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Abstract 

Gene transcription is fundamental in establishing and maintaining cell identity 

and function. All normal cells are encoded with the same DNA, so transcription is 

essential for regulating many biological processes, including blood cell formation. 

Dysregulation of the complex transcriptional mechanisms governing blood cell formation 

can result in the development of hematologic malignancies, including acute myeloid 

leukemia (AML). AML is an aggressive blood cancer characterized by the rapid 

outgrowth of immature blood cells. Despite advances in treatment, AML remains an 

often fatal disease with a 5-year survival rate of less than 30%. This dissertation aims to 

uncover mechanisms of transcriptional dysregulation in AML, nominating novel 

molecular targets that can be used to design more effective treatment strategies. 

One primary goal of this dissertation was to deepen responses to targeted 

disruption of a common mutational driver of AML, internal tandem duplication (ITD) of 

Fms-like tyrosine kinase 3 (FLT3), by simultaneously disrupting an epigenetic regulator 

associated with leukemogenesis. Clinical evaluation of FLT3 inhibitors has demonstrated 

higher overall survival and remission rates in patients with refractory FLT3-ITD AML 

compared to salvage chemotherapy. However, FLT3 inhibitors are rarely curative and 

only induce a transient decrease in AML cells. Prior work has shown that lysine specific 

methylase 1 (LSD1) inhibitors enhance kinase inhibitor activity in AML. In our studies, 

we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in 

FLT3-ITD AML. To understand the mechanism of the drug combination, we investigated 

its impact on genome-wide histone modifications using CUT&Tag. Since no 

computational method had been developed for this application, we created GoPeaks. 

We found that drug combination disrupted histone modifications at regions associated 
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with the MYC proto-oncoprotein. To nominate the transcriptional regulators of MYC 

expression in AML, we developed Priori, a computational method that uses literature-

supported gene regulatory networks to infer transcription factor activity. Using the 

findings from Priori as well as genome-wide profiling of accessible chromatin and 

transcription factor binding, we found that the drug combination disrupts STAT5, LSD1, 

and GFI1 binding at the MYC blood super-enhancer. We validated these findings in 72 

primary AML samples, with nearly every sample demonstrating synergistic responses to 

the drug combination. Collectively, these studies reveal how an understanding of 

transcriptional dysregulation in AML can inform novel therapeutic strategies. 

The second goal of this dissertation is to understand the transcriptional 

adaptation to venetoclax, a small molecule inhibitor that disrupts the anti-apoptotic 

activity of BCL2. Venetoclax, in combination with azacitidine, is the standard of care for 

patients unfit for intensive chemotherapy. While this strategy results in a remission rate 

of nearly 70%, the majority of patients ultimately relapse. Frequently, the relapsed 

disease is composed of differentiated, monocyte-like AML cells. Given the importance of 

BCL2-inhibitor-based therapeutic strategies in AML, we investigated the differentiation 

state dynamics of AML cells following BCL2 inhibition. In our studies, we found that 

BCL2 inhibition promotes the production of differentiated leukemic cells. Single-cell 

chromatin accessibility sequencing revealed that short-term BCL2 inhibition primes 

immature AML cells for myeloid differentiation. Long-term BCL2 inhibition in a PDX 

model of FLT3-ITD/NPM1-mutant AML resulted in a depletion of HSC-like AML cells and 

outgrowth of progenitor-like cells. These findings support the role of differentiation state 

plasticity in BLC2 inhibitor resistance. 
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 Chapter 1: Introduction 

1.1  Transcriptional control of genes 

Gene transcription, the process of creating an RNA copy of a gene’s DNA 

sequence, is a dynamic regulatory mechanism within the cell. Although proteins execute 

most cellular molecular functions, the blueprints of proteins are encoded in genes. As a 

result, transcription plays a vital upstream role in regulating protein expression. 

Understanding transcription illuminates fundamental mechanisms governing cellular 

behavior and function. 

DNA is stored in the nucleus as chromatin, a complex of DNA tightly wound 

around histone proteins (Figure 1.1). Compact DNA-histone complexes limit the access 

of transcriptional machinery to DNA and are associated with low gene transcription1. 

Several mechanisms, including post-translational modification of histone proteins, loosen 

these DNA-histone complexes and facilitate binding of transcriptional regulators, 

including RNA Polymerases and transcription factors. These regulators modulate gene 

expression at regions of accessible DNA by binding to gene regulatory elements like 

promoters and enhancers. The intricate interplay between chromatin structure and 

chromatin binding proteins regulates cellular gene expression patterns. 

1.2  Deciphering transcriptional regulation with 
next-generation sequencing  

Recent next-generation sequencing advances have enabled the high-throughput 

investigation of transcriptional regulatory mechanisms. These techniques have been 
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developed for multiple modalities, allowing for an understanding of epigenetic regulation 

at the level of chromatin but also its downstream effects on gene expression. 

Sequencing methods, such as assay for transposase-accessible chromatin with 

sequencing (ATAC-seq), have been developed to identify regions of open chromatin that 

are accessible for transcription. Other techniques, like chromatin immunoprecipitation 

with sequencing (ChIP-seq), enable genome-wide profiling of chromatin binding proteins 

and chemical modifications of histone proteins. The downstream effects of chromatin 

regulation can be interrogated by measuring the abundance of RNA transcripts using 

RNA sequencing (RNA-seq). In this sub-section, I will review next-generation 

sequencing technologies to profile transcriptional regulation and computational methods 

to analyze them. 

 

Figure 1.1: The structure of genes regulates its expression. 
This figure was created with BioRender.com. 
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1.2.1  Profiling genome-wide chromatin accessibility 

Sequencing techniques such as ATAC-seq enable the high-throughput 

characterization of accessible chromatin2,3. By employing a hyperactive Tn5 

transposase, ATAC-seq selectively cleaves open regions of DNA and adds 

oligonucleotide adaptors for subsequent sequencing4. This method provides researchers 

with valuable insights into the dynamic interplay between open and closed chromatin 

regions. 

Conventional ATAC-seq characterizes chromatin accessibility of pooled cell 

populations. While these “bulk” sequencing techniques enable a high-throughput 

understanding of cellular chromatin accessibility profiles, many tissues are highly 

heterogeneous. Moreover, without pre-sequencing enrichment techniques, it is 

exceedingly difficult to decipher the chromatin accessibility profiles of rare populations. 

Pioneering work by Eberwine et al. and Isocove et al. has enabled the sequencing of 

many molecular modalities at a single-cell resolution, including chromatin accessibility 

(scATAC-seq)5,6. The most popular single-cell technology provider, 10x Genomics, uses 

microfluidic partitioning and encapsulation to capture single cells and prepare barcoded, 

next-generation sequencing cDNA libraries. These advancements allow for a deeper 

understanding of rare cellular populations and provide a more nuanced investigation of 

chromatin dynamics at the individual cell level. 

While 10x Genomics has revolutionized single-cell genomics with its innovative 

technology, there are key disadvantages associated with its platforms. The reagents and 

equipment required for 10x Genomics experiments are expensive, often costing 

thousands of dollars per reaction. Moreover, the 10x Genomics and other single-cell 

technologies often suffer from high levels of read dropout and data sparsity7. In our lab, 

we have deployed an adapter-switching strategy, symmetrical strand sci assay for 
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transposase-accessible chromatin with sequencing (s3ATAC-seq), capable of producing 

six- to 13-fold improvement in usable reads per cell8. s3ATAC-seq leverages sequencing 

adaptors to uniquely identify reads from individual cells. Unlike other sci assays, 

however, the s3 transposome complex contains a uracil base deposited before the 

sequencing barcode. Using a uracil-intolerant polymerase prevents extension into the 

barcode, ensuring that forward and reverse primer sequences are incorporated at each 

end of the molecule8. s3ATAC-seq is a scATAC-seq technology that allows for high-

fidelity, single-cell, genome-wide profiling of chromatin accessibility at a reasonable cost. 

1.2.2  Identifying genomic regions bound by chromatin-
interacting proteins 

Modification of histone proteins is a key regulator of gene transcription (Figure 

1.1)9. Histones package eukaryotic DNA into chromatin and control DNA conformation 

and organization10. Post-translational chemical modification histone proteins alters the 

chromatin structure, enabling the recruitment of nuclear proteins to genomic 

features11,12. For example, trimethylation of histone three lysine 4 (H3K4me3) facilitates 

the binding of positive transcriptional regulators to transcription start sites13–15. Similarly, 

H3K27ac neutralizes the positive charge of the histone tail and loosens the interaction 

between nucleosomes and DNA, allowing access of transcription factors to DNA 

regulatory sequences16,17.  

ChIP-seq, which couples antibodies that recognize DNA-associated proteins with 

next-generation sequencing technology, has enabled genome-wide profiling of histone 

modifications and transcription factors13,18–20. Although widely used for epigenetic 

profiling, ChIP-seq is prone to high background, artificial enrichment of highly expressed 

genes, and often requires a prohibitively large number of cells per experiment21,22. 
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Enzyme-tethering strategies, including Cleavage Under Targets and Tagmentation 

(CUT&Tag) and Cleavage Under Targets and Release Using Nuclease (CUT&RUN), 

have been developed to overcome these issues and perform epigenetic profiling with a 

low number of cells and minimal background23–26.  

Epigenetic studies require mapping multiple histone modifications to 

comprehensively understand transcriptional regulation. Detecting regions bound to 

H3K4me1 or H3K4me3 aids with the identification of promoters and enhancers, 

respectively, throughout the genome13,27–30. The co-localization of H3K4me1 and 

H3K4me3 with H3K27ac is characteristic of activated genomic features31,32. Histone 

modifications can also be associated with heterochromatic regions of the genome. 

Localization of trimethylation of histone three lysine 27 (H3K27me3) is associated with 

silenced gene bodies and promoters13,33–36. Regions of modified histones in ChIP-seq 

and CUT&Tag are identified as stacks of aligned reads; such regions are called peaks. 

The peak profiles of common histone modifications are highly variable, so algorithms 

that identify histone modification peaks need to robustly detect a range of peak profiles. 

While H3K4me3 peaks tend to be sharply localized, H3K4me1 and H3K27me3 peaks 

span a wider domain34–38. Moreover, H3K27ac can mark large domains such as super-

enhancers and smaller, discrete regions such as promoters, thus having both wide and 

narrow characteristics29,36–40. To extract meaning for epigenetic studies reliant on histone 

modification CUT&Tag datasets, peak calling algorithms need to be flexible to identify 

narrow and broad peak characteristics.  

Peak calling algorithms have been developed to identify genome-wide 

enrichment of aligned reads and distinguish peaks of modified histones from noise and 

artifacts. Model-based Analysis of ChIP-seq version 2 (MACS2), a widely-used peak 

calling algorithm for ChIP-seq, and other ChIP-seq peak calling methods are designed to 

address the high rate of background in ChIP-seq. As a result, they are vulnerable to 
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mistaking background signal as peaks particularly when the background is low41–43. 

Sparse Enrichment Analysis (SEACR) has been developed to perform peak calling from 

CUT&RUN data that, like CUT&Tag data, is characterized by low background. However, 

no peak calling algorithms have been designed to address the low background and peak 

profile variability characteristic of histone modification CUT&Tag data43. These problems 

form the basis of our studies, detailed in Chapter 2. 

1.2.3  Predicting transcription factor activity from gene 
expression data 

The coordinated expression and activity of transcription factors are fundamental 

mechanisms in establishing and maintaining cell identity and function (Figure 1.2A). 

Transcription factors are epigenetic regulatory proteins that bind to cis-regulatory DNA 

sequences, including promoters and enhancers, and modulate gene transcription44,45. 

Dysregulation of these normal transcription factor functions frequently contributes to the 

development of a pathogenic cell phenotype (Figure 1.2B)46,47. Abnormal transcription 

factor activity can result from mutations in the putative DNA binding sequences or the 

transcription factors themselves. Recent studies have highlighted the importance of 

aberrant expression of pathogenetic transcription factors as drivers of disease47. MYC, 

which is essential for cellular growth and proliferation, is the most frequently amplified 

oncogene. Elevated levels of MYC have been shown to promote tumorigenesis in 

various tissue types47. In tumor cells expressing high levels of MYC, the transcription 

factor accumulates in cis-regulatory regions of genes associated with cellular 

proliferation and growth, resulting in transcriptional amplification of MYC’s gene 

regulatory network and, subsequently, abnormal cellular proliferation48,49. Therefore, 
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detecting abnormal transcription factor activity is valuable for better understanding the 

mechanisms underlying disease pathogenesis. 

Gene expression profiling, including RNA sequencing (RNA-seq), is commonly 

used to monitor dynamic changes in transcription factors and their gene regulatory 

networks. Initial studies to infer transcription factor activity only used transcription factor 

gene expression as a proxy for activity50–52. However, this approach has several 

shortcomings. Gene expression is only an indirect measurement of protein activity due 

to the complex mechanisms controlling protein synthesis and degradation53–55. Feedback 

loops may alter the expression of transcription factors in response to their regulatory 

activity47,56–58. Therefore, reliable predictions of transcription factor activity cannot be 

limited to evaluating transcription factor expression alone. 

An alternative approach to inferring transcription factor activity is to assess the 

expression of their downstream target genes50–52. This approach has two major benefits. 

First, evaluating hundreds or thousands of downstream targets instead of a single 

transcription factor likely improves prediction robustness. While some of these targets 

 

Figure 1.2: Transcription factors are often central nodes of disease 
This figure was made using Servier Medical Art. 
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may be context-specific, analyzing them in aggregate likely improves the prediction 

generalizability across many contexts. Second, as target gene expression is 

downstream of transcription factor control, these signatures are expected to reflect the 

actual transcriptional impact more accurately. Therefore, accounting for the downstream 

impact of transcription factors on its gene regulatory networks is essential for activity 

inference.  

Multiple methods have been developed to quantify transcription factor activity 

from gene expression data. These approaches can be grouped based on how they 

select gene expression features (Figure 1.3). Methods like Univariate Linear Model 

(ULM) and Multivariate Linear Model (MLM) use every gene in a dataset, nominating 

transcription factors as a covariate that best estimates the expression of all other 

genes59. However, these methods develop activity signatures using genes that may not 

have a genuine biological relationship to the transcription factor of interest. Gene set 

approaches like Over Representation Analysis (ORA), Fast Gene Set Enrichment 

(FGSEA), Gene Set Variation Analysis (GVSA), and AUCell infer activity using sets of 

 

Figure 1.3: Transcription factor activity methods can be grouped based on 
how they select features. 
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published transcription factor target genes or target genes curated by experts60–63.  While 

gene set methodologies are simple and popular, they are susceptible to the quality and 

comparability of gene set signatures64. Network inference approaches, including 

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe), infer gene 

regulatory networks based on the covariance of transcription factors and their putative 

targets65,66. However, this process is not entirely unsupervised, as ARACNe requires a 

user-defined list of transcription factors to infer gene regulatory networks65,66. The same 

group that developed ARACNe also created Virtual Inference of Protein-activity by 

Enriched Regulon analysis (VIPER) to infer transcription factor activity from ARACNe 

gene expression signatures67. The challenge with these approaches is deconvoluting 

combinatorial regulation, where multiple transcription factors control the expression of a 

target gene. While some of these methods, including VIPER, have an option to correct 

this, it remains challenging to infer transcriptional networks as many possible solutions 

can explain the underlying data50,68. While these methods deploy various techniques to 

generate activity scores using the expression of downstream target genes, most do not 

select their target gene features from literature-supported transcriptional relationships.  

Recent studies have highlighted that grounding predictions using transcription 

factor activity methods remain challenging68–72. A rigorous evaluation of widely used 

transcription factor algorithms demonstrated that most methods do not robustly detect 

perturbed transcription factors63. Despite this, there are precision medicine clinical 

studies using inferred transcription activity from bulk RNA-seq as a marker to guide 

clinical decisions. While there is an increasing number of single-cell and spatial -omic 

modalities available to clinical researchers, these studies and many larger cohorts and 

clinical trials most commonly use markers identified from bulk sequencing of RNA or 

DNA. Therefore, it is critical to develop methods that can robustly detect aberrant 
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transcription factor activity from primary patient bulk RNA-seq data. These questions 

informed our studies detailed in Chapter 3. 

1.3  Transcriptional control of hematopoiesis  

Next-generation sequencing technologies have helped investigate transcriptional 

mechanisms that govern biological processes, including blood cell formation. 

Hematopoiesis, the process of blood cell formation, must balance enormous production 

needs (the average person produces more than 500 billion blood cells daily) while 

simultaneously regulating the equilibrium of blood cell types in circulation73. Most 

hematopoiesis occurs in the bone marrow and is derived from a limited number of 

hematopoietic stem cells (HSCs). HSCs are multipotent progenitor cells that are capable 

of extensive self-renewal. However, HSCs also divide asymmetrically to produce 

unipotent progenitor cells, which can create cells committed to one of two hematopoietic 

lineages: the lymphoid and myeloid lineages. Lymphoid cells, including B, T, and natural 

killer cells, are involved in innate and adaptive immunity. While some myeloid cells are 

also involved in immunity, including granulocytes, monocytes, and dendritic cells, 

myeloid cells also have functions relating to tissue oxygenation (erythrocytes) and blood 

coagulation (thrombocytes). Hematopoiesis is a critical function of the body that 

maintains the production and differentiation of lymphoid and myeloid cells. 

The coordinated action of transcription factors orchestrates hematopoiesis. 

Previous studies have identified transcription factors that regulate HSC formation and 

function, such as RUNX1 and GFI1, or myeloid lineage determination, including PU.1 

and GATA1 (Figure 1.4)74. Lineage-determining factors promote the differentiation of 

their lineages and counteract the actions of other factors. For instance, GATA1 and PU.1 

drive erythroid/megakaryocytic and myeloid differentiation, respectively75,76. Moreover, 
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these proteins physically interact and inhibit each other's functions. Downregulating 

GATA1 expression biases hematopoietic progenitors toward a myeloid fate, whereas 

inhibiting PU.1 expression elicits the opposite effect. Myeloid progenitors can even be 

programmed by forced expression of lineage-determining factors. Introducing GATA1 

into granulocyte-monocyte progenitors (GMPs) redirects their commitment toward 

megakaryocytic/erythroid progenitors77. Transcription factors are important for 

modulating gene expression to ensure the proper balance of blood cell types and 

functions.  

