loss (i.e., maximize

the probability) and Equation 2.25 is transformed into the following form:

LCTC = −lnP (Y |X) (2.27)

The training process minimizes LCTC .

The inference/decoding process generates the most likely sequences/transcriptions

given input sequences:

Y ∗ = arg max
Y

P (Y |X) (2.28)

Due to CTC’s hypothesis of label independence, the Y ∗ usually contains orthographic

errors. Researchers found that having an external language model eases the situation.

The language model can be a n-gram model or a DNN-based model. After including a

language model to the inference process, the process is expressed as:

Y ∗ = arg max
Y

P (Y |X) ∗ αP (Y) (2.29)

32

where α is a hyperparameter that decides the importance of the language model and P (Y)

refers to the probability of sequence Y in the language model.

2.6.2 Cross Entropy

Cross-entropy (CE) is a loss function used in classification tasks and it is commonly used in

autoregressive DNNs. CE measures the distance between a softmaxed output from a DNN

and a one-hot encoded vector (i.e., the encoded groundtruth label) where the number of

the elements of the vector is the total number of classes I (e.g., potential tokens in ASR).

The loss is the sum of the negative logarithmic probabilities and the logarithmic value is

used for numerical stability:

CE = −
I∑

i=0

yi log y∗i (2.30)

where y∗i is the likelihood of the ith class predicted by a DNN and yi is the groundtruth

of the class. When using CE to train a seq-to-seq DNN, since the DNN yields a sequence

of outputs, the function is commonly rewritten as:

CE = − 1

TN

T∑
t=0

N∑
n=0

I∑
i=0

yi log y∗i (2.31)

where T refers to the total number of elements in a sequence and N refers to the total

number of input sequences that are trained together. Empirically, choosing to average over

all sequences and outputs ensures all samples contribute to the gradient equally regardless

of the length of the sequence.

2.7 DNN Transfer Learning

In this section, we present the general idea of transfer learning. Transfer learning is a model

adaptation method that is widely used in data-scarce scenarios. The core idea of transfer

learning is reusing the learned knowledge of a pre-trained DNN model for other domains.

In other words, instead of training a DNN with random weights, transfer learning refers to

training a DNN whose weights have been updated with certain training datasets on another

dataset. The dataset can either be the same tasks as the pre-trained model or different

ones. The training process is the same as the one presented in Section 2.1 except the

33

learning rate is empirically smaller than the latter. In addition to adapting a model trained

on one domain/dataset to another, nowadays, transfer learning is also used to adapt a large

model that learns a universal representation of natural language to downstream tasks (e.g.,

question answering, commonsense reasoning, sentence similarity, textual entailment) [123,

35]. The same idea has also been explored in image processing [73], text-to-speech [8, 9,

169, 168, 167] and ASR [17, 131].

Weight transfer learning, which is also known as fine-tuning, and hidden linear transfer

learning are three well-studied approaches. 1) Weight transfer learning initializes the

target model with a pre-trained base model where both models share the exact same

DNN architecture. Then, tune the entire or part of the DNN with a small learning

rate [137, 154, 149]. 2) Hidden linear transfer learning builds upon a hypothesis where

similar tasks share common low-level features. It uses the pre-trained model as a feature

extractor to extract low-level features from input data [86]. The feature extractor is frozen

during training. Researchers have a new DNN to learn high-level features for different

domains/tasks. In practice, researchers may use both ideas together. For example, first

train a new output layer by adopting hidden linear transfer learning’s hypothesis, and

then, further fine-tune the entire DNN model. 3) Factorized Hidden Layer Adaptation

is a structured parameterization of the hidden layers’s weights and was proposed as a

speaker/domain-adaptation training method. It adapts weights of a pre-trained model

with a linear interpolation of a set of bases [130, 140]. The bases are represented by low-

rank matrices and shift DNN’s weights based on the input of speaker embedding [140].

For all transfer learning methods, a key ingredient to a successful model adaptation is a

well-trained base model from a similar task that has learned from relatively large and yet

diverse training samples [163, 46].

2.8 Data Representation for ASR

In this section, we introduce data representation methods used in seq-to-seq DNN-based

ASRs. Since an ASR takes audio representation as input and outputs transcriptions in

text form, we will introduce the commonly used audio representation and text/token

34

representation in this section.

2.8.1 Audio Representations

In this section, we present the common audio representation forms used in seq-to-seq

ASR: waveform and spectrogram. We mainly follow the introduction from Section 2 and

Section 4 in digital speech processing [121].

Waveform

In speech production, the information to be transmitted is encoded in the form of a

continuously varying (analog) waveform that can be transmitted, recorded, manipulated

and ultimately decoded by a human listener. The fundamental analog form of the message

is an acoustic waveform, which is known as the speech signal. Figure 2.12 shows the

waveform at the top. Since the waveform is the fundamental analog form and is the input

for generating other engineered signal representations (e.g., the spectrogram which will

be introduced below), using DNN to learn to represent waveform is one of the research

directions in acoustic-related research fields. In the ASR field, which is one of the acoustic-

related research fields, researchers use DNNs to directly extract information from the

waveform [17, 131].

Spectrogram

The spectrogram is a basic tool for understanding how the sounds of speech are produced

and how phonetic information is encoded in the speech signal. The spectrogram is derived

from the waveform using a fourier transform, and so it has the same information that

the waveform has but is expressed in terms of frequency decomposition. The length

of the window has a major effect on the spectrogram image. The upper spectrogram in

Figure 2.12 was computed with a window size of 10 ms (i.e., each frame of the spectrogram

encodes 10 ms of waveform). The lower spectrogram in Figure 2.12 was computed with

a window size of 40 ms (i.e., each frame of the spectrogram encodes 40 ms of waveform).

In practice, the window size decides a spectrogram’s characteristics of resolution. If the

window size is short (i.e., the upper spectrogram in Figure 2.12), each individual pitch

35

Figure 2.12: Examples of a waveform and two spectrograms with different window sizes.
Picture courtesy: [121]

period is resolved in the time dimension, but the resolution in the frequency dimension

is poor. On the other hand, if the window length is long (i.e., the lower spectrogram in

Figure 2.12), the generated spectrogram will have good frequency resolution but poor time

resolution. In other words, this spectrogram is not sensitive to rapid time variations but

the good at revealing frequency changes. Compared to the waveform, the spectrogram is

a more popular choice among ASR researchers. The spectrogram can reduce the sequence

length of representing an audio signal. This advantage can not only reduce the hardware

burden of training a model but also increase the inference efficiency for models that have

RNN layers.

36

2.8.2 Tokenization

Tokenization refers to the text preprocesses step that transforms the string of text into a

sequence of numbers that can be processed by a DNN. The program that does the process

is known as the tokenizer. In this section, we present three tokenization methods that are

commonly used in the DNN field.

Word-based tokenization

Word-based tokenization takes words as the basic units (i.e., tokens) and the tokenizer

gives each word a unique number (i.e., index), which starts from 0 to the total number of

unique words. The downside is that this method generates a huge number of tokens. Take

English as an example: there are over 500,000 words and word frequencies are different.

If a researcher encodes all these words with a word-based tokenizer, the size of tokens is

500,000 even though some words may only appear once in the corpus. To balance the token

size and the model performance, researchers usually keep N most frequent words, where

N is decided by researchers’ experience, and mark the rest words as out-of-vocabulary

(OOV). Other word-based tokenizers for other languages follow the same idea to reduce

the token size. The downside is that balancing the token size and model performance is

challenging. This tokenization method is not used in this dissertation.

Character-based tokenization

Character-based tokenization takes characters as the basic units and each word is repre-

sented as a sequence of characters. Thus, the token size is much smaller than the size of the

word-based tokenization. The token size is the total number of characters in that language

plus the total number of special symbols. For example, if a researcher uses CTC [51] as the

loss function, the blank symbol is one of the special symbols. This tokenization method

is widely used in the ASR field when using CTC as the loss function. The downside of

character-based tokenization is that, for a DNN, learning meaningful representations for

characters is harder than learning meaningful representations for words.

37

Subword-based tokenization

Subword-based tokenization takes informative character strings as the basic units and the

informativeness of a string depends on the learning algorithm and the training corpus.

Its core idea is that frequently used words should be retained, but rare words should be

decomposed into meaningful subwords. Byte-Pair Encoding (BPE) [158] is one of the

widely used tokenizers. It first initializes tokens with characters and represents each word

as a sequence of these tokens and a special end-of-word token, which serves as the between-

word boundary. Then, the program counts the co-occurrence of token-pair permutations

and replaces the most frequent one (e.g., “X” and “Y”) with a new token (i.e., “XY”).

This process is repeated multiple times with the newly created token and existing tokens

until the token size equals the desired size which is decided by researchers’ experience and

preference. This tokenizer can ensure that a model can learn meaningful representations

for high-frequent words and does not need OOV to represent unseen words.

2.9 Seq-to-seq DNN-based ASR Systems

In this section, we focus on presenting DNN architectures from the perspective of develop-

ing ASR. In recent years, remarkable progress has been achieved in the ASR field and the

state-of-the-art DNN-based ASR changes during these years. Our research closely follows

the progress, thus, we present multiple DNN architectures that are used in our research.

We present a CNN-RNN DNN known as DeepSpeech2 [7] in Section 2.9.1. Since we use

its pre-trained model for transfer learning research in Chapter 4, we introduce the specific

pre-trained model and its training data. In Section 2.9.2, we present a non-autoregressive

Transformer, Wav2Vec 2.0 [17]. We introduce the architecture of Wav2Vec 2.0 used in

the Chapter 5 and present the training process in detail. In Section 2.9.3, we present an

autoregressive Transformer, Whisper [122]. We introduce its architecture, its sequence

encoding process that is designed for multi-task training and the pre-trained models. We

use Whisper in Chapter 6.

38

Figure 2.13: The architecture of DeepSpeech2 and the blocks in detail.

Block Name Channel Size Kernel Size Stride Padding Size

Conv1 32 (11, 41) (3, 2) (5, 20)

Conv2 32 (11, 21) (1, 2) (5, 10)

Table 2.1: Configuration of DeepSpeech2’s Conv blocks.

2.9.1 DeepSpeech2

In this section, we present the architecture of DeepSpeech2. More specifically, we present

the architecture of the open-sourced model that is provided by Amodei et at. [7] which we

use this model in Chapter 4. We present the data processing step, the architecture and

the training/inference process, respectively.

DeepSpeech2 [7] is a seq-to-seq non-autoregressive DNN, that maps the spectrogram to

the sequence of 26 English letters. The model was trained with 8000 hours of transcribed

private audio recordings. Transcriptions are encoded by a character-based tokenizer. All

audio recordings are forced aligned with corresponding transcriptions and segmented into

39

clips no more than 7 seconds [7]. Then, these clips are transformed into a spectrogram

with a window of 20 milliseconds and a stride of 10 milliseconds. Last, the spectrogram

of each audio clip is normalized to be between -1 and 1 with approximately zero mean.

DeepSpeech2 takes the spectrogram as input and utilizes Conv blocks for low-level

information processing and GRU blocks for high-level processing. The output layer is a

linear layer. Figure 2.13 shows the architecture with configuration details. It contains

two Conv blocks, and each block is a stack of a Conv2d, a BatchNorm and a ReLU

layer, respectively. Table 2.1 presents the configuration of convolution layers in the Conv

Blocks. There are three GRU blocks and each contains a bi-GRU layer and the GRU layer

is slightly different from the GRU layer introduced in Section 2.1. Amodei et al. [7] found

that applying LayerNorm [14] on the transformed X improves the model performance.

The modified GRU is:

ri = σ(LayerNorm(Wirxi) + Wsrs(i−1) + br) (2.32)

zi = σ(LayerNorm(Wizxi) + Wszs(i−1) + bz) (2.33)

s̃i = f(LayerNorm(Winxi) + ri ∗ (Wsns(i−1)) + bn) (2.34)

st = (1 − zi) ∗ s̃i + zi ∗ s(i−1) (2.35)

where si is the hidden state and xi is the input at ith step, respectively. s(i−1) is the

hidden state of the previous step. s̃i is the candidate hidden state. ri and zi are the reset

and update gates, respectively. σ is the Sigmoid function, ∗ is the Hadamard product

and f() refers to the activation function. In other words, instead of having a LayerNorm

before GRU, Amodei et al. [7] make the LayerNorm part of their GRU. After the GRU

blocks, the Linear block maps the hidden representation into character-based outputs.

Amodei et al. [7] use CTC [51] to train their models. In the inference process, Deep-

Speech2 [7] utilizes a beam search approach [160] to search for the transcription with the

highest probability based on the combination of probabilities from the model and a sepa-

rate n-gram language model. We refer to Section 2.6 for more detail about the inference

process related to CTC [51].

40

Figure 2.14: The general architecture of Wav2Vec 2.0 and its training process.

2.9.2 Wav2Vec 2.0

In this section, we present the seq-to-seq non-autoregressive DNN architecture: Wav2Vec

2.0. 1 We present the data processing step, the DNN architecture, the training process

along with loss functions, and the inference process.

Wav2Vec 2.0 takes 1,8000Hz raw waveform as input and the waveform is normalized to

zero mean and unit variance. A character-based tokenizer is used to encode transcriptions.

The DNN architecture is shown in detail in Figure 2.14. The architecture contains

three main components: a convolutional feature encoder, a quantization block, and a

non-autoregressive Transformer. The feature encoder extracts latent representation from

raw audio input. The left graph of Figure 2.15 shows the Conv1d block, which is a stack

1We closely follow the source code published at github.com/facebookresearch/fairseq by Baevski et
al. [17].

41

Figure 2.15: The detail architecture of Conv1d block and Transformer block.

of a Conv1d, a LayerNorm and a GELU layer. The quantization block discretizes latent

representation to a finite set of quantized representations. Baevski et al. [17] choose to

quantize the latent representation due to its good performance on Wav2Vec 1.0 [131]. The

non-autoregressive Transformer, which consists of multiple attention blocks, transforms

the latent speech representation into content representations. Figure 2.15 shows the at-

tention block in detail. Each block consists of a multi-head self-attention mechanism and

two fully connected (FC) layers. The first residual connection adds up the input and the

output of the global multi-head self-attention mechanism and a LayerNorm layer follows

the connection (i.e., normalized output). Then, the normalized output is transformed by

two FC layers (i.e., FC1 and FC2). The second residual connection adds up the normalized

output and the transformed output and another LayerNorm layer follows this connection.

Next, we present the training process. Following Baevski’s terminology, the training

42

process consists of two steps: the pretraining step and the fine-tuning step. At the pre-

training step, Baevski use contrastive learning which is presented in Section 2.5.2. The

model randomly masks some parts of the latent speech representation, and the trans-

former must reconstruct these masked parts. Thus, no labeled data is required. Con-

trastive loss [17] is used to evaluate the similarity between a reconstructed representation

and the matched quantized representation whose corresponding latent representation is

masked. After the convolutional feature encoder extracts latent representations from raw

waveform, Wav2Vec 2.0 first uniformly samples multiple latent representations and their

adjacent frames and creates a copy of the latent representation sequence with these frames

masked. A sampled frame’s index (i.e., its time step t) refers to the corresponding masked

part. Then, the Transformer generates the content representations of masked parts (i.e.,

ct) given the masked sequence as input and the quantization block generates the quantized

representation (i.e., qt) given the no-mask sequence as inputs. Following is the equation

of the contractive loss used by Baevski:

Lcontrastive = −log
exp(sim(ct, qt)/k)∑

qi∈Q exp(sim(ct, qi)/k)
(2.36)

where exp() is the exponential function. qt refers to the masked quantized representation

of time step t and ct refers to the corresponding reconstructed content representation. Q

stands for a collection of qt where all qts are uniformly sampled from the same utterance.

sim() refers to the function that measures the similarity of two representations. Baevski

chooses the cosine similarity, sim(a, b) = aT b
∥a∥∥b∥ , as the measurement function. The loss

function encourages the Transformer to reconstruct each masked part accurately while dis-

couraging a reconstructed part from being similar to all other masked parts. That is, the

similarity between the reconstructed representation, ct, and its corresponding quantized

representation, qt, must be high, while the similarity between the reconstructed represen-

tation, ct, and other quantized representations (e.g., qt−2 and qt+4) must be low. After

the pre-training step, the pre-trained model is fine-tuned with labeled data and adopts

CTC [51] as the loss function. A character-based tokenizer is used to encode recordings’

transcriptions.

In the inference process, Wav2Vec 2.0 [17] utilizes a beam search approach [160] to

43

search for the transcription with the highest probability based on the combination of prob-

abilities from the model and a separate n-gram language model. We refer to Section 2.6

for more detail about the inference process related to CTC [51].

2.9.3 Whisper

Figure 2.16: The general architecture of Whisper and the text formatting rules. Picture
courtesy: [122]

Whisper [122] refers to a group of models trained with the weakly supervised learning

method and are autoregressive Transformers [155]. In this section, we first present the

training data and the data processing step including data representation and the text

formatting. Then, we present the DNN architecture in detail. Third, we present the

training process and the inference process. Fourth, we present the pre-trained models

44

Figure 2.17: The detailed architecture of Conv1d block and Transformer encoder/decoder
blocks.

provided by Radford et al. [122]. Last, we briefly introduce our research goal for Chapter 6.

Radford et al. [122] collected data (i.e., audio recordings and corresponding tran-

scriptions) from the Internet. In total, they collected 680,000 hours of recordings to be

training data. There are three types of recordings: 1) 438,000 hours of English recordings

and transcriptions. 2) 117,000 hours of recordings and transcriptions from 96 non-English

languages. 3) 125,000 hours of non-English recordings with English translations.

Radford et al. [122] segment recordings into clips and each clip is less than 30 seconds.

45

Then, these clips are re-sampled into 16,000 Hz and converted into an 80-channel spectro-

gram where the window size is 25-millisecond windows with a stride of 10 milliseconds. All

spectrograms are normalized to be between -1 and 1 with approximately zero mean which

is similar to the audio processing step of DeepSpeech2 [7]. Transcriptions are encoded by

a sub-word tokenizer (i.e., BPE [135]).

Usually in multitask learning, each task is handled separately. In other words, there

are multiple output layers one for each task. Instead, Radford et al [122] use a single

output layer and propose a format that unifies all tasks’ output formats, including voice

detection, transcription (i.e., ASR), translation, and alignment. The graph at the bottom

of Figure 2.16 shows the formatting rules. Radford et al. [122] define that prediction starts

with a special token (i.e., 〈|startofstranscript|〉). Following the start token, the next

token is either 〈|nospeech|〉, which indicates no speech in the input, or 〈|{language}|〉,

where {language} is a variable that can be any predefined language abbreviations, such

as Chinese (zh) or English (en). The following token marks the transcription/translation

tasks (i.e., 〈|transcribe|〉 or 〈|translate|〉). The next predefined token specifies the

intention of not predicting time alignment (i.e., 〈|notimestamps|〉). Only text tokens

follow this token. If 〈|notimestamps|〉 is not specified, text tokens are separated by

predefined tokens of timestamps that mark the token’s beginning and end in the audio

file. At the end, the token 〈|endofstranscript|〉 marks the end of the sequence. To

increase the performance on inferring audio longer than 30 seconds, Radford et al. [122]

add 〈|PREV|〉 following with previous tokens to indicate that the inference was conditioned

on previous texts.

Figure 2.16 top right shows the general architecture. In the encoder, the spectrogram

input is first processed by 2 Conv1d blocks. After the Conv1d blocks, the extracted

representation is added with sinusoidal positional encoding and is then fed to encoder

blocks. The outputs from the top encoder block are viewed as the acoustic representation.

In the decoder, both acoustic representations and tokens, which are encoded by BPE [135]

and augmented with learned positional encoding, are fed to the decoder blocks. The

outputs from the top decoder block are hidden representations that are used to make

next-token predictions.

46

Figure 2.17 presents all three types of blocks in detail: Conv1d block, Transformer en-

coder block and Transformer decoder block. Conv1d block is a stack of a Conv1d layer and

a GeLU layer. An encoder block consists of a global multi-head self-attention mechanism

and two linear layers. First, the LayerNorm followed by a global multi-head self-attention

mechanism generates the output from the input and the first residual connection adds

up the input and the output (i.e., residual output). Second, the residual output is trans-

formed by two linear layers after it is normalized by another LayerNorm layer. The second

residual connection adds up the normalized output and the transformed output and an-

other LayerNorm layer follows this connection. The transformer decoder block consists of

a global multi-head self-attention mechanism, a multi-head cross-attention mechanism and

two linear layers. First, the LayerNorm layer followed by a global multi-head self-attention

mechanism generates the self-attention output from the input and the first residual con-

nection adds up the input and the output (i.e., residual self-attention output). Second,

the LayerNorm layer followed by a global multi-head cross-attention mechanism gener-

ates the cross-attention output from the self-attention output and the second residual

connection adds up the self-attention output and the cross-attention output (i.e., resid-

ual cross-attention output). Third, the residual cross-attention output is transformed by

two linear layers after it is normalized by another LayerNorm layer. The third residual

connection adds up the normalized output with the transformed output and outputs the

block’s output.

To train a model, Radford used the cross entropy loss over tokens. The losses of

previous tokens are ignored. The inference process is similar to the standard autoregressive

DNN, the decoder takes the encoder’s outputs, previous tokens and a dummy start symbol

(i.e., 〈|stratofstranscript|〉) as input and predicts tokens iteratively.

Radford et al. [122] published models with different parameter sizes, shown in Fig-

ure 2.18, as well as their code. Most models are trained with similar configurations,

except whisper-large-v2 which is not presented in the figure. This is an additional model

that Radford et al. [122] trained with a different training configuration and the model

outperforms whisper-large-v1. Radford et al. [122] show that, with a good training con-

figuration, whisper-large-v2 is more robust than Wav2Vec 2.0. That is, Whisper-large-v2

47

Figure 2.18: Information of pre-trained models offered by Radford et al. [122]. English-
only models refer to models trained with the English-only subset. Picture courtesy: [122]

achieves lower WER on various testing sets than Wav2Vec 2.0.

Radford et al. [122] hypothesize that the robustness of large whisper models is mainly

contributed by the powerful language model (i.e., decoder). This is an important hypoth-

esis that needs to be proved because it is directly related to the transfer learning strategy

(e.g., we do need to tune the decoder?) that researchers might choose. In Chapter 6, we

present our research on confirming this hypothesis.

2.10 Mild Cognitive Impairment

Mild cognitive impairment (MCI) is an intermediate stage between normal cognition and

dementia. Since there is still no cure available for Alzheimer’s Disease, the most dominant

form of dementia, detecting the MCI Distinguishing older people with MCI from those with

normal cognition through applying machine learning and feature engineering to speech

data is a research topic that we conduct in this dissertation.

In the medical field, cognitive test batteries, such as the Montreal Cognitive Assess-

ment (MoCA) [111] and Mini-Mental State Exam (MMSE) [41], quantitatively measure

a person’s memory, executive functions, visuospatial and language ability. While those

48

batteries provide information to clinicians for diagnosing cognitive status, the require-

ment of specialists constrains using these batteries for daily monitoring. Using language

and speech characteristics that can be automatically extracted by computer to diagnose a

person’s cognitive status, especially MCI stage, is of significant public health importance.

Prior literature has identified speech and language abnormalities are induced by cogni-

tive impairment [147]. Progressive decline in linguistic ability [125], syntactic deficits [145],

and abnormal patterns of spoken words used in daily conversations [11] have shown to be

effective in distinguishing MCI from those with normal cognition (NC). Research on oral-

based tasks, such as reading tasks, has shown promising results in both descriptive [102, 95]

and predictive studies [96, 76, 42]. Focusing on the prosodic aspects of speech, Martin

et al. [95] found more flat intonation in speech samples of older adults with Alzheimer’s

disease compared to those with NC. A similar study also showed less fluency among per-

sons with MCI compared with those with NC [102]. In the context of predictive modeling,

Toth et al. [150] showed the utility of speech-based measures (e.g., speech rate) extracted

from continuous unstructured speech samples in classification models developed for the

early detection of MCI. Similar findings have also been reported in samples collected from

structured tasks, such as picture description and verbal fluency. Meilan et al. [102] showed

that the average duration of silence segments was strongly correlated with cognitive test

scores in a picture description task. Konig et al. [77] and Chen et al. [28] showed older

adults with AD were slower to retrieve words at the beginning of the fluency test than

NC. Past studies also showed promising results in identifying cognitive status [162, 148],

stress [47, 22], depression [115] and aging [109, 89].

Chapter 3

Using ASR in Feature Extraction for

Cognitive assessment

Unlike the following chapters in which we focus on developing ASR techniques, in this

chapter, we utilize ASR as a tool to extract handcrafted time-base features from the

animal fluency (AF) test to improve cognitive assessment. In this study, we have 1 hour

of audio recordings in total from 70 subjects (28 with mild cognitive impairment and 42

demographically matched normal controls). Off-the-shell ASR systems did not perform

well on the tiny dataset and this dataset is also too small to fine-tune a pre-trained

ASR. Thus, we utilized an ASR to extract timestamps of transcribed words (i.e., forced

alignment), which is widely used in phonetic studies [19, 81, 142] and focus on improving

the cognitive assessment. We propose time-base features based on early cognitive studies

on the AF test and utilize these features to distinguish older people with mild cognitive

impairment (MCI) from those with normal cognition (NC).1

3.1 Introduction

Among cognitive tests, the AF test has been widely used as part of several dementia

screening batteries. Participants are asked to retrieve as many animal names as possible

in a short amount of time, typically one minute. In clinical practice, clinicians evaluate the

1This chapter is based on: L. Chen, M. Asgari, R. Gale, K. Wild, H. Dodge, and J. Kaye, “Improving
the assessment of mild cognitive impairment in advanced age with a novel multi-feature automated speech
and language analysis of verbal fluency,” Frontiers in Psychology, vol. 11, p. 535, 2020 [28]. Liu Chen
conducted the research reported in this chapter with discussion and advice from the other authors.

49

50

brain’s ability on semantic retrieval through counting the total number of retrieved unique

animal names. Typically, a person with MCI retrieves fewer names than those with normal

cognition (NC). In addition to clinical practice, researchers are investigating the pattern

of retrieval to both improve our understanding of MCI and improve cognitive assessment.

Additionally, researchers are also developing fully automatic cognitive assessment systems

to make them widely available.

In this preliminary study, we take a step toward improving the classification accuracy

and making the assessment automatic. While previous research focused on representing

the pattern with count-based features/measures to improve cognitive assessment, we pro-

pose time-based features inspired by Hills et al. [59]. We use forced alignment [99] to

obtain the timestamps of the animal names and extract the time-based features. The

classification improvement, which is obtained from combining time-based features with

count-based features, demonstrates the potential of utilizing time-based features to dis-

tinguish older people with MCI from those with NC. Moreover, we develop an automatic

assessment pipeline to extract features and make assessments/classifications.

In the rest of this chapter, we present the background information in Section 3.2.

Computational methods are presented in Section 3.3, including count-based features and

our proposed time-based features. In Section 3.4, we present the pipeline including data

preprocessing, feature extraction, feature selection, and classification. In Section 3.5, we

describe the experiment setup, including the dataset and evaluation criteria. We present

our results in Section 3.6 that show the effectiveness of our time-based features. Finally,

Section 3.7 is the discussion section.

3.2 Background

In this section, we present the background for this chapter. In Section 3.2.1, we review

verbal fluency tests including the AF test. In Section 3.2.2, we review one of the retrieval

theories for the AF test, namely the clustering-switching theory. In Section 3.2.3, we

review the study of the optimal searching strategy, which is rooted in the clustering-

switching theory. This strategy inspired our work.

51

3.2.1 Verbal Fluency Tests

Verbal fluency (VF) tests are cognitive tests that are widely used in dementia screening

batteries. In a VF test, participants are asked to name as many words in a category (e.g.,

animals) as possible in a short duration of time, typically one minute. The VF test is

administered in two different ways: 1) semantic fluency, in which participants are asked

to generate words from a semantic category such as animals, fruits, or vegetables, and 2)

phonemic fluency where participants must generate words that begin with a particular

letter such as “F” or “S”. In the conventional scoring of VF tests, the count of uniquely

generated words in the test comprises the final score. Prior research suggests that verbal

fluency is a function of an individual’s age regardless of cognitive functioning with younger

populations perform better in this test compared to older adults [6, 146]. Within older

adults, Farina et al. [39] highlight that individuals with MCI achieve lower VF scores than

those with NC. Among various semantic fluency tests, the AF test is one of the widely

used tests for evaluating a person’s cognitive status and is used in multiple research studies

related to the human brain’s semantic retrieval process. It is for these two reasons that

we use it in this chapter.

3.2.2 Semantic Retrieval Process

The semantic retrieval process refers to how human beings retrieve words that match

certain semantic requirements. Asking a person to retrieve animal names (i.e., the AF

test) evokes this process as would any of the semantic-fluency VF tests. Previous research

indicates that the retrieval pattern gives more information about the semantic retrieval

process than the conventional score of the AF test. Troyer et al. [151] proposed a com-

putational approach for characterizing the semantic retrieval process during an AF test

that revolves around two sub-processes (known as two-part memory retrieval): clustering,

in which a participant retrieves words that share some subcategories, and switching, in

which a participant switches to a different semantic subcategory for retrieving new words.

Troyer used two algorithms for identifying when a person switches to a new cluster: an

52

algorithm for quantifying the semantic similarity of any two adjacent words, and an algo-

rithm for determining clusters and switches. Count-based features are used to represent

the retrieval pattern.

To quantify the semantic similarity of animal names for switching and clustering,

Troyer et al. [151] first manually developed a structured table that categorizes 545 ani-

mal names into 22 subcategories that cover a particular cluster of related animals (e.g.,

domestic animals, birds, etc.). Animal names in the table are not exclusive to a single

subcategory and can be part of up to four subcategories. Next, Troyer segmented each

subject’s answer into multiple clusters and words in a cluster share at least one sub-

category. Last, Troyer represented each participant’s retrieval pattern with count-based

features (i.e., the number of switches and the average number of words in a cluster). They

showed that young participants generated more words and switched more frequently as

compared to older participants. Moreover, their later research [152] verified the effec-

tiveness of these two features for discriminating a group of participants with Alzheimer’s

disease from demographically matched participants with normal cognition.

Despite the potential usefulness of these features, there is a limitation that is related to

computing switching and clustering patterns from the preexisting manually constructed

table of animal names. The assignment of multiple subcategories to a word can cause

ambiguity in the determination of subcategory switches [161]. To improve on this, Woods

et al. [161] proposed a computational method, explicit semantic analysis (ESA), based

on the semantic relatedness of subsequent words computed in a vector space by cosine

similarity distance given the vector representation of words. To derive the clusters, firstly,

Woods detects the occurrence of a switch by comparing the pairwise cosine distance of

two successive words to a predefined threshold and, if the similarity is lower than the

threshold, there is a switch between these words. Words between two switches form a

cluster. Woods defined the threshold to be a participant’s retrieved words as 75% the

mean semantic similarity (i.e. cosine similarity). That is, the exact threshold value varies

among examiners.

Both research studies pursued the same goal with different algorithms: using switching

and clustering to describe the semantic retrieval pattern in the AF test. In our work, we

53

evaluate both algorithms/methods from these studies and refer to them as Troyer- and

ESA-based methods.

An example: We present an example in the top half of Figure 3.1 to explain how

the ESA-based method segments an AF answer into multiple clusters. The top table in

Figure 3.1 displays a partial response of a subject to the AF test, {cat, falcon, bat, elephant,

shark, dolphin}, and the corresponding cosine similarities between previous and current

words d(Wi−1,Wi). According to Woods et al. [161], the higher the cosine similarity, the

stronger the relationship between the pair of words. Practically, the cosine distance of

two words is compared to a predefined threshold value – a critical factor in the success of

the ESA method. In this example, the 75% of average semantic similarity is 0.05, which

is the threshold value for this example. The word pair of cat and falcon is semantically

different because d(cat, falcon) = 0.01 is lower than the threshold. In this way, the partial

response has two switches, resulting in 3 clusters.

Count-based features: In the previous paragraph, we introduced an example of using

the ESA-based method to segment an AF answer into multiple clusters. After the clusters

have been computed, count-based features can be extracted. In addition to the 2 features

used by Troyer et al. [151], we use a compilation of features used by various researchers

for decades. We use code from Woods et al. [161] to extract these features. We present

these features in Table 3.1.

3.2.3 Optimal Searching Strategy

In the previous section, we introduced the clustering–switching hypothesis for the AF

test and reviewed algorithms that segment retrieved words into clusters. Working with

the clusters and switches, Hills et al. [59] investigated the search strategy of retrieving

animal names through analyzing the cost of retrieving a name. Hills et al. adopted the

marginal value theorem (MVT) [24] for characterizing the search strategy observed in

individuals’ AF test responses. Traditionally employed to model the foraging behavior

of animals, MTV optimizes the benefit-cost ratio, the estimation of whether it is more

54

Figure 3.1: In this example, we set the threshold for this subject to be 0.05. Based on the
threshold, there are two switching positions, which are marked as red arrows. The SD of
the first switching is 0.7 which is the time difference between falcon and cat. The ICRT
of the first switching is 0.2 which is the time difference between bat and falcon. So the
OSR of the first switch is 0.5 which is the absolute difference between the SD and ICRT
that we just calculated.

beneficial to continue searching for food at the current patch of food versus expending

the effort to move some distance with the hope of discovering a more bountiful patch.

Hills et al. hypothesized that this optimization problem in animals’ foraging strategy

resembles the semantic-retrieval strategy in the AF test in which one may retrieve more

words over the course of the test if optimally choosing when to switch to a new cluster.

They chose retrieval time (RT), which is the time cost of retrieving a new word and has

been one of the popular methods to study VF tests [78, 92, 63, 59, 103, 156, 120, 98], to

represent the retrieval cost. Hills demonstrated that their participants (college students)

took significantly longer time to retrieve the first word in a cluster than the mean retrieval

time over all retrieved names. That is the retrieval time for retrieving a word that is

semantically similar to the previous word is shorter than retrieving a semantically different

word. They also showed that retrieval time increases as more words are retrieved from the

55

Feature Name

The total number of unique animal words (standard AF score)
The total number of switches (NS)
The average number of words in clusters (ANWC)
The total number of unique words
The total number of duplicate words
The mean of the log of word frequency
The standard deviation of word frequency
The mean of words’ syllables
The standard deviation of words’ syllables
The mean of words’ typicality
The standard deviation of words’ typicality
The mean of ESA of adjoining words (MESA)
The mean of ESA between every word and every other word in the answer (MAESA)
The ratio between MESA and MAESA
The total number of switches
The average number of words in clusters
The total number of single-word clusters

Table 3.1: Count-based features that have been well-studied by various researchers.

same semantic region and participants who switched either too early or too late lead to

retrieving fewer words than others. Our research is inspired by Hills’ work and we describe

our time-based features in Section 3.3.

3.3 Features for Characterizing Verbal Responses

In Section 3.2.2, we introduced the core of the computational method for characterizing

verbal responses that revolve around the switch and cluster components. In this section,

we describe two sets of features: our count-based and time-based features. In the following

sections, we introduce a novel count-based feature and continue to explain the example

presented in Section 3.2.2 to explain our time-based features.

3.3.1 Addional Count-based Features

Empirically, we noticed numerous cases in our dataset where a single word appeared in its

own cluster. To capture this phenomenon, we introduce a new feature that measures the

ratio between the count of single word clusters to the total number of clusters and refer

56

to it as single cluster ratio (SCR).

3.3.2 Time-based Features

In the previous section, we presented our novel count-based feature, SCR. In this section,

we present our three time-based features.

Our approach for characterizing the search strategy is based on the marginal value

theorem (MVT) [24] and the work of Hills et al. [59]. We hypothesize that individuals

with normal cognition optimally switch to a new cluster leading to the production of more

animal names while individuals with MCI are less capable of finding optimum transition

points. With a poor switching strategy, a person either lingers too long in a cluster or

moves too fast to a new cluster; ultimately producing fewer animal names.

Based on this hypothesis, we define two intermediate time-based measurements to

capture the difficulty of retrieving a new word in an AF test. First, Switching duration

(SD) is the elapsed time, which is the time difference between these two adjacent animal

names’ start times, between the last animal name in a cluster and the first animal name

in the next cluster. For example, in Figure 3.1, the animal name “cat” is the last name in

cluster 1 and the animal name “falcon” is the first name in cluster 2. Second, Intra-cluster

retrieval time (ICRT) is the elapsed time between the first two animal names in a cluster

(e.g., dog and cat in Figure 3.1). Along with the sequence of words, Figure 3.1 shows

the sequence of timestamps {1.0, 1.5, 2.2, 2.4, 2.9, 3.8, 4.2} representing the onset of

each word measured in seconds and the relative timestamps (i.e., rescaled timestamps)

are presented under the actual timestamps {0.0, 0.02, 0.03, 0.044, 0.048, 0.058, 0.082}.

We normalize the actual timestamps with the overall duration of the answer in order to

contain the value to be lower than one which makes it easier to use in machine learning.

Since all participants have one minute to give their answers, no information is lost in

the rescaled timestamps. From the timestamps along with the ESA-derived switches and

clusters, one can compute these features and the following is the SD of the first switch

57

and ICRT of the second cluster:

SD1 = (tfalcon − tcat) = 0.014 (3.1)

ICRT2 = (tbat − tfalcon) = 0.004 (3.2)

Note that the proposed method for measuring ICRT is only appropriate if subjects produce

at least two animal names in a cluster. We utilize the SCR, which is described in the

previous section, to capture information related to single-word clusters.

Next, we use SD and ICRT features to craft another feature, optimal switch rate

(OSR), that estimates the success of a switch by measuring the difference between the

switching duration and intra-cluster retrieval time of the first switch as follows:

OSR1 = |SD1 − ICRT1| = 0.01 (3.3)

where || is the absolute value operator. Our assumption is that the more successful a

switch, the smaller the OSR. As the number of switches and clusters may vary across

responses, the length of the SD and ICRT feature vectors vary accordingly. Thus, we use

standard statistical aggregates (i.e., mean, median, variance, minimum and maximum) to

represent participants’ overall performance on optimal switching rate. In total, we have

five candidate features. In practice, this proposed computational approach will face a few

limitations to be addressed in Section 3.4.2.

3.3.3 Feature Selection

There are a large number of count- and time-based features. Training a statistical model

with all features may lead to overfitting and result in a lack of generalizability. To se-

lect features that are both informative for classification and supported by early related

clinical research, we use both manual feature selection and an automatic feature selection

algorithm to select informative features. Three count-based features are expected to be

kept because their effectiveness has been reported by various early research. AF score

is the standard scoring method for animal fluency tests in clinical practice. ANWC and

NC have been constantly evaluated by researchers since Troyer et al. [151] proposed the

58

clustering and switching retrieval process. Additionally, since SCR is our proposed count-

based feature designed to preserve edge cases that OSR cannot capture, we expect it to

be preserved. For time-based features, we expect some of the features to be preserved.

We use a feature selection algorithm known as recursive feature elimination with cross-

validation (RFECV) [55], which ranks the importance of features based on a given scoring

function and returns a subset of features to select the most informative features. This

technique is provided by the Scikit-learn toolkit [118]. It constructs a smaller subset of

features and calculates the model performance given each remaining subset. The elimina-

tion process continues until all features are exhausted and the feature set that maximizes

the model performance across all feature sets is selected as the best-performing feature

set. Then, among the selected features that are count-based, we select those features that

either have been shown effective in early research or designed for time-based features, and

we keep selected time-based features. Among the selected features that are time-based,

we keep all selected features. Eventually, we have six selected features: AF score, ANWC,

NC, SCR, mean OSR, and median OSR. We will use these selected features in Section 3.5.

3.4 Training Pipeline

In previous sections, we presented the count and time-based features. We present the

pipeline of our cognitive assessment system as shown in Figure 3.2. The time alignment

module (Section 3.4.1) takes the audio recordings and corresponding transcriptions as

inputs and output time steps for each word. The normalization module (Section 3.4.2)

removes all non-animal-name words and unifies synonyms. Time- and count-based features

are extracted based on methods presented in Section 3.2.2 and Section 3.3. The machine

learning module (Section 3.4.3) takes count- and time-based features from verbal responses

to distinguish participants with MCI from those with NC.

3.4.1 Forced Alignment

Obtaining retrieval time is the foundation of both the research described in Section 3.2.3

and our time-based features. In early research, some researchers manually annotated the

59

Figure 3.2: Diagram of the computational framework including to distinguish partici-
pants with MCI from those with NC based on audio recording and transcription of their
responses to an AF test. The first module of this plot, Feature Representation module
(shown by the black box), represents the characteristics of the response using Time-based
and Count-based features. The second module, Machine Learning module (shown by the
green box), predicts the participant’s cognition status (MCI or NC).

timestamp of each word [78, 92, 63], while others recorded the timestamps of keystrokes

through asking participants to type their answers and estimated the retrieval time based

on certain assumptions, such as they define that the pressed letter right after pressing

the “enter” key would be the first letter of the newly retrieved word and consider the

corresponding timestamp to be the animal name’s timestamp [59, 103, 156, 120, 98]. The

downside of those methods is that they either require labor or inevitably constrain the

potential participants to the good-at-typing populations. Compared to typing answers,

recording answers does not have any constraints on participants’ skills and is suitable for

all ages.

Forced alignment [99], which is an automatic process that aligns spoken audio with

the corresponding words/phones sequence, is a popular tool in phonetic studies, such

as automatic measurement of vowel formants [81], voice onset time [142], and speech

variation [19]. Since forced alignment has been used in phonetic research for decades,

we consider forced alignment to be a mature technique and use it to obtain retrieval

time. We use the forced alignment function provided by the Kaldi ASR toolkit [119] to

60

extract time information from a verbal response. We do not use pre-trained models from

Kaldi due to the domain mismatch between these models and our recordings. We follow

Kaldi’s training process which involves forced alignment to align our recordings and their

manual transcriptions.2 We train an acoustic model, which only needs the transcription

and audio as input. The training procedure finds the acoustic model that best aligns the

entire transcription of the data with all of the audio files. This results in an acoustic model

as well as the forced alignment between audio and transcription.