 

Figure 1.4: Interplay of transcription factors that regulate HSC formation or 
function or regulate myeloid lineage determination.  
This figure was adapted from A. Rad and M. Häggström and Orkin and Zon Cell 

(2008)74.  
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1.4  AML: a disease of dysregulated myeloid 
hematopoiesis 

Dysregulation of normal myeloid hematopoiesis is associated with a continuum of 

myeloid malignancies. Although genetic aberrations, particularly cytogenetic 

abnormalities and oncogene mutations, play an integral role in the development of 

myeloid malignancies, transcriptional processes regulating hematopoiesis are also key 

drivers of their pathophysiology78. Alterations in DNA methylation, histone acetylation, 

histone methylation, and transcription factor activity, often occurring in HSCs, can 

increase the proliferation and/or impair the differentiation of myeloid cells79,80. One such 

condition, acute myeloid leukemia (AML), is characterized by the uncontrolled 

proliferation of differentiation-arrested myeloid cells81. These malignant blood cells, 

termed blasts, rapidly accumulate in the bone marrow and halt the production of normal 

blood cells. The disease process of AML is often rapid, aggressive, and deadly, with only 

one in three patients expected to survive five years after diagnosis82. AML is an often 

fatal myeloid malignancy that is linked to the disruption of normal myeloid 

hematopoiesis. 

While AML is thought to arise from differentiation-arrested hematopoietic stem 

and progenitor cells, the bulk disease does not always resemble these populations. In 

the 1970s, French, American, and British leukemia experts grouped AML into subtypes 

based on their cellular morphology (Table 1.1)83. According to the French, American, 

and British (FAB) classification system, AML blasts with morphological characteristics 

similar to hematopoietic stem and progenitor cells are assigned scores of M0 or M1. In 

contrast, AML blasts resembling differentiated myeloid cells, like monocytes, are 

assigned M4, M4 eos, or M5 scores. The advent of single-cell RNA sequencing has 

more deeply characterized the differentiation state heterogeneity reflected in AML blast 
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morphology. A seminal study led by Dr. van Galen revealed substantial inter- and intra-

patient heterogeneity in the AML blast differentiation state84. They identified that AML 

blasts have transcriptional characteristics of hematopoietic stem and progenitor cells and 

differentiated myeloid cells, including monocytes. Although AML likely arises from 

malignant stem and progenitor cells, the differentiation state of the bulk disease is highly 

heterogeneous.  

Table 1.1: The FAB classification system groups AMLs on their 
morphological resemblance to normal blood cells. 

FAB subtype Name 

M0 Undifferentiated acute myeloblastic leukemia 

M1 Acute myeloblastic leukemia with minimal maturation 

M2 Acute myeloblastic leukemia with maturation 

M3 Acute promyelocytic leukemia 

M4 Acute myelomonocytic leukemia 

M4 eos Acute myelomonocytic leukemia with eosinophilia 

M5 Acute monocytic leukemia 

M6 Acute erythroid leukemia 

M7 Acute megakaryoblastic leukemia 

1.5  Targeting the genetic drivers of AML   

Controlling and, when possible, eradicating AML has primarily relied on 

chemotherapeutic regimens. Anthracyclines and cytarabine, small molecules that poison 

Topoisomerase II and intercalate with DNA, remain the backbone of intensive 

chemotherapy85. The 2022 European LeukemiaNet (ELN) guidelines recommend that 

newly diagnosed patients undergo a cycle of “7+3” induction chemotherapy. This 
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regimen consists of IV daunorubicin, idarubicin, or mitoxantrone for days 1-3 and 

continuous IV cytarabine for days 1-785. After complete response (CR) is attained, the 

guidelines recommend consolidating patients with 3-4 cycles of intermediate-dose 

cytarabine86. While these regimens have demonstrated improved disease management, 

they are often associated with substantial adverse events. In a survey of 1,182 patients 

with AML, 89% of respondents reported that they had experienced short-term 

(nausea/vomiting, diarrhea, hair loss, mouth sores, infection, rash) and long-term (organ 

dysfunction, chemobrain, fatigue, neuropathy) effects while undergoing chemotherapy87. 

The highest likelihood of achieving long-lasting remission in AML is an allogeneic stem 

cell or bone marrow transplant, which produces cure rates of up to 60% in patients with 

intermediate-risk AML88. However, the intensive chemoradiotherapy conditioning and 

subsequent immunosuppressive treatment required for allogeneic transplant limits its 

use85,89. There is a severe unmet need for treatments that improve survival while limiting 

substantial toxicities in AML. 

Treatment regimens may be tailored to the genetic profile of the bulk disease. 

Advances in DNA sequencing technologies have illuminated recurrent mutations 

associated with AML pathogenesis89–91. These mutations range from amplifications, 

deletions, rearrangements, and point mutations in proteins associated with various 

functional classes (Table 1.2). Notably, many of these genetic aberrations carry 

prognostic implications, independently or in cooperation with co-occurring mutations. For 

example, the 2022 ELN guidelines classified NPM1-mutant AML as favorable risk. 

However, the presence of internal tandem duplications (ITD) in Fms-like tyrosine kinase 

3 (FLT3) with mutant NPM1 is classified as intermediate risk85. Efforts to investigate 

these genetic drivers deepen our understanding of AML and pave the way for targeted 

therapeutic strategies.  
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Table 1.2: Common AML mutations organized by functional class 
Functional class Specific example mutations 

Signaling and kinase 

pathway 
FLT3, KIT, KRAS, NF1, NRAS, and PTPN11 

Nucleophosmin NPM1 

Transcription factors CEBPA, GATA2, and RUNX1 

Tumor suppressors TP53 

Spliceosome complex SF3B1, SRSF2, U2AF1, and ZRSR2 

Cohesin complex RAD21, SMC1A, SMC3, and STAG1/2 

Epigenetic modifiers ASXL1, DNMT3A, EZH2, IDH1/2, MLL/KMT2A, and TET2 

 

Mutations in FLT3 are the most common in AML, occurring in approximately 30% 

of all cases92,93. FLT3 is a transmembrane receptor tyrosine kinase expressed by 

hematopoietic stem and progenitor cells. FLT3 receptor binding to its extracellular ligand 

induces receptor dimerization and autophosphorylation, activating downstream signaling 

pathways associated with cell survival, differentiation, and proliferation (Figure 1.5)94. 

Mutations in the FLT3 receptor commonly occur in one of two locations: near the 

activation loop or in the tyrosine kinase domain (TKD). Mutations near the activation 

loop, such as FLT3-ITD, allow the receptor to activate downstream FLT3 signaling 

without receptor dimerization. TKD mutations, on the other hand, facilitate the 

dimerization and autophosphorylation of FLT3 receptors bound to FLT3 ligands. Both 

sets of mutations result in constitutive activation of the FLT3 signaling pathway, resulting 

in abnormal proliferation and differentiation92. Mutations in common hematopoietic 

signaling pathways, including FLT3, are genetic drivers of AML.  

Several small molecule inhibitors have been developed to target mutant FLT3, 

two of which are FDA-approved for AML92,95. FLT3 inhibitors disrupt mutant FLT3 activity 
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in two ways92 (Figure 1.6). Type II FLT3 inhibitors bind the FLT3 receptor in the inactive 

conformation to a region adjacent to the ATP-binding domain. Quizartinib, a Type II 

FLT3 inhibitor, was highly active in phase 2 and 3 trials96,97. In the randomized, double-

blind, phase 3 study QuANTUM-First, quizartinib was evaluated with standard cytarabine 

and anthracycline induction and as maintenance monotherapy for treating adult patients 

with newly diagnosed FLT3-ITD AML. Treatment with quizartinib resulted in CR rates of 

55% and significantly improved overall survival (OS) compared to the placebo arm98. 

Type I FLT3 inhibitors, on the other hand, bind the FLT3 receptor in the active 

conformation, either near the activation loop or the ATP-binding pocket. As a result, 

Type I inhibitors such as gilteritinib are active against FLT3-ITD and -TKD mutations. 

The randomized, phase 3 clinical trial ADMIRAL showed that gilteritinib monotherapy in 

patients with relapsed/refractory FLT3-ITD AML results in a CR rate of 34% and a 

significantly increased OS as compared to salvage chemotherapy99. Collectively, these 

studies show that therapeutic targeting of FLT3 improves survival in patients with FLT3-

mutant AML.  

 

Figure 1.5: FLT3 dimerization results in the activation of downstream 
signaling pathways. 
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While FLT3 inhibitors have demonstrated substantial clinical benefits, responses 

are short-lived. For example, findings from the ADMIRAL phase 3 clinical trial showed 

that gilteritinib monotherapy only increases OS by 3.7 months99. There have been many 

proposed inherent and acquired mechanisms attributed to FLT3 inhibitor resistance92. 

The persistence of wildtype FLT3 ligand, which is relatively resistant to FLT3 inhibition, 

activates downstream signaling and provides survival signals to leukemic blasts100,101. 

Other inherent factors, including the bone microenvironment and insufficient drug 

concentrations in the plasma, are also associated with FLT3 inhibitor resistance102. 

Leukemic blasts may also confer drug resistance by secondary resistance mechanisms. 

Research has identified various FLT3 receptor mutations that arise in the presence of 

and confer resistance to FLT3 inhibitor treatment103. Moreover, leukemic blasts may 

evade FLT3 inhibition by activating parallel signaling pathway mutations, including 

PI3K/AKT or RAS/MEK/MAPK pathways104. While FLT3 inhibitors are effective, there is 

an unmet need to improve their effectiveness in FLT3-mutant AML.  

 

Figure 1.6: FLT3 inhibitors are activate against ITD and TKD mutations. 
This figure was adapted from Daver et al. Leukemia (2019)92. 
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1.6  Transcriptional control of MYC, a downstream 
mediator of aberrant FLT3 signaling 

A proposed strategy to deepen responses to FLT3 inhibitors is to target 

downstream mediators of mutant FLT3. Aberrant FLT3-ITD signaling constitutively 

activates regulators of cellular proliferation, including the MYC proto-oncoprotein105–107. 

MYC coordinates gene expression by recruiting transcriptional regulatory proteins 

including histone deacetylates to enhancer box sequences and by stimulating the 

release of RNA polymerase II (RNA Pol II) from its paused state108. Through these 

actions, MYC directly and indirectly regulates the expression of thousands of genes 

involved in a vast range of biological events, including proliferation, differentiation, 

survival, programmed cell death, and immune regulation109,110. However, MYC is 

activated in most cancers, and its overexpression has been causally linked to 

tumorigenesis111–113. In the context of FLT3-ITD AML, previous work has revealed an 

enrichment of MYC-related genes in FLT3-ITD AML cells as compared to FLT3-WT 

AML, indicating that aberrant FLT3 signaling activates MYC105.  Moreover, it has been 

shown that downregulation of MYC activity is required for FLT3 inhibitor efficacy, and 

reactivation of MYC-controlled oncogenic networks promotes FLT3 inhibitor 

resistance114–116. Strategies that target downstream effectors of FLT3-ITD signaling, 

including MYC, will likely improve responses to FLT3 inhibitors.  

Direct inhibition of MYC has been an objective of anti-cancer therapeutic 

development for nearly the last three decades117. However, MYC has been considered 

undruggable due to its intrinsically disordered nature with no binding pockets or specific 

enzymatic activity117,118. Nevertheless, various strategies to inhibit MYC, directly and 

indirectly, are being explored110. Most direct approaches do not target MYC itself but 

rather its interface with MYC-associated protein X (MAX). MYC recruits transcription 
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factor binding to target gene promoters through heterodimerization with MAX119. Small 

molecules have been developed to inhibit MYC–MAX dimerization, sequester MAX via 

homodimer stabilization, or interfere with MYC–MAX binding to target DNA 

sequences110. However, most strategies to disrupt MYC activity have focused on indirect 

approaches, such as interfering with the expression of MYC at the DNA, RNA, or protein 

levels. Two strategies that have gained prominence are proteolysis-targeting chimaeras 

(PROTACs), which target transcription factors for proteasomal degradation, and 

antisense oligonucleotides (ASOs), which are synthetic, single-stranded 

oligodeoxynucleotides that reduce the stability of MYC mRNA120,121. Despite 

technological advancements to target MYC, no clinically approved methods exist to 

inhibit its activity. 

Another way to therapeutically target MYC is to disrupt the mechanisms that 

direct MYC expression. Despite its broad expression pattern, the tissue-specific 

expression of MYC is controlled by discrete regulatory elements. In blood cells, recent 

work has characterized a blood-specific super-enhancer (BENC), an evolutionarily 

conserved region located 1.7 megabases downstream of the MYC gene body, which is 

obligatory for regulating MYC expression122. The MYC BENC is a super-enhancer, a 

putative enhancer region that forms chromosome loops to facilitate transcription factor 

binding to promoter regions. Unlike typical enhancer regions, super-enhancers are 

associated with high levels of activating histone modifications, including 

monomethylation of histone H3 at lysine 4 (H3K4me1) or acetylation of histone H3 at 

lysine 27 (H3K27ac)123–125. Targeted deletion of the MYC BENC in mice inhibits MLL-

driven AML formation, indicating this locus' functional relevance in AML122. The MYC 

BENC is a blood-specific enhancer that controls the expression of MYC and is an 

enticing indirect target to disrupt MYC activity. 
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The MYC BENC is comprised of multiple enhancer modules that recruit a 

compendium of transcription factors and global chromatin activators (Figure 1.7A). 

These chromatin binding proteins, which include BRD4, p300, and members of the 

Mediator kinase complex, exhibit diverse binding patterns across distinct enhancer 

modules122,126. Disruption of different MYC BENC modules in mice results in loss of 

specific blood lineages, arguing that other elements control MYC expression in different 

tissues122. Moreover, investigation of this locus has revealed that specific MYC BENC 

modules are also focally amplified in a subset of AML (Figure 1.7B)122. The initial 

excitement surrounding the targeting of activating chromatin complexes bound to the 

MYC BENC stemmed from the discovery of BRD4 inhibitors. Studies in AML cell lines 

showed that BRD4 inhibitors resulted in a loss of MYC expression and leukemia cell 

death127–130. However, initial clinical trials yielded disappointing results, with only modest 

clinical activity observed, no discernible correlation between MYC gene expression and 

clinical response, and notable toxicity131. While targeting the MYC super-enhancer 

remains promising, new therapeutic approaches are imperative to achieve meaningful 

clinical benefits.  

 

Figure 1.7: The MYC BENC regulates MYC expression in blood cells. 
A. The MYC blood-specific super-enhancer cluster (BENC) is composed of 

individual enhancer modules. The activity of these modules is regulated by 
transcription factor (TF) binding. B. Individual module activity is cell-type specific 

and is dysregulated in leukemia. 
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1.7  Enhancing tyrosine kinase inhibitor activity by 
co-targeting LSD1 

Since MYC BENC activity depends on the binding of multiple regulatory proteins, 

an alternative approach is to simultaneously target two or more factors that regulate 

MYC gene expression. Small molecule inhibitors of lysine specific demethylase 1 

(LSD1), a histone demethylase, decrease MYC expression and activity in AML cell lines 

and primary samples132–134. While it has been shown that LSD1 aids MYC transcription 

by demethylating MYC target gene promoters, it is not well understood how LSD1 

regulates MYC expression135,136. Regardless, these studies suggest that simultaneous 

targeting of LSD1 and FLT3 represents a promising avenue to disrupt MYC expression 

and, therefore, aberrant FLT3 signaling in FLT3-ITD AML. 

LSD1, also known as KDM1A (lysine demethylase 1A) or AOF2 (amine oxidase 

domain-containing protein 2), is an epigenetic regulatory protein that controls gene 

expression in two manners. LSD1 is a canonical transcriptional repressor that 

enzymatically removes activating mono- and di-methylated histone three lysine 4 

(H3K4me1/2) marks137. LSD1 coordinates hematopoietic differentiation by demethylating 

H3K4me1/2 and repressing hematopoietic stem and progenitor cell gene expression 

programs138. However, LSD1 can also act as a transcriptional activator by removing 

repressive mono- and di-methylated histone three lysine 9 (H3K9me1/2) marks. In 

prostate cancer, LSD1 forms a chromatin-associated complex with androgen receptor 

that demethylates H3K9 and de-represses androgen receptor target genes139. In 

neuronal cells, an LSD1 isoform, LSD1+8a, complexes with supervillain to regulate 

neuronal differentiation by demethylating H3K9me2140. LSD1 orchestrates gene 

expression by removing activating H3K4me1/2 and repressive H3K9me1/2 marks.  



44 

 

LSD1 also regulates gene expression as a scaffolding protein, recruiting 

transcriptional repressor complexes to gene regulatory regions141,142. LSD1 H3K4me1/2 

demethylation was initially linked to transcriptional repression by its association with the 

protein complex corepressor for element-1-silencing transcription factor (CoREST)141. 

The CoREST complex is comprised of several transcriptional repressive factors, 

including histone deacetylases 1/2 (HDAC1/2) and the zinc finger protein growth factor 

independent 1 (GFI1)143,144. GFI1 not only serves as a transcriptional regulator of blood 

cell proliferation, differentiation, and survival, GFI1 is a molecular hook for LSD1 and its 

cofactors145,146. GFI1 contains a histone 3-mimicking motif, which exhibits a high affinity 

for LSD1147. The CoREST/LSD1 complex is a transcriptional repressor that facilitates 

GFI1 binding to chromatin. 

LSD1-mediated epigenetic dysregulation is an known driver of leukemogenesis. 

Studies have shown that LSD1 is overexpressed in various hematological malignancies, 

including AML148. In MLL-driven leukemia, LSD1 sustains expression of oncogenic 

programs in leukemia stem cells, thus preventing differentiation and apoptosis149. 

Subsequent studies have shown that LSD1 inhibition dislodges the LSD1/CoREST 

complex from chromatin, resulting in blast differentiation150,151. Specifically, LSD1 

inhibitors disrupt LSD1-GFI1 binding rather than interfering with LSD1 H3K4me1/2 

demethylase activity and reactivate PU.1-bound enhancers. PU.1, encoded by SPI1, is a 

pioneer transcription factor critical for coordinating myeloid differentiation152. Overall, 

studies have demonstrated that LSD1 inhibitors reactivate PU.1-bound enhancers and 

induce leukemic blast differentiation.   