3.4.2 Normalization

Ideally, a given response would consist of only animal names, but in reality, the recordings

often contain extraneous speech, including fillers and conversational words as well as in-

terruptions from the examiner. Sometimes, a participant will ask how much time remains

for the test, and other times the examiner offers words of encouragement. In more than

half of the recordings, both the examiner and the participant engaged in a bit of casual

conversational speech, and the duration and frequency of such interruptions varied across

the recordings. Encouragement from the examiner is usually a few short words (e.g.,

“good”), while a response to a time check might be a whole sentence (e.g., “you still have

ten seconds left”). Examiners never say any animal names. Prior to feature extraction, we

remove all the non-animal words from the response. From a computational point of view,

trimming out these extraneous words results in a shortened response with altered times-

tamps that will ultimately influence the uniformity of time-based features across different

subjects. To compensate for this issue, we first rescale the timestamps to the length of

“shortened” audio and then measure the SD and ICRT features. In our working example

shown in Figure 3.1, the original 58-second long recording was “shortened” to 50 seconds

after filtering out non-animal words. Then, the rescaled timestamps, which are computed

by dividing the timestamps by 50, rather than 58, are used for computing SD and ICRT

features. Figure 3.1 shows both SD and ICRT features before and after time rescaling.

This is the major difference between our method and the method deployed in Hills et

2We use code from github.com/kaldi-asr

61

al. [59] who adopt the original time differences.

Another common issue in the AF test is the presentation of plural forms of animal

names (e.g., “pigs” rather than “pig”). In order to normalize all animal names in tran-

scriptions to their singular forms, To measure the category similarity, we apply a word

stemmer algorithm on responses to remove morphological affixes from words, leaving only

the word stem. Also note that many animal names follow irregular pluralization rules

(i.e., “hippopotami” and “oxen.”). Additionally, some animal names contain more than

one word (i.e., “great white shark” and “mountain lion.”). To tackle this problem and

automatically identify animal names, we built a tool to retrieve the normalized form from

the internet. First, we found the singular form of each noun from the Merriam-Webster

website, then we referenced Wikipedia to decide whether a multi-word sequence is an ani-

mal name. Conveniently, the Wikipedia template for an article about a species includes a

biological taxonomy table, so upon looking up a given species, we could confirm it belongs

to the kingdom Animalia and ensure that the animal name is valid.

3.4.3 Machine Learning

The machine learning module takes count- and time-based features as input and output

assessments.

We first scale the range of computed features into a constrained range using Ro-

bustScaler.3 This is a necessary step in our computational framework as we noticed that

the range of derived features greatly differs from each other. For example, the number

of correct animal words ranges from 4 to 30 within the responses while the mean count

of switches ranges from 2 to 9. Features with large scale will dramatically impact what

the machine learning algorithm will learn and prevent the algorithm from gaining benefits

from features with smaller scale. RobustScaler centers and scales the data according to the

following equation, operating separately on each dimension of the global feature vector:

f(xi) =
xi −Q1(x)

Q3(x) −Q1(x)
(3.4)

3We use the RobustScaler provided by python package Scikit-learn.

62

where xi denotes to the ith feature; Q1(x) and Q3(x) are the feature’s 25th and 75th

quantiles, respectively.

We choose support vector machine (SVM) [141] to classify participants as either MCI

or NC. The SVM uses the features selected, as described in the previous paragraph. An

SVM classifier is a discriminative model that attempts to distinguish between two classes

of data points separated by a hyperplane in a high dimensional space. The parameters

of the hyperplane are learned from a set of training examples. We trained linear and

non-linear SVM classifiers employed from the open-source Scikit-learn toolkit [118]. All

experimental results, presented in the later sections, are based on the linear SVM as it

outperformed the non-linear SVM. We also repeated the experiment using a “Chance”

classifier, which randomly assigned participants to MCI and NC classes.

3.5 Experiment

We will separately evaluate both count- and time-based features derived from the Troyes

and ESA-based methods. The difference between these methods lies in the semantic

representation of animal names and how names are clustered, which was introduced in

Section 3.2.

In this section, we present the experiment setups. We present data, performance crite-

ria and the chosen cross-validation method. In Section 3.5.1, we present the demographic

information of the dataset. In Section 3.5.2, we present the evaluation metrics. In Sec-

tion 3.5.3, we present the chosen cross-validation method for resolving the data imbalance

problem.

3.5.1 Data

This study’s participants come from community cohort studies of brain aging at the Layton

Aging & Alzheimer’s Disease Center, an NIA-funded Alzheimer’s center for research at

Oregon Health & Science University (OHSU). All participants’ cognitive status are rated

by the Clinical Dementia Rating (CDR) [107] score. If a participant gets a score of 0, it

means the person’s cognitive status is normal (NC). A score of 1 indicates dementia of

63

Alzheimer’s disease and a score of 0.5 indicates mild cognitive impairment (MCI), which

is considered to be a transitional stage between normal aging and Alzheimer’s disease.

We have animal fluency test recordings from 98 subjects and corresponding manual

transcriptions. Out of 98 participants, 28 were diagnosed with MCI and the remaining

70 participants were NC. Our statistical analysis using the Student’s t-test showed a

significant difference in participants’ demographic factors between MCI and NC groups,

namely age, sex, and education level. It is possible that observed changes in spoken

language patterns of participants with MCI are the consequence of subject differences in

demographic factors such as age or education level regardless of cognitive decline [97]. In

order to control for demographic factors, we used a freely available package, ldamatch,4

which selects the largest subset of the NC group that is statistically matched to the MCI

group [80]. This resulted in a group of 70 participants: 28 with MCI and 42 with NC.

Table 3.2 reports the basic characteristics of the selected participants. We report the mean

and standard deviation for educational level, age, and sex. Using Kolmogorov-Smirnov

test, we show that they are statistically insignificant. Additionally, Mini-Mental State

Examination (MMSE) [153] and AF score, which should be significantly different between

the two cognitive groups, are also presented in this table.

Variable
NC MCI

p-value
n=42 n=28

Age 89.9 (5.55) 91.2 (5.17) 0.32
Gender (% Women) 64.3% 50% 0.85
Years of Education 14.3 (2.70) 14.8 (2.79) 0.53
MMSE 28.0 (1.63) 26.0 (3.16) 0.08
AF score 17.3 (4.99) 13.3 (4.12) 0.04

Table 3.2: Baseline characteristics of MCI and NC. The Kolmogorov–Smirnov test was
used to calculate p-values

3.5.2 Performance Criteria

To evaluate the performance of the proposed classifier, we adopted the following evaluation

metrics:

4The Idamatch package can be found at CRAN.R-project.org/package=ldamatch

64

Sensitivity: the portion of correctly identified MCI participants (true positives). Sensi-

tivity assesses the capability of the model to distinguish MCI from NC participants.

Specificity: the portion of correctly identified NC participants (true negative). Specificity

measures how well the model avoids false positives.

Area under the curve of receiver operating characteristics (AUC ROC): The most com-

mon method for evaluating the performance of a binary classifier is the ROC [56],

which plots the sensitivity (true positive rate) of the classifier versus specificity (false

positive rate) of the classifier as the classification threshold varies. We use a clas-

sification threshold in a grid search schema to cover the most positive threshold

(everything true) to the most negative threshold (everything false).

3.5.3 Cross-validation on the Imbalanced Dataset

To demonstrate whether our statistical analyses and experimental results were indepen-

dent of our data sets, we use cross-validation (CV) techniques in which the train and test

sets are rotated over the entire dataset. In an imbalanced dataset, a machine learning al-

gorithm receives more information from the class that has more samples and consequently

may not learn properly from the smaller-sized class. To overcome this problem in our

imbalanced dataset, we use a special leave-one-pair-out (LOPO) cross-validation scheme.

LOPO cross-validation randomly selects one sample from each class to form a testing set

and, from the rest, creates a balanced training set by randomly selecting the same number

of samples from each class. In our example, with 28 MCI and 42 NC samples, leaving one

pair for the test, LOPO randomly selects 27 NC out of the remaining 41 NC samples at

each training iteration. To reduce the effect of randomization in our final results, LOPO

shuffles the data and repeats the above procedure 500 times Lastly, LOPO averages across

500 scores and reports that as the performance of our model.

3.6 Results

In this section, we present the results of our experiments. In Section 3.6.1, we present sta-

tistical measurements of selected features. In Section 3.6.2, we compare the classification

65

Feature Name p-value

AF score 0.04

ANWC 0.21

NS 0.39

SCR 0.91

mean OSR 0.03

median OSR 0.02

Table 3.3: Kolmogorov–Smirnov test results of features that use ESA for semantic repre-
sentation.

results between using only count-based features and using both count- and time-based

features. In Section 3.6.3, we explore the impact of the threshold used in the ESA-based

approach.

3.6.1 Statistical Analysis

In this section, we extracted our proposed time and count-based features from switch and

cluster components identified by the ESA-based method. To explore the effectiveness of

these features in differentiating subjects with MCI from NC, we conducted a statistical

analysis on each of our selected features using the Kolmogorov-Smirnov test. We present

their p-values in Table 3.3 and consider a feature to be significantly different between the

two groups if the p-value is lower than 5%. The table shows the AF score is significantly

different between MCI and NC. However, the widely studied count-based features, ANWC

and NS, are insignificant differences between MCI and NC groups. Even though SCR,

a count-based feature proposed by us, is not significantly different between MCI and

NC, SCR is one of the features selected by the RFECV process, as was discussed in

Section 3.3.3. On its own, it is not useful, but is probably useful when considered in

conjunction with the other selected features Both mean OSR and median OSR features

significantly distinguish the two groups with p-values of p < 0.03, p < 0.2, respectively.

We present the distributions of these features in Figure 3.3 in order to see the value

difference of these of our selected features between MCI and NC. The mean AF score of

NC is higher than the MCI’s. This is consistent with early research that NC can retrieve

more animal names than MCI. For both mean OSR and median OSR, the average score

66

Figure 3.3: Probability distribution of features (y-axis) selected by the feature selection
algorithm. The dynamic range of features has been normalized according to the Ro-
bustScaler approach. The dotted line from left to right are 25% quantile, 50% quantile
and 75% quantile.

of NC is lower than the average score of MCI. This indicates that NC participants have

less difficulty retrieving a new word upon switching to a new cluster than those with MCI.

3.6.2 Classification Results

In this section, we compare the performance of the SVM classifier between participants

with MCI and the NC using different sets of features. We compare the performance

difference between only using traditional count-based features and combining both count-

67

and time-based features.5 To ensure that our features do not depend on the clustering and

switching methods, we make two separate comparisons using features generated from either

ESA- or Troyer-based method. To better understand the effectiveness of our features, we

also created three baseline models.

Chance: randomly assign participants into MCI and NC classes.

Demographic: an SVM classifier trained with demographic features of subjects, namely

age, gender, and years of education. We include this model because these features

are widely used in medical research.

AF score: an SVM classifier trained with AF score.

Subjects in MCI and NC are demographically matched, and thus, the performance of the

demographic model is close to the chance model.

Table 3.4 shows the performance of the models using LOPO cross-validation in terms

of Sensitivity, Specificity, and AUC ROC. In terms of ROC AUC, count models outper-

form the three baseline models. The addition of time-based features — whether extracted

based on Troyer or ESA methods — further improves ROC AUC. This indicates that our

time-based features contain information that count-based features do not have, and are

useful to distinguish MCI from NC. Our time-based features work well on both Troyer-

and ESA-based methods. The count+time models also outperform the count models on

sensitivity and specificity except when using the ESA-based method where there is a trade-

off between sensitivity and specificity. As aside, it is worth noting that the demographic

model performs better than the chance model even though the demographic features are

not significantly different between MCI and NC. This indicates the demographic model’s

distinguishing power may come from the conjunction of demographic features. The AF

score model outperforms the demographic model. This indicates that the AF score’s

distinguish power is more powerful than the conjunction of demographic features.

68

Features Method ROC AUC Sensitivity Specificity

Count
Troyer-based 70.25% 62.71% 66.48%
ESA-based 73.81% 75.46% 60.46%

Count + Time
Troyer-based 77.76% 76.02% 67.11%
ESA-based 77.09% 70.27% 69.68%

Chance 50.00% 49.56% 49.99%
Demographic 59.30% 49.25% 59.64%

AF score 65.63% 67.30% 63.04%

Table 3.4: Classification results using selected features (mean over 500 leave-pair-out
spatial cross-validation repeats.

Figure 3.4: The x-axis is the different threshold setting (xx% of mean cosine similarity of
an individual’s answer). The y-axis is the ROC AUC score.

69

3.6.3 Impact of the Semantic Threshold

In the previous section, we have shown the effectiveness of count- and time-based features

extracted based on Troyer- and ESA-based methods. While the Troyer-based method has a

static rule for determining switches (i.e., two adjacent animal names do not share any com-

mon categories in a structured table), the ESA-based method determines switches based

on a dynamic threshold that is defined as 75% mean semantic similarity across all possible

animal name pairs in a given answer. Since the discriminative power of count-based and

time-based features highly depends on the identification of switch and cluster components

in the response, one question is how the value of the threshold setting influences the clas-

sification result. In order to gauge the influence of this factor, we incrementally increased

the threshold from 50% to 100% with a step size of 5% and created 11 feature sets. We

again use LOPO cross-validation to evaluate the feature sets and measured the AUC ROC

of the classification task on the pairs of test subjects. Figure 3.4 presents the average AUC

ROC at each threshold value. As shown in this figure, the classification model reaches its

highest AUC ROC at a threshold of 75% which is the same threshold defined by Woods

et al. [161]. This suggests that the threshold could be used for clustering and switching

across various datasets of the animal fluency test. This plot also verifies the importance

of the threshold value to the performance of our classification model.

3.7 Discussion

We use features extracted from the animal fluency test to distinguish MCI from demo-

graphically matched NC participants. Using count-based fluency scoring resulted in similar

diagnostic category discrimination as reported by others using conventional counting [113].

Early research has used ASR techniques to examine the VF test. Pakhomov et al. [116]

used Kaldi ASR toolkit [119] to transcribe responses and Konig et al. [75] used Google’s

automatic speech recognition service for the same purpose. These studies either attempt

to predict the raw VF score based on automatically generated response [116] or only

5While technically SCR is a count-based feature, we put it into the time-based group as it is designed
to be a compensation for OSR.

70

investigate count-based measures beside the raw VF score for differentiating MCI from

NC participants [75]. In contrast, the crux of our work that differentiates it from these

studies is how we intend to employ the ASR system not only for automatic transcription

but to perform the “forced alignment” algorithm for quantifying the temporal properties

of verbal responses leading to the extraction of time-based measures. As shown by our

experimental results, our time-based measures significantly improved the accuracy of our

classification model.

In considering the goal of automating the administration and scoring of this test, we

developed a method to go beyond conventional scoring that relies on the number of cor-

rectly produced category items. This unsupervised approach ultimately will require an

algorithm that can be objectively applied by employing machine learning to discern not

only the simple counts but also other aspects that may add to the discriminatory power

of the VF test. We experimentally showed that the conventional test score (i.e., the num-

ber of correctly recalled animal names within a minute) cannot capture other clinically

useful information from the test and once it is solely used for training an SVM classifier,

the resulting model achieved a poor performance. To mitigate this shortcoming, we pro-

posed a computational approach for automatically analyzing the verbal responses via a

set of time-based features that characterize the semantic search strategy during the word

retrieval process. We statistically showed that these proposed features can differentiate

individuals with MCI from NC controls. Additionally, they positively contributed to-

ward the performance of an SVM classification model once they were added to standard

count-based features. In spite of promising results achieved through the proposed com-

putational model, considerable work remains to improve the accuracy of the classification

algorithms. Our analysis relied on animal names that were included in the table of Troyer

et al. [151]. However, there are always animal names that are unknown to this table and

current analyses treat them as non-animal names and that impacts our assessment. A

valuable avenue for future research would be to explore the feasibility of NLP techniques

to address this limitation using more sophisticated methods of word representation that

is not limited to a word table. Addressing these limitations in future work is expected to

result in viable speech-based outcome measures, derived from the verbal fluency test, for

71

individuals with a range of neurodevelopmental disorders including MCI and Alzheimer’s

disease. The proposed methodology can increase the capacity for screening/detection of

MCI by employing measures that cannot be easily computed manually in real-time.

Chapter 4

Refining Automatic Speech Recognition

System for Older Adults

In the previous chapter, we presented our work on developing features to improve the

accuracy of mild cognitive assessment. In this chapter, we present our work on developing

a transfer learning method that uses limited data (i.e., 10 hours) to adapt a pre-trained

ASR model for socially isolated older adults (75+ years old) with possible cognitive im-

pairments.1 We show that adapting the ASR with older adults’ recording data through

transfer learning can improve the ASR’s performance on older speech. We propose a

transfer learning method that can increase the fine-tuning efficiency with limited training

data and can achieve better performance than the standard transfer learning method.

4.1 Introduction

ASR systems have been widely used in medical applications such as clinical documenta-

tion [170] and healthcare systems [65]. ASR systems have also been explored in medical

research, such as automating the diagnosis of cognitive tests for Alzheimer’s disease [77].

More recently, analyzing everyday conversation has received increasing attention as it

opens a window toward individuals’ personal world and could potentially reveal their cog-

nitive and behavioral states [68]. This analysis relies on high-fidelity transcription, which

is labor-intensive and costly. A high-quality ASR system could potentially serve as an

1L. Chen and M. Asgari, “Refining Automatic Speech Recognition System for Older Adults,” ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto,
ON, Canada, 2021, pp. 7003-7007, doi: 10.1109/ICASSP39728.2021.9414207. [25]

72

73

alternative solution to facilitate the analysis process.

Nowadays, deploying DNN in key components of the ASR engine, namely the acoustic

and language models, has significantly boosted performance. On the other hand, ASR

systems inherit DNN’s hunger for target-domain data [143] and the susceptibility to do-

main mismatch. Although training a domain-specific model with sufficient data is ideal,

collecting training data is a challenging task in the medical field especially when facing a

narrow target population [61].

This data collection challenge can be caused by multiple factors, such as small popu-

lation size, financial limitations of the project and/or privacy concerns. Publicly available

ASR systems, which are trained on large amounts of data from adults, perform well on

their training domain (i.e., adults’ audio recordings). However, their performance de-

grades in clinical applications for older adults as the acoustic characteristics of the target

speakers deviate from those used in training examples. This is a critical limitation of

using open-sourced ASR to transcribe the speech of older people (i.e., above 75 years old)

since the strong acoustic mismatch leads to inaccurate recognition. Older adults’ vocal

characteristics are different from adults. Age-related speech deterioration begins around

60 years old [104] resulting in significantly different voice characteristics in comparison to

the younger generation [88]. Moreover, the plausible influence of impaired cognitive func-

tioning on acoustic features of MCI subjects [126] might serve as an additional source of

acoustical mismatch. This means an ASR for older adults most likely faces more acoustic

variation. To model this variation, DNN requires more data.

Our purpose in this chapter is to improve an ASR’s performance on older speakers

when our available data is limited. Our training dataset contains 12 hours of transcribed

recordings collected from above 75-year-old older adults with possible cognitive impair-

ments. To train an end-to-end ASR system, we propose using transfer learning (TL) to

address the data limitation. Early work in transfer learning focused on utilizing a DNN’s

hidden output, in contrast, we explore utilizing not only the hidden output but also the

intermediate outputs. We design a conditional-independent attention mechanism to lever-

age the intermediate outputs from a pre-trained model. Our method performs better than

the standard fine-tuning method.

74

The remainder of this chapter is organized as follows. Section 4.2 presents background.

Section 4.3 describes the conditional-independent attention mechanism and its variation.

Section 4.4 describes our speech data. Section 4.5 describes the experimental setup and

our results.

4.2 Background

This chapter makes use of DeepSpeech2, transfer learning and the attention mechanism,

which we already discussed in Section 2.9.1, Section 2.7, and Section 2.3.3, respectively.

In the rest of this section, we present a brief overview of deepspeech2, including its archi-

tecture and its decoding process.

Deepspeech2 [7] is an end-to-end ASR system that leverages CNN and bi-GRU for mod-

eling the spectrogram to the sequence of 26 English letters. The left graph of Figure 4.1

is the architecture that we use in our experiments. This architecture utilizes convolution

(Conv) blocks for low-level information processing and bi-GRU blocks for high-level pro-

cessing. The output block has a linear layer. In the decoding process, Deepspeech2 [7]

utilizes a beam search approach [160] to search for the transcription with the highest prob-

ability based on the combination of probabilities from the DeepSpeech2 acoustic model

and a n-gram language model.

4.3 Conditional-independent Attention Mechanism

While early work in transfer learning focused on utilizing the hidden outputs of a DNN,

we hypothesize that intermediate outputs contain useful information related to target

domains. We propose a method to utilize these intermediate outputs for adapting a

pre-trained model through transfer learning. We also extend the use case of the atten-

tion mechanism. Instead of long-term memory management, we utilize the mechanism

to summarize information from hidden/intermediate outputs for the target domain. In

Figure 4.2, we compare the difference between the general attention mechanism and our

modified version. The left graph shows the general attention mechanism. The right graph

shows the backbone of our mechanism. While the general attention mechanism generates

75

Figure 4.1: The left graph is the architecture of DeepSpeech2 which is our base model.
The right graph shows the modified DeepSpeech2 architecture to leverage intermediate
outputs. Each box contains the block’s nickname and type.