Our group and others have shown that LSD1 inhibitors are not only effective as a 

monotherapy but also enhance the activity of kinase inhibitors in AML133,134,153. In an 

unbiased chemical screen, our group discovered that LSD1 inhibitors synergize with the 

JAK/STAT inhibitor ruxolitinib in CSF3R/CEBPA-mutant AML. We found that dual 
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JAK/STAT and LSD1 inhibition resulted in maturation of immature leukemia cells and 

improved survival in mouse models in a synergistic manner153. Our group also 

investigated the mechanism of combined kinase and LSD1 inhibition in another 

molecular subtype of AML, KIT-mutant AML. In this study, we evaluated the KIT inhibitor 

avapritinib combined with the LSD1 inhibitor ORY-1001, which has been shown pre-

clinically to induce blast differentiation and reduce leukemic stem cell capacity in AML. 

ORY-1001 is also currently being evaluated in phase I and II clinical trials154,155. We 

found that dual KIT and LSD1 inhibition evicted MYC and PU.1 from chromatin and 

drove synergistic leukemic cell death156. A study led by Dr. Pedicona suggests that LSD1 

inhibitors prime leukemia cells for kinase inhibition by activating MEK kinase activity 

while simultaneously suppressing the activity of other kinase networks133. These studies 

suggest that LSD1 inhibition enhances kinase inhibitor activity in AML and provide a 

rationale for our research investigating the efficacy and mechanism of combined FLT3 

and LSD1 inhibition in Chapter 4. 

1.8  Transcriptional adaptation to therapeutic 
pressure 

Transcriptional mechanisms can be used not only to deepen treatment 

responses but also to understand drug resistance. Disease relapse has been 

traditionally thought to emerge from intrinsically resistant cells that confer a survival 

advantage under therapeutic pressure. However, increasing evidence highlights the 

importance of epigenetic resistance mechanisms to cancer therapy157. In this model of 

drug resistance, therapeutic pressure induces changes in chromatin structure and 

function, facilitating the expression of transcriptional programs that confer drug 

resistance. Studies in AML have shown that drug-naïve AML blasts can adopt a 
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transcriptional state that allows them to remain tolerant to the drug and actively 

proliferate in the presence of therapeutic pressure158.   

In 2018, the FDA first approved venetoclax in combination with azacitidine,  

decitabine, or low-dose cytarabine for treating newly diagnosed AML in adults 75 years 

of age or older. This drug combination established a new standard of care for older and 

other patients with AML unfit for intensive chemotherapy. With its favorable side effect 

profile, the addition of venetoclax to azacitidine improved CR (66.4% vs 28.3%) 

compared to azacitidine alone159. Given its importance to the clinical management of 

AML, venetoclax has garnered much attention from the research community. Venetoclax 

(ABT-199) is a small molecule inhibitor of B-cell lymphoma 2 (BCL2)160. The BCL2 family 

proteins, such as BLC2, BCL-XL, and MCL1, are anti-apoptotic proteins tightly regulated 

in the intrinsic pathway of apoptosis161. Pro-apoptotic proteins, such as BAX and BAK, 

induce apoptosis by triggering mitochondrial outer membrane permeabilization. 

Activation of these pro-apoptotic proteins is inhibited by BCL2 homology 3 (BH3) 

proteins. By sequestering their pro-apoptotic counterparts, the BCL2 family proteins 

promote cell survival162. Venetoclax is a BH3 mimetic that restores cellular intrinsic 

apoptosis by blocking the activity of BCL2, which is overexpressed in AML and other 

malignancies162. Venetoclax, which putatively restores intrinsic apoptosis in AML cells, is 

the basis of standard-of-care therapy for elderly and unfit patients with AML.  

A study by Pei et al. revealed an intriguing pattern of venetoclax sensitivity 

among patients with AML163. They found that the AML differentiation state was a critical 

determinant of response to venetoclax-based therapy. Their studies showed that 

monocyte-like AML cells were resistant to venetoclax, whereas progenitor-like cells were 

acutely sensitive. Moreover, this group demonstrated that patients treated with 

venetoclax-based treatment regimens tend to relapse with monocyte-like disease. These 
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findings reveal an essential relationship between AML differentiation state and 

venetoclax response.  

Several studies have shown that GMP-like as well as common myeloid and 

lympho-myeloid primed progenitor (CMP LMPP)-like AMLs, which are sensitive to 

venetoclax, highly express BCL2. Differentiated AMLs, conversely, are resistant to BCL2 

inhibition and express high levels of MCL1 and BCL-XL163,164. These findings support a 

model where venetoclax treatment selects monocytic cells that overexpress MCL1 and 

BCL-XL, evading the initiation of intrinsic apoptosis. However, the study from Pei et al. 

also showed that patients with dominant, differentiated AML clones achieved a long-

lasting response with venetoclax-based therapies. Notably, the authors highlighted a 

patient with a dominant, differentiated, NRASO61K-mutant clone that achieved CR for 355 

days following venetoclax and azacitidine treatment163.  This finding casts doubt on a 

purely selective model of intrinsic resistance with venetoclax, forming the basis of our 

work described in Chapter 5. 

1.9   Dissertation overview 

In this work, I outline my investigation of transcriptional dysregulation in AML and 

how these findings inform novel therapeutic strategies. In Chapters 2 and 3, I describe 

two computational methods we developed to elucidate transcriptional regulatory 

mechanisms from next-generation sequencing data. In these chapters, I describe our 

novel techniques, GoPeaks, which identifies genome-wide histone modifications from 

CUT&Tag data, and Priori, which infers transcription factor activity from bulk RNA-seq 

data. In Chapter 4, I detail how we applied these tools to understand the mechanism of a 

novel drug combination, dual FLT3 and LSD1 inhibition. In Chapter 5, I describe our 

findings investigating the transcriptional dynamics associated with resistance to the 
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standard of care therapy for AML, venetoclax. Finally, in Chapter 6, I review the 

conclusions from these studies and discuss future directions. 
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 Chapter 2: GoPeaks: histone modification 
peak calling for CUT&Tag 

 
 

§ We developed GoPeaks, a peak calling method specifically designed for 

histone modification CUT&Tag data.  

§ We compared the performance of GoPeaks against commonly used peak 

calling algorithms to detect histone modifications that display a range of 

peak profiles and are frequently used in epigenetic studies.  

§ We found that GoPeaks robustly detects genome-wide histone 

modifications and, notably, identifies a substantial number of H3K27ac 

peaks with improved sensitivity compared to other standard algorithms. 

 
 

This work has been published in BMC Genome Biology:  

Yashar WM, Kong G, VanCampen J, Curtiss BM, Coleman DJ, Carbone L, 

Yardimci GG, Maxson JE, Braun TP. GoPeaks: histone modification peak calling for 

CUT&Tag. BMC Genome Biology 2022 July 4165  
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2.1 Abstract 

Genome-wide mapping of histone modifications is critical to understanding 

transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, 

offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we 

present GoPeaks, a peak calling method specifically designed for histone modification 

CUT&Tag data. We compare the performance of GoPeaks against commonly used peak 

calling algorithms to detect histone modifications that display a range of peak profiles 

and are frequently used in epigenetic studies. We find that GoPeaks robustly detects 

genome-wide histone modifications and, notably, identifies a substantial number of 

H3K27ac peaks with improved sensitivity compared to other standard algorithms. 

2.2 Background 

Modification of histone proteins is a key mechanism of transcriptional regulation9. 

Histones package eukaryotic DNA into chromatin and control DNA conformation and 

organization10. Modification of the histone protein results in alteration of chromatin 

structure and recruitment of nuclear proteins to genomic features11,12. For example, 

trimethylation of histone 3 lysine 4 (H3K4me3) facilitates the binding of positive 

transcriptional regulators to transcription start sites13–15. Similarly, acetylation of histone 3 

lysine 27 (H3K27ac) neutralizes the positive charge of the histone tail and loosens the 

interaction between nucleosomes and DNA, allowing access of transcription factors to 

DNA regulatory sequences16,17. Transcription factors are canonical regulators of 

transcription whose binding is strongly correlated with histone modifications12,166–168. 

Large-scale studies have demonstrated that transcription factor-binding profiles can be 
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used to predict histone modifications169. An understanding of genome-wide histone 

modifications is crucial to the understanding of transcriptional regulation. 

Chromatin immunoprecipitation with sequencing (ChIP-seq), which couples 

antibodies that recognize DNA-associated proteins with next generation sequencing 

technology, has enabled genome-wide profiling of histone modifications and 

transcription factors13,18–20. Although widely used for epigenetic profiling, ChIP-seq is 

prone to high background, artificial enrichment of highly expressed genes, and often 

requires prohibitively large number of cells per experiment21,22. Enzyme-tethering 

strategies including Cleavage Under Targets and Tagmentation (CUT&Tag) and 

Cleavage Under Targets and Release Using Nuclease (CUT&RUN) have been 

developed to overcome these issues and perform epigenetic profiling with a low number 

of cells and minimal background23–26.  

Epigenetic studies require mapping multiple histone modifications for a 

comprehensive understanding of transcriptional regulation. Detecting regions bound to 

lysine 4 residues on histone 3 that are mono- (H3K4me1) or trimethylated aids with the 

identification of promoters and enhancers, respectively, throughout the genome13,27–30. 

Co-localization of H3K4me1 and H3K4me3 with H3K27ac is characteristic of activated 

genomic features31,32. Histone modifications can also be associated with 

heterochromatic regions of the genome where gene transcription is repressed. 

Localization of trimethylation of histone 3 lysine 27 (H3K27me3), for example, is 

associated with promoters and gene bodies of silenced genes13,33–36. Regions of 

modified histones in ChIP-seq and CUT&Tag are identified as stacks of aligned reads; 

such regions are called peaks. The peak profiles of common histone modifications are 

highly variable, so algorithms that identify histone modification peaks need to robustly 

detect a range of peak profiles. While H3K4me3 peaks tend to be sharply localized, 

H3K4me1 and H3K27me3 peaks span a broader domain (Figure 2.1)34–38. Moreover, 
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H3K27ac can mark large domains such as super-enhancers as well as smaller, discrete 

regions such as promoters, thus having both broad and narrow characteristics29,36–40. In 

order to extract meaning for epigenetic studies reliant on histone modification CUT&Tag 

datasets, peak calling algorithms need to be flexible to identifying narrow and broad 

peak characteristics.  

Peak calling algorithms have been developed to not only identify genome-wide 

enrichment of aligned reads, but also to distinguish peaks of modified histones from 

noise and artifacts. Model-based Analysis of ChIP-seq version 2 (MACS2), a widely-

used peak calling algorithm for ChIP-seq, and other ChIP-seq peak calling methods are 

designed to address the high rate of background in ChIP-seq and are vulnerable to 

mistaking background signal as peaks particularly when the background is low41–43. 

Sparse Enrichment Analysis (SEACR) has been developed to perform peak calling from 

CUT&RUN data that, like CUT&Tag data, is characterized by low background. However, 

 

Figure 2.1: Histone modifications exhibit a range of peak profiles.  
Representative peak profiles for H3K4me1, H3K27ac, H3K4me3, and 

H3K27me3 histone modifications. Black box indicates an enhancer region, and 

the gray box indicates the gene body. 
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no peak calling algorithms have been designed to address both the low background and 

peak profile variability that is characteristic of histone modification CUT&Tag data43. 

Here, we present GoPeaks, a peak calling algorithm designed for histone 

modification CUT&Tag data. We compared the performance of GoPeaks against other 

widely used peak calling algorithms to detect H3K4me3, H3K4me1, H3K27me3, and 

H3K27ac peaks from CUT&Tag data. We demonstrate that GoPeaks robustly detects 

genome-wide histone modifications and notably, identifies H3K27ac with improved 

sensitivity compared to other peak callers. Moreover, we showed that GoPeaks can be 

used to detect transcription factor and chromatin accessibility peaks from ChIP-seq, 

CUT&RUN, and ATAC-seq data. 

2.3 Results 

2.3.1  Peak Calling with a Binomial Distribution and a 
Minimum Count Threshold 

GoPeaks performs genome-wide peak identification of histone modification 

binding from CUT&Tag data in five general steps (Figure 2.2a). First, GoPeaks bins the 

genome into small intervals. Users can control the width of each bin with the “step” 

parameter and the width of bin overlap with the “slide” parameter. GoPeaks then 

quantifies the number of aligned reads contained within each bin. In bins greater than 15 

counts (set by the “minreads” parameter), GoPeaks uses a Binomial distribution to 

determine whether the bin counts are significantly different from the genome-wide 

distribution of aligned reads. Bins with a significantly large number of counts are retained 

(p-value less than 0.05 before Benjamini-Hochberg correction by default). Finally, 

significant bins are merged into peaks if they are located within 150 bp of each other, 
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Figure 2.2: Overview of the GoPeaks methodology and benchmarking 
workflow.  
a. Five general steps of the GoPeaks peak calling methodology. Each panel (a1-

a5) represents a separate step. (a1) Step indicates the bin width and slide, the 

width of the bin overlap. (a2) Counting the number of aligned reads per bin.  
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which can be adjusted with the “mdist” parameter. In contrast, MACS2 slides across the 

genome using an empirically-derived window size and deploys a dynamic Poisson 

distribution to evaluate the likelihood that aligned reads within a given window region are 

statistically significant41. Following peak p-value correction using the Benjamini-

Hochberg procedure, MACS2 then merges overlapping significant regions into a peak. 

SEACR, on the other hand, bins the genome by regions with contiguous, non-zero signal 

blocks and calls regions with counts greater than an empirically-derived threshold based 

on the global distribution of background counts as peaks43.  

We developed a computational workflow to compare the performance of 

GoPeaks against MACS2 and SEACR to identify histone modification peaks from 

CUT&Tag data (Figure 2.2b). We evaluated both SEACR threshold parameters, 

“SEACR-relaxed” and “SEACR-stringent”, as well as MACS2 “narrowPeaks” unless 

otherwise stated. A false discovery rate (FDR) threshold of 0.05 for GoPeaks and 

MACS2 as well as SEACR’s standard empirical FDR threshold was used43. We 

evaluated each peak callers’ ability to identify peaks from CUT&Tag sequencing using 

publicly available H3K4me1, H3K4me3, and H3K27me3 CUT&Tag data in K562 cells, a 

cell line model of blast-phase chronic myeloid leukemia (CML), and our H3K27ac 

CUT&Tag data in Kasumi-1 cells, an acute myeloid leukemia (AML) cell line. Each 

(a3) Example of a Binomial probability test distribution and threshold to retain 

significantly different peaks. (a4) Filtering out bins with less than 15 counts. (a5) 

Retained bins within 150 bp are merged and identified as a peak. b. Schematic 

overview of the benchmarking workflow. All CUT&Tag datasets undergo the 

same pre-processing and are separately analyzed by the peak calling methods. 
The unprocessed peaks are extracted for sub-analyses. High-confidence peaks 

were defined by taking the union of statistically significant peaks from all 

replicates and retaining the peaks present in at least two biological replicates. 

Generation of the receiver operator characteristic (ROC) and precision-recall 

(PR) curves require ChIP-seq standards.  
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CUT&Tag dataset was aligned to the GRCh38 genome and the ENCODE blacklist 

regions were removed170. The unprocessed peaks and the high-confidence peaks, 

defined by taking the union of statistically significant peaks from all replicates and 

retaining the peaks present in at least two biological replicates, from each CUT&Tag 

dataset were used to quantify peak characteristics detected by each peak caller. We 

measured the sensitivity and specificity of each peak caller by their ability to recall peaks 

from publicly available ChIP-seq standards. We filtered the ChIP-seq standards for 

peaks with -log10(p-value) > 10 and merged adjacent peaks within 1,000 bp. 

2.3.2  Identification of Narrow H3K4me3 Peaks 

We first compared the peak counts and characteristics detected by each peak 

calling algorithm from H3K4me3 CUT&Tag data. GoPeaks and MACS2 identified the 

greatest number of H3K4me3 peaks (Figure 2.3a). To assess the characteristics of the 

peaks called by each algorithm, we calculated the average distance to the next nearest 

peak. This measurement indicates whether peak calling algorithms are splitting up 

enriched regions and inflating the peak count total. We found that the peaks called by 

GoPeaks were similar distances apart as MACS2 and SEACR-relaxed (Figure 2.3b). 

MACS2, however, detected a small population of peaks less than 1,000 bp apart. The 

peaks called by SEACR-stringent were noticeably farther apart than the other methods. 

To directly measure peak sizes identified by each peak calling method, we quantified the 

number of counts in each peak and the peak width. We found that GoPeaks and MACS2 

called peaks across a range of widths (Figure 2.3c). Both SEACR-relaxed and SEACR-

stringent did not identify any peaks with a width less than 100 bp, potentially missing or 

aggregating important regions. As an example, all peak callers recognized a peak 

overlapping the CBX3 and HNRNPA2B1 promoters that is approximately 8,500 bp wide 

(Figure 2.3d). However, only GoPeaks identified a peak located at the promoter of  
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Figure 2.3: GoPeaks and MACS2 perform better than SEACR at identifying 
a range of H3K4me3 peak sizes.  
a. Number of high-confidence peaks identified from H3K4me3 CUT&Tag data in 

K562 cells per peak calling method. Colors indicate the peak calling method. b. 
Distribution of the distances to the next nearest peak. c. Distribution of read 

counts by peak width. Each dot represents the read count and peak width of a 

single peak. d. Example peaks at the CBX3 and SNX10 genes. IgG replicates 

are negative controls. Consensus peak calls for each method are shown. Tracks 

are CPM normalized and are scaled to the range [0-5.10] by IGV. Tracks are 
depicted on the GRCh38 genome assembly. 
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SNX10 nearly 1,450 bp wide. Together, these results demonstrate GoPeaks’ ability to 

identify H3K4me3 peaks across a range of sizes. 

2.3.3  Sensitivity and Specificity of Detecting Narrow 
H3K4me3 Peaks 

While both GoPeaks and MACS2 identify more H3K4me3 peaks than the 

SEACR peak calling methods, it is unclear whether some of these peaks may be false 

positives. To understand the sensitivity and specificity of each peak caller for H3K4me3 

marks, we compared the peaks identified from publicly available K562 CUT&Tag data to 

those identified by ChIP-seq on the same cell line from the ENCODE Project23,171. We 

created receiver operating characteristic (ROC) curves, which maps the true positive 

rate, or recall, against the false positive rate. A true positive is defined as a peak 

identified in the K562 CUT&Tag data, which is also present in the ENCODE K562 ChIP-

seq data. ROC curves along with precision-recall (PR) curves, which instead quantify the 

relationship between precision and recall, were used to characterize peak caller 

sensitivity and specificity. GoPeaks and MACS2 demonstrated a greater degree of peak 

recall than the SEACR methods for a given false positive rate (Figure 2.4a). GoPeaks 

and MACS2 had comparable area under the ROC curve (AUROC), which is a 

measurement of how well the peak callers detect CUT&Tag peaks that are also present 

in the ChIP-seq standard (Figure S2.1a). Every method demonstrated a similar ability to 

identify peaks with high precision across a range of recall values (Figure 2.4b; Figure 

S2.1b). It is unlikely to observe perfect concordance due to the technical differences 

between the CUT&Tag and ChIP-seq assays. Indeed, given the sensitivity of CUT&Tag, 

it is likely that CUT&Tag will identify regions enriched with aligned reads that are not 

evident in ChIP-seq data. 
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Figure 2.4: GoPeaks has a favorable specificity and sensitivity for narrow 
H3K4me3 CUT&Tag peaks.  
a. ROC curves quantifying the recall and false positive rates and b. PR curves 

quantifying the precision and recall rates of H3K4me3 CUT&Tag data from 

H3K4me3 ChIP-seq data. Both ChIP-seq and CUT&Tag datasets were 
generated in K562 cells. Colors indicate the peak calling method.  
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GoPeaks’ high sensitivity and specificity is likely due in part to its ability to identify 

peaks not captured by the other peak calling algorithms. To assess what may have 

distinguished each peak callers’ performance, we studied the overlap of the high-

confidence peaks. GoPeaks and MACS2 called the majority of peaks detected by both 

SEACR-stringent and SEACR-relaxed (Figure 2.4c). In addition, GoPeaks identified 167 

peaks not detected by any other peak caller, which likely contributed to GoPeaks’ high 

sensitivity and specificity as 95.8% (160) of GoPeaks’ unique peaks were also present in 

the ChIP-seq standard (Figure 2.4d; Figure S2.1c). Since H3K4me3 peaks are 

associated with promoters, we annotated each peak set to the nearest genomic 

feature13,27,28. The unique peaks identified by GoPeaks, MACS2, and SEACR-stringent 

were mostly associated with promoters (77.8%, 70.2%, and 85.2%, respectfully), 

consistent with the established biology of H3K4me3 (Figure 2.4e). SEACR-stringent did 

not identify any unique peaks. Consistent with these findings, GoPeaks detected a peak 

in both CUT&Tag replicates located at the promoter of TGM2 that was not identified by 

the other peak calling methods (Figure 2.4f). Collectively, these results reveal that 

GoPeaks has favorable sensitivity and specificity for H3K4me3 data when compared 

with ChIP-seq, enabling the identification of an increased number of true positive peaks 

with a minimal false positive rate and at high precision. 

c. Overlap of high-confidence peaks identified by each peak caller. d. 
Comparison of unique peaks that are identified by each peak calling algorithm 

and are also present in the ChIP-seq standard. Each bar is labeled by the 

number of peaks it represents. Colors indicate the peak type. e. Annotation of 

unique peaks identified by each peak caller. Each bar is labeled by the number 
of unique peaks. Colors indicate the genomic feature. Downstream is at least 

300 bp towards 3’ end of DNA strand. f. Example peaks at the TGM2 gene. IgG 

replicates are the negative controls. Consensus peak calls for each method are 

shown. Tracks are CPM normalized and are scaled to the range [0-1.46] by IGV. 

Tracks are depicted on the GRCh38 genome assembly. UTR = untranslated 

region. 

are negative controls. Consensus peak calls for each method are shown. Tracks 

are CPM normalized and are scaled to the range [0-5.10] by IGV. Tracks are 

depicted on the GRCh38 genome assembly. 
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2.3.4  Sensitivity and Specificity of Detecting Broad 
H3K4me1 Peaks 

While GoPeaks was highly sensitive and specific to narrow H3K4me3 peaks, we 

wanted to evaluate its performance to detecting broad H3K4me1 peaks. To compare the 

performance of each peak caller to detect H3K4me1 CUT&Tag peaks from K562 cells, 

we measured their sensitivity and specificity against ENCODE H3K4me1 ChIP-seq on 

the same cell line23,171. Overall, GoPeaks demonstrated comparable sensitivity and 

specificity across both H3K4me1 replicates (Figure 2.5a, b; Figure S2.2a, b).  

GoPeaks’ sensitivity and specificity may be due to its ability to detect H3K4me1 

marks in intronic and intergenic regions. We therefore evaluated the overlap of the high-

confidence peaks identified by each peak calling method. SEACR-relaxed identified the 

greatest number of unique H3K4me1 peaks among the four peak calling algorithms 

(Figure 2.5c; Figure S2.2c). GoPeaks still identified 1,142 unique peaks, 85.5% (976) of 

which were also present in the ChIP-seq standard (Figure S2.2d). To confirm the 

genomic features associated with the H3K4me1 peaks, we annotated each peak set to 

the nearest genomic feature. The unique peaks identified by GoPeaks and MACS2 were 

primarily associated with intronic and intergenic regions (76.8% and 85.1%, respectively) 

whereas SEACR-relaxed were mostly associated with promoters (62.7%; Figure 2.5d). 

While H3K4me1 is found at active promoters, it displays the greatest enrichment at 

enhancers13,27,28. As an example, GoPeaks was able to identify a unique peak in the 

intronic region of FOXO3 and the center of another H3K4me1 peak with greatest density 

of H3K4me1 signal (Figure 2.5e). Both SEACR methods, on the other hand, called 

regions with widths greater than region annotated by the ChIP-seq standard. In regions 

where the intronic region is much smaller, like in FTCD, resolving the center of peaks is 

crucial (Figure 2.5f). Both SEACR methods identify genomic features that include the 
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Figure 2.5: GoPeaks has a favorable specificity and sensitivity for broad 
H3K4me1 CUT&Tag peaks.  
a. ROC curves quantifying the recall and false positive rates and b. PR curves 

quantifying the precision and recall rates of H3K4me1 CUT&Tag data from 
H3K4me1 ChIP-seq data. Both ChIP-seq and CUT&Tag datasets were 

generated in K562 cells. Colors indicate the peak calling method. c. Overlap of 

high-confidence peaks identified by each peak caller. d. Annotation of unique 

peaks identified by each peak caller. Each bar is labeled by the number of 

unique peaks. Colors indicate the genomic feature.   
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promoter, exonic, and intronic regions of the FTCD gene, in contrast to what is 

annotated in the ChIP-seq standard as well as detected by GoPeaks. Together, these 

findings reveal that GoPeaks has favorable sensitivity and specificity in identifying 

H3K4me1 peaks while simultaneously calling sufficiently narrow peaks to separate 

promoter and non-promoter regulatory regions.  

2.3.5  Sensitivity and Specificity of Detecting Broad 
H3K27me3 Peaks 

Although we demonstrated that GoPeaks robustly detects peaks of histone 

modifications associated with euchromatic regions of the genome, we wanted to 

understand the ability of GoPeaks to identify H3K27me3 peaks, which are associated 

with regions of repressed gene transcription13,33–36. Similar to the peak profiles of 

H3K4me1, H3K27me3 peaks tend to span broad regions. However, H3K27me3 signal 

can be detected across entire bodies of silence genes13,33–36. To address this, we 

developed a “--broad” flag for GoPeaks to alter the width of genome bins to 5,000 bp 

and bin overlap to 1,000 bp, enabling the capture of peaks with broad domains. While 

MACS2 also has a broad peaks feature that increases the gap length to merge nearby 

enriched peaks, the SEACR methods do not41,43. 

We compared the sensitivity and specificity of the GoPeaks and MACS2 broad 

methods and the standard SEACR methods to detect H3K27me3 CUT&Tag peaks from 

K562 cells, using ENCODE H3K27me3 ChIP-seq data from the same cell line as the 

Downstream is at least 300 bp towards 3’ end of DNA strand. e, f. Example 

peaks at the e. FOXO3 gene and f. FTCD genes. IgG replicates are the negative 

controls. Consensus peak calls for each method are shown. Tracks are CPM 

normalized and are scaled to the range [0-1.31] for D and [0-1.33] for E by IGV. 

Tracks are depicted on the GRCh38 genome assembly. UTR = untranslated 
region. 
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standard23,171. While GoPeaks and MACS2 had enhanced AUROC as compared to the 

SEACR methods, MACS2 had a considerably lower AUPRC (Figure 2.6a, b; Figure 

S2.3a, b). As precision is dependent on the number of true positive peaks, we measured 

the number of peaks identified by each method. MACS2 detected 26,819 peaks, more 

than double the peak count of the next closest method (Figure 2.6c). However, 94.3% 

(25,285) of these peaks overlapped peaks identified by the other methods (Figure 2.6d; 

Figure S2.3c). Moreover, of the 1,534 peaks uniquely identified by MACS2, only 38.6% 

(592) were present in the standard (Figure S2.3d). In contrast, GoPeaks detected a 

comparable number of unique peaks (1,303), the majority of which were present in the 

standard (60.9%; 793). We hypothesized that MACS2 may be splitting the broad 

domains of enriched H3K27me3 signal into small peaks, so we measured the 

distribution of peak sizes and distances to the next nearest peak. Indeed, we identified a 

large population of MACS2 peaks that contained less than 100 counts (Figure S2.3e) 

and that MACS2 peaks were substantially closer together than the other methods 

(Figure 2.6e). As an example, GoPeaks and the SEACR methods preserved the broad 

domain of enriched H3K27me3 signal spanning the gene bodies of FIBCD1, LAMC3, 

and AIF1L (Figure 2.6f). Even with the “—broad” flag, MACS2 breaks up these domains 

into small peaks. These findings demonstrate that GoPeaks detects broad domain peaks 

within heterochromatic regions with high sensitivity and specificity.  

2.3.6  Sensitivity and Specificity of Detecting Broad & 
Narrow H3K27ac Peaks 

H3K27ac marks are crucial for defining active genomic features and can have 

characteristics of broad and narrow peaks31,32. To evaluate the performance of GoPeaks 

on H3K27ac, we performed CUT&Tag sequencing for H3K27ac on Kasumi-1 



65 

 

 

 

Figure 2.6: GoPeaks captures the broad peak profiles of H3K27me3 
CUT&Tag peaks.  
a. ROC curves quantifying the recall and false positive rates and b. PR curves 

quantifying the precision and recall rates of H3K27me3 CUT&Tag data from 

H3K27me3 ChIP-seq data.  
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cells. We again measured the number and characteristic of peaks called in CUT&Tag 

data as compared to ChIP-seq. Since ENCODE does not have H3K27ac ChIP-seq data 

for Kasumi-1 cells, we identified the high-confidence peaks of published H3K27ac ChIP-

seq data on the same cell line172. While GoPeaks showed an enhanced ability to recall 

peaks across a range of false positive rates, this may have been at the expense of its 

precision and recall (Figure 2.7a, b; Figure S2.4a, b). Since precision is dependent on 

the number of true positives identified by each caller, we once again measured the 

number of peaks identified by each method. Indeed, GoPeaks detected a total of 9,760 

high-confidence peaks, which is nearly 3,000 more peaks than what was detected by the 

closest peak caller, as well as 2,817 peaks that were not detected by any other peak 

caller (Figure 2.7c, d; Figure S2.4c). While only 1,078 peaks of the unique peaks were 

present in the standard (Figure S2.4d), GoPeaks identified 69.4% of all peaks present in 

the ChIP-seq standard (Figure 2.7e). In contrast, SEACR-stringent, which demonstrated 

improved precision and recall over the other peak calling methods, identified the least 

number of total peaks (3,743). Moreover, SEACR-stringent did not detect any unique 

peaks and only identified 33.0% of the peaks present in the standard. Overall, GoPeaks 

identified a substantial number of H3K27ac peaks that were present in the ChIP-seq 

standard with some trade-off to its precision.  

Both ChIP-seq and CUT&Tag datasets were generated in K562 cells. Colors 

indicate the peak calling method. GoPeaks and MACS2 “--broad” flags were 

used. c. Number of high-confidence peaks identified from H3K4me3 CUT&Tag 

data per peak calling method. d. Overlap of high-confidence peaks identified by 

each peak caller. e. Distribution of the distances to the next nearest peak. f. 
Example peaks at FIBCD1, LAMC3, and AIF1L genes. IgG replicates are the 

negative controls. Consensus peak calls for each method are shown. Tracks are 

CPM normalized and are scaled to the range [0-18] by IGV. Tracks are depicted 

on the GRCh38 genome assembly. 
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Figure 2.7: GoPeaks has higher specificity and sensitivity for H3K27ac 
CUT&Tag peaks with broad and narrow peak shapes.  
a. ROC curves quantifying the recall and false positive rates and b. PR curves 

quantifying the precision and recall rates of H3K27ac CUT&Tag data from 

H3K27ac ChIP-seq data. Both ChIP-seq and CUT&Tag datasets were generated 

in Kasumi-1 cells. Colors indicate the peak calling method. c. Number of high-

confidence peaks identified from H3K4me3 CUT&Tag data per peak calling 
method. d. Overlap of high-confidence peaks identified by each peak caller.  
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GoPeaks was able to identify peaks across a range of widths, which is crucial for 

H3K27ac peak detection (Figure S2.4e). As an example, GoPeaks identified a peak with 

both narrow and broad characteristics at the promoter of TET1 (Figure 2.7f). While 

GoPeaks and SEACR identified the whole peak, MACS2 only identified the narrow 

portion of the peak. Additionally, GoPeaks identified another narrow peak in an exonic 

region of TET1, which is also present in the ChIP-seq standard. Together, this data 

highlights GoPeaks’ dynamic range to identify both the narrow and broad peaks, which 

are characteristic of H3K27ac marks.  

2.3.7  Identification of Transcription Factor and 
Chromatin Accessibility Peaks Using GoPeaks 

While GoPeaks was designed for histone modification CUT&Tag data, the 

GoPeaks peak calling methodology can be applied to any epigenetic profiling data with 

read pileups aligned to a genome. Therefore, we wanted to determine the applicability of 

GoPeaks to other epigenetic profiling techniques, including ChIP-seq, CUT&RUN, and 

Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq). Moreover, 

surveying these methods allowed us to understand whether GoPeaks is capable of 

identifying peaks associated with transcription factors and chromatin accessibility. We 

first assessed the ability of GoPeaks to detect transcription factor binding events from 

RUNX1 ChIP-seq from K562 cells and Sox2 CUT&RUN from H1 human embryonic stem 

cells (hESC)171,173. For the analysis of ChIP-seq data, we compared the characteristics of 

peaks detected by GoPeaks only to MACS2 as SEACR was developed for CUT&RUN  

e. Percent of total H3K27ac ChIP-seq standard peaks that are identified by each 

peak caller. f. Example peaks near at the TET1 gene. IgG replicates are the 

negative controls. Consensus peak calls for each method are shown. Tracks are 

CPM normalized and are scaled to the range [0-4.26] by IGV. Tracks are 

depicted on the GRCh38 genome assembly. 
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Figure 2.8: GoPeaks detects peaks from other epigenetic profiling 
techniques.  
a. Heatmap of global RUNX1 and IgG ChIP-seq signal from K562 cells per peak 
calling method. b. Transcription factor motif enrichment for regions of global  



70 

 

data43. We found that both GoPeaks and MACS2 detected peaks from the K562 RUNX1 

ChIP-seq data that were enriched for RUNX transcription factor binding motifs (Figure 

2.8a, b)124. Moreover, both GoPeaks and MACS2 detected the enrichment of Sox 

bindings motifs with high confidence from the H1 hESC Sox2 CUT&RUN data (Figure 

2.8c, d)124. These findings show that GoPeaks can identify transcription factor binding 

events from ChIP-seq and CUT&RUN data. To understand whether GoPeaks detects 

chromatin accessibility peaks, we performed ATAC-seq in Kasumi cells. GoPeaks 

identified 13,092 overlapping peaks in the three biological replicates (Figure 2.8e). 

GoPeaks detected the most peaks in the R3 biological replicate with an additional 

14,157 peaks that were shared by the R2 replicate as well as 12,899 peaks only present 

in the R3 replicate. This was evident at the SSRP1 and P2RX3 genes where GoPeaks 

identified enriched regions of chromatin accessibility in all three replicates, but also 

detected additional low count peaks in the R3 replicate (Figure 2.8f). Collectively, these 

findings demonstrate the applicability of GoPeaks to call transcription factor and 

chromatin accessibility peaks.  

RUNX1 ChIP-seq signal. Top four known motifs are shown. c. Heatmap of global 

Sox2 and IgG CUT&RUN signal from H1 hESC cells per peak calling method. d. 
Transcription factor motif enrichment for regions of global Sox2 CUT&RUN 

signal. Dot color represents the binomial fold enrichment and color represents 

the -log10(P-value) of the motif. The asterisk indicates the motif p-value is less 
than R’s smallest representable number (1x10-324). e. ATAC-seq was performed 

on Kasumi cells. Overlap of peaks identified in each biological replicate by 

GoPeaks. f. Example peaks at SSRP1 and P2RX3 genes. Peak calls for 

individual biological replicates are shown. Tracks are CPM normalized and are 

scaled to the range [0-3.11] by IGV. Tracks are depicted on the GRCh38 

genome assembly. 
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2.4  Discussion 

GoPeaks was designed to address the low background and peak profile 

variability characteristic of histone modification CUT&Tag data. GoPeaks demonstrated 

a favorable ability to call peaks and were highly sensitive and specific to calling peaks 

across a range of histone modification CUT&Tag data. These results were particularly 

encouraging for H3K27ac peaks, which exhibit both narrow and broad characteristics. 

Since H3K27ac is a marker of active promoters and enhancers, it is crucial to pinpoint 

active regulatory non-coding elements. Moreover, we demonstrated that GoPeaks can 

identify transcription factor and chromatin accessibility peaks from ChIP-seq, 

CUT&RUN, and ATAC-seq data. 

MACS2 and SEACR both demonstrated biases towards the identification of 

narrow or broad peaks, respectively. MACS2 performed particularly well in analyzing 

H3K4me3 CUT&Tag data, in which peaks tend to be sharply localized. MACS2 identified 

a comparable amount of H3K4me3 CUT&Tag peaks as GoPeaks with similar sensitivity 

and specificity. The bias of MACS2 for narrow peaks was also evident when calling 

peaks from H3K27me3 CUT&Tag data. Even with the MACS2 broad feature, MACS2 

fragmented enriched H3K27me3 domains that spanned the entire gene bodies into small 

peaks. As MACS2 was designed to identify narrow transcription factor peaks in ChIP-

seq data, its bias for narrow peaks is unsurprising. SEACR, in contrast, demonstrated a 

favorable ability in detecting broad H3K4me1 peaks42. SEACR-relaxed identified the 

most unique H3K4me1 peaks, but with comparable precision and recall to GoPeaks. 