76

Figure 4.2: The left graph shows the backbone of the general attention mechanism. The
right graph is the backbone of our conditional-independent attention mechanism.

output for each query through drawing attention to all values in one sequence (i.e., V),

we use the attention mechanism to draw attention to multiple intermediate outputs (i.e.,

V1, V2 and V3). That is, the general attention mechanism dynamically assigns importance

to values in a sequence, which can be any V . Our mechanism assigns fixed importances

to multiple V s where each V represents an intermediate output from a DNN. The right

graph in Figure 4.1 is the modified DeepSpeech2 architecture where we add an Attention

layer (AttenL) to summarize bi-GRU blocks’ outputs. Although all examples in both

Figure 4.1 and Figure 4.2 take three inputs, theoretically, the mechanism is not limited

to this number and we can use it in any network. But, we focus our research on the

data-scarcity problem on a pre-trained model. The number of outputs V s is contained

by the pre-trained model which was the state-of-the-art model. We modified the general

attention mechanism into two conditional-independent versions: (1) the manual attention

mechanism and (2) the learnable attention mechanism.

4.3.1 Manual Attention Mechanism

In the manual attention mechanism, we remove the dynamic attention-assigning function

from the general attention mechanism and manually assign attention to the outputs of

GRU blocks based on our knowledge of the model. The following equation is the operations

77

of manual attention:

O =

3∑
n=1

αn ∗ Vn

where Vn is the output of GRUn and αn is the attention that we manually assign to it.

This format is the same as a weighted average of GRU outputs. This does not have addi-

tional parameters. Therefore, it is convenient for evaluating the effectiveness of utilizing

intermediate information and we present results in Section 4.5.1. We name this mechanism

as the manual attention mechanism.

4.3.2 Learnable Attention Mechanism

For the learnable attention mechanism, rather than manually assigning the weights, we

learn them from a target dataset. To learn the attention from the target dataset, we

apply a function to learn how to assign attention in a conditional-independent fashion.

The learnable attention mechanism can be described with the following operations:

R =
[
R1 R2 R3

]
M =

[
M1 M2 M3

]
score = R ∗M

α∗ = softmax(score)

O =

3∑
n=1

αn ∗ Vn

where score is a one-by-three matrix and Vn is GRUn’s output. The matrix R is a one-by-

r non-negative matrix and is the additional learnable parameter matrix. R1, R2 and R3

are partitioned matrices of R. Each represents the importance of the output of the GRU

block with the identical subscript ID. Rn is a 1-dimensional vector of learned weights that

will be learned. The actual length is hand-set. The overall length of R is r. If Rn contains

more elements than others, it is more likely that GRUn’s output receives higher attention

than others. Matrix M , which is a r-by-three binary matrix, summarizes each partitioned

matrix by summing up its elements. Mn is a r-by-1 partitioned matrix of M and is used

to sum the elements in Rn. Thus, M is not learned. This matrix is fixed once we set

78

the column sizes for all Rn where n ∈ {1, 2, 3}. Thus, we view matrix R as the matrix of

representatives and matrix M as the matrix of tally. By setting the column size of R’s

partitioned matrices, we can gently encourage the mechanism to assign extra attention on

blocks that are important in our prior knowledge. For example, if we think GRU1 should

receive more attention, we can define the column sizes for R1, R2, and R3 to be 2, 1, and

1, respectively. The R and M should be in the following format:

R =
[
ele1 ele2 ele3 ele4

]

M =

1 0 0

1 0 0

0 1 0

0 0 1

where eleh is a scaler for all h ∈ {1, 2, 3, 4}. We name this mechanism as the learnable

attention mechanism.

4.4 Data

The data for this chapter comes from a long-term behavioral research project that uses

internet-based social interactions as a tool to enhance older adults’ cognitive reserve. This

project, titled as I-CONECT [164, 36], was conducted at Oregon Health & Science Uni-

versity (OHSU), University of Michigan, and Wayne State University. Socially isolated

older adults above 75 years old were mainly recruited from the local Meals on Wheels pro-

gram in Portland, Oregon and in Detroit, Michigan (with recruitment of African American

subjects). Conversations are semi-structured, in which participants freely talk about a pre-

defined topic (e.g., picnic, summertime, swimming and so on) with a moderator through

online chatting. The corpus includes 30-minute recordings of 61 older adults (29 diag-

nosed with MCI, 25 with normal cognition, and 7 without clinical diagnosis) along with

professionally annotated transcriptions.

79

4.4.1 Preprocess

As our target speakers are older adults, we remove moderators’ utterances based on the

speaker labels of utterances in the manual transcription. For each utterance of the older

adults, we extract word-level timestamps using a force-alignment algorithm available in

Gentle,2 which is open-source software. We segment long utterances into multiple pieces

that are less than 7 seconds long, which is the same process as DeepSpeech2 [7] used, by

utilizing the word-level timestamps. Finally, we removed all utterances that are less than

3 seconds. Empirically, we found that the alignment quality on short utterances is not

very good.

4.4.2 Data Splitting

For both validation and testing sets, we randomly selected 2 MCI and 2 healthy partic-

ipants from both genders which left 53 participants for the training set. With 14 hours

of transcribed speech, this leaves about 12.7 hours of audio recordings for training. The

total recording duration in the validation set and testing set are 0.66 and 0.56 hours,

respectively. We use the validation set to select hyperparameters (e.g., learning rate) and

the testing set is only used for assessing the model’s performance.

4.5 Experiment

Our base model is an open-sourced DeepSpeech2 model,3 which is trained on Baidu’s 8000

hours of internal data, as well as the corresponding n-gram language model. The language

model is fixed throughout all experiments. We have two baselines: 1) we test the original

model on our testing set. 2) We tune the entire model with our training set for 40 epochs

and evaluate its performance. The tuned model is referred to as the standard weight

transfer learning model.

2https://github.com/lowerquality/gentle
3github.com/PaddlePaddle/DeepSpeech

80

Figure 4.3: Model performance for manual attention settings. The red dotted line is the
WER of the standard weight transfer learning model (26.8%). The red solid line is WER
of the base model (39.42%).

4.5.1 Manual Attention Layer

We use the manual attention mechanism at the AttenL. We want to keep the number of

models at a reasonable level in order to run a brute-force exploration of all settings. Thus,

define the basic attention unit to be 1/6 and restrict all αs to be an integral multiple of

the unit. We use M-α1-α2-α3 to present the setting of attention in an experiment. For

example, if we assign all attention to GRU1, the attention setting is M-6/6-0/6-0/6. In

the training process, we fine-tune the modified model for 40 epochs. Also, we set the linear

block’s initial learning rate to be 4e-5 and set other blocks to be 2e-5. Throughout the 40

epochs of training, we reduce the learning rates by 50% after every 15 epochs.

In Figure 4.3, shows the results of the two baselines and the top 8 performing manual

attention models. The standard weight transfer learning model (i.e., the red dot line)

outperforms the base mode (i.e., the red solid line) on the testing data. The top 5 settings

with manual attention all have more than 50% attention assigned to GRU1’s output, and

these all outperform the standard weight transfer learning model. The M-4/6-2/6-0/6

achieves 1.58% absolute improvement over the standard weight transfer learning model.

That is, lowering the error rate from 26.80% to 25.22%. Since we use the pre-trained

Linear1, which is used to receive GRU1’s output only, GRU1 is naturally strongly related

81

Figure 4.4: Performance on learnable attention settings. The red dotted line is WER of
the standard weight transfer learning model.

to Linear1. On the other hand, unreasonable settings, assigning small attention to the

output of GRU1, perform worse than the standard weight transfer learning model. Overall,

we have several models (i.e., M-4/6-2/6-0/6, M-3/6-2/6-1/6, M-4/6-1/6-1/6, M-3/6-3/6-

0/6, M-5/6-1/6-0/6) that utilize outputs from GRU2 and GRU3 outperforms only using

outputs from GRU1 (i.e., the red dot line in Figure 4.3). These results bring us confidence

in utilizing intermediate outputs.

4.5.2 Learnable Attention Layer

We adopt the learnable attention mechanism at the AttenL to learn the attention from

the target dataset. We use L-r1-r2-r3 to specify the column sizes of partitioned matrices

in R. We evaluate four settings: L-1-1-1, L-4-1-1, L-3-2-1 and L-5-4-0. We use the first

one to evaluate the learnable attention mechanism’s learning ability. The other settings

are designed to encourage more attention to GRU1’s output. All experiments first train

the AttenL for 5 epochs while freezing other blocks. Then, we reverse the freezing status

and train the model for 40 epochs. For the training process, we set the linear block’s

initial learning rate to be 4e-5 and set other non-frozen blocks to be 2e-5. Throughout

the training process, we schedule a 50% reduction on learning rates every 15 epochs. We

try each setting 5 times to evaluate the influence of random initialization on additional

parameters.

In Figure 4.4, shows the results of running each setting 5 times. Random initialization

dramatically influences L-1-1-1 ’s final outcome. On the contrary, we achieve more stable

performance when applying prior knowledge through the column setting. This proves that

82

setting the column sizes, based on prior knowledge, positively influences a tuned model’s

performance. Further evidence comes from the comparison between L-4-1-1 and L-3-2-1.

Although the total column sizes of both configurations are the same, the performance of L-

4-1-1 is more stable than the other’s performance. Both L-4-1-1 and L-5-4-0 outperform

the standard weight transfer learning model over all 5 trials. Our results are marginally

worse than the optimal WER in Section 4.5.1, but we cannot exclude the negative influence

from the small training set. Overall, we show that the learnable attention mechanism

with reasonable configuration can stably outperform the baseline (i.e., the red dot line

in Figure 4.4). We will analyze how to size of training data impacts the performance

in the future. Moreover, the learnable attention mechanism can be transformed into a

conditional-dependent form, which is a flexibility that the manual attention mechanism

does not have. In the future, we will develop a conditional-dependent form that can

dynamically assign attention based on the input’s characteristics.

4.6 Conclusion

We propose a conditional-independent attention mechanism to leverage a pre-trained

model’s intermediate information for model adaptation on the older-adult domain. We

experimentally identify the domain mismatch between the pre-trained DeepSpeech2 model

and older adults and the benefit of applying transfer learning. Our method, which builds

on transfer learning, can further reduce the mismatch. Also, our experiments support that

guiding the training direction with prior knowledge reduces the negative influence caused

by random initialization.

Chapter 5

An Efficient Architecture for Small

Datasets

In the previous chapter, we presented a novel transfer learning method to adapt a pre-

trained ASR model for a target population when we only have limited training data (less

than 20 hours of recordings). We used an open-source DNN model as the pre-trained (base)

model. In this chapter, with the goal of training base models, we focus on developing a

DNN architecture that can be trained efficiently with a small training dataset (i.e., about

100 hours of recorded audio). We present our preliminary research using a small academic

dataset as a proof of concept.1 We quantitatively validate each of our modifications and

show that our refined DNN is more efficient than the original DNN when the training

dataset is small.

5.1 Introduction

Transformer [155] is a popular attention-based DNN architecture in recent years and was

presented in Section 2.4.2. Transformer has been used to train large models [23]. A trans-

former contains multiple blocks with the same structure. Each block contains multiple

DNN layers including a multi-head self-attention (MSA) layer. With enough training data,

deep transformers outperform their shallower siblings on mainstream tasks [23, 53, 17].

These deep transformers require large datasets so that they can be trained to perform well

1This chapter is based on: L. Chen, M. Asgari, and H. H. Dodge, “Optimize wav2vec2s architecture
for small training set through analyzing its pre-trained models attention pattern,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 7112–7116. [27]

83

84

on the general population. But, in medical research, we are facing special target popula-

tions, such as non-typical developed children, vocal injured seniors and older adults with

MCI. Their vocal characteristics are different from the general population [126, 132, 157].

Moreover, collecting thousands of hours of data from these special target populations is

also financially expensive. Hence, there is a need to increase Transformer-based ASR’s

training performance under a limited data (about 100 hours of recordings) condition so

that the medical field gains benefits from ASR research’s achievements.

Recent studies on the attention patterns of BERT indicate that we can gain valuable

information by analyzing the pattern of what the attention layers are focused on [79].

Inspired by this research, we hypothesize that blocks’ general attention patterns are input-

independent and the patterns of models, that are trained on large datasets, are close to

the optimal pattern. We introduce inductive bias to the Transformer encouraging it to

learn these patterns when the training data is limited. We choose Wav2Vec 2.0 [17] as our

research target.

Through summarizing block-level attention patterns of a pre-trained Wav2Vec 2.0

model, which has 12 attention blocks, we use two separate techniques to improve its

architecture: using local attention to avoid abnormal patterns and parameter sharing.

First, we apply local attention to the top 11 blocks and global attention to the bottom

block. Second, we let the top 11 blocks share the same set of parameters while leaving

the bottom block having its own parameters. We experimentally validated that each

modification improves the training efficiency using Librispeech-100 [117] as the training

data. The architecture with both modifications further improves the efficiency. Our

modifications are different from prior research. Prior research treats all attention blocks

equally. For example, adopt one type of attention mechanism [127] and sharing parameter

among all blocks [83]. Unlike them, we consider the bottom block different from the rest

based on their block-level patterns. Our experiments show that this difference is the key

to the improvement of training efficiency.

In the remaining part of this chapter, we present the background information in Sec-

tion 5.2. The analysis of the heatmap of the attention mechanism is presented in Sec-

tion 5.3, where we explain the rationale for using local attention and parameter sharing.

85

In Section 5.4, we describe the experiment setup, including the dataset, training config-

uration, decoding process, and evaluation criteria. Finally, we conduct experiments in

Section 5.5 to evaluate the proposed methods separately and together.

5.2 Background

In Section 2.3.3, we have described the attention mechanism and presented prior research

on categorizing attention patterns. In this section, we provide the background which is

relevant to our research. In Section 5.2.1, we introduce an overview of the architecture

of Wav2Vec 2.0 and its training process. Our research refines the architecture while

employing the same training process. We refer readers to Section 2.9.2 for more details.

In Section 5.2.2, we discuss cross-block parameter sharing, which is related to one of our

architecture modifications. Lastly, in Section 5.2.3, we introduce model interpretation,

which is the core technique used in our research.

5.2.1 Wav2Vec 2.0

Wav2Vec 2.0 was introduced by Baevski et al.[17]. Figure 5.1 shows its architecture in

detail. It contains three main components: a convolutional feature encoder, a quantization

block, and a Transformer. The feature encoder extracts latent representation from raw

audio input. The quantization module discretizes latent representation to a finite set of

quantized representations. The Transformer [155], which consists of N global multi-head

self-attention blocks, transforms the latent speech representation into content representa-

tions.

The training process contains two steps: the pretraining step and the fine-tuning step.

In the pretraining step, the model randomly masks some frames of the latent speech

representation and the transformer must reconstruct these masked parts. Contrastive

loss [17] is used to evaluate the similarity between the reconstructed representation and

the matched quantized representation. This objective function encourages the Transformer

to reconstruct masked parts accurately. In the fine-tuning step, the pre-trained model is

fine-tuned with labeled data and adopts Connectionist Temporal Classification (CTC) [51]

86

Figure 5.1: It shows the model architecture of Wav2Vec 2.0 and its training process. We
use green to indicate there are learnable weights in these subnetworks and adopt gray to
mark processing steps. And a purple ellipse represents a loss function.

as the objective function.

5.2.2 Cross-block Parameter Sharing

An intuitive interpretation of cross-block parameter sharing is a recurrent neural network

(RNN) considering layer depth as its timestep [34]. This type of network requires a method

to decide the network depth. Lan et al. [83] set a fixed network depth. Dehghani et al. [34]

leveraged adaptive computation time (ACT) [50] to dynamically decide the depth for each

sample and demonstrated its effectiveness on text understanding and generation. Bai et

al. [18] proposed a method named Broyden iterations for the same purpose. A common

87

characteristic of these techniques is that all attention blocks in DNNs share the same

parameter. We hypothesize that we can find a better sharing strategy through analyzing

the attention pattern.

5.2.3 Model Interpretation

Model interpretation allows researchers to analyze why a model makes certain decisions [106].

Through utilizing interpretation techniques, researchers can argue whether a model ex-

tracts valid information that is hidden in the training data instead of biases. Model

interpretation techniques can be categorized into two categories: post-hoc techniques and

intrinsic techniques, depending on the way of obtaining the result [106]. The post-hoc

techniques attempt to find baseline points of a model and evaluate an input’s attribution

by measuring the cost of moving it to the baseline point, such as DeepLift [138], Layer-wise

relevance propagation [15], Deconvolutional networks [165], Guided back-propagation [5]

and Integrated gradients [144]. With Integrated gradients, Mudrakarta et al. [108] cap-

ture erroneous logic issues where related samples are inadequate in the validation set. The

limitation of post-hoc techniques, however, is that they assume a model is a black box.

They cannot provide clues related to a specific layer or layer group.

The intrinsic techniques, on the other hand, build DNN architectures composed of self-

explanatory layers. This allows researchers to visualize and analyze the DNN based on

layers’ outputs. For a self-explanatory layer, researchers have used capsule networks [129],

recurrent networks [60], attention networks [52], and so on. The visualization methods

depend on the type of layer being analyzed. For long short term memory (LSTM) [60],

researchers visualize the gate status and the magnitude of its candidate states [67].

For attention networks, researchers use heatmaps from sample inputs [33, 38] to vi-

sualize attention. Heatmaps are utilized for two main purposes: first, to verify whether

a model can accurately capture certain properties that can be analyzed through the use

of such heatmaps, and second, to explore the model’s capacity when attempting to gain

deeper knowledge. The first purpose is commonly adopted in text-to-speech. Researchers

constructed heatmaps to demonstrate that their models monotonically align the input

88

Figure 5.2: The five patterns found by Kovaleva, Olga, et al. [79]. Figure taken from their
paper.

phonemes with output audio representations [16, 136, 87] where monotonicity is a com-

monly agreed innate characteristic of phoneme-to-audio alignment. For the second pur-

pose, Kovaleva, Olga, et al. [79] analyzed pre-trained NLP models’ capacity of capturing

linguistic information through summarizing patterns of heatmaps. Through a manual vi-

sual inspection of around 400 attention maps for both basic pre-trained and fine-tuned

BERT models, Kovaleva, Olga, et al. [79] categorizes heatmaps that were collected from

BERT [35] into five categories: vertical, diagnoal, vertical+diagnoal, heterogeneous

and block as shown in Figure 5.2. In this chapter, we ignore block since this is only

observed in tasks/datasets where two distinct sentences form an input (such as, the Rec-

ognizing Textual Entailment datasets or Microsoft Research Paraphrase Corpus). Below,

we present the other four categories and Kovaleva’s explanation of them.

• Vertical: mainly corresponds to strong attention on special symbols, such as sen-

tence delimiters. In Figure 5.2, the symbol, [SEP], is the sentence delimiter. In

general, it separates two sentences, such as two alongside sentences, a question and

a corresponding answer, or question pairs.

• Diagonal: formed by the attention to the previous/following tokens. In other words,

the attention of a query token focuses on that query’s neighbor tokens (local context).

• Vertical+Diagonal: a combination pattern of Vertical and Diagonal.

• Heterogeneous: representing all other patterns.

In the next Section, we adopt the categorized patterns to analyze a pretrained ASR model.

89

5.3 Attention Visualization and Analysis

In this section, we analyze attention heatmaps of multiple validation samples from a

pre-trained model to determine how we should improve the architecture. We use a pre-

trained Wav2Vec 2.0 model2 from Fairseq [114]. This model has 12 transformer blocks

and is trained on Librispeech-960 which has 960 hours of training data. We leverage the

visualization of mean attention to analyze the attention patterns. We manually inspected

all recordings in Librispeech’s validation set (dev-clean) and noticed that heatmaps across

inputs from the same block share similar characteristics. This observation inspired us to

categorize the block-level patterns as opposed to Kovaleva, et al. [79] who focused on input-

level patterns. In other words, we aim to identify the shared characteristics of attention

heatmaps produced by an attention block across all inputs. In contrast, Kovaleva focused

on summarizing the relationship between different types of inputs and different types of

attention heatmaps. In Figure 5.3, we show heatmaps of the 12 blocks of six recordings

from dev-clean. As can be seen, heatmaps in each column are similar.

We refer to the block patterns with the corresponding block ids and categorize these

12 patterns into three categories:

• Heterogeneous pattern: Block 1.

• Diagonal pattern: Block 2, 3, 4, 5 and 12.

• Vertical+Diagonal: Block 6, 7, 8, 9, 10 and 11.

We categorize Block 1 as the heterogeneous pattern. While we can see a clear diagonal

line in all samples’ Block 1, we also observe an almost uniform attention over the whole

sequence. A similar observation on low-level transformer blocks has also been reported

in Dai, Zihang, et al. [33]. Thus, this pattern is not unexpected. We categorize Block

2,3,4,5 and 12 as diagonal patterns. A speech frame is strongly related to its neighbors.

Therefore, the diagonal patterns are also not unexpected. We categorize the remaining

blocks as vertical+diagonal. The categorization is straightforward because, in addition to

2Wav2Vec 2.0 Base resulting from the pre-training step from Fairseq [114].

90

Figure 5.3: The heatmaps of 6 randomly selected audio inputs. A heatmap’s x-axis is K’s
timestep and y-axis is Q’s. Block 1 is the bottom MSAB in Figure 5.1 and Block 12 is
the top one. While the duration of these recordings are different, we present all heatmaps
with the same figure size in order to show the similarity of attention patterns.

diagonal lines, there are also a lot of vertical lines in the heatmaps of dev-clean recordings.

In the following sections, we will discuss the unexpected vertical pattern and our hypothesis

that sharing parameters across blocks in the same category can improve performance.