The reason for SEACR’s bias for broad marks may be due to its empirical segmentation 

of the genome with contiguous, non-zero signal blocks43. Since the signal blocks are not 

fixed, peaks may contain excess regions with low counts that are adjacent to a true peak 

(Figure 2.5f). GoPeaks avoids this potential problem as each bin has a fixed width and is 
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evaluated for significance before merging. GoPeaks’ simple but flexible framework is 

more amendable to the identification of both broad and narrow peaks, like those present 

in H3K27ac data. 

SEACR was more conservative in the identification of peaks across all marks. 

SEACR-stringent, in particular, consistently detected less peaks than the other methods. 

This strategy seems to be beneficial for SEACR’s precision and recall, notably in the 

detection of H3K27ac peaks, and may be more appropriate for researchers that have a 

low threshold for calling false positives. GoPeaks, on the other hand, may be best suited 

for researchers that are interested in discovering new peaks with a small trade-off in 

precision. However, GoPeaks largely performed at comparable precision and improved 

recall over the other peak callers. Our analysis demonstrates GoPeaks detects a 

substantial number of histone modification peaks at high sensitivity and specificity. 

There are important limitations to consider in this analysis. We only evaluated the 

sensitivity and specificity of each peak calling method using four CUT&Tag histone 

modification datasets. Although the modifications studied are likely important for 

epigenetic studies, the peak profiles cover a broad range that will be likely encountered 

by other marks. We encourage users to test GoPeaks on other histone modification 

datasets as well as transcription factor and chromatin accessibility datasets. While we 

demonstrated that GoPeaks can call peaks from these modalities, more work is needed 

to characterize its performance. Additionally, we only tested these peak calling methods 

in three different cell lines. We cannot confidently rule out that GoPeaks may have a 

biological bias for K562, Kasumi-1, or H1 hESC although this is unlikely. The epigenetic 

profiles of these cells are publicly available, which served as an important comparator for 

the ROC studies. Lastly, there were no CUT&Tag standards for the ROC studies. 

Although it would have been preferable to compare peaks between CUT&Tag datasets, 

the CUT&Tag technique is still new, and few datasets exist in the public domain. While 
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ChIP-seq served as a useful comparator given the abundance of publicly available data, 

the fundamental differences in the ChIP-seq and CUT&Tag methods as well as the 

histone modification antibodies used to generate each dataset should be considered 

when comparing the results of these two methods. Notably, the antibodies used for the 

H3K4me1 and H3K27me3 CUT&Tag and ChIP-seq experiments were the same, but the 

antibodies for H3K4me3 and H3K27ac were not. However, our analysis indicates 

GoPeaks’ ability to extract biological meaning from CUT&Tag data. Overall, GoPeaks 

demonstrated to be a robust peak calling method across a range of histone modification 

CUT&Tag data.  

2.5  Conclusions 

GoPeaks is a peak calling algorithm designed for histone modification CUT&Tag 

data. We showed that GoPeaks detects peaks of histone modifications that are 

frequently used in epigenetic studies with high sensitivity and specificity. Notably, 

GoPeaks demonstrated an improved ability to identify H3K27ac peaks, which are critical 

to localizing active regulatory non-coding elements throughout the genome, over other 

standard peak calling algorithms. Moreover, we showed that GoPeaks is able to detect 

peaks from other epigenetic profiling techniques, including ChIP-seq, CUT&RUN, and 

ATAC-seq. 

2.6  Methods 

2.6.1  GoPeaks Algorithm 

GoPeaks detects peaks from aligned, paired-end sequencing reads by 

calculating read coverage in genome bins (“step” 100 bp and “slide” 50 bp by default). 
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Reads from each sample are normalized to counts per million (CPM) and, when a 

negative control experiment is provided (e.g., IgG, input), then scaled per pin using a 

custom scaling function: 

𝑠𝑎𝑚𝑝𝑙𝑒!"#

= (𝑠𝑎𝑚𝑝𝑙𝑒!"# > 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙!"#, 𝑠𝑎𝑚𝑝𝑙𝑒!"# ∗ 	51 −	
𝐶𝑃𝑀(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙!"#)

𝐶𝑃𝑀(𝑠𝑎𝑚𝑝𝑙𝑒!"#)
<

𝑠𝑎𝑚𝑝𝑙𝑒!"# < 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑡𝑟𝑜𝑙!"#, 0
	 

 

GoPeaks then collects important parameters “n” and “p” to model the Binomial 

distribution. “n” is equal to the number of reads and “p” represents the probability of 

success, where success is defined as choosing “x” reads in a genome bin from “n”. “p” is 

estimated as the average read depth in all non-zero coverage bins over the number of 

non-zero bins, divided by “n”. Modeling read counts using a Binomial distribution was 

originally inspired by works from the Regulatory Genomics Toolbox174. GoPeaks then 

traverses the genome and tests bins greater than “minreads” (15 by default), followed by 

multiple hypothesis correction using Benjamini-Hochberg. Bins are filtered by their 

adjusted p-values with “-p”. Adjacent bins are merged with the “--mdist” parameter (150 

bp by default) into peaks, where they are filtered using a minimum peak width flag with “-

-minwidth” (150 bp by default).  

2.6.2  Method Comparison Workflow  

2.6.2.1  Pre-processing 

K562 H3K4me3 (GEO accession GSM3536516), H3K4me1 (GEO accession 

GSM3536518), H3K27me3 (GEO accession GSM3560261), and IgG (GEO accession 

GSM3560264) CUT&Tag data from Kaya-Okur et al. 2019 as well as H1 hESC Sox2 

(GEO accession SRR8748855 and SRR8748856) and IgG (GEO accession 
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SRR8748845) CUT&RUN data from Meers et al. 2019 were downloaded through 

National Center for Biotechnology Information Gene Expression Omnibus (NCBI 

GEO)23,173,175. K562 RUNX1 (ENCODE ID ENCSR414TYY) and the IgG input control 

(ENCODE ID ENCSR173USI) ChIP-seq data were downloaded from the ENCODE 

portal171,176. All data was aligned to the GRCh38 genome with Bowtie213 with the 

following options “--local --very-sensitive-local --no-unal --no-mixed --no-discordant --

phred33 -I 10 -X 700”.  

 

2.6.2.2  Peak Calling 

GoPeaks (v1.0.0) used the optional flag “--mdist 1000” to merge peaks within 

1,000 bp. For H3K27me3 CUT&Tag, the flags “--mdist 3000” and  “--broad” were used to 

adjust the step to 5,000 bp and the slide to 1,000 bp. MACS2 (v 2.2.6) used the “--format 

BAMPE” flag with a genome size of 2.7e9 and the standard FDR threshold of 0.0541. 

MACS2 “--broad” was used for H3K27me3 CUT&Tag data and “narrowPeak” was used 

for all other data. SEACR (v 1.4) used the “norm” flag when treatment and IgG samples 

were used in addition to using the relaxed and stringent mode43. SEACR uses an 

empirical false discovery rate (FDR) calculated by quantifying the percentage of control 

signal blocks remaining out of the total above the threshold43. 

2.6.2.3  Post-processing 

After peaks were called for each method, high-confidence peaks were defined by 

taking the union of statistically significant peaks from all replicates and retaining the 

peaks present in at least two biological replicates within a study’s data set via a custom 

script. The purpose of finding high-confidence peaks is to reduce spurious peaks called 

in only one replicate and focus on peaks that consistently appear in multiple replicates. 
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Intervene was used on the high-confidence peak sets to find common and exclusive 

peaks across peak callers178.  

 

2.6.2.4  Peak Characterization 

Peak counting was done in base R. ChIPseeker was used to annotate peaks to 

the nearest transcription start site179. The read count at high-confidence peak intervals 

was tallied with BEDtools intersect –C to yield read depth density distributions, and 

peak-peak distances were calculated with GRanges180,181. Enrichment of transcription 

factor motifs in RUNX1 ChIP-seq and Sox2 CUT&RUN peaks were identified using 

HOMER124. Data cleaning and visualization were mainly facilitated using data.table, 

ggplot2, and deeptools182,183. Tracks were normalized by CPM and visualized using 

Integrative Genomics Viewer (IGV)184.  

 

2.6.2.5  Receiver Operating Characteristic and Precision-Recall 

Curves 

In the receiver operating characteristic (ROC) and precision-recall (PR) analyses, 

the ranking metrics for each peak calling algorithm was counts at high-confidence peaks 

(obtained through BEDtools intersect -C). The outputs of MACS2, SEACR, and 

GoPeaks high-confidence peak counts were the input for ROC and PR analyses. The 

high-confidence counts from CUT&Tag data were compared to publicly available ChIP-

seq standards downloaded from the ENCODE portal and ChIP-Atlas171,176,185. K562 

H3K4me3 (ENCODE ID ENCFF885FQN), H3K4me1 (ENCODE ID ENCFF759NWD), 

and H3K27me3 (ENCODE ID ENCFF795ZOS) ChIP-seq data was accessed from the 

ENCODE portal171,176. Kasumi-1 H3K27ac (ChIP-Atlas SRX ID SRX4143063 and 
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SRX4143067) ChIP-seq data was accessed from ChIP-Atlas172,185. The standards were 

filtered for peaks with -log10(p-value) > 10 and adjacent peaks were merged if they were 

within 1,000 bp. 

Custom scripts were used to threshold over unique values of the ranking metric 

to define predicted truth and false, which were intersected with the ChIP-seq standards 

to fill out the confusion matrix. True negatives are defined as peaks that did not meet the 

threshold for significance and were not annotated in the ChIP-seq standard. Secondary 

properties such as precision, recall, and FPR, were calculated from the primary 

properties. ROC curves were made by plotting precision versus false positive rate; PR 

curves were made by plotting precision versus recall. The area under the AUROC and 

AUPR curves were approximated with Riemann Sums using trapezoids.  

2.6.3  Cell Culture and CUT&Tag Methods 

2.6.3.1 Cell Lines 

Kasumi-1 cells (ATCC) were cultured in RPMI (Gibco) supplemented with 20% 

fetal calf serum (FCS, HyClone), 2 mM GlutaMAX (Gibco), 100 units/mL Penicillin, and 

100 ug/mL Streptomycin (Gibco). Cells were cultured at 5% CO2 and 37°C. Cell lines 

were tested monthly for mycoplasma contamination. 

 

2.6.3.2  CUT&Tag 

Benchtop CUT&Tag was performed as previously described8. In brief, Kasumi-1 

cells were counted, harvested, and centrifuged for 5 min at 300xg at room temperature. 

Cells were washed two times in 1.5 mL wash buffer (20 mM HEPES pH 7.5, 150 mM 

NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail). Concanavalin A magnetic 
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coated beads (Bangs Laboratories) were activated in binding buffer by washing two 

times (20 mM HEPES pH 7.5, 10 mM KCl, 1 mM CaCl2, 1 mM MnCl2). Washed cells 

were separated into 100,000 cell aliquots and 10 ul of activated beads were added to 

each sample. Samples rotated at room temperature end over end for 7 minutes. Beads 

were separated with a magnetic and supernatant was removed. 1 μl of primary antibody 

was diluted 1:50 in antibody buffer (20 mM HEPES pH 7.5, 150mM NaCl, 0.5 mM 

Spermidine, 1× Protease inhibitor cocktail, 0.05% digitonin, 2 mM EDTA, 0.1% BSA). 

The primary antibodies used were: H3K27ac (ab4729, Abcam) and Normal Rabbit IgG 

(#2729, CST). Cells were incubated overnight at 4°C on a nutator. Primary antibody was 

replaced with a guinea-pig anti rabbit secondary antibody (Antibodies Online, cat. no. 

ABIN101961) diluted to 1:100 in wash buffer. Samples were incubated for 45 minutes at 

room temperature on nutator. Secondary antibody was removed, and samples were 

washed 2X in dig-wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM 

Spermidine, 1× Protease inhibitor cocktail, 0.05% Digitonin). pA-Tn5 transposase, 

prepared and loaded with adaptors as previously described23, was diluted 1:250 in dig-

300 buffer (20 mM HEPES pH 7.5, 300 mM NaCl, 0.5 mM Spermidine, 1× Protease 

inhibitor cocktail, 0.01% digitonin) and added to samples. Samples incubated for 1 hour 

at room temperature on nutator. Samples were washed 2X with dig-300 buffer then 

resuspended in tagmentation buffer (dig-300 buffer with 10 mM MgCl2). Samples were 

incubated at 37°C for 1 hour. DNA was extracted with a DNA Clean & Concentrator-5 kit 

(ZYMO). Samples were amplified by PCR using custom Nextera primers at 400 nM and 

NEBNext HiFi 2x PCR Master Mix (New England Biolabs)186. PCR conditions were set 

to: 72°C for 5 minutes, 98°C for 30 seconds, 14-27 cycles of 98°C for 10 sec, 63°C for 

10 sec, and 72°C for 1 minute. Libraries were purified with AMPure Beads (Beckman) 

and sequenced on a NextSeq 500 sequencer (Illumina) using 37 BP PE sequencing by 
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Massive Parallel Sequencing Shared Resource at Oregon Health and Science 

University. 

 

2.6.3.3  ATAC-seq 

Samples were prepared as previously described187. In brief, cells were 

resuspended tagmentation master mix (25 ul of 2× tagmentation buffer, 2.5 ul of TDE1 

[Illumina], 0.5 ul of 1% digitonin; 2x tagmentation buffer: 66 mM Tris-Acetate, pH 7.8, 

132 mM potassium acetate, 20 mM magnesium acetate, 32% v/v N,N-

Dimethylformamide). Samples were incubated at 37°C for 30 minutes. DNA was purified 

using Zymo Clean and Concentrator 5 Kit (Zymo). Transposed DNA was amplified and 

purified as described previously with adapted primers188,189. Samples were quantified 

using Qubit dsDNA HS Assay Kit (Invitrogen), pooled, and sequenced by Genewiz with 

a HiSeq-X (Illumina) using 75 BP PE sequencing. 
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2.7.3  Availability of data and materials 

GoPeaks is free to use and is publicly accessible on GitHub 

(https://github.com/maxsonBraunLab/gopeaks)190.  A stable version of the GitHub 

repository is available through Zenodo 

(https://zenodo.org/record/6413077#.YkydK5PMKAl)191. Custom scripts used to compare 

the peak calling algorithms are available in the gopeaks-compare repository 

(https://github.com/maxsonBraunLab/gopeaks-compare)192. The raw and processed 

sequencing datasets generated during the current study are available in the NCBI Gene 

Expression Omnibus (GEO) under accession number GSE190793175,193. The K562 

H3K4me3 (GEO accession GSM3536516), H3K4me1 (GEO accession GSM3536518), 

H3K27me3 (GEO accession GSM3560261), and IgG (GEO accession GSM3560264) 

CUT&Tag datasets from Kaya-Okur et al. 2019 analyzed during the current study are 

available in the NCBI GEO23,175,194–197. The K562 H3K4me3 (ENCODE ID 

ENCFF246IEW), H3K4me1 (ENCODE ID ENCFF590NGQ), and H3K27me3 (ENCODE 

ID ENCFF795ZOS) ChIP-seq datasets analyzed during the current study are available in 

ENCODE171,176,198–201. The Kasumi-1 H3K27ac (ChIP-Atlas SRX ID SRX4143063 and 

SRX4143067) ChIP-seq data analyzed during the current study is available in ChIP-

Atlas172,185,202,203.  
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2.8 Supplementary figures 

 

Figure S2.1: GoPeaks demonstrates comparable sensitivity and specificity 
in identifying H3K4me3 ChIP-seq standard peaks from CUT&Tag data.  
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a, b. Area under the curve (AUC) of a. ROC and b. PRC from Figure 2.4 for each 

peak calling method. Each bar is labeled by the value it represents. Colors 

indicate the peak calling method. c. Heatmap of global signal from unique 

H3K4me3 CUT&Tag peaks identified by each method in Figure 2.4.  
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Figure S2.2: GoPeaks demonstrates comparable sensitivity and specificity 
in identifying H3K4me1 ChIP-seq standard peaks from CUT&Tag data.  
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a, b. AUC of a. ROC and b. PRC from Figure 2.5 for each peak calling method. 

Each bar is labeled by the value it represents. Colors indicate the peak calling 

method. c. Heatmap of global signal from unique H3K4me1 CUT&Tag peaks 

identified by each method in Figure 2.5. d. Comparison of unique peaks that are 
identified by each peak calling algorithm and are also present in the ChIP-seq 

standard. Each bar is labeled by the number of peaks it represents. Colors 

indicate the peak type.  
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Figure S2.3: GoPeaks demonstrates improved sensitivity and specificity in 
identifying H3K27me3 ChIP-seq standard peaks from CUT&Tag data.  
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a, b. AUC of a. ROC and b. PRC from Figure 2.6 for each peak calling method. 

Each bar is labeled by the value it represents. Colors indicate the peak calling 

method. c. Heatmap of global signal from unique H3K27me3 CUT&Tag peaks 

identified by each method in Figure 2.6. d. Distribution of read counts by peak 
width. Each dot represents the read count and peak width of a single detected 

peak. Colors indicate the peak calling method. e. Comparison of unique peaks 

identified by each peak calling algorithm and how many are also present in the 

ChIP-seq standard. Each bar is labeled by the number of peaks it represents. 

Colors indicate the peak type.  
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Figure S2.4: GoPeaks demonstrates improved sensitivity and specificity in 
identifying H3K27ac ChIP-seq standard peaks from CUT&Tag data.  
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a, b. AUC of a. ROC and b. PRC from Figure 2.7 for each peak calling method. 

Each bar is labeled by the value it represents. Colors indicate the peak calling 

method. c. Heatmap of global signal from unique H3K27ac CUT&Tag peaks 

identified by each method in Figure 2.7. d. Comparison of unique peaks identified 
by each peak calling algorithm and how many are also present in the ChIP-seq 

standard. Each bar is labeled by the number of peaks it represents. Colors 

indicate the peak type. e. Distribution of read counts by peak width. Each dot 

represents the read count and peak width of a single detected peak. Colors 

indicate the peak calling method. 
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 Chapter 3: Predicting transcription factor 
activity using prior biological information 

 
 

§ We have developed Priori, a method to predict transcription factor activity 

from RNA sequencing data.  

§ Priori utilizes literature-supported regulatory information to identify 

transcription factor-target relationships. It then applies linear models to 

determine the impact of transcription factor regulation on the expression 

of its target genes.  