5.3.1 Using Local Attention to Avoid Abnormal Pattern

We did not expect that a vertical pattern would appear in the Wav2Vec 2.0 model. Ac-

cording to Kovaleva et al. [79], vertical patterns strongly correlate to special tokens, such

as delimiters, which are designed to modify input sentences in exchange for not having

to make minor architecture modifications across tasks after the pre-training step [123] for

NLP tasks. Wav2Vec 2.0, which operates on audio instead of sentences, does not modify

input with any special symbols, which is why we were not expecting the vertical pattern.

From the perspective of matrix operations, this pattern indicates the magnitude of vectors

in K are large (where K is from the attention mechanism discussed in Section 2.3.3). Since

both WQ and WK take the same input, WK is overly sensitive to these input vectors and

it could be a sign of overfitting. Thus, we think vertical patterns are abnormal and should

91

be avoided.

To avoid vertical patterns, we explore the use of the local multi-head self-attention

block to constrain the attention to the local region. In other words, we force the attention

pattern to always be diagonal. The major difference between global multi-head self-

attention blocks and local multi-head self-attention blocks is that local multi-head self-

attention block constrains attention to the region close to the position of a query with

an additional parameter named window size. Suppose we set the window size to be 31

which is much smaller than the sequence length. The attention generated for the 20th

query will focus on [v5, . . . , v20, . . . , v35] where each element vt is the tth vector in matrix

V which was described in Section 2.3.3. By having attention concentrated on the local

region for every query, we will observe high attention along the diagonal line on the

corresponding heatmap. We assume this constraint will benefit training when the training

set is small (about 100 hours) because this prevents the attention layers from learning

vertical patterns.

To validate this choice, we compare two architectures: the original architecture and

replacing global multi-head self-attention blocks for block 6 through 11 with local multi-

head self-attention blocks. Second, since the attention patterns of blocks 2 through 12 are

all related to the diagonal-related patterns (i.e., Diagonal and Vertical+Diagonal), we

constrain all of them to diagonal through replacing these global multi-head self-attention

blocks with local multi-head self-attention blocks. This not only avoids vertical patterns

but also forces the top 11 blocks’ attention pattern to be Diagonal. We assume that

we should not apply the local multi-head self-attention block to block 1, whose attention

pattern is Heterogeneous. To validate this, we compare the performance between replac-

ing global multi-head self-attention blocks for block 2 through 12 with local multi-head

self-attention blocks and replacing all global multi-head self-attention blocks with local

multi-head self-attention blocks. Last, to demonstrate that the key is constraining the

attention to a local region instead of constraining to a specific region, we compare three

window sizes: 61, 121 and 481. We choose window sizes that are wider than the diagonal

blue line in Figure 5.3 and the wider the window size the weaker the constraining power.

The corresponding experiments are given in Section 5.5.1.

92

5.3.2 Parameter Sharing Based on Patterns

The pattern of Block 1 is different from the rest of the blocks. Its attention over the whole

sequence prompts us to question the cross-block parameter sharing strategy discussed in

Section 5.2.2. We hypothesize that blocks that belong to the same pattern category can

effectively share parameters. Thus, we assume Block 1 should have its own parameters

instead of sharing with other blocks. To evaluate our hypothesis, we fix the network depth

to be the same as the depth of the analysis model, which is 12. This is slightly different

from what is done in ALBERT [83], as ALBERT shares parameters across all attention

blocks.

To evaluate the importance of excluding Block 1 from sharing parameters with other

blocks, we compare sharing parameters across block 2 through 12 with 1) sharing param-

eters across all blocks, and 2) sharing parameters across block 1 through 11. In order to

understand the parameter sharing on its own, we first evaluate parameter sharing strate-

gies through only using global multi-head self-attention block which will be presented

Section 5.5.2. Then, we combine both constraining attention and parameter sharing, and

evaluate the performance.

5.4 Experiment Setup

In this section, we introduce the experiment dataset and the training process. Moreover,

we present the configuration for the decoding process and the evaluation method. Since

we are interested in having pre-trained models that are good for building ASR, we adopt

the fine-tuning step of Wav2Vec 2.0 to compare these models’ WER on the testing dataset

instead of their reconstruction power.

5.4.1 Dataset

For training an ASR, we assume 100 hours of transcribed recordings is an achievable

data size for collecting data. Thus, we adopt the train-clean-100 set from Librispeech

corpus [117] as training data for both the pre-training step and the fine-tuning step. We

evaluate all models on the standard Librispeech dev and test sets: dev-clean and test-clean.

93

5.4.2 Training

For both the pre-training and fine-tuning steps, we mainly follow configurations from

Fairseq [114], in which the transformer contains 12 global multi-head self-attention blocks.

We leverage two Nvidia RTX 3090 GPUs and simulate parallel training on 8 GPUs through

setting the update frequency to be 4. We set the maximum token size to be 1.3m per

GPU. The equivalent total batch size is 47 audio recordings. In the pre-training step, we

train our model for 220k steps. In the fine-tuning step, the total training iteration is 20k

steps.

5.4.3 Decoding and evaluation

We leverage beam search with a language model (LM). We adopt a 4-gram language model

from Openslr3 for all acoustic models. The beam size is 1500. We adopt WER to evaluate

a model’s training efficiency. A model with lower WER means it is more efficient with

limited training data.

5.5 Experiments and Results

In Section 5.3, we proposed two modifications: constraining attention to the local region

and sharing parameters across attention blocks. We evaluate the first modification in

Section 5.5.1. We first demonstrate the benefit of adopting local multi-head self-attention

block to the top 11 blocks and next show that the modification is the major contributor

instead of the window size of local multi-head self-attention block. Section 5.5.2 evaluates

the second modification. Finally, we evaluate combining both modification in Section 5.5.3.

5.5.1 Local Attention

In Section 5.3.1, we argued that the vertical patterns are abnormal. In this section,

we show that training effeciency is improved by avoiding the vertical patterns through

constraining attention to the local region. We train four models, all with 12 blocks but

with different attention blocks.

3http://www.openslr.org/11/

94

G B1-12: All 12 blocks are global multi-head self-attention block.

L B1-12: All 12 blocks are local multi-head self-attention block.

L B6-11: Blocks categorized as vertical+diagonal are local multi-head self-attention block

(Block 6, 7, 8, 9, 10 and 11), and the rest blocks are global multi-head self-attention

blocks.

L B2-12: Top 11 blocks are local multi-head self-attention block and the bottom block

is global multi-head self-attention block.

We set the window size of all local multi-head self-attention block to be 61. We will refer

to G B1-12 as the baseline throughout this section as there are no modifications.

Table 5.1 shows the experiment results. The fact that L B1-12 performs worse than

the baseline (G B1-12) shows that applying local multi-head self-attention block to all

blocks harms the training efficiency. However, L B6-11 outperforms the baseline. This

supports our claim that the vertical pattern harms the performance. L B2-12 outperforms

all the other models including L B1-12 in Table 5.1. This confirms our assumption that

applying local multi-head self-attention block to the top 11 blocks increases the training

efficiency.

Window size

We just showed that L B2-12 outperforms baseline when we set the window size of local

multi-head self-attention blocks to 61. In order to demonstrate that the improvement

primarily comes from constraining the attention to local region instead of a specific window

size, we train the same DNN as L B2-12 with window sizes of 121 and 481.

Table 5.2 shows that both L B2-12 W121 and L B2-12 W481 outperform the base-

line in both dev-clean and test-clean. This indicates that adopting local multi-head self-

attention block is the causal factor with the improvement instead of a specific window

size. Since the window size, 61, performs the best in dev-clean among all three window

sizes, we use this configuration in the rest experiments.

95

Model Name
WER[%]

Param Sizedev-clean test-clean

G B1-12 7.62 8.33 95M

L B1-12 7.67 8.45 95M

L B6-11 7.16 7.90 95M

L B2-12 6.76 7.49 95M

Table 5.1: Effectiveness of applying local attention to blocks 2 through 12. The model
name is formed as [domain attention type] B[block ID range] where the attention type can
only be either local multi-head self-attention block (L) or global multi-head self-attention
block (G). The block ID range indicates the blocks that leverage the domain attention
type. We always apply global multi-head self-attention block to unspecified blocks.

WER[%]
Model Name dev-clean test-clean Param Size Window Size

L B2-12 6.76 7.49 95M 61

L B2-12 W121 6.90 7.58 95M 121

L B2-12 W481 7.40 7.95 95M 481

Table 5.2: Impact of local attention’s window size. We adopt similar naming rule as
Table 5.1, except add the window size at the end.

Model Name
WER[%]

Param Sizedev-clean test-clean

G BS1-12 8.14 8.82 17M

G BS1-11 7.96 8.82 24M

G BS2-12 7.43 8.15 24M

L BS2-12 5.87 6.97 24M

Table 5.3: Effectiveness of parameter sharing and the benefit of modifying the Wav2Vec
2.0 architecture with both local attention and parameter sharing. We adopt a similar
naming rule as Table 5.1, except the second part starts as BS which stands for blocks[B]
that share[S] parameters. The last column is the model size.

96

5.5.2 Parameter Sharing

As discussed in Section 5.3.2, we evaluate three parameter sharing configurations using

global multi-head self-attention block: 1) all 12 blocks share parameters, 2) top 11 blocks

share a set of parameters and Block 1 has separate parameters, and 3) bottom 11 blocks

share parameters and Block 12 has its own parameters. They are named as G BS1-12,

G BS2-12 and G BS1-11, respectively. The parameter size of G BS1-12 is the smallest

while G BS2-12 and G BS1-11 are the same.

Table 5.3 shows that G BS1-12 performs worse than the baseline from Table 5.1,

however, G BS2-12 outperforms the baseline. This suggests that the configuration of pa-

rameter sharing is an essential factor. Arbitrarily sharing parameters among all attention

blocks may not unleash this technique’s full potential. Next, we compare G BS2-12 and

G BS1-11. The parameter size of both models are the same. But, G BS2-12 outperforms

G BS1-11. This supports that, instead of parameter size, the sharing configuration is the

key.

5.5.3 Combining Both Modifications

In Section 5.5.1 and Section 5.5.2, we evaluated two architecture modifications, which

are local attention and parameter sharing, separately, and showed their effectiveness. In

this section, we evaluate if these two modifications can be combined together and further

improve the performance. We adopt local multi-head self-attention block to the top 11

blocks and these blocks also share the same set of parameters. We apply global multi-head

self-attention block to Block 1. We refer this model as L BS2-12.

Table 5.3 shows that L BS2-12 achieves lower WER than L B2-12 and G BS2-12 in

both dev-clean and test-clean. This suggests that the modifications are not in conflict

with each other. Moreover, since the only difference between L BS2-12 and G BS2-12 is

the type of attention block, this indicates that focusing attention on the local region is an

essential factor in reducing WER.

97

5.6 Conclusions

Through analyzing the block-level attention pattern, we optimize the transformer’s ar-

chitecture by applying local attention and cross-block parameter sharing on the top 11

blocks. Our optimized architecture is more efficient on a small dataset than the original

Wav2Vec 2.0 [17]. We show that sharing parameters among blocks with similar patterns

is more effective than arbitrarily sharing parameters among all blocks.

Our experiments also demonstrate that both constraining attention to the local region

on the 1st attention block and sharing parameters with other blocks results in higher

WER than the baseline (G B1-12). This indicates that, when developing local attention

mechanisms or cross-block parameter sharing techniques based on Wav2Vec 2.0 [17], we

have to be cautious about the potential negative effect of modifying the 1st block.

After we completed our analysis and experiments, we also reran the heatmap analysis

on a Wav2Vec 2.0 Large model trained on 68000 hours of speech. No attention blocks in

this model exhibit a vertical pattern, reinforcing our assessment that the vertical pattern

in Wav2Vec 2.0 Base which is trained on 960 hours of speech was overfitting.

Chapter 6

Adapt a Large ASR for Transcribing

fillers

In previous chapters, we presented our work on building DNN-based ASR models that per-

form well on older adults with possible cognitive impairment. In Chapter 4, we presented

a novel transfer learning method to adapt a pre-trained DNN-based ASR model for older

adults. In Chapter 5, we refined a DNN architecture that can fully utilize a small training

dataset for use in creating pre-trained ASR models for transfer learning purposes. In this

chapter, we focus on the second goal of this dissertation: improving an ASR to improve

performance on transcribing fillers, which is a well-studied digital biomarker in the cog-

nitive research field, through transfer learning. This problem is under-explored and most

research is more focused on preserving the semantic meaning of utterances. We first show

that even training an ASR with a large dataset cannot guarantee accurate transcription

of fillers regardless of the model’s parameter size. Then, we analyze the reason for causing

this problem on one pre-trained ASR model. Last, based on our analysis, we propose a

transfer learning strategy that can adapt the pre-trained model with minor negative side

effects.

6.1 Introduction

In recent years, ASR models that are trained with data from multiple datasets/domains

exhibit higher robustness than models trained on a single dataset/domain [122]. Radford

quantitatively evaluated how the size of training data and model size impact the trained

model’s performance (i.e., WER). They showed that, with the same model size (i.e.,

98

99

the total number of weights in a DNN), models trained with a larger dataset achieve

lower WER than those trained with a smaller dataset. They also showed that, with the

same datasize, large models outperform small models on WER across multiple academic

datasets. We can expect that we may have an ASR with an even lower WER if we can

further enlarge the model size and the size of the training data.

However, there is an innate limitation on WER: it treats every word equally meaning

that this measurement prefers models that can correctly high-frequency words. In medical

research, researchers might be interested in a specific type of low-frequency words (e.g.,

fillers, repeated words) and WER cannot correctly reveal an ASR’s performance on tran-

scribing those words. For example, let’s assume that we have a testing set that has 1000

recordings/utterances. On average, each utterance has 10 words and a 50% chance it has

a filler. If an ASR does not transcribe any fillers and makes no other errors, the WER

of this ASR on this testing set is 5%. We can consider the ASR performs great on this

testing set because its WER is low and it makes no errors that change any utterance’s

semantic meaning. But, since no fillers are transcribed, we cannot rely on it to study

anything related to fillers. Let’s call this ASR a flawed ASR where the flaw/problem is

not transcribing fillers and cannot be directly used in related research.

The filler is an important and widely studied digital biomarker in medical research,

such as autism spectrum disorder [82, 101, 48], Parkinson’s disease [62, 139], Alzheimer’s

disease [45] and mild cognitive impairment [49, 125]. Having an ASR that correctly tran-

scribes fillers is essential for medical research and applications that use filler-related fea-

tures. In this chapter, we focus on analyzing Whisper ASR models, which are state-of-

the-art ASR models and exhibit robustness across multiple domain/testing sets.

In the rest of this chapter, we present the background in Section 6.2. In Section 6.4,

we introduce the evaluation matrix. In Section 6.5, we first experimentally show that

all cross-lingual Whisper ASR models share the same problem: rarely transcribing fillers

(i.e., “um” in English and “嗯” in Chinese). In Section 6.6, using the Whisper ASR model

with the largest parameter size as the research target, we show that the problem is mainly

caused by the model’s acoustic encoder. In Section 6.7, based on the analyzing result

from the previous section, we compare the performance of two tuning strategies, only

100

tune the encoder and only tune the decoder, and present the recommended strategy that

brings minimum negative side-effect to the Whisper ASR model. The former not only

outperforms the latter on multiple in-language-domain testing sets (i.e., English) but also

outperforms the latter on out-of-language-domain test sets (i.e., Chinese).

6.2 Background

In this section, we present an overview of Whisper ASR models in Section 6.2.1. We refer

readers to Section 2.9.3 for the details of these models. In Section 6.2.2, we introduce a

bootstrap method that is designed for WER’s significance analysis.

6.2.1 Whisper

Whisper ASR models [122] refer to a group of models trained with weakly supervised

learning that joins multilingual and multitask training. Details of the training procedure

are presented in Section 2.9.3. Radford et al. [122] chose a Transformer [155], which is

an autoregressive DNN, as the architecture. A Whisper ASR model contains an acoustic

encoder that encodes audio representation into acoustic representation and a language

decoder that makes next-token predictions conditioned on the acoustic representation

and history predictions. Figure 6.1 shows the general architecture. In the encoder, the

input spectrogram is first processed by 2 Conv1d blocks. After the Conv1d blocks, the

extracted representation is augmented with Sinusoidal positional encoding and then is

fed to encoder blocks. The outputs from the top encoder block are referred to as the

acoustic representations. In the decoder, both acoustic representations and embedded

tokens added with learned positional encoding are fed to decoder blocks. The outputs

from the top decoder block are hidden representations that are used to make next-token

predictions.

Table 6.1 are experiment models and corresponding model sizes. Radford et al. [122]

demonstrated that, with the same large training dataset and training hyperparameters, a

larger model achieves lower WER on multilingual speech recognition.

101

Figure 6.1: The general architecture of Whisper ASR models. The details of the train-
ing method including text formatting and training configurations are presented in Sec-
tion 2.9.3. Picture courtesy: [122].

Model name Parameters

Whisper-tiny 39 M
Whisper-base 74 M
Whisper-small 244 M
Whisper-medium 769 M
Whisper-large-v1 1550 M

Table 6.1: The parameter size of Whisper models that are used in this chapter.

102

6.2.2 Speaker-wise Bootstrap Estimation

Many ASR academic datasets provide only one testing set, which makes it difficult to do

significance analysis to ensure observed performance differences are not effects of chance.

To overcome this limitation, Bisani et al. [21] proposed a bootstrap method based on

the assumption that the number of errors for each speaker is independent. Let’s assume a

testing set has s speakers. The basic procedure is that s speakers’ recordings are randomly

selected with replacements from the testing set and calculate desired evaluation matrices

(e.g., WER) on the sampled testing set. The procedure is repeated B times (e.g., B=104)

and let the error rate of the bth procedure to be Eb. Then, the bootstrap estimation of

the error rate is:

Eboot =
1

B

B∑
b=1

Eb (6.1)

The uncertainty of Eboot can be quantified by the standard error, which has the following

bootstrap estimate:

seboot(E) =

√∑B
b=1(Eb − Eboot)2

B − 1
(6.2)

Bisani et al. [21] hypothesized that the distribution of Ebs is approximately Gaussian

making the true error rate lies with 90% probability in the interval Eboot ± 1.64seboot(E).

One advantage of this bootstrap method is that it does not make any modifications to

evaluation matrices. Thus, in this chapter, we use this estimation method on all evaluation

matrices including WER and filler error rate which will be introduced in Section 6.4.

6.3 Data

In this section, we describe datasets used in later sections. We evaluate Whisper ASR mod-

els on multiple domains/datasets from two languages, namely English and Chinese, whose

recordings are recorded from spontaneous conversations where speakers may use fillers:

The AMI Meeting Corpus [100], A Spontaneous Chinese-English Dataset (ASCEND) [90],

and I-CONECT1.

1More information about I-CONECT can be found at ClinicalTrials.gov: NCT02871921

103

The AMI Meeting Corpus: consists of 100 hours of meeting recordings. These record-

ings can be classified into two recording scenarios: individual headset microphones (IHM)

and a single distant microphone (SDM). All recordings are manually transcribed and an-

notated and all speakers are Europeans. The IHM recordings are recorded by headset

microphones. The audio quality is clear with minor environmental noises. We refer IHM’s

domain to the close talk. The SDM recordings are recorded with a distant microphone

in a meeting room. The audio quality is poorer than IHM making them harder to be

accurately transcribed. We refer SDM’s domain to the far field.

ASCEND: is a high-quality Mandarin Chinese-English code-switching corpus built on

spontaneous multi-turn conversational dialogue sources collected in Hong Kong. It consists

of 10.62 hours of clean speech, collected from 23 bilingual speakers of Chinese and English.

Chinese is the native language of all speakers and English is their second language. This

corpus contains monolingual Chinese and English utterances and intra-sentential code-

switching utterances (i.e., utterances mixed with Chinese and English).

I-CONECT: was conducted at Oregon Health & Science University (OHSU), University

of Michigan, and Wayne State University. Socially isolated older adults above 75 years

old are recruited from the local Meals on Wheels program in Portland, Oregon and in

Detroit, Michigan (with recruitment of African American subjects). Conversations are

semi-structured, in which participants freely talk about a predefined topic, i.e., picnic,

summertime, swimming and so on, with a moderator online. The speech data was collected

from a long-term behavioral research project that uses internet-based social interactions

as a tool to enhance older adults’ cognitive reserve. English is the native language of all

speakers.

6.3.1 Data Process

In this section, we describe the process step of each dataset. Since we use multiple datasets,

we unify the name as the following format: “{Source}-{Language}-{Purpose}”, where

Source refers to the source of the dataset, Language refers to the language of that set and

104

Purpose refers to the purpose of the set. For example, the training set from AMIIHM

would be named AMIIHM-en-train and the testing set from AMISDM would be called

AMISDM-en-test.

The AMI Meeting Corpus: to ensure the reproducibility of our experiments, we use a

preprocessed corpus from Huggingface 2 and make no modifications. The corpus contains

all AMI’s datasets used in our experiments, including AMIIHM-en-train, AMIIHM-en-

valid, AMIIHM-en-test and AMISDM-en-test.

ASCEND: since we are only interested in the monolingual Chinese/English utterances

and only use this corpus to evaluate a model, we select all monolingual English utterances

and monolingual Chinese utterances with two or more words from all datasets (i.e., train-

ing/validation/testing sets) to create two testing sets: ASCEND-en-test and ASCEND-zh-

test. The chosen Chinese word, “嗯”, not only serves as a filler in an utterance but is also

used to show agreement when using it alone. Since we are only interested in how Whisper

ASR models performs on recognizing fillers, we removed all single-word utterances. This

process merely impacts the ASCEND-en-test.

I-CONECT: I-CONECT’s recordings are manually transcribed and corresponding times-

tamps are provided. We clip recordings based on the given timestamps and discard audio

clips that are longer than the Whisper ASR model’s maximum acceptable duration (i.e.,

30 seconds). After the process, we have 20 hours of audio clips and they form the testing

set: ICONECT-en-test.

6.4 Evaluation Matrix

WER is the commonly used evaluation matrix in the ASR field. But, the downside of

WER is that it treats each word equally and mistranscribes low-frequency yet informative

words minorly impacting the final WER of that testing sentences group. In the example

that is presented in Figure 6.2, the groundtruth sentence is “um ideas are worth nothing

2edinburghcstr/ami

105

um unless they are executed” and the machine transcription is “am ideas are worth um

um nothing unless they are executed um”. There are 4 errors (i.e., 2 substitutions and 2

Figure 6.2: A example to compare the difference between WER and FER. The x-axis
presents the groundtruth transcription with the word index and the y-axis presents the
ASR transcription. An ASR can make three types of errors: transcribes non-existent
words (i.e., ins), does not transcribe existent words (i.e., del), and mistranscribes words
(i.e., sub). “OK” refers to correct transcriptions.

insertions) in this example, thus, the WER is 40%. But, it is also noticeable that most

errors are related to fillers (i.e., “um”). These errors moderately impact the research

related to the semantic meaning of the sentence but dramatically impact the research

related to the filler of the sentence.

To quantify an ASR’s performance on fillers (i.e., um), we can adapt the algorithm

of WER and focus on two types of errors: 1, the ASR does not transcribe existing fillers

106

(false negative), and 2, the ASR transcribes non-existent fillers (false positive). We call this

measurement filler error rate (FER). In this example, there is 1 false negative error where

“um” is transcribed as “am”, and 2 false positive errors where “nothing” is transcribed

as “um” and an extra “um” at the end. Since there are two fillers in the groundtruth

sentence, then, FER is 150%. Moreover, we can further decompose FER into false-negative

FER (FN-FER), where an ASR does not transcribe existing fillers, and false-positive FER

(FP-FER), where an ASR transcribes fillers that do not exist in the groudtruth utterance.

These two measurements provide information about what types of errors an ASR makes.

In our example, the FN-FER is 50% and the FP-FER is 100%. This means that, for this

ASR, transcribing non-exist fillers mainly contributes to the high FER. In the following

sections, we mainly report two matrices (i.e., WER and FER). When we are interested in

the cause of high FER, we report FP-FER and FN-FER.

In the coming sections, we report the statistical results of WER and FER including

the mean WER/FER based on bootstrap Eboot and its 90% intervals where B = 10, 000.

For Chinese, since Chinese writing is logographic (i.e., every character either represents

a word or a minimal unit of meaning) and our chosen Chinese filler is represented by

one Chinese character, we decided to treat each Chinese character as a word. We will

introduce chosen fillers for both English and Chinese in the coming Section.

6.5 Preliminary Analyses on Transcribing Fillers

Empirically, we notice that Whisper families perform well on retaining the semantic mean-

ing of an utterance, but they do not transcribe fillers that appear in most utterances (e.g.,

“um” in English and “嗯” in Chinese). An ASR with such characteristics cannot be

used by research that uses fillers as an indicator. Thus, it is important to identify this

observation.

We conduct our experiment to show that not transcribing filler is a universal problem

across all cross-lingual Whisper ASR models that are trained with the same configuration

(i.e., whisper-tiny, whisper-base, whisper-small, whisper-medium, and whisper-large-v1).

To ensure the reproducibility of this experiment, we choose public validation/testing sets

107

Model Name WER FER FP-FER FN-FER

whisper-tiny 35.2(31.7,38.7) 88.1(85.0,91.3) 1.3(0.7,1.8) 86.8(83.7,90.0)
whisper-base 29.5(26.8,32.1) 86.5(82.5,90.5) 0.5(0.2,0.9) 86.0(82.1,89.8)
whisper-small 27.3(24.1,30.6) 89.2(86.2,92.2) 0.7(0.4,1.1) 88.5(85.5,91.5)
whisper-medium 22.1(20.1,24.2) 89.3(86.5,92.1) 0.7(0.4,1.1) 88.5(85.8,91.2)
whisper-large-v1 22.4(20.5,24.3) 86.6(83.1,90.1) 0.6(0.2,1.0) 86.0(82.7,89.4)

Table 6.2: Whisper ASR models’ performances on AMIIHM-en-valid.
Model Name WER FER FP-FER FN-FER

whisper-tiny 40.7(35.7,45.7) 89.4(84.9,94.0) 2.6(1.3,4.0) 86.8(82.5,91.1)
whisper-base 34.2(28.9,39.5) 88.0(83.4,92.6) 3.4(1.9,4.9) 84.6(79.4,89.8)
whisper-small 25.6(23.7,27.4) 89.9(85.0,94.9) 3.4(2.0,4.8) 86.5(81.6,91.4)
whisper-medium 24.0(22.5,25.5) 89.6(85.6,93.5) 2.3(1.0,3.6) 87.3(83.1,91.4)
whisper-large-v1 23.8(22.0,25.5) 87.6(83.7,91.5) 2.3(1.0,3.5) 85.3(81.3,89.4)

Table 6.3: Whisper ASR models’ performances on ASCEND-en-test.
Model Name WER FER FP-FER FN-FER

whisper-tiny 30.2(28.1,32.3) 85.0(81.1,89.0) 3.9(2.7,5.1) 81.1(77.7,84.5)
whisper-base 23.3(21.7,24.9) 75.5(71.7,79.4) 3.4(2.0,4.9) 72.1(68.3,75.9)
whisper-small 16.8(15.6,18.0) 72.4(66.4,78.4) 1.8(1.1,2.6) 70.6(64.4,76.7)
whisper-medium 14.9(13.8,16.0) 76.0(69.5,82.5) 2.9(0.8,5.0) 73.1(66.0,80.2)
whisper-large-v1 14.2(13.1,15.3) 72.1(65.2,79.0) 3.8(2.9,4.7) 68.3(61.2,75.4)

Table 6.4: Whisper ASR models’ performances on ASCEND-zh-test.

from the English corpus (i.e., AMIIHM-en-valid, ASCEND-en-test) and Chinese corpus

(i.e., ASCEND-zh-test).

We choose fillers with nasal sounds in both languages as evaluating fillers to ensure that

fillers from both languages share similar acoustic characteristics. For English, we choose

“um” and, for Chinese, we choose “嗯”. When evaluating each model’s performance, we

follow the same post-process as Radford’s normalizing the predicted/groundtruth texts.

The results are shown in Table 6.5,Table 6.2 and Table 6.3 for AMIIHM-en-valid,

ASCEND-en-test and ASCEND-zh-test, respectively. Regardless of the parameter size of

these models and the testing sets, their FERs are all very high which means these models

make many errors related to fillers. All models’ FP-FER scores are close to 0 and this

means these models rarely generate fillers that do not exist in groundtruth texts. All

models’ FN-FER scores are high and this means fillers in groundtruth texts are rarely

transcribed by any model. The results of both FP-FER and FN-FER indicate that rarely

108

transcribing fillers is the main reason for high FER. Since all models exhibit this problem

on both English testing sets (i.e., AMIIHM-en-valid and ASCEND-en-test), the problem

is unlikely to be an edge case. Moreover, we also observe a similar situation on transcrib-

ing the Chinese testing set (i.e., ASCEND-zh-test), meaning that this problem does not

only occur on English testing sets. Overall, these observations support our idea that not

transcribing fillers is a universal problem across multiple testing sets and languages.

6.6 Does the encoder cause the problem?

In the previous experiment, we showed that all multilingual Whisper ASR models rarely

transcribe fillers on three testing sets from two languages. Even though the training data

is not publically available, empirically, it is unlikely that no utterance contains transcribed

fillers, considering the fact that these models are trained with 680,000 hours of data col-

lected from the Internet. For example, there might be recordings of daily spontaneous

conversations in which speakers use fillers occasionally. Moreover, Radford et al. [122] hy-

pothesize that the linguistic decoders in their large models (i.e., whisper-large-v1) mainly

contribute to these models’ robustness. Thus, we hypothesize that whisper-large-v1 may

not be able to generate robust acoustic representations for fillers. In other words, this

model’s acoustic encoder might be responsible for this problem.

To prove this hypothesis, we have to find speakers where these speakers’ recordings

can be accurately transcribed by whisper-large-v1 including fillers. Let’s have two testing

datasets with the same utterances and the only difference between these two datasets is

speakers. If whisper-large-v1 performs noticeably better on one testing dataset than the

other (i.e., lower FER and WER), then, the language decoder is not the main reason

for the problem. Because both testing datasets contain identical utterances and speaker

voices are the only difference.

In the previous section, we found that whisper-large-v1 performs badly (i.e., high FER)

on the AMIIHM-en-valid and ASCEND-zh-test. Thus, we only have to find speaker voices

whose words can be accurately transcribed by whisper-large-v1. We find that synthesized

speeches/recordings can be transcribed accurately including fillers. Although synthesized

109

recordings from both open-sourced and commercial speech synthesizers can be accurately

recognized, we notice that open-sourced speech synthesizers provide limited voices (e.g.,

most synthesizers learn one female voice) and the acoustic characteristics of synthesized

recordings are inconsistent (e.g., different tones for questions and statements). Thus, we

choose Microsoft Azure’s Speech Service for its diversity of speaker voices and consistent

speech quality.

Since Microsoft Azure provides multiple English and Chinese voices for both males and

females, we use its English voices to synthesize AMIIHM-en-valid’s utterances and use its

Chinese voices to synthesize ASCEND-zh-test’s utterances. We refer synthesized datasets

to S-AMIIHM-en-valid and S-ASCEND-zh-test, respectively. Since our chosen bootstrap

method relies on speaker-wise sampling, we pair each speaker with a unique synthesized

voice from the same gender group. We use that voice to synthesize all utterances that

the speaker said. One limitation is that there are not enough synthesized voices to pair

with all speakers in the original testing datasets (i.e., AMIIHM-en-valid and ASCEND-

zh-test). To ensure the speaker’s voices are the only difference between the synthesized

testing dataset and its corresponding original testing dataset (i.e., S-AMIIHM-en-valid

and AMIIHM-en-valid, S-ASCEND-zh-test and ASCEND-zh-test), we drop all speakers

that cannot be assigned with paired synthesized voices in the original testing datasets

and create subsets of these original testing datasets (i.e., C-AMIIHM-en-valid and C-

ASCEND-zh-test). That is, S-AMIIHM-en-valid and C-AMIIHM-en-valid have the same

number of speakers, gender ratio, and utterances and so do S-ASCEND-zh-test and C-

ASCEND-zh-test.

Table 6.5 shows that whisper-large-v1 performs noticeably better on synthesized testing

sets than the control testing sets on both WER and FER. Moreover, whisper-large-v1

exhibits much lower FN-FER and FP-FER on synthesized testing sets. Since both testing

sets in each pair (i.e., S-AMIIHM-en-valid and C-AMIIHM-en-valid, or S-ASCEND-zh-test

and C-ASCEND-zh-test) contain identical utterances, we can exclude all factors related

to the language characteristics (e.g., word frequency). In other words, the results indicate

that the acoustic encoder is responsible for the problem and the language decoder is

affected by the flawed acoustic representation generated by the encoder.

110

Testing Set WER FER FP-FER FN-FER

S-AMIIHM-en-valid 8.6(7.6,9.6) 23.0(15.9,30.1) 0.2(0.0,0.5) 22.7(15.5,30.0)
C-AMIIHM-en-valid 22.5(20.0,25.0) 87.9(84.6,91.2) 0.5(0.1,0.8) 87.4(84.3,90.5)
S-ASCEND-zh-test 5.5(4.4,6.6) 16.2(11.8,20.6) 2.5(1.3,3.8) 13.7(9.5,17.8)
C-ASCEND-zh-test 16.3(14.3,18.3) 99.6(63.7,135.5) 31.6(0.0,67.0) 68.0(60.8,75.1)

Table 6.5: The performance of whisper-large-v1 on synthesized/experimental and con-
trolled testing sets.

Name of hyperparameters Value

Training batch size 64
Learning rate 1 × 10−5

Training steps 4000

Table 6.6: Training configuration for fine-tune whisper-large-v1.

6.7 Evaluate various fine-tuning strategies

In the previous two experiments, we showed that Whisper ASR models rarely transcribe

fillers regardless of the model size, and indicated that the acoustic encoder of whisper-

large-v1 likely causes this problem. The latter suggests that we have two tuning strategies

for resolving the problem: 1) only tune the encoder to improve the robustness of the

encoder’s acoustic representation; 2) only tune the decoder to adapt the encoder’s acoustic

representation. There are two differences between these two tuning strategies. First,

the former may preserve the decoder’s multi-lingual ability while the latter may not.

Validating this is essential as it may change the data enlarging strategy (e.g., enlarge

train data through gathering corpus from the same language domain, or, from multiple

language domains). Second, empirically, tuning the decoder would be more efficient than

tuning the encoder. However, it is unknown whether this empirical result is still valid on

a large model (i.e., whisper-large-v1). Since our goal is to compare the tuning efficiency

between the tuning encoder and the tuning decoder in this section, we do not evaluate

the performance of tuning the whole model.

We tune the whisper-large-v1 with the same training configuration that is shown in

Table 6.6. We use the tuning strategy to refer to tuned models (i.e., tune-encoder or

tune-decoder) and we refer to the original model as “no tuning”.

We use AMIIHM-en-train as the only training dataset and evaluate tuned models on

111

Data Name Tuning Strategy WER FER

AMIIHM-en-test
No tuning 20.7(18.6,22.7) 87.8(86.3,89.3)
Tune encoder 8.9(7.4,10.4) 9.5(7.2,11.9)
Tune decoder 9.5(7.9,11.2) 11.1(8.4,13.7)

AMISDM-en-test
No tuning 42.4(38.5,46.2) 92.7(91.3,94.0)
Tune encoder 31.3(27.3,35.3) 31.9(25.8,37.9)
Tune decoder 34.5(30.1,38.9) 31.9(25.3,38.6)

ASCEND-en-test
No tuning 23.8(22.0,25.5) 87.6(83.7,91.5)
Tune encoder 22.6(21.0,24.2) 69.2(61.2,77.2)
Tune decoder 24.6(20.5,28.6) 68.8(61.0,76.5)

ICONECT-en-test
No tuning 20.4(19.3,21.5) 96.1(95.2,97.0)
Tune encoder 19.3(17.5,21.2) 39.5(32.3,46.7)
Tune decoder 17.2(15.7,18.7) 37.8(30.8,44.7)

ASCEND-zh-test
No tuning 14.2(13.1,15.3) 72.1(65.2,79.0)
Tune encoder 12.8(11.3,14.3) 74.6(70.1,79.2)
Tune decoder 17.6(16.3,18.9) 96.2(94.3,98.2)

Table 6.7: Comparing tuned models across multiple testing sets.

AMIIHM-en-test for in-domain evaluation, on AMISDM-en-test, ICONECT-en-test, and

ASCEND-en-test for out-of-domain evaluation, and ASCEND-zh-test for cross-language

evaluation. Recordings in AMIIHM-en-train and AMIIHM-en-test are recorded by headset

microphones and are known as close-talk speech. Speakers in both datasets are European

speakers and all utterances are English. Recordings in AMISDM-en-test are similar to

AMIIHM-en-train except they are recorded by distant microphones and are known as

far-field speech. Recordings in ASCEND-en-test are close-talk speeches but all English

utterances belong to Chinese speakers. We use this testing dataset to evaluate the im-

pact of accent difference. Recordings in ICONECT-en-test are also close-talk speeches

but speakers are older adults (i.e., 75+ years old). We use this testing dataset to evalu-

ate how models perform on aging voices. Recordings in ASCEND-zh-test are close-talk

speeches but all utterances are Chinese. We use this testing dataset to evaluate how fine-

tuned models (i.e., tune-encoder and tune-decoder) perform on out-of-language domain

utterances.

We present experiment results in Table 6.7. First, we compare the three models’

performance on the in-domain testing dataset. The tune-encoder model exhibits much

lower WER and FER than the pre-trained model (labeled as “no tuning” in the table)

112

and also performs marginally better than the tune-decoder model. Second, we compare

these models’ performance on the far-filed testing dataset (AMISDM-en-test). The tune-

encoder model exhibits noticeably lower WER and FER than the pre-trained model and

also performs marginally better than the tune-decoder model. Third, we compare these

models’ performance on the Chinese accent testing dataset (ASCEND-en-test). The tune-

encoder model exhibits marginally lower WER than the pre-trained model and performs

noticeably better than the pre-trained model on FER. Moreover, the tune-encoder model is

comparable with the tune-decoder model. Fourth, we compare these models’ performance

on aging voices (ICONECT-en-test). The tune-encoder model exhibits comparable WER

to the pre-trained model and performs much better than the pre-trained model on FER.

Interestingly, the tune-decoder model performs the best on both WER and FER. It might

caused by the acoustic mismatch between the training dataset and this testing dataset.

Because there are noticeable articulation differences between older adults and younger

adults. Last, we evaluate two fine-tuned models’ performance on the out-of-language

domain testing dataset (ASCEND-zh-test). The tune-encoder model exhibits comparable

WER and FER to the pre-trained model while the tune-decoder model performs worse

than the pre-trained model on both WER and FER.

Overall, the tune-encoder model not only performs equivalently as the pre-trained

model on WER but also outperforms the pre-trained model on FER in all testing datasets

even on the ASCEND-zh-test which is not the same language as the training dataset (i.e.,

AMIIHM-en-train). However, the tune-decoder model does not perform better than the

tune-encoder model in most testing sets and the tune-decoder model performs noticeably

worse than the baseline on Chinese. The results support our hypothesis that tuning the

encoder preserves the decoder’s multi-lingual ability while achieving comparable perfor-

mance to the other strategy. In other words, tuning the encoder is a recommended strategy

for adapting whisper-large-v1 for transcribing fillers.

113

6.8 Conclusion

In this chapter, we showed that both large training datasets and scaling model size do not

guarantee ASRs transcribing fillers through showing that all cross-lingual whisper models

rarely transcribe fillers. More importantly, we demonstrated that WER cannot reveal

the problem accurately. Then, considering the largest Whisper ASR model (i.e., whisper-

large-v1) as the research target, we demonstrate that the model’s acoustic encoder is the

main reason. Based on the analyzing result, we show that tuning the encoder can resolve

this problem on the large ASR while not negatively impacting the desired abilities that

the ASR model originally had.

In the future, we will further analyze what acoustic characteristics cause the prob-

lem of not transcribing fillers. This is an important research direction for training data

expansion.

Chapter 7

Conclusion And Future Work

In this dissertation, we focused on developing DNN-based ASR models relevant to auto-

matic cognitive assessment systems. Oriented to the idea of transfer learning, we focused

on resolving two specific problems. 1) Improve ASRs’ performance in older adults with

possible cognitive impairment. 2) Improve an ASR model transcribing accuracy on filled

pauses, which is a well-studied indicator in the cognitive research field. Additionally,

to improve accuracy in assessing mild cognitive impairment, we proposed time-related

features that can be extracted from the animal fluency test.

For the first problem, we explored two aspects of transfer learning: develop transfer

learning techniques that increase the tuning efficiency from a limited training dataset,

and build pre-trained models with a small training dataset. In Chapter 4, we presented

a transfer learning technique that utilizes the base model’s intermediate outputs to im-

prove the performance in older adults (75+ years old) and showed that our technique

outperforms standard fine-tuning. We first demonstrated that speakers’ age differences

dramatically impact an ASR performance through comparing the performance difference

between academic testing sets and audio recordings from older adults. Then, based on

our hypothesis that intermediate outputs from a pre-trained DNN model contain useful

information for the target domain, we proposed a conditional independent mechanism to

assign arbitrary usefulness scores to all outputs including intermediate outputs and the

final hidden outputs, and introduced a training method so that the mechanism can learn

the usefulness from the training data. We experimentally proved our hypothesis on a

pre-trained ASR model called Deepspeech2 [7]. Our method achieves better performance

than the standard fine-tuning when there are only 10 hours of training data. Our best

114

115

model performs 6% better than the standard fine-tuned model.

Since we have shown the intermediate outputs contain useful information for the target

domain, developing DNN layers that can utilize these outputs more efficiently would be

one of our next goals. The other goal is to develop DNN layers that can dynamically assign

usefulness scores based on certain factors (e.g., fundamental frequency, articulation, etc).

In Chapter 5, we assumed that collecting 100 hours of transcribed recordings for train-

ing a base/pre-trained model is achievable in the cognitive research field and present a

DNN architecture that can fully utilize such a training dataset. We refine a well-studied

DNN architecture in order to improve the training efficiency on a small training dataset

and a small DNN architecture (i.e., having a small number of parameters). As a prelim-

inary study, we evaluate the refined DNN on a small academic dataset. We first identi-

fied two potential refining ideas through analyzing a pre-trained ASR model: replacing

several global attention mechanism layers in the DNN architecture with local attention

mechanism layers and applying parameter sharing across multiple attention blocks. We

evaluated these ideas separately and showed their effectiveness. Then, we showed that

refining the DNN with both ideas further improves the training efficiency. Training on

the same dataset, our refined DNN performed 16% better than the original DNN even

though the parameter size of our DNN was 75% less than the latter. The reduction in

parameter size makes our DNN suitable for increasing the mobility of DNN-based ASRs

which enables the deployment of offline systems on mobile devices.