§ Results from a third-party benchmarking pipeline reveals that Priori 

detects aberrant activity from 124 gene perturbation experiments with 

higher sensitivity and specificity than 11 other methods.  

§ Our work demonstrates that Priori uniquely discovered significant 

determinants of survival in breast cancer and identified mediators of drug 

response in leukemia. 

 
 

This work has been published in Cell iScience:   

Yashar WM, Estabrook J, Holly HD, Somers J, Nikolova O, Babur Ö, Braun TP, 

Demir E. Predicting transcription factor activity using prior biological information. Cell 

iScience 2024 January 31204 
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3.1  Abstract 

Dysregulation of normal transcription factor activity is a common driver of 

disease. Therefore, it is important to detect aberrant transcription factor activity to better 

understand disease pathogenesis. We have developed Priori, a method to predict 

transcription factor activity from RNA sequencing data. Priori has two key advantages 

over existing methods. First, Priori utilizes literature-supported regulatory information to 

identify transcription factor-target relationships. It then applies linear models to 

determine the impact of transcription factor regulation on the expression of its target 

genes. Second, results from a third-party benchmarking pipeline reveals that Priori 

detects aberrant activity from 124 gene perturbation experiments with higher sensitivity 

and specificity than 11 other methods. We applied Priori and other top-performing 

methods to predict transcription factor activity from two large primary patient datasets. 

Our work demonstrates that Priori uniquely discovered significant determinants of 

survival in breast cancer and identified mediators of drug response in leukemia. 

3.2  Introduction 

The coordinated expression and activity of transcription factors are fundamental 

mechanisms in establishing and maintaining cell identity and function. Transcription 

factors are key regulatory proteins that bind to cis-regulatory DNA sequences, including 

promoters and enhancers, and modulate gene transcription44,45. Dysregulation of these 

normal transcription factor functions frequently contributes to the development of a 

pathogenic cell phenotype46,47. Abnormal transcription factor activity can result from 

mutations in the putative cis-regulatory DNA binding sequences or in the transcription 

factors themselves. Recent studies have highlighted the importance of aberrant 
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expression of pathogenetic transcription factors as drivers of disease47. MYC, which is 

important for cellular growth and proliferation, is the most frequently amplified oncogene. 

Elevated levels of MYC has been shown to promote tumorigenesis in a variety of tissue 

types47. In tumor cells expressing high levels of MYC, the transcription factor 

accumulates in cis-regulatory regions of genes associated with cellular proliferation and 

growth, resulting in transcriptional amplification of MYC’s gene regulatory network and, 

subsequently, abnormal cellular proliferation48,49. Therefore, detection of abnormal 

transcription factor activity is valuable for better understanding the mechanisms that 

underly disease pathogenesis. 

Gene expression profiling, including RNA sequencing (RNA-seq), is commonly 

used to monitor dynamic changes in transcription factors and their gene regulatory 

networks. Initial studies to infer transcription factor activity only used transcription factor 

gene expression as a proxy for activity50–52. However, this approach has several 

shortcomings. Gene expression is only an indirect measurement of protein activity due 

to the complex mechanisms controlling protein synthesis and degradation53–55. Feedback 

loops may alter the expression of transcription factors in response to their regulatory 

activity47,56–58. Reliable predictions of transcription factor activity, therefore, cannot be 

limited to evaluating transcription factor expression alone. 

An alternative approach to inferring transcription factor activity is to assess the 

expression of their downstream target genes50–52. This approach has two major benefits. 

First, evaluation of hundreds or thousands of downstream targets instead of a single 

transcription factor likely improves the prediction robustness. While some of these 

targets may be context-specific, analyzing them in aggregate likely improves the 

prediction generalizability across many contexts. Second, as target gene expression is 

downstream of transcription factor control, these signatures are expected to reflect the 

actual transcriptional impact more accurately. Therefore, accounting for the downstream 
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impact of transcription factors on its gene regulatory networks is important for activity 

inference.   

Multiple methods have been developed to quantify transcription factor activity 

from gene expression data. These approaches can be grouped based on how they 

select gene expression features. Methods like Univariate Linear Model (ULM) and 

Multivariate Linear Model (MLM) use every gene in a dataset, nominating transcription 

factors as a covariate that best estimates the expression of all other genes59. However, 

these methods develop activity signatures using genes that may not have a true 

biological relationship to the transcription factor of interest. Gene set approaches like 

Over Representation Analysis (ORA), Fast Gene Set Enrichment (FGSEA), Gene Set 

Variation Analysis (GVSA), and AUCell infer activity using sets of published transcription 

factor target genes or target genes curated by experts60–63.  While gene set 

methodologies are simple and popular, they are susceptible to the quality and 

comparability of gene set signatures64. Network inference approaches, including 

Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe), infer gene 

regulatory networks based on the covariance of transcription factors and its putative 

targets65,66. This process is not completely unsupervised, however, as ARACNe requires 

a user-defined list of transcription factors in order to infer gene regulatory networks65,66. 

The same group that developed ARACNe also created Virtual Inference of Protein-

activity by Enriched Regulon analysis (VIPER) to infer transcription factor activity from 

ARACNe gene expression signatures67. The challenge with these approaches is 

deconvoluting combinatorial regulation, where the expression of a target gene is 

controlled by multiple transcription factors. While some of these methods, including 

VIPER, have an option to correct for this, it remains difficult to infer transcriptional 

networks as there are many possible solutions that can explain the underlying data50,68. 

While these methods deploy various techniques to generate activity scores using the 
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expression of downstream target genes, most do not select their target gene features 

from literature-supported transcriptional relationships.  

Recent studies have highlighted that grounding predictions using transcription 

factor activity methods remains challenging68–72. A rigorous evaluation of widely-used 

transcription factor algorithms demonstrated that most methods do not robustly detect 

perturbed transcription factors63. Despite this, there are precision medicine clinical 

studies that use inferred transcription activity from bulk RNA-seq as a marker to guide 

clinical decisions. While there is an increasing number of single-cell and spatial -omic 

modalities available to clinical researchers, these studies as well as many larger cohorts 

and clinical trials most commonly use markers identified from bulk sequencing of RNA or 

DNA. Therefore, it is critical to develop methods that can robustly detect aberrant 

transcription factor activity from primary patient bulk RNA-seq data.  

Here, we propose an approach that uses prior, peer-reviewed biological 

information to infer transcription factor activity called Priori. Our method has two major 

advantages over the existing methods. First, Priori identifies transcription factor target 

genes using carefully extracted transcriptional regulatory networks from Pathway 

Commons205,206. This resource continually collects information on biological pathways 

including molecular interactions, signaling pathways, regulatory networks, and DNA 

binding. Pathway Commons currently contains data from 22 high-quality databases with 

over 5,700 detailed pathways and 2.4 million interactions. Using the transcriptional 

relationships from Pathway Commons, Priori fits linear models to the expression of 

transcription factors and their target genes. These models allow Priori to understand the 

impact and direction of transcription factor regulation on its known target genes. Second, 

comparison with a third-party benchmarking workflow reveals that Priori detects aberrant 

transcription factor activity from 124 gene perturbation experiments with higher 

sensitivity and specificity than 11 other methods. We applied Priori and three other 
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methods nominated from the benchmarking workflow to generate activity scores from 

two large primary patient datasets, TCGA BRCA and Beat AML. We demonstrate that 

Priori can be deployed to discover significant predictors of survival in breast cancer as 

well as identify mediators of drug response in leukemia from primary patient samples 

that were not robustly detected using the other methods.  

3.3  Results 

3.3.1  Priori uses prior biological information to infer 
transcription factor activity 

For each transcription factor in an RNA-seq dataset, Priori generates an activity 

score (Figure 3.1A). The activity score is a weighted, aggregate statistic that reflects the 

impact and direction of transcription factor regulation on its target genes. Priori first 

identifies the known target genes for each transcription factor in a dataset from Pathway 

Commons (or another network provided by the user)205,206. Priori then assigns weights to 

each target gene by correlating the target gene expression to its transcription factor 

(Equation 5). To identify the targets that are most impacted by transcription factor 

regulation, Priori separates the up- and down-regulated genes by their transcription 

factor-target gene weights and ranks their expression (Equation 6). These ranks are 

subsequently scaled by multiplying it with the transcription factor-target gene weights. 

The activity score for each transcription factor is then calculated by summing the 

weighted ranks (Equation 7). With this single-component model, researchers can use 

Priori to predict transcription factor activity from RNA-seq data.  

In order to compare how well Priori detects aberrant transcription factor activity to 

other methods, we used a third-party benchmarking workflow called decoupleR (Figure 
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Figure 3.1: Overview of the Priori methodology and benchmarking 
workflow.  
(A) Priori generates an activity score for each transcription factor in an RNA-seq 

dataset. Priori first extracts the downstream target genes for each transcription 

factor from Pathway Commons. Priori then calculates weights for each target 
gene by correlating the expression of each transcription factor to its target genes. 

Priori then ranks the absolute expression of all genes in the dataset and scales 

these ranks by the transcription factor-target gene weights. The summation of 

the weighted target gene ranks is the transcription factor activity score. (B) 

Schematic overview of the benchmarking workflow. We generated transcription 

factor activity scores for each method using normalized RNA-seq counts 

following single-gene knockdown or over-expression.  
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3.1B)63. The decoupleR workflow facilitated an unbiased, common evaluation scheme to 

determine how often each method correctly identified transcription factors that have 

been knocked-down or over-expressed from RNA-seq data, resembling the pathologic 

disruption of normal transcription factor regulation207. Using this workflow, we generated 

transcription factor activity scores for 16 methods, including Priori, using the default 

parameters (Table 3.1). Several of these methods were developed by the authors of the 

decoupleR workflow, including the standard, normalized (Norm), and corrected (Corr) 

versions of Weighted Mean (WMEAN),  Weighted Sum (WSUM), Univariate Decision 

Tree (UDT), and Multivariate Decision Trees (MDT)63. These authors also developed a 

normalized version of FGSEA. For methods that use prior information, we generated 

activity scores using the Pathway Commons transcriptional relationships. We ranked the 

transcription factor activity scores for each experiment and compared the ranks of 

perturbed and unperturbed transcription factors. We evaluated how often the perturbed 

transcription factor activity score was among the top activity scores in each experiment. 

The authors of the decoupleR pipeline defined this threshold by the number of perturbed 

transcription factors in the dataset. Since the number of unperturbed transcription factors 

vastly outnumbered the perturbed transcription factors, we implemented a down-

sampling strategy. For each down-sampling permutation, we calculated area under the 

precision recall curve (AUPRC) and receiver operating characteristic (AUROC) metrics. 

The results of this third-party benchmarking workflow allowed us to objectively compare 

the sensitivity and specificity of Priori to detect perturbed transcription factor activity to 

11 other methods.   

Priori, along with other methods that use prior information, generated activity 

scores with transcriptional relationships from Pathway Commons. AUROC and 

AUPRC values were calculated for each down-sampling permutation. 100 down-

sampling permutations were performed to compare an equal number of 

perturbed and unperturbed genes. 
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Table 3.1: Transcription factor activity methods evaluated using the 
decoupleR benchmarking workflow. 

Feature 
Selection 

Method 
Acrony

m 
Normalize
d Method 

Correcte
d Method 

Reference 

All 

features 

Univariate 

Linear Model 
ULM - - 

Teschendorff 

and Wang 

npj genomic 

medicine 

(2020)59 

Multivariate 

Linear Model 
MLM - - 

Teschendorff 

and Wang 

npj genomic 

medicine 

(2020)59 

Gene set 

Over 

Representati

on Analysis 

ORA - - 

Badia-i-

Mompel et al. 

Bioinformatic 

Advances 

(2022)63 

Fast Gene 

Set 

Enrichment 

FGSEA 
Norm 

FGSEA 
- 

Korotkevich 

et al. bioRxiv 

(2021)60 

Gene Set 

Variation 

Analysis 

GVSA - - 

Hänzelmann 

et al. BMC 

Bioinformatic

s (2013)61 

AUCell - - - 
Aibar et al. 

Nature 
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Methods 

(2017)62 

Inferred 

networks 

Virtual 

Inference of 

Protein-

activity by 

Enriched 

Regulon 

analysis 

VIPER - - 

Alvarez et al. 

Nature 

Genetics 

(2016)67 

Curated 

gene 

networks 

Weighted 

Mean 
WMEAN 

Norm 

WMEAN 

Corr 

WMEAN 

Badia-i-

Mompel et al. 

Bioinformatic 

Advances 

(2022)63 

Weighted 

Sum 
WSUM 

Norm 

WSUM 

Corr 

WSUM 

Badia-i-

Mompel et al. 

Bioinformatic 

Advances 

(2022)63 

Univariate 

Decision 

Tree 

UDT - - 

Badia-i-

Mompel et al. 

Bioinformatic 

Advances 

(2022)63 

Multivariate 

Decision 

Trees 

MDT - - 

Badia-i-

Mompel et al. 

Bioinformatic 

Advances 

(2022)63 
ID: Norm = normalized; Corr = corrected. 
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3.3.2  Priori identifies perturbed transcription factors 
with greater sensitivity and specificity than other 
methods 

The decoupleR workflow evaluates transcription factor activity methods using a 

curated dataset from Holland et al.207 This dataset includes RNA-seq data from 94 

knockdown and 30 over-expression experiments of 62 different transcription factors. 

Before using this dataset to compare transcription factor activity methods, we wanted to 

evaluate whether transcription factor knockdown resulted in decreased normalized 

expression and over-expression resulted in increased normalized expression. Moreover, 

since Priori and other methods use the transcription factor expression to generate 

activity scores, we wanted to understand the extent to which transcription factor 

expression alone could predict gene perturbation status. To assess this, we compared 

the normalized expression of perturbed transcription factors to unperturbed genes. We 

found that the normalized expression of knocked-down transcription factors was 

significantly less than unperturbed genes (Figure S3.1A). While over-expressed 

transcription factors were associated with a higher normalized expression, it was not 

significantly different than unperturbed genes (Figure S3.1B). This data indicates that 

while transcription factor expression is a reasonable indicator of gene perturbation, other 

features are needed to confidently predict aberrant activity.  

Using the decoupleR workflow, we generated activity scores for 16 transcription 

factor activity methods using RNA-seq data from the 124 gene perturbation experiments. 

To understand the patterns in predicted activity across the methods, we correlated the 

activity scores (Figure 3.2A). The Priori activity scores were dissimilar from the other 

methods, indicating that Priori identified a unique pattern of transcription factor activity. 

To assess how well the methods detected perturbed transcription factors, we calculated  
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Figure 3.2: Priori detects aberrant transcription factor activity with 
improved sensitivity and specificity.  
(A) Using the decoupleR workflow, transcription factor activity  scores were 
generated using the perturbation dataset. Spearman correlation of the activity 

scores for each method.  
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AUPRC and AUROC metrics for each down-sampling permutation (Figure 3.2B-D). 

Priori had a greater AUPRC and AUROC values than the other methods across all 

experiments. ULM, Norm WMEAN, Norm WSUM, and VIPER were the next closest 

methods by AUPRC and AUROC. Collectively, these experiments show that Priori 

detects perturbed transcription factors with greater sensitivity and specificity than other 

methods. 

While our analyses showed that Priori can accurately identify perturbed 

transcription factors, we wanted to understand the extent to which prior information from 

other datasets impacted its performance. Pathway Commons is one of several large 

databases that curates transcriptional relationships. DoRothEA is a comprehensive 

resource, which assembles transcription factor-target gene relationships from ChIP-seq 

peaks, inferred regulatory networks (including ARACNe), transcription factor binding 

motifs, and literature-curated resources208. OmniPath, on the other hand, integrates 

intra- and inter-cellular signaling networks in addition to transcriptional relationships from 

100 different resources, including DoRothEA and Pathway Commons209. To evaluate the 

impact of prior information on each method, we used the decoupleR workflow to 

generate activity scores using transcription factor-target gene interactions from 

DoRothEA or OmniPath instead of Pathway Commons. We used the default parameters 

for each method, including a lower limit of 15 downstream targets for the Priori analyses. 

We found that in both instances, Priori had higher AUPRC and AUROC values than the 

other methods (Figure 3.2E and F; Figure S3.1C-F). Priori exhibited similar AUPRC and 

(B) Activity scores were generated using Pathway Commons transcriptional 

relationships. Mean AUPRC and AUROC values across the 100 down-sampling 

permutations for each method. (C and D) The distribution of (C) AUPRC and (D) 

AUROC values across the 100 down-sampling permutations from (B). (E and F) 

Activity scores were generated using (E) DoRothEA or (F) OmniPath 
transcriptional relationships. Mean AUPRC and AUROC values across the 100 

down-sampling permutations for each method. 
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AUROC values when using transcriptional relationships from DoRothEA, OmniPath, or 

Pathway Commons. However, Priori had the highest mean AUPRC and AUROC values 

using the Pathway Commons transcriptional relationships. Our analyses demonstrated 

that regardless of the prior transcriptional relationship information, Priori detected 

perturbed transcription factor activity with improved sensitivity and specificity. 

We evaluated how transcriptional relationships from Pathway Commons, 

DoRothEA, and OmniPath affected the performance of each method. However, these 

databases do not provide the appropriate information for methods, including VIPER, that 

were designed to generate activity scores from networks with signed edges that are 

weighted by likelihood. While decoupleR does not allow for networks with signed edges, 

we wanted to understand how VIPER’s performance changed with ARACNe-generated 

networks with likelihood-weighted edges63. The authors of ARACNe have published 

cancer-type-specific networks trained on TCGA RNA-seq datasets66. We identified the 

cancer types and organ sites associated with each cell line tested in the perturbation 

dataset (Figure S3.2A-C). With decoupleR, we generated VIPER activity scores using 

any TCGA ARACNe network that was trained on a cancer type that was also evaluated 

in the perturbation dataset. We observed that VIPER had greater AUPRC and AUROC 

values when using the transcriptional relationships from Pathway Commons than those 

from the TCGA ARACNe networks (Figure S3.2D). ARACNe can also be used to 

reverse engineer gene regulatory networks from a RNA-seq dataset66. Using the new 

implementation of ARACNe, ARACNe-AP, we inferred transcriptional relationships using 

the perturbation RNA-seq data. We observed improved AUPRC and AUROC values 

when VIPER used ARACNe-AP transcriptional relationships as prior information (Figure 

S3.2E). However, these AUPRC and AUROC values were still not greater than Priori 

using prior transcriptional relationships from Pathway Commons.  
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3.3.3  Priori’s predictions are robust to noise 

We demonstrated that Priori detects perturbed transcription factors with improved 

sensitivity and specificity, particularly when it used Pathway Commons transcriptional 

relationships as prior information. However, we wanted to understand how robust these 

predictions are to noise. For methods that use prior information, the major sources of 

noise are introduced in the gene expression data and the prior transcriptional 

relationships. First, to evaluate the effect of noisy gene expression data, we introduced 

increasing amounts of zero-centered, Gaussian-distributed noise to the Holland et al. 

perturbation dataset. We evaluated the accuracy of perturbed transcription factor 

predictions using the decoupleR pipeline as described above. We observed a drop in 

AUPRC and AUROC in most methods when more than one standard deviation of 

gaussian-centered noise was introduced (Figure S3A and B). Notably, Priori could still 

accurately identify perturbed transcription factors even when five standard deviations of 

noise was added. Second, to understand the impact of noisy prior information, we 

gradually removed the number of transcription factor-target gene relationships from the 

prior Pathway Commons network. We observed that Priori and other methods that use 

prior information had similar AUPRC and AUROC values as long as 20% of the network 

was retained (Figure S3C and D). It was unclear, however, whether this pattern was due 

to the diminished number of transcriptional relationships or to the masking of true 

relationships. To test this, we randomized the target genes in the Pathway Commons by 

sampling with replacement any feature in the gene expression dataset. We observed a 

drop in prediction accuracy when more than 60% of the target genes were randomized 

(Figure S3E and F). These analyses demonstrate that Priori is robust to artificial noise 

introduced to the gene expression data and can accurately identify perturbed 

transcription factors as long as 60% of the Pathway Commons network is retained. 
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Figure 3.3: Evaluation of the direction and impact of transcriptional 
regulation is critical for Priori to detect aberrant transcription factor 
activity.  
(A) Schematic showing how transcription factor activity scores were generated 

using transcription factor expression only (in contrast to both transcription factor 

and target gene expression as shown in Figure 3.1A).  
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3.3.4  Priori’s improved performance is due to evaluating 
the direction of transcriptional regulation 

We evaluated how Priori’s prediction accuracy was affected by artificial noise. 

However, it was unclear what enabled Priori to detect aberrant activity better than other 

methods. We previously demonstrated that transcription factor expression is a 

reasonable indicator of gene perturbation. We wanted to understand the extent to which 

assessment of transcription factor expression enabled Priori to detect perturbed 

transcription factors. We designed a variant of Priori that only uses transcription factor 

expression to infer transcription factor activity (Figure 3.3A). Like Priori, this method first 

identifies known transcription factors in an RNA-seq dataset from Pathway Commons. 

The alternative method first identified transcription factors in the perturbation 

dataset from Pathway Commons. The method then ranks the transcription 

factors by expression and reports the normalized rank as the activity score. (B) 

Activity scores were generated using the method outlined in (A). Transcriptional 

relationships from Pathway Commons were used as prior information. Mean 
AUPRC and AUROC values across the 100 down-sampling permutations. Mean 

AUPRC and AUROC values from the methods in Figure 3.2B are also shown. 

(C) Priori identified transcription factor target genes in the perturbation dataset 

using Pathway Commons transcriptional relationships. The expression of 

transcription factors and their target genes were evaluated using Spearman 

correlation. Statistical significance was determined using the Spearman 

correlation p-value with an FDR post-test correction. The Spearman correlation 
coefficient was used to determine down-regulated (R2 < 0) and up-regulated 

target genes (R2 > 0). (D) Absolute Spearman correlation coefficient of the 

expression of transcription factors and their down-regulated or up-regulated 

target genes. Statistical significance was determined by a two-sided Student’s t-

test. (E) Schematic showing how Priori was altered to assess only the impact of 

transcriptional regulation (in contrast to both direction and impact of regulation as 

shown in Figure 3.1A). (F) Using the decoupleR workflow, transcription factor 

activity  scores were generated using the perturbation dataset. Spearman 
correlation of the activity scores for each method. 
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While this alternative method also deploys rank-based analyses, the activity score is the 

normalized rank of the expression of a given transcription factor relative to others in a 

dataset (Equation 8). We used the decoupleR benchmarking pipeline to evaluate how 

well this alternative method detects aberrant transcription factor activity using known 

transcription factors from Pathway Commons. While this alternative method had a higher 

AUROC and AUPRC than the other methods, Priori still detected the perturbed 

transcription factors with higher sensitivity and specificity (Figure 3.3B). This data implies 

that while assessment of transcription factor expression is important for detection of 

aberrant activity, performance is improved when target gene expression is evaluated as 

well.   

While Pathway Commons does not provide signed relationships, we designed 

Priori to infer the impact and direction of transcription factor regulation on its target 

genes. Priori correlates the expression of transcription factors and their known target 

genes. Priori subsequently assigns the impact and direction of transcriptional regulation 

as the sign and coefficient of the Spearman correlation, respectively. Using the sign of 

the Spearman correlation, we observed that Priori inferred 2,507 more significant up-

regulated targets than down-regulated target genes in the perturbation dataset (Figure 

3.3C). Using the coefficient of the Spearman correlation, we observed that Priori 

predicted that transcription factors had a significantly greater impact on its up-regulated 

targets than its down-regulated target genes (Figure 3.3D). These analyses show that 

there are important directions of transcription factor regulation on their target genes. 

To understand how assessment of the direction of transcriptional regulation is 

important for detecting aberrant transcription factor activity, we created another variant 

of Priori that only evaluates the absolute impact of transcriptional regulation (Figure 

3.3E). Like Priori, this method deploys a rank-based analysis to evaluate the expression 

of transcription factors and their target genes (Equation 9). However, this alternative 
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method does not delineate target genes by their direction of transcriptional regulation, 

which is indicated by the sign of the Spearman correlation. We used the decoupleR 

pipeline to generate activity scores using the Pathway Commons transcriptional 

relationships as prior information. These activity scores were highly dissimilar to the 

scores generated by Priori that evaluated both the direction and impact of transcriptional 

regulation (R2 = 0.013; Figure 3.3F). Moreover, when Priori only uses the impact of 

transcriptional regulation to detect perturbed transcription factors, its AUPRC and 

AUROC values are less than when it uses both the direction and impact (Figure 3.3G). 

Accounting for direction of transcriptional regulation likely allows Priori to detect 

knocked-down and over-expressed transcription factors. We observed an expected 

decrease in scaled scores across all knockdown experiments when Priori evaluates both 

the direction and impact of transcriptional regulation (Figure 3.3H). Scaled scores less 

than zero indicate that the activity of a transcription factor is down-regulated compared 

to all other perturbed and unperturbed transcription factors in the dataset (and vice 

versa). These scaled scores are significantly less than the impact-only method. 

Consistently, Priori predicted an expected increase in activity to over-expressed 

transcription factors (Figure 3.3I). While these scores are not statistically different to the 

scores from the impact-only method, the mean predicted activity from the impact-only 

scores was less than zero. Overall, these analyses demonstrate that assessment of the 

direction and impact of transcriptional regulation allows Priori to detect aberrant 

transcription factor activity with improved sensitivity and specificity.  
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3.3.5  FOXA1 transcription factor activity is a significant 
determinant of survival among patients with breast 
cancer 

Since we demonstrated that Priori identifies perturbed regulators with greater 

sensitivity and specificity than other methods, we sought to determine whether Priori 

could be used to understand transcription factor drivers of disease. We used Priori to 

generate transcription factor activity scores for 637 patients with invasive breast ductal 

carcinoma (BIDC) from the TCGA BRCA cohort210. To understand the impact of prior 

information on these scores, we generated scores using transcriptional relationships not 

only from Pathway Commons, but from DoRothEA and Omnipath as well. In addition, we 

compared these predicted scores to activity scores from the three top methods identified 

in the decoupleR benchmark analysis: VIPER, ORA, and Norm WMEAN. Regardless of 

the prior information, the Priori scores from these patients clustered by breast cancer 

subtypes (Figure 3.4A; Figure S3.4A-C). Like in the Holland et al. perturbation dataset, 

we observed more up-regulated than down-regulated target genes (Figure S3.4D). 

However, we did not observe a clear separation of  breast cancer subtypes when using 

activity scores from the other methods (Figure S3.4E-G). BIDC is classified into three 

molecular subtypes: luminal, HER2, and basal cancers211–215. The most common types, 

luminal and basal breast cancers, are distinguished by hormone receptor expression. 

Luminal breast cancers express estrogen and progesterone receptors, whereas basal 

breast cancers do not. Unsupervised clustering of the Priori Pathway Commons scores 

revealed that the predicted activity of transcription factors that regulate the expression of 

estrogen receptors (ESR1) and progesterone receptors (NR3C1) were decreased in the 

basal breast cancer cluster (Cluster 2; Figure 3.4B). Moreover, Cluster 2 had decreased 

predicted GATA3 activity, which is critical to luminal cell specification, as well as  
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Figure 3.4: FOXA1 transcription factor activity is a significant determinant 
of survival for patients with BIDC.  
(A) Priori scores were generated from RNA-seq of 637 patients with BIDC. 

UMAP dimensional reduction and projection of Priori scores. Dots are colored by 

the breast cancer molecular subtype. (B) Unsupervised hierarchical clustering of 

Priori scores generated in (A). (C) Mean absolute difference of Priori scores from 

patients in the clusters 1 and 2 defined in (B). (D) Distribution of FOXA1 Priori 

scores among patients in clusters 1 and 2 defined in (B). Statistical significance 
was determined by a two-sided Student’s t-test.  
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increased predicted MYC activity, which is consistent with previous studies211,216–218. 

These analyses show that Priori transcription factor activity scores delineated primary 

BIDC patients by their molecular subtype.   

While the transcription factors associated with luminal and basal breast cancer 

are likely important in distinguishing BIDC patient samples by their molecular subtype, 

the greatest difference in predicted Priori activity between the two clusters was FOXA1 

(Figure 3.4C and D; Table 3.2). FOXA1 is a forkhead protein associated with mammary 

gland development. While the difference in FOXA1 activity was significantly different 

between the patient clusters defined by the DoRothEA and OmniPath Priori scores, its 

activity was much less pronounced between the clusters defined by the other methods 

(Figure S3.5A-E; Table 3.2). Evaluation of the greatest difference in predicted activity 

between the other networks and methods nominated transcription factors other than 

FOXA1. While FOXA1 was the second greatest difference in predicted activity between 

the Priori DoRothEA and OmniPath scores, these methods instead nominated ESR1 

(Figure S3.5F and G). Notably, FOXA1 is a known regulator of ESR1219. The other 

methods nominated different transcription factors, including OR10H2 by VIPER, 

ACTL6A by ORA, and TGFβ2 by Norm WMEAN (Figure S3.5H-J; Table 3.2). Together, 

these analyses show that we were able nominate drivers of basal and luminal breast 

cancer with Priori, identifying that luminal cancer samples are associated with high 

predicted FOXA1 activity. 

(E-G) Kaplan-Meier survival analysis of patients grouped by (E) molecular 

subtype, (F) FOXA1 Priori scores, or (G) FOXA1 normalized gene expression 

counts. Patients among the top 90% of Priori scores or counts were grouped into 

"High" and those in the bottom 10% were grouped into "Low". Statistical 

significance was determined by a log-rank Mantel-Cox test. (H) Differential gene 
expression network enrichment between clusters defined in (B). Select 

significantly enriched nodes are shown.  
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Table 3.2: The top 5 differences in predicted transcription factor 
activity between BIDC primary patient sample clusters. 

Method Network 
Transcription 

Factor 

Absolute 
Difference in 

Activity (Cluster 
1 vs 2) 

Priori 

Pathway 

Commons 

FOXA1 2.382 

ESR1 2.324 

PAX2 2.235 

GATA3 2.226 

XBP1 2.173 

DoRothEA 

ESR1 2.209 

FOXA1 2.099 

GATA3 2.008 

HOXB13 2.007 

MYOD1 2.002 

OmniPath 

ESR1 2.279 

FOXA1 2.271 

GATA2 2.236 

GATA3 2.199 

TFAP2C 2.027 

VIPER ARACNe BRCA 

OR10H2 3.2 

PBRM1 3.136 

SAP130 2.979 

ELOB 2.79 
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ZIC2 2.783 

ORA 
Pathway 

Commons 

ACTL6A 1.394 

RUVBL1 1.394 

RUVBL2 1.394 

KAT5 1.154 

TRRAP 1.048 

Norm WMEAN 
Pathway 

Commons 

TGFB2 62.63 

RHOA 48.07 

EDNRA 46.81 

PTHLH 32.89 

LEP 22.77 

 
To understand the clinical impact of transcription factor activity in breast cancer, 

we evaluated survival differences among the patients in the BIDC cohort. Patients 

grouped by their molecular subtypes demonstrated no significant difference in survival 

(Figure 3.4E). When we grouped patients by predicted FOXA1 Priori activity scores, 

patients with low FOXA1 activity had a significantly decreased chance of survival, which 

is consistent with previous reports (Figure 3.4F)220. We did not observe a survival 

difference when patients were instead grouped by FOXA1 expression or by the FOXA1 

activity scores generated by Priori using DoRothEA or OmniPath prior networks or the 

other methods (Figure 3.4G; Figure S3.6). Additionally, we did not see a survival 

difference in the transcription factor drivers nominated by Priori using DoRothEA or 

OmniPath prior networks or the other methods (Figure S3.7A-E). ORA predicted that 

ACTL6A activity was either 1.91 or 3.30 in the vast majority of samples (52.7% and 

42.7%, respectively; Figure S3.7F). As a result, normal quantiles could not be 
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calculated, so all samples were included in the survival analysis. These data suggest 

that high FOXA1 transcription factor activity is protective of survival in BIDC.  

In order to understand how FOXA1 activity may mediate survival in BIDC, we 

generated a differential gene regulatory network between the two patient clusters 

identified by Priori using Pathway Commons transcriptional relationships (Figure 

3.4H)205,206,221. This analysis suggests two molecular mechanisms that distinguish 

luminal samples in Cluster 1 and basal samples in Cluster 2. First, we observed down-

regulation of a positive feedback loop of ESR1, FOXA1, XBP1, NF1, and FOS  in the 

basal Cluster 2 samples222. This is consistent with basal breast cancer, which is 

characterized by repression of estrogen receptor encoded by ESR1. Additionally, this 

analysis also shows that MYC downregulates FOXA1 cell cycle target genes, CCND1 

and CDKN1B, in basal breast cancer223. Downregulation of cell proliferation is a known 

mechanism of chemotherapy resistance in basal breast cancer224. These analyses 

nominate putative targets in the FOXA1 network that may regulate survival in BIDC.  

3.3.6  FOXO1 transcription factor activity mediates 
venetoclax resistance in leukemia 

Aberrant transcription factor activity is also an important regulator of drug 

resistance in multiple tumor types46,225–228. As we have shown that Priori nominates 

transcription factor regulation associated with breast cancer survival, we wanted to 

understand whether Priori could also be used to identify mediators of drug sensitivity. 

Since ex vivo drug screening data is not available in the TCGA datasets, we calculated 

Priori scores for 859 patients with acute myeloid leukemia (AML) from the Beat AML 

cohort229,230. This dataset provides paired baseline RNA-seq as well as ex vivo drug 

sensitivity data. Once again, we generated activity scores with Priori using transcriptional 
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relationships from Pathway Commons, DoRothEA, and Omnipath as well three of the 

top methods from the decoupleR benchmark analysis (VIPER, ORA, and Norm 

WMEAN). Consistent with the Holland et al. perturbation and TCGA BRCA datasets, we 

observed more up-regulated than down-regulated target genes (Figure S3.8A). To 

nominate transcription factors mediators of drug sensitivity, we correlated predicted 

transcription factor activity scores from each method to drug response. We found 11,075 

significant inhibitor-transcription factor activity relationships using Priori, 2,934 of which 

were also identified when using Priori scores that were generated from DoRothEA or 

OmniPath prior networks (Figure 3.5A; Figure S3.8B). In contrast, only 192 of Priori 

Pathway Commons relationships were identified by VIPER, ORA, and Norm WMEAN 

(Figure S3.8C). VIPER likely identified the most significant inhibitor-transcription factor 

activity relationships (29,682) because it generated scores for more transcription factors 

than the other methods (1,363; Figure S3.8D). Among the strongest correlations from 

Priori was predicted FOXO1 transcription factor activity with venetoclax resistance (R2 = 

-0.5895; Figure 3.5B). This relationship was the 33rd, 16th, and 10th highest correlations 

among Priori scores that used Pathway Commons, DoRothEA, or OmniPath as prior 

networks, respectively (Figure S3.8E and F). Venetoclax resistance is more highly 

correlated with predicted FOXO1 activity than FOXO1 expression alone (R2 = -0.499; 

Figure 3.5C). Notably, while FOXO1 Norm WMEAN activity scores were directly 

proportional to venetoclax resistance, the VIPER and ORA activity scores were anti-

correlated to venetoclax resistance (Figure S3.8G-I). These findings nominate FOXO1 

activity as a mediator of venetoclax activity in AML. 

Venetoclax induces cancer cell death by restoration of intrinsic mitochondrial 

apoptosis. Venetoclax blocks BCL2 from sequestering factors that activate pro-apoptotic 

BCL2 family proteins, such as BAX231. In mantle cell lymphoma (MCL), it has been 

reported that genomic regions of BAX and multiple other pro-apoptotic BCL2 family  
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proteins are bound by FOXO1232. The authors further demonstrated that disruption of 

FOXO1 activity sensitized MCL cell lines to venetoclax. However, the relationship 

between FOXO1 activity and venetoclax resistance has not been investigated in AML. 

Prior work has shown that monocytic AML is intrinsically resistant to venetoclax-based 

 

Figure 3.5: FOXO1 is a critical mediator of response to venetoclax in AML.  
(A) Priori scores generated from RNA-seq of 859 patients with AML. Spearman 
correlation of Priori scores and ex vivo drug response AUC data. (B and C) 

Spearman correlation of ranked venetoclax AUC and ranked (B) FOXO1 Priori 

scores or (C) FOXO1 normalized counts. Statistical significance was determined 

using the Spearman correlation p-value with an FDR post-test correction. (D and 

E) THP-1 cells were transduced with lentiviral particles harboring expression 

cassettes for hSpCas9 and a non-targeting or FOXO1 guide RNA. Cells were 

cultured for 3 days along a 7-point curve with venetoclax. Cell viability was 

assessed by CellTiter Aqueous colorimetric assay. ns = not significant; * = p < 
0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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therapy163. Given the results from our analysis of transcription factor activity in AML 

patients, we wanted to understand the extent to which FOXO1 knockdown could 

sensitize monocytic AML to venetoclax treatment. We used CRISPR-Cas9 to knock-out 

FOXO1 in THP-1 cells, a cell line model of monocytic leukemia (Figure S3.9). Both 

FOXO1 CRISPR guides significantly increased venetoclax sensitivity in this cell line 

model of monocytic AML, suggesting FOXO1 is an important mediator of venetoclax 

sensitivity (Figure 3.5D and E). These findings were consistent with the predictions from 

Priori (regardless of prior network) and Norm WMEAN, demonstrating how Priori can be 

used to detect transcription factor mediators of drug resistance. 