In Chapter 5, we only made minor modifications to the original DNN architecture in or-

der to show that our ideas, replacing global attention mechanism layers with fixed-window-

size local attention mechanism layers and applying parameter sharing to the architecture,

mainly contribute to the improvement of training efficiency. In the future, we can further

improve training efficiency through developing more efficient local attention mechanisms

and parameter-sharing techniques. We believe developing local attention mechanisms that

can dynamically adjust the window size will be beneficial because it allows the DNN model

to automatically adjust the optimal window size based on the input and free us from in-

terpreting the optimal window size. Various parameter-sharing techniques [34, 83, 18] can

be adapted to further improve the training efficiency.

116

For the second problem of this dissertation, accurately transcribing fillers is essential

but gains much less attention than it should be because various research has shown scal-

ing training data and DNN model size increase the performance and robustness when

evaluating on the mainstream evaluation metric of WER.

In Chapter 6, we first demonstrated that the untranscribed filler problem is universal

across all multi-lingual Whisper ASR models and showed that the problem is unlikely to

be resolved by scaling model size. We showed that these models do not transcribe filled

pauses on both Chinese and English utterances. We demonstrate that the mainstream

evaluation matric cannot reveal the problem accurately. Then, we focused on analyzing

why the largest Whisper ASR (i.e., whisper-large-v1) does not transcribe filled pauses.

We introduced our hypothesis that the model’s acoustic encoder does not generate ro-

bust acoustic representations for filled pauses. To prove our hypothesis, we show that,

with the same utterances, some voices’ recordings can be accurately transcribed includ-

ing transcribing filled pauses. This observation is universal on transcribing English and

Chinese recordings. This indicated that tuning the acoustic encoder with spontaneous

conversation recordings can resolve the not-transcribe-filled-pause problem. We compare

two fine-tuning strategies: only tuning the acoustic encoder and only tuning the linguistic

decoder. We showed that the former outperforms the latter in most testing sets includ-

ing the out-of-language-domain testing set. We conclude that only tuning the acoustic

encoder is an effective method that can resolve the not-transcribe-filled-pause problem on

whisper-large-v1 while not negatively impacting the ability of multi-lingual transcription

that the ASR originally had.

There are three future directions to further improve the ASR’s performance on tran-

scribing filler. One of the future directions is to increase the domain similarity between

the training dataset and the testing dataset. In this chapter, we have shown that whisper-

large-v1 performs great on synthesized audio recordings. Analyzing the acoustic differ-

ence between synthesized recordings and older adults’ recordings will benefit synthesizing

recordings that are acoustically similar to older adults. The second future direction is uti-

lizing intermediate outputs from the acoustic encoder in order to generate robust acoustic

representations for fillers. In Chapter 4, we have shown that intermediate outputs contain

117

useful information for target domains. We have evaluated the idea on a non-autoregressive

DNN (i.e., Deepspeech2), but Whisper ASR models belong to the autoregressive DNN fam-

ily. There should be further investigation on how to utilize the acoustic encoder’s interme-

diate outputs when the pre-trained model belongs to the autoregressive DNN family. The

third future direction, which is also targeted at generating robust acoustic representations,

is training a new acoustic encoder using our DNN architecture proposed in Chapter 5. We

can use our refined DNN architecture to replace the original acoustic encoder and train

the new acoustic encoder on the target domain’s recordings (e.g., recordings from older

adults) to further improve Whisper ASR models’ performance on the target domain.

In addition to improving ASRs when there is training data available, we also developed

features for increasing the accuracy of cognitive assessment. In Chapter 3, we utilized a

GMM-HMM ASR as an aligner to extract timestamps of manual transcriptions, which is

widely used in phonetic studies [19, 81, 142] and developed time-base features extracted

from the animal fluency test. We utilized these features to distinguish older people with

mild cognitive impairment from those with normal cognition. We introduced the animal

fluency test which evaluates a person’s semantic retrieval ability. We introduced the

semantic retrieval pattern, clustering and switching. We introduced the research based

on the semantic retrieval pattern and this research inspired our time-based features. This

research used the time difference between two adjacent animal names to quantify the

retrieval difficulty. We show that, regardless of the clustering and switching method,

using both count- and time-based features outperforms better than using only count-

based features. When we use the Troyer-based method, the former is 10% better than

the latter. When we use the ESA-based method, the former is 5% better than the latter.

This result indicates that our features provide information that count-based features do

not capture.

In this chapter, we evaluated our features that are extracted from manual transcrip-

tions. To develop an automatic cognitive diagnosis system, evaluating these features

extracted from ASR transcription is essential.

Appendix A

Research Summary

We conducted the following research at Oregon Health & Science University.

• Chen, Liu, Hiroko H. Dodge, and Meysam Asgari. “Older people with mild cog-

nitive impairment exhibit lower semantic noise after six months of frequent social

conversations.” Alzheimer’s Association International Conference. ALZ, 2023. [31]

• Chen, Liu, Meysam Asgari, and Hiroko H. Dodge. “Efficacy in linguistic character-

istics: I-CONECT project.” Alzheimer’s & Dementia 18 (2022): e059652. [26]

• Chen, Liu, Hiroko H. Dodge, and Meysam Asgari. “Measures of Voice Quality

as Indicators of Mild Cognitive Impairment.” Alzheimer’s & Dementia 18 (2022):

e067393. [30]

• MacFarlane, Heather, et al. “Combining voice and language features improves au-

tomated autism detection.” Autism Research 15.7 (2022): 1288-1300. [94]

• Chen, Liu, Meysam Asgari, and Hiroko H. Dodge. “Optimize Wav2vec2s Architec-

ture for Small Training Set Through Analyzing its Pre-Trained Models Attention

Pattern.” ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). IEEE, 2022. [27]

• Asgari, Meysam, Liu Chen, and Eric Fombonne. “Quantifying voice characteristics

for detecting autism.” Frontiers in Psychology 12 (2021): 665096. [10]

• Chen, Liu, and Meysam Asgari. “Refining automatic speech recognition system

for older adults.” ICASSP 2021-2021 IEEE International Conference on Acoustics,

118

119

Speech and Signal Processing (ICASSP). IEEE, 2021. [25]

• Chen, Liu, et al. “Improving the assessment of mild cognitive impairment in ad-

vanced age with a novel multi-feature automated speech and language analysis of

verbal fluency.” Frontiers in Psychology 11 (2020): 535. [28]

• Chen, Liu, Hiroko H. Dodge, and Meysam Asgari. “Topic-based measures of con-

versation for detecting mild cognitive impairment.” Proceedings of the conference.

Association for Computational Linguistics. Meeting. Vol. 2020. NIH Public Access,

2020. [29]

• Gale, Robert, et al. “Improving asr systems for children with autism and language

impairment using domain-focused dnn transfer techniques.” Interspeech. Vol. 2019.

NIH Public Access, 2019. [43]

Bibliography

[1] Neural Networks, Types, and Functional Programming – colahapos;s blog — co-

lah.github.io. http://colah.github.io/posts/2015-09-NN-Types-FP/. [Accessed 25-

07-2023].

[2] People’s Speech — mlcommons.org. https://mlcommons.org/en/peoples-speech/.

[Accessed 25-07-2023].

[3] Student Notes: Convolutional Neural Networks (CNN) Introduction — in-

doml.com. https://indoml.com/2018/03/07/student-notes-convolutional-neural-

networks-cnn-introduction/. [Accessed 13-08-2023].

[4] Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J In-

man. Real-time vibration-based structural damage detection using one-dimensional

convolutional neural networks. Journal of Sound and Vibration, 388:154–170, 2017.

[5] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and

Been Kim. Sanity checks for saliency maps. arXiv preprint arXiv:1810.03292, 2018.

[6] Minna Alenius, Sanna Koskinen, Ilona Hallikainen, Tiia Ngandu, Jari Lipsanen,

Päivi Sainio, Annamari Tuulio-Henriksson, and Tuomo Hänninen. Cognitive perfor-

mance among cognitively healthy adults aged 30–100 years. Dementia and geriatric

cognitive disorders extra, 9(1):11–23, 2019.

[7] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric

Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang

Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates,

Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,

120

121

Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony

Han, Lappi Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin,

Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang, An-

drew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan,

Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sen-

gupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang,

Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang Wu,

Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and

Zhenyao Zhu. Deep speech 2 : End-to-end speech recognition in english and man-

darin. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of

The 33rd International Conference on Machine Learning, volume 48 of Proceedings

of Machine Learning Research, pages 173–182, New York, New York, USA, 20–22

Jun 2016. PMLR.

[8] Junyi Ao, Rui Wang, Long Zhou, Shujie Liu, Shuo Ren, Yu Wu, Tom Ko, Qing Li,

Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, and Furu Wei. Speecht5: Unified-modal

encoder-decoder pre-training for spoken language processing. 2021.

[9] Junyi Ao, Zi-Hua Zhang, Long Zhou, Shujie Liu, Haizhou Li, Tom Ko, Lirong Dai,

Jinyu Li, Yao Qian, and Furu Wei. Pre-training transformer decoder for end-to-end

asr model with unpaired speech data. 2022.

[10] Meysam Asgari, Liu Chen, and Eric Fombonne. Quantifying voice characteristics

for detecting autism. Frontiers in Psychology, 12:665096, 2021.

[11] Meysam Asgari, Jeffrey Kaye, and Hiroko Dodge. Predicting mild cognitive impair-

ment from spontaneous spoken utterances. Alzheimer’s & Dementia: Translational

Research & Clinical Interventions, 3(2):219–228, 2017.

[12] Onur Avci, Osama Abdeljaber, Serkan Kiranyaz, Mohammed Hussein, and Daniel J

Inman. Wireless and real-time structural damage detection: A novel decentralized

method for wireless sensor networks. Journal of Sound and Vibration, 424:158–172,

2018.

122

[13] Onur Avci, Osama Abdeljaber, Serkan Kiranyaz, and Daniel Inman. Structural

damage detection in real time: implementation of 1d convolutional neural networks

for shm applications. In Structural Health Monitoring & Damage Detection, Vol-

ume 7: Proceedings of the 35th IMAC, A Conference and Exposition on Structural

Dynamics 2017, pages 49–54. Springer, 2017.

[14] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. ArXiv,

abs/1607.06450, 2016.

[15] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-

Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140,

2015.

[16] Rohan Badlani, Adrian Lańcucki, Kevin J Shih, Rafael Valle, Wei Ping, and Bryan

Catanzaro. One tts alignment to rule them all. In ICASSP 2022-2022 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

6092–6096. IEEE, 2022.

[17] Alexei Baevski, Henry Zhou, Abdel rahman Mohamed, and Michael Auli. wav2vec

2.0: A framework for self-supervised learning of speech representations. ArXiv,

abs/2006.11477, 2020.

[18] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. arXiv

preprint arXiv:1909.01377, 2019.

[19] George Bailey. Automatic detection of sociolinguistic variation using forced align-

ment. In University of Pennsylvania Working Papers in Linguistics: Selected Papers

from New Ways of Analyzing Variation (NWAV 44), pages 10–20. York, 2016.

[20] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document

transformer, 2020.

[21] Maximilian Bisani and Hermann Ney. Bootstrap estimates for confidence intervals

123

in asr performance evaluation. 2004 IEEE International Conference on Acoustics,

Speech, and Signal Processing, 1:I–409, 2004.

[22] Antoinette L Bouhuys, Harm K Schutte, Domien GM Beersma, and George LJ

Nieboer. Relations between depressed mood and vocal parameters before, during

and after sleep deprivation: a circadian rhythm study. Journal of affective disorders,

19(4):249–258, 1990.

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165,

2020.

[24] Eric L. Charnov. Optimal foraging, the marginal value theorem. Theoretical popu-

lation biology, 9 2:129–36, 1976.

[25] Liu Chen and Meysam Asgari. Refining automatic speech recognition system for

older adults. In ICASSP 2021-2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 7003–7007. IEEE, 2021.

[26] Liu Chen, Meysam Asgari, and Hiroko H Dodge. Efficacy in linguistic characteristics:

I-conect project. Alzheimer’s & Dementia, 18:e059652, 2022.

[27] Liu Chen, Meysam Asgari, and Hiroko H Dodge. Optimize wav2vec2s architec-

ture for small training set through analyzing its pre-trained models attention pat-

tern. In IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 7112–7116. IEEE, 2022.

[28] Liu Chen, Meysam Asgari, Robert Gale, Katherine Wild, Hiroko Dodge, and Jeffrey

Kaye. Improving the assessment of mild cognitive impairment in advanced age with

124

a novel multi-feature automated speech and language analysis of verbal fluency.

Frontiers in Psychology, 11:535, 2020.

[29] Liu Chen, Hiroko H Dodge, and Meysam Asgari. Topic-based measures of conver-

sation for detecting mild cognitive impairment. In Proceedings of the conference.

Association for Computational Linguistics. Meeting, volume 2020, page 63. NIH

Public Access, 2020.

[30] Liu Chen, Hiroko H Dodge, and Meysam Asgari. Measures of voice quality as

indicators of mild cognitive impairment. Alzheimer’s & Dementia, 18:e067393, 2022.

[31] Liu Chen, Hiroko H Dodge, and Meysam Asgari. Older people with mild cognitive

impairment exhibit lower semantic noise after six months of frequent social conver-

sations. In Alzheimer’s Association International Conference. ALZ, 2023.

[32] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. In NIPS 2014

Workshop on Deep Learning, December 2014, 2014.

[33] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan

Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length

context. arXiv preprint arXiv:1901.02860, 2019.

[34] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz

Kaiser. Universal transformers. arXiv preprint arXiv:1807.03819, 2018.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[36] Hiroko H Dodge, Kexin Yu, Chao-Yi Wu, Patrick J Pruitt, Meysam Asgari, Jef-

frey A Kaye, Benjamin M Hampstead, Laura Struble, Kathleen Potempa, Peter

Lichtenberg, Raina Croff, Roger L Albin, Lisa C Silbert, and I-CONECT team.

125

Internet-based conversational engagement randomized controlled clinical trial (I-

CONECT) among socially isolated adults 75+ years old with normal cognition or

MCI: topline results. Gerontologist, nov 2023.

[37] Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan,

Sergio Guadarrama, Kate Saenko, and Trevor Darrell. Long-term recurrent con-

volutional networks for visual recognition and description. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(4):677–691, 2017.

[38] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recog-

nition at scale. arXiv preprint arXiv:2010.11929, 2020.

[39] Marianne Farina, Dalton Breno Costa, Joao Andre Webber de Oliveira, Manuela

Polidoro Lima, Wagner De Lara Machado, Carmen Moret-Tatay, Regina Maria

Fernandes Lopes, Irani Iracema De Lima Argimon, and Tatiana Quarti Irigaray.

Cognitive function of brazilian elderly persons: longitudinal study with non-clinical

community sample. Aging & mental health, pages 1–8, 2019.

[40] Siyuan Feng, Olya Kudina, Bence Mark Halpern, and Odette Scharenborg. Quanti-

fying bias in automatic speech recognition. ArXiv, abs/2103.15122, 2021.

[41] Marshal F Folstein, Susan E Folstein, and Paul R McHugh. “mini-mental state”: a

practical method for grading the cognitive state of patients for the clinician. Journal

of psychiatric research, 12(3):189–198, 1975.

[42] Kathleen C Fraser, Jed A Meltzer, and Frank Rudzicz. Linguistic features identify

alzheimer’s disease in narrative speech. Journal of Alzheimer’s Disease, 49(2):407–

422, 2016.

[43] Robert Gale, Liu Chen, Jill Dolata, Jan Van Santen, and Meysam Asgari. Improving

asr systems for children with autism and language impairment using domain-focused

dnn transfer techniques. In Proc. Interspeech 2019, pages 11–15, 2019.

126

[44] Daniel Galvez, Greg Diamos, Juan Manuel Ciro Torres, Juan Felipe Cerón, Keith

Achorn, Anjali Gopi, David Kanter, Max Lam, Mark Mazumder, and Vijay Janapa

Reddi. The people’s speech: A large-scale diverse english speech recognition dataset

for commercial usage. In Thirty-fifth Conference on Neural Information Processing

Systems Datasets and Benchmarks Track (Round 1), 2021.

[45] Frédérique Gayraud, Hyeran Lee, and Melissa Barkat-Defradas. Syntactic and lexical

context of pauses and hesitations in the discourse of alzheimer patients and healthy

elderly subjects. Clinical Linguistics & Phonetics, 25:198 – 209, 2011.

[46] Roberto Gemello, Franco Mana, Stefano Scanzio, Pietro Laface, and Renato

De Mori. Adaptation of hybrid ann/hmm models using linear hidden transforma-

tions and conservative training. In 2006 IEEE International Conference on Acoustics

Speech and Signal Processing Proceedings, volume 1, pages I–I. IEEE, 2006.

[47] Keith W Godin, Taufiq Hasan, and John HL Hansen. Glottal waveform analysis of

physical task stress speech. In Thirteenth Annual Conference of the International

Speech Communication Association, 2012.

[48] Kyle Gorman, Lindsay A Olson, Alison Presmanes Hill, Rebecca Lunsford, Peter A.

Heeman, and Jan van Santen. Uh and um in children with autism spectrum disorders

or language impairment. Autism Research, 9, 2016.

[49] Gábor Gosztolya, László Tóth, Tamás Grósz, Veronika Vincze, Ildikó Hoffmann,

Gréta Szatlóczki, Magdolna Pákáski, and János Kálmán. Detecting mild cognitive

impairment from spontaneous speech by correlation-based phonetic feature selection.

In Interspeech, 2016.

[50] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv

preprint arXiv:1603.08983, 2016.

127

[51] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Con-

nectionist temporal classification: labelling unsegmented sequence data with recur-

rent neural networks. In Proceedings of the 23rd international conference on Machine

learning, pages 369–376, 2006.

[52] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka

Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ra-

malho, John Agapiou, et al. Hybrid computing using a neural network with dynamic

external memory. Nature, 538(7626):471–476, 2016.

[53] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui

Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.

Conformer: Convolution-augmented transformer for speech recognition. ArXiv,

abs/2005.08100, 2020.

[54] Guanbo Wang Jiayu Du Wei-Qiang Zhang Chao Weng Dan Su Daniel Povey Jan

Trmal Junbo Zhang Mingjie Jin Sanjeev Khudanpur Shinji Watanabe Shuaijiang

Zhao Wei Zou Xiangang Li Xuchen Yao Yongqing Wang Yujun Wang Zhao You

Zhiyong Yan Guoguo Chen, Shuzhou Chai. Gigaspeech: An evolving, multi-domain

asr corpus with 10,000 hours of transcribed audio. In Proc. Interspeech 2021, 2021.

[55] Isabelle M Guyon, Jason Weston, Stephen D. Barnhill, and Vladimir Naumovich

Vapnik. Gene selection for cancer classification using support vector machines. Ma-

chine Learning, 46:389–422, 2002.

[56] James A. Hanley and Barbara J. McNeil. The meaning and use of the area under a

receiver operating characteristic (roc) curve. Radiology, 143 1:29–36, 1982.

[57] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Frederick

Diamos, Erich Elsen, Ryan J. Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam

Coates, and A. Ng. Deep speech: Scaling up end-to-end speech recognition. ArXiv,

abs/1412.5567, 2014.

128

[58] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv

preprint arXiv:1606.08415, 2016.

[59] Thomas T. Hills, Michael N. Jones, and Peter M. Todd. Optimal foraging in semantic

memory. Psychological Review, 119 2:431–40, 2012.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[61] Richard J Holden, Amanda M McDougald Scott, Peter LT Hoonakker, Ann S Hundt,

and Pascale Carayon. Data collection challenges in community settings: Insights

from two field studies of patients with chronic disease. Quality of Life Research,

24(5):1043–1055, 2015.

[62] Jessica E. Huber and Meghan Darling. Effect of parkinson’s disease on the pro-

duction of structured and unstructured speaking tasks: respiratory physiologic and

linguistic considerations. Journal of speech, language, and hearing research : JSLHR,

54 1:33–46, 2011.

[63] P.P.M Hurks, J.G.M Hendriksen, J.S.H Vles, A.C Kalff, F.J.M Feron, M Kroes,

T.M.C.B van Zeben, J Steyaert, and J Jolles. Verbal fluency over time as a measure

of automatic and controlled processing in children with adhd. Brain and Cognition,

55(3):535–544, 2004.

[64] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International conference on machine

learning, pages 448–456. pmlr, 2015.

[65] Ahmed Ismail, Samir Abdlerazek, and Ibrahim M El-Henawy. Development of smart

healthcare system based on speech recognition using support vector machine and

dynamic time warping. Sustainability, 12(6):2403, 2020.

[66] Michael I Jordan. Serial order: A parallel distributed processing approach. In

Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.

129

[67] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding

recurrent networks. arXiv preprint arXiv:1506.02078, 2015.

[68] Ali Khodabakhsh, Fatih Yesil, Ekrem Guner, and Cenk Demiroglu. Evaluation

of linguistic and prosodic features for detection of alzheimer’s disease in turkish

conversational speech. EURASIP Journal on Audio, Speech, and Music Processing,

2015(1):9, 2015.

[69] Joe Kilian and Hava T Siegelmann. The dynamic universality of sigmoidal neural

networks. Information and computation, 128(1):48–56, 1996.

[70] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-specific ecg

classification by 1-d convolutional neural networks. IEEE Transactions on Biomed-

ical Engineering, 63(3):664–675, 2015.

[71] Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Personalized monitoring and

advance warning system for cardiac arrhythmias. Scientific reports, 7(1):9270, 2017.

[72] Serkan Kiranyaz, Turker Ince, Ridha Hamila, and Moncef Gabbouj. Convolutional

neural networks for patient-specific ecg classification. In 2015 37th Annual In-

ternational Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 2608–2611. IEEE, 2015.

[73] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr

Dollár, and Ross B. Girshick. Segment anything. ArXiv, abs/2304.02643, 2023.

[74] John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The Diffi-

culty of Learning LongTerm Dependencies, pages 237–243. 2001.

[75] Alexandra König, Nicklas Linz, Johannes Tröger, Maria Wolters, Jan Alexandersson,

and Phillipe Robert. Fully automatic speech-based analysis of the semantic verbal

fluency task. Dementia and Geriatric Cognitive Disorders, 45(3-4):198–209, 2018.

[76] Alexandra Konig, Aharon Satt, Alex Sorin, Ran Hoory, Alexandre Derreumaux,

Renaud David, and Phillippe H Robert. Use of speech analyses within a mobile

130

application for the assessment of cognitive impairment in elderly people. Current

Alzheimer Research, 15(2):120–129, 2018.

[77] Alexandra König, Aharon Satt, Alexander Sorin, Ron Hoory, Orith Toledo-Ronen,

Alexandre Derreumaux, Valeria Manera, Frans Verhey, Pauline Aalten, Phillipe H

Robert, et al. Automatic speech analysis for the assessment of patients with prede-

mentia and alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment &

Disease Monitoring, 1(1):112–124, 2015.

[78] Rinat Koren, Ora Kofman, and Andrea Berger. Analysis of word clustering in verbal

fluency of school-aged children. Archives of Clinical Neuropsychology, 20(8):1087–

1104, 12 2005.

[79] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the

dark secrets of bert. In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 4365–4374, 2019.

[80] Geza Kiss Kyle Gorman. ldamatch: Selection of statistically similar research groups.

In https: //cran. r-project. org/web/packages/ldamatch/index. html, 2016-06-27.

[81] William Labov, Ingrid Rosenfelder, and Josef Fruehwald. One hundred years of

sound change in philadelphia: Linear incrementation, reversal, and reanalysis. Lan-

guage, 89(1):30–65, 2013.

[82] Johanna K. Lake, Karin R. Humphreys, and Shannon Cardy. Listener vs. speaker-

oriented aspects of speech: Studying the disfluencies of individuals with autism

spectrum disorders. Psychonomic Bulletin & Review, 18:135–140, 2011.

[83] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. Albert: A lite bert for self-supervised learning of language rep-

resentations. ArXiv, abs/1909.11942, 2019.

[84] Linda Lang, Angela Clifford, Li Wei, Dongmei Zhang, Daryl Leung, Glenda Au-

gustine, Isaac M Danat, Weiju Zhou, John R Copeland, Kaarin J Anstey, et al.

131

Prevalence and determinants of undetected dementia in the community: a system-

atic literature review and a meta-analysis. BMJ open, 7(2):e011146, 2017.

[85] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[86] Bo Li and Khe Chai Sim. Comparison of discriminative input and output transfor-

mations for speaker adaptation in the hybrid nn/hmm systems. In Eleventh Annual

Conference of the International Speech Communication Association, 2010.

[87] Xiangyu Liang, Zhiyong Wu, Runnan Li, Yanqing Liu, Sheng Zhao, and Helen

Meng. Enhancing monotonicity for robust autoregressive transformer tts. In IN-

TERSPEECH, pages 3181–3185, 2020.

[88] Sue Ellen Linville. Source characteristics of aged voice assessed from long-term

average spectra. Journal of Voice, 16(4):472–479, 2002.

[89] Sue Ellen Linville and Jennifer Rens. Vocal tract resonance analysis of aging voice

using long-term average spectra. Journal of Voice, 15(3):323–330, 2001.

[90] Holy Lovenia, Samuel Cahyawijaya, Genta Indra Winata, Peng Xu, Xu Yan, Zihan

Liu, Rita Frieske, Tiezheng Yu, Wenliang Dai, Elham J. Barezi, and Pascale Fung.

Ascend: A spontaneous chinese-english dataset for code-switching in multi-turn con-

versation. In International Conference on Language Resources and Evaluation, 2021.

[91] Jian Luo, Jianzong Wang, Ning Cheng, Zhenpeng Zheng, and Jing Xiao. Adap-

tive activation network for low resource multilingual speech recognition. In 2022

International Joint Conference on Neural Networks (IJCNN), pages 1–7, 2022.

[92] Lin Luo, Gigi Luk, and Ellen Bialystok. Effect of language proficiency and executive

control on verbal fluency performance in bilinguals. Cognition, 114(1):29–41, 2010.

[93] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches

to attention-based neural machine translation. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1412–1421, 2015.

132

[94] Heather MacFarlane, Alexandra C Salem, Liu Chen, Meysam Asgari, and Eric Fom-

bonne. Combining voice and language features improves automated autism detec-

tion. Autism Research, 15(7):1288–1300, 2022.

[95] Francisco Mart́ınez-Sánchez, Garćıa Meilán JJ, Enrique Pérez, Juan Carro, and

José Maŕıa Arana. Expressive prosodic patterns in individuals with alzheimer’s

disease. Psicothema, 24(1):16–21, 2012.

[96] Francisco Mart́ınez-Sánchez, Juan JG Meilán, Juan Antonio Vera-Ferrandiz, Juan

Carro, Isabel M Pujante-Valverde, Olga Ivanova, and Nuria Carcavilla. Speech

rhythm alterations in spanish-speaking individuals with alzheimer’s disease. Aging,

Neuropsychology, and Cognition, 24(4):418–434, 2017.

[97] Pavagada S Mathuranath, Annamma George, Praseetha Cherian, Aley Alexander,

S. Gangadhara Sarma, and PS Sarma. Effects of age, education and gender on

verbal fluency. Journal of Clinical and Experimental Neuropsychology, 25:1057 –

1064, 2003.

[98] Reinhold MAYR, Ulrich; KLIEGL. Task-set switching and long-term memory re-

trieval. Journal of experimental psychology. Learning, memory, and cognition, 2000.

[99] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan

Sonderegger. Montreal Forced Aligner: Trainable Text-Speech Alignment Using

Kaldi. In Proc. Interspeech 2017, pages 498–502, 2017.

[100] Iain McCowan, Jean Carletta, Wessel Kraaij, Simone Ashby, Sebastien Bourban,

Mike Flynn, Maël Guillemot, Thomas Hain, Jaroslav Kadlec, Vasilis Karaiskos,

Melissa Kronenthal, Guillaume Lathoud, Mike Lincoln, Agnes Lisowska, Wilfried

Post, Dennis Reidsma, and Pierre D. Wellner. The ami meeting corpus. 2005.

[101] Karla K. McGregor and Rex R. Hadden. Brief report: “um” fillers distinguish

children with and without asd. Journal of Autism and Developmental Disorders,

50:1816–1821, 2018.

133

[102] Juan JG Meilán, Francisco Mart́ınez-Sánchez, Israel Mart́ınez-Nicolás, Thide E

Llorente, and Juan Carro. Changes in the rhythm of speech difference between

people with nondegenerative mild cognitive impairment and with preclinical demen-

tia. Behavioural neurology, 2020, 2020.

[103] Drahomı́r Michalko, Martin Marko, and Igor Riečanskỳ. Executive functioning mod-

erates the decline of retrieval fluency in time. Psychological Research, 87(2):397–409,

2023.

[104] Fred D Minifie. Introduction to communication sciences and disorders. Singular

Publishing Group, Incorporated, 1994.

[105] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Systematic evaluation of

convolution neural network advances on the imagenet. Computer vision and image

understanding, 161:11–19, 2017.

[106] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

[107] John Carl Morris, Christopher Ernesto, Kimberly Schafer, M Coats, S Leon, M Sano,

LJ Thal, and P Woodbury. Clinical dementia rating training and reliability in mul-

ticenter studies: the alzheimer’s disease cooperative study. Neurology, 48(6):1508–

1510, 1997.

[108] Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sundararajan, and Kedar

Dhamdhere. Did the model understand the question? In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1896–1906, 2018.

[109] Peter B Mueller. The aging voice. In Seminars in speech and language, volume 18,

pages 159–169. © 1997 by Thieme Medical Publishers, Inc., 1997.

[110] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on machine

learning (ICML-10), pages 807–814, 2010.

134

[111] Ziad S Nasreddine, Natalie A Phillips, Valérie Bédirian, Simon Charbonneau, Vic-

tor Whitehead, Isabelle Collin, Jeffrey L Cummings, and Howard Chertkow. The

montreal cognitive assessment, moca: a brief screening tool for mild cognitive im-

pairment. Journal of the American Geriatrics Society, 53(4):695–699, 2005.

[112] Ali Bou Nassif, Ismail Shahin, Imtinan B. Attili, Mohammad Azzeh, and Khaled F.

Shaalan. Speech recognition using deep neural networks: A systematic review. IEEE

Access, 7:19143–19165, 2019.

[113] Se Jin Oh, Jee Eun Sung, Su Jin Choi, and Jee Hyang Jeong. Clustering and

switching patterns in semantic fluency and their relationship to working memory

in mild cognitive impairment. Dementia and neurocognitive disorders, 18(2):47–61,

2019.

[114] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,

David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence

modeling. arXiv preprint arXiv:1904.01038, 2019.

[115] Asli Ozdas, Richard G Shiavi, Stephen E Silverman, Marilyn K Silverman, and

D Mitchell Wilkes. Investigation of vocal jitter and glottal flow spectrum as possible

cues for depression and near-term suicidal risk. Ieee transactions on Biomedical

engineering, 51(9):1530–1540, 2004.

[116] Serguei VS Pakhomov, Susan E Marino, Sarah Banks, and Charles Bernick. Us-

ing automatic speech recognition to assess spoken responses to cognitive tests of

semantic verbal fluency. Speech communication, 75:14–26, 2015.

[117] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-

rispeech: an asr corpus based on public domain audio books. In 2015 IEEE in-

ternational conference on acoustics, speech and signal processing (ICASSP), pages

5206–5210. IEEE, 2015.

[118] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

135

Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine

Learning research, 12:2825–2830, 2011.

[119] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,

Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,

et al. The kaldi speech recognition toolkit. In IEEE 2011 workshop on automatic

speech recognition and understanding, number EPFL-CONF-192584. IEEE Signal

Processing Society, 2011.

[120] Archana Prabu Kumar, Abirami Omprakash, Maheshkumar Kuppusamy, Maruthy

KN, Sathiyasekaran BWC, Vijayaraghavan PV, and Padmavathi Ramaswamy. How

does cognitive function measured by the reaction time and critical flicker fusion

frequency correlate with the academic performance of students? BMC medical

education, 20:1–12, 2020.

[121] Lawrence R Rabiner, Ronald W Schafer, et al. Introduction to digital speech pro-

cessing. Foundations and Trends® in Signal Processing, 1(1–2):1–194, 2007.

[122] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine Mcleavey, and

Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In An-

dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,

and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on

Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages

28492–28518. PMLR, 23–29 Jul 2023.

[123] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving

language understanding by generative pre-training. 2018.

[124] Jack Rae and Ali Razavi. Do transformers need deep long-range memory? In

Proceedings of the 58th Annual Meeting of the Association for Computational Lin-

guistics, Online, July 2020. Association for Computational Linguistics.

[125] Brian Roark, Margaret Mitchell, John-Paul Hosom, Kristy Hollingshead, and Jeffrey

136

Kaye. Spoken language derived measures for detecting mild cognitive impairment.

IEEE transactions on audio, speech, and language processing, 19(7):2081–2090, 2011.

[126] Jonathan D Rodgers, Kris Tjaden, Lynda Feenaughty, Bianca Weinstock-Guttman,

and Ralph HB Benedict. Influence of cognitive function on speech and articulation

rate in multiple sclerosis. Journal of the International Neuropsychological Society:

JINS, 19(2):173, 2013.

[127] Aurko Roy, Mohammad Taghi Saffar, David Grangier, and Ashish Vaswani. Efficient

content-based sparse attention with routing transformers, 2020.

[128] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[129] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between

capsules. arXiv e-prints, pages arXiv–1710, 2017.

[130] Lahiru Samarakoon and Khe Chai Sim. Factorized hidden layer adaptation for

deep neural network based acoustic modeling. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 24(12):2241–2250, 2016.

[131] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec:

Unsupervised pre-training for speech recognition. In Interspeech, 2019.

[132] Benjamin G Schultz, Venkata S Aditya Tarigoppula, Gustavo Noffs, Sandra Rojas,

Anneke van der Walt, David B Grayden, and Adam P Vogel. Automatic speech

recognition in neurodegenerative disease. International Journal of Speech Technol-

ogy, pages 1–9, 2021.

[133] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing, 45(11):2673–2681, 1997.

[134] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription using

context-dependent deep neural networks. In International Conference on Machine

Learning, 2012.

137

[135] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of

rare words with subword units. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–

1725, 2016.

[136] Kevin J Shih, Rafael Valle, Rohan Badlani, Adrian Lancucki, Wei Ping, and Bryan

Catanzaro. Rad-tts: Parallel flow-based tts with robust alignment learning and

diverse synthesis. In ICML Workshop on Invertible Neural Networks, Normalizing

Flows, and Explicit Likelihood Models, 2021.

[137] Prashanth Gurunath Shivakumar and Panayiotis Georgiou. Transfer learning from

adult to children for speech recognition: Evaluation. Analysis and Recommendations,

2018.

[138] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important

features through propagating activation differences. In International Conference on

Machine Learning, pages 3145–3153. PMLR, 2017.

[139] Diana Van Lancker Sidtis, Jihee Choi, Amy G. Alken, and John J. Sidtis. Formu-

laic language in parkinson’s disease and alzheimer’s disease: Complementary effects

of subcortical and cortical dysfunction. Journal of speech, language, and hearing

research : JSLHR, 58 5:1493–507, 2015.

[140] Khe Chai Sim, Arun Narayanan, Ananya Misra, Anshuman Tripathi, Golan Pundak,

Tara N Sainath, Parisa Haghani, Bo Li, and Michiel Bacchiani. Domain adaptation

using factorized hidden layer for robust automatic speech recognition. In Interspeech,

pages 892–896, 2018.

[141] Alex Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statis-

tics and Computing, 14:199–222, 2004.

[142] Morgan Sonderegger and Joseph Keshet. Automatic measurement of voice onset time

using discriminative structured prediction. The Journal of the Acoustical Society of

America, 132(6):3965–3979, 2012.

138

[143] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting

unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE

international conference on computer vision, pages 843–852, 2017.

[144] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In International Conference on Machine Learning, pages 3319–3328.

PMLR, 2017.

[145] Jee Eun Sung, Sujin Choi, Bora Eom, Jae Keun Yoo, and Jee Hyang Jeong. Syntactic

complexity as a linguistic marker to differentiate mild cognitive impairment from

normal aging. Journal of Speech, Language, and Hearing Research, 63(5):1416–1429,

2020.

[146] Vanessa Taler, Brendan T Johns, and Michael N Jones. A large-scale semantic analy-

sis of verbal fluency across the aging spectrum: Data from the canadian longitudinal

study on aging. The Journals of Gerontology: Series B, 2019.

[147] Vanessa Taler and Natalie A Phillips. Language performance in alzheimer’s dis-

ease and mild cognitive impairment: a comparative review. Journal of clinical and

experimental neuropsychology, 30(5):501–556, 2008.

[148] Fengyi Tang, Jun Chen, Hiroko H Dodge, and Jiayu Zhou. The joint effects of

acoustic and linguistic markers for early identification of mild cognitive impairment.

Frontiers in digital health, 3, 2021.

[149] R. Tong, L. Wang, and B. Ma. Transfer learning for children’s speech recognition. In

2017 International Conference on Asian Language Processing (IALP), pages 36–39,

2017.

[150] László Tóth, Ildikó Hoffmann, Gábor Gosztolya, Veronika Vincze, Gréta Szatlóczki,

Zoltán Bánréti, Magdolna Pákáski, and János Kálmán. A speech recognition-based

solution for the automatic detection of mild cognitive impairment from spontaneous

speech. Current Alzheimer Research, 15(2):130–138, 2018.

139

[151] Angela K Troyer, Morris Moscovitch, and Gordon Winocur. Clustering and switch-

ing as two components of verbal fluency: evidence from younger and older healthy

adults. Neuropsychology, 11(1):138, 1997.

[152] Angela K Troyer, Morris Moscovitch, Gordon Winocur, Larry Leach, and Mor-

ris Freedman. Clustering and switching on verbal fluency tests in alzheimer’s

and parkinson’s disease. Journal of the International Neuropsychological Society,

4(2):137–143, 1998.

[153] Jane Upton. Mini-Mental State Examination, pages 1248–1249. Springer New York,

New York, NY, 2013.

[154] Annegreet Van Opbroek, M Arfan Ikram, Meike W Vernooij, and Marleen De Brui-

jne. Transfer learning improves supervised image segmentation across imaging pro-

tocols. IEEE transactions on medical imaging, 34(5):1018–1030, 2014.

[155] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 30. Curran

Associates, Inc., 2017.

[156] Sophia Vinogradov, Jennifer Kirkland, John H Poole, Michael Drexler, Beth A Ober,

and Gregory K Shenaut. Both processing speed and semantic memory organization

predict verbal fluency in schizophrenia. Schizophrenia Research, 59(2):269–275, 2003.

[157] Ravichander Vipperla, Steve Renals, and Joe Frankel. Ageing voices: The effect

of changes in voice parameters on asr performance. EURASIP Journal on Audio,

Speech, and Music Processing, 2010:1–10, 2010.

[158] Changhan Wang, Kyunghyun Cho, and Jiatao Gu. Neural machine translation with

byte-level subwords. In Proceedings of the AAAI conference on artificial intelligence,

volume 34, pages 9154–9160, 2020.

140

[159] Tianzi Wang, Jiajun Deng, Mengzhe Geng, Zi Ye, Shoukang Hu, Yi Wang, Mingyu

Cui, Zengrui Jin, Xunying Liu, and Helen M. Meng. Conformer based elderly speech

recognition system for alzheimer’s disease detection. In Interspeech, 2022.

[160] Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-

search optimization. In Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pages 1296–1306, 2016.

[161] David L Woods, John M Wyma, Timothy J Herron, and E William Yund. Comput-

erized analysis of verbal fluency: Normative data and the effects of repeated testing,

simulated malingering, and traumatic brain injury. PLOS ONE, 11(12):e0166439,

2016.

[162] Tet Fei Yap, Julien Epps, Eric HC Choi, and Eliathamby Ambikairajah. Glottal

features for speech-based cognitive load classification. In 2010 IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 5234–5237. IEEE,

2010.

[163] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[164] Kexin Yu, Katherine Wild, N Maritza Dowling, Jeffrey A Kaye, Lisa C Silbert,

and Hiroko H Dodge. Emotional characteristics of socially isolated older adults

with MCI using tablet administered NIH toolbox: I-CONECT study. Alzheimers

Dement. (Amst.), 14(1):e12372, nov 2022.

[165] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvo-

lutional networks. In 2010 IEEE Computer Society Conference on computer vision

and pattern recognition, pages 2528–2535. IEEE, 2010.

[166] Yu Zhang, Daniel S. Park, Wei Han, James Qin, Anmol Gulati, Joel Shor, Aren

Jansen, Yuanzhong Xu, Yanping Huang, Shibo Wang, Zongwei Zhou, Bo Li, Min Ma,

141

William Chan, Jiahui Yu, Yongqiang Wang, Liangliang Cao, Khe Chai Sim, Bhu-

vana Ramabhadran, Tara N. Sainath, Françoise Beaufays, Zhifeng Chen, Quoc V.

Le, Chung-Cheng Chiu, Ruoming Pang, and Yonghui Wu. Bigssl: Exploring the

frontier of large-scale semi-supervised learning for automatic speech recognition.

IEEE Journal of Selected Topics in Signal Processing, 16(6):1519–1532, 2022.

[167] Zi-Hua Zhang, Sanyuan Chen, Long Zhou, Yu Wu, Shuo Ren, Shujie Liu, Zhuoyuan

Yao, Xun Gong, Lirong Dai, Jinyu Li, and Furu Wei. Speechlm: Enhanced speech

pre-training with unpaired textual data. ArXiv, abs/2209.15329, 2022.

[168] Zi-Hua Zhang, Long Zhou, Junyi Ao, Shujie Liu, Lirong Dai, Jinyu Li, and Furu

Wei. Speechut: Bridging speech and text with hidden-unit for encoder-decoder based

speech-text pre-training. ArXiv, abs/2210.03730, 2022.

[169] Ziqiang Zhang and Junyi Ao. The yitrans speech translation system for iwslt 2022

offline shared task. ArXiv, abs/2206.05777, 2022.

[170] Li Zhou, Suzanne V Blackley, Leigh Kowalski, Raymond Doan, Warren W Acker,

Adam B Landman, Evgeni Kontrient, David Mack, Marie Meteer, David W Bates,

et al. Analysis of errors in dictated clinical documents assisted by speech recogni-

tion software and professional transcriptionists. JAMA network open, 1(3):e180530–

e180530, 2018.