3.4  Discussion 

We have developed Priori, a computational algorithm that infers transcription 

factor activity using prior biological knowledge. The results from a third-party, unbiased 

benchmarking workflow demonstrate that Priori detects perturbed transcription factors 

with higher sensitivity and specificity than 11 other methods. Our analyses show that 

while accounting for transcription factor expression aids Priori in detecting perturbed 

transcription factors, Priori’s improved performance over other methods is likely due to 

assessment of the direction and impact of transcription factor regulation on their target 

genes. Using Priori, we identified FOXA1 activity as a regulator of survival in BIDC and 

nominated important downstream targets that may contribute to this survival 

difference220. Importantly, there was no significant survival difference among patients 

that were stratified using FOXA1 scores generated by VIPER, ORA, Norm WMEAN, or 

even Priori that used DoRothEA or OmniPath as prior information. Moreover, we used 

Priori to nominate transcription factor regulators of drug sensitivity in AML. We found that 

predicted FOXO1 activity by Priori is highly associated with venetoclax resistance. We 
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validated these findings in a cell line model of monocytic AML, which is resistant to 

venetoclax163. While Priori (regardless of prior information) and Norm WMEAN predicted 

that FOXO1 activity was associated with venetoclax resistance, VIPER and ORA 

strongly associated FOXO1 activity with venetoclax sensitivity.  

Priori leverages the Pathway Commons resource to identify known gene 

regulatory networks in gene expression data. While using the relationships from 

Pathway Commons enables Priori to ground its findings in peer-reviewed literature, this 

may limit the discovery of novel transcriptional relationships. Analyses from other groups 

suggest that prior-based method tend to replicate prior information233. Indeed, the 

analysis of BIDC patient samples revealed that Priori was able to identify known 

transcription factor drivers of BIDC from several biological datasets, including Pathway 

Commons, DoRothEA, and OmniPath. Our findings also showed that Priori detected a 

relationship between FOXA1 activity and BIDC survival. While it has been shown that 

high FOXA1 expression is associated with improved outcomes in patients with estrogen 

receptor-positive disease, these findings reveal a novel relationship between FOXA1 

activity in estrogen receptor-positive and receptor-negative disease220,234–236. Our 

analyses provide a novel mechanistic hypothesis that is ready for experimental 

investigation.  

Pathway Commons integrates publicly available RNA, DNA, and protein data 

sourced from a variety of tissue types. However, Pathway Commons is not designed to 

curate tissue-specific transcription factor gene regulatory networks. Cell context 

influences regulatory interactions between transcription factors and their downstream 

target genes47,237. The single-gene perturbation experiments, whose gene expression 

data we used to evaluate the transcription factor activity methods, were performed in 

numerous cell types. The small size of this dataset precluded a definitive evaluation of 

tissue-context as a determinant of method performance. However, we designed Priori to 
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allow researchers to include their own regulatory networks for context-specific evaluation 

of their experiments. Overall, Priori should generate robust predictions that are 

generalizable across many cellular contexts.  

In our study, we used RNA-seq data from large clinical cohorts to evaluate Priori. 

While we demonstrated that Priori can be used to identify determinants of survival and 

mediators of drug response in this context, more investigation is needed to understand 

Priori’s ability to predict transcription factor activity from smaller scale experiments. 

Notably, in a different study, we have applied a preliminary version of Priori to 

investigate the mechanism of combined FLT3 and LSD1 inhibition in FLT3-ITD AML238. 

We used Priori to identify important determinants of the drug combination response and 

showed that predicted activity of a putative drug combination target, MYC, decreased in 

six patient samples. Since Priori scores are normalized across all samples analyzed 

within the same run, we expect that Priori has more power to identify differences in 

transcription factor activity among larger cohorts of patients. Researchers can 

contextualize Priori scores from smaller scale experiments by generating scores from 

the large and small cohort RNA-seq data in the same run. Of course, this is only 

possible if the RNA-seq data has been consistently normalized and batch effects have 

been mitigated. We encourage researchers to only compare Priori scores that have 

been generated in the same run.  

In conclusion, results from this study showed that our transcription factor activity 

method, Priori, detects perturbed transcription factors with improved sensitivity and 

specificity. Using Priori, we found that predicted FOXA1 activity is a significant 

determinant of survival in BIDC. We nominated putative FOXA1 targets that may be 

important for this survival difference. Lastly, we found that predicted FOXO1 activity is 

highly correlated with venetoclax resistance. We validated these findings in a cell line 

model of AML that is intrinsically resistant to venetoclax.  
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3.5  Limitations of the study  

The decoupleR benchmarking workflow facilitated a robust and unbiased 

comparison of numerous transcription factor activity methods63. Employing the dataset 

curated by Holland et al., the workflow reported average AUROC and AUPRC values 

across all down-sampling runs as well as the transcription factor activity scores 

generated for each run207. However, the workflow did not report the positively identified 

perturbed transcription factors for each run. Consequently, our ability to investigate the 

distinctive characteristics of experiments (e.g., cell type, functional genetic technique, 

perturbed transcription factor) that might have influenced each method’s predictions was 

constrained. Further efforts are warranted to include these reporting metrics, enabling a 

more comprehensive understanding of the factors underlying Priori's proficiency in 

identifying perturbed transcription factor activity. 

3.6  Methods  

3.6.1  Key resources table 

 
REGENT OR 
RESOURCE 

SOURCE IDENTIFIER 

Deposited data 

Holland et al. 

perturbation 

dataset (RNA-

seq) 

Holland et al. 

2020207 

Used in this study: 

https://zenodo.org/records/8368697/files/ho

lland_rna_expr.tsv 

https://zenodo.org/records/8368697/files/holland_rna_expr.tsv
https://zenodo.org/records/8368697/files/holland_rna_expr.tsv
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Original source: 

https://zenodo.org/record/5645208/files/rna

_expr.rds?download=1  

Holland et al. 

perturbation 

dataset 

(metadata) 

Holland et al. 

2020207 

Used in this study: 

https://zenodo.org/records/8368697/files/ho

lland_rna_meta.tsv 

Original source: 

https://zenodo.org/record/5645208/files/rna

_expr.rds?download=1  

TCGA 

PanCancer 

Atlas Breast 

Invasive 

Carcinoma 

(RNA-seq) 

TCGA210 

Used in this study: 

https://zenodo.org/records/8368697/files/tc

ga_brca_normalized_counts.tsv 

Original source: 

https://www.cbioportal.org/study/summary?

id=brca_tcga_pan_can_atlas_2018  

TCGA 

PanCancer 

Atlas Breast 

Invasive 

Carcinoma 

(metadata) 

TCGA210 

Used in this study: 

https://zenodo.org/records/8368697/files/tc

ga_brca_metadata.tsv 

Original source: 

https://www.cbioportal.org/study/summary?

id=brca_tcga_pan_can_atlas_2018  

Beat AML 

(RNA-seq) 

Bottomly et al. 

2022230 

Used in this study: 

https://zenodo.org/records/8368697/files/be

ataml_rna_expr.tsv 

Original source: 

https://github.com/biodev/beataml2.0_data/

raw/main/beataml_waves1to4_norm_exp_

dbgap.txt  

https://zenodo.org/record/5645208/files/rna_expr.rds?download=1
https://zenodo.org/record/5645208/files/rna_expr.rds?download=1
https://zenodo.org/record/5645208/files/rna_expr.rds?download=1
https://zenodo.org/record/5645208/files/rna_expr.rds?download=1
https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018
https://github.com/biodev/beataml2.0_data/raw/main/beataml_waves1to4_norm_exp_dbgap.txt
https://github.com/biodev/beataml2.0_data/raw/main/beataml_waves1to4_norm_exp_dbgap.txt
https://github.com/biodev/beataml2.0_data/raw/main/beataml_waves1to4_norm_exp_dbgap.txt
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Beat AML 

(Inhibitor AUC 

values) 

Bottomly et al. 

2022230 

Used in this study: 

https://zenodo.org/records/8368697/files/be

ataml_inhibitor_auc.tsv  

Original source: 

https://github.com/biodev/beataml2.0_data/

raw/main/beataml_probit_curve_fits_v4_db

gap.txt  

Software and algorithms 

Priori This study 
https://github.com/ohsu-comp-bio/regulon-

enrichment 

decoupleR 

version 2.0.0 

(fork for this 

study) 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleR  

decoupleRBenc

h version 0.1.0 

(fork for this 

study) 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleRBench 

decoupleR 

benchmarking 

workflow 

This study 
https://github.com/ohsu-comp-

bio/decoupler_workflow 

Pathway 

Commons 

Rodchenkov 

et al. 2020 
https://www.pathwaycommons.org/  

Patterns 
Babur et al. 

2014 

https://code.google.com/archive/p/biopax-

pattern/  

Univariate 

Linear Model 

Teschendorff 

and Wang 

202059 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-

ulm.R  

https://zenodo.org/records/8368697/files/beataml_inhibitor_auc.tsv
https://zenodo.org/records/8368697/files/beataml_inhibitor_auc.tsv
https://github.com/biodev/beataml2.0_data/raw/main/beataml_probit_curve_fits_v4_dbgap.txt
https://github.com/biodev/beataml2.0_data/raw/main/beataml_probit_curve_fits_v4_dbgap.txt
https://github.com/biodev/beataml2.0_data/raw/main/beataml_probit_curve_fits_v4_dbgap.txt
https://github.com/ohsu-comp-bio/regulon-enrichment
https://github.com/ohsu-comp-bio/regulon-enrichment
https://github.com/ohsu-comp-bio/decoupleR
https://github.com/ohsu-comp-bio/decoupleR
https://github.com/ohsu-comp-bio/decoupleRBench
https://github.com/ohsu-comp-bio/decoupleRBench
https://github.com/ohsu-comp-bio/decoupler_workflow
https://github.com/ohsu-comp-bio/decoupler_workflow
https://www.pathwaycommons.org/
https://code.google.com/archive/p/biopax-pattern/
https://code.google.com/archive/p/biopax-pattern/
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-ulm.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-ulm.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-ulm.R
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(ULM) version 

1.0.0 

Multivariate 

Linear Model 

(MLM) version 

1.0.0 

Teschendorff 

and Wang 

202059 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-

mlm.R  

Over 

Representation 

Analysis (ORA) 

version 1.0.0 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-ora.R  

Fast Gene Set 

Enrichment 

(FGSEA) 

version 1.20.0 

Korotkevich et 

al. 202160 
https://github.com/ctlab/fgsea/  

Gene Set 

Variation 

Analysis 

(GVSA) version 

1.42.0 

Hänzelmann 

et al. 201361 

https://bioconductor.org/packages/3.17/bio

c/html/GSVA.html  

AUCell version 

1.16.0 

Aibar et al. 

201762 
https://github.com/aertslab/AUCell  

Virtual Inference 

of Protein-

activity by 

Enriched 

Regulon 

analysis 

(VIPER) version 

1.28.0 

Alvarez et al. 

201667 

https://www.bioconductor.org/packages/rel

ease/bioc/html/viper.html  

https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-mlm.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-mlm.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-mlm.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-ora.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-ora.R
https://github.com/ctlab/fgsea/
https://bioconductor.org/packages/3.17/bioc/html/GSVA.html
https://bioconductor.org/packages/3.17/bioc/html/GSVA.html
https://github.com/aertslab/AUCell
https://www.bioconductor.org/packages/release/bioc/html/viper.html
https://www.bioconductor.org/packages/release/bioc/html/viper.html
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Weighted Mean 

(WMEAN) 

version 1.0.0 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-

wmean.R  

Weighted Sum 

(WSUM) 

version 1.0.0 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-

wsum.R  

Univariate 

Decision Tree 

(UDT) version 

1.0.0 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-udt.R  

Multivariate 

Decision Trees 

(MDT) version 

1.0.0 

Badia-i-

Mompel et al. 

202263 

https://github.com/ohsu-comp-

bio/decoupleR/blob/master/R/statistic-

mdt.R  

OmnipathR 

version 3.6.0 

Turei et al. 

2021209 

https://www.bioconductor.org/packages/rel

ease/bioc/html/OmnipathR.html  

dorothea 

version 1.10.0 

Garcia-Alonso 

et al. 2019208 

https://bioconductor.org/packages/release/

data/experiment/html/dorothea.html  

ARACNE-AP 

version 1.0 

Lachmann et 

al. 201666 
https://github.com/califano-lab/ARACNe-AP  

arcane.network

s version 1.18.0 

Lachmann et 

al. 201666 

https://bioconductor.org/packages/release/

data/experiment/html/aracne.networks.html  

Seurat version 

4.4.0 

Hafemeister, 

Satija, et al. 

2019239 

https://github.com/satijalab/seurat  

CausalPath 

version 1.8.0 

Babur et al. 

2021221 

https://github.com/PathwayAndDataAnalysi

s/causalpath  

Geneious Prime Dotmatics https://www.geneious.com/  

https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-wmean.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-wmean.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-wmean.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-wsum.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-wsum.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-wsum.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-udt.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-udt.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-mdt.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-mdt.R
https://github.com/JEstabrook/decoupleR/blob/master/R/statistic-mdt.R
https://www.bioconductor.org/packages/release/bioc/html/OmnipathR.html
https://www.bioconductor.org/packages/release/bioc/html/OmnipathR.html
https://bioconductor.org/packages/release/data/experiment/html/dorothea.html
https://bioconductor.org/packages/release/data/experiment/html/dorothea.html
https://github.com/califano-lab/ARACNe-AP
https://bioconductor.org/packages/release/data/experiment/html/aracne.networks.html
https://bioconductor.org/packages/release/data/experiment/html/aracne.networks.html
https://github.com/satijalab/seurat
https://github.com/PathwayAndDataAnalysis/causalpath
https://github.com/PathwayAndDataAnalysis/causalpath
https://www.geneious.com/
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ICE CRISPR 

Analysis Tool 
Synthego https://ice.synthego.com/#/  

Experimental models: Cell lines 

THP-1 ATCC Catalog #TIB-202 

Lenti-X 293T 

cells  
Clontech Catalog #632180 

Chemicals, peptides, and recombinant proteins 

RPMI 1640 

Medium 
Gibco Catalog #11875093 

HyClone 

Characterized 

FBS 

Cytiva Life 

Sciences 
Catalog #SH30071.04 

GlutaMAX Gibco Catalog #35050079 

2-

Mercaptoethano

l 

Sigma Aldrich Catalog #M6250 

HighPrep PCR 

Clean-up 

System 

MagBio 

Genomics 
Catalog #AC-60001 

Recombinant DNA 

FOXO1 gRNA 

in 

pLentiCRISPR 

v2 backbone 

(#1) 

Genscript 
Sequence: 

GCTCGTCCCGCCGCAACGCG  

FOXO1 gRNA 

in 
Genscript Sequence: ACAGGTTGCCCCACGCGTTG 

https://ice.synthego.com/#/
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pLentiCRISPR 

v2 backbone 

(#2) 

Non-targeting 

pLentiCRISPR 

v2 

Addgene Catalog #169795 

psPAX2  Addgene Catalog #12260 

 

3.6.2  Resource availability 

3.6.2.1  Lead contact 

Further information and requests for resources should be directed to and will be 

fulfilled by the lead contact, Dr. Emek Demir (demire@ohsu.edu). 

3.6.2.2  Materials availability 

This study did not generate new unique reagents. 

3.6.2.3  Data and code availability 

All original and forked code have been deposited at GitHub and are publicly 

available as of the date of publication. The sources of the datasets supporting the 

current study are presented in the Key resources table and the Method Details section. 

Any additional information required to re-analyze the data reported in this paper or 

reproduce the results is available from the lead contact upon request. 

mailto:demire@ohsu.edu
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3.6.3  Method details 

3.6.3.1  Priori Algorithm 

3.6.3.1.1 Pre-Processing 

Priori normalizes and scales the input RNA-seq data prior to downstream 

analysis. Priori first filters out counts with a standard deviation less than 0.1 (controlled 

by the thresh_filter parameter). Priori linearly shifts the remaining counts by the minimum 

value and then log2 normalizes them (xgene). Priori then scales the normalized counts 

(zgene) using one of four methods: “standard”   

𝑧$%#% =	
@𝑥$%#% − 𝜇&C

𝜎&
	 

(Equation 1) 

 

(where the mean and standard deviation of all normalized counts are indicated 

by 𝜇& and 𝜎&, respectively), “robust”  

𝑧$%#% =	
@𝑥$%#% − 𝑋'%(")#C

𝐼𝑄𝑅
	 

(Equation 2) 

 

(where the median normalized counts are indicated by 𝑋'%(")# and the 

interquartile range is indicated by 𝐼𝑄𝑅), “minmax” 

𝑧$%#% =	
@𝑥$%#% − 𝑋'"#C
(𝑋')* − 𝑋'"#)

	 

(Equation 3) 
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(where the minimum and maximum normalized counts are indicated by 𝑋'"# and 

𝑋')*, respectively), or “quant” where the normalized counts are scaled using the inverse 

of the cumulative distribution function, F(x)240. 

𝐹(𝑥) = 	
1
√2𝜋

𝑒+
*!
, 	 

(Equation 4) 

Priori defaults to the “standard” scaling function. 

3.6.3.1.2 Network 

Priori uses known gene regulatory networks to predict transcription factor activity 

from RNA-seq data. By default, Priori extracts transcriptional relationships from the 

Pathway Commons database to generate activity scores205,206. Users can also generate 

Priori scores using other gene regulatory networks with the regulon parameter. The 

user-defined network must specify the transcription factor (Regulator) and their 

downstream target genes (Target). Pathway relationships in Pathway Commons are 

represented with the BioPAX language205,241. BioPAX abstracts major pathway 

relationships, including gene regulatory networks, into a standardized format. However, 

BioPAX representations cannot be interpreted directly. In order to identify the gene 

regulatory networks encoded in Pathway Commons, we extracted transcription factors 

and their primary targets using Patterns242. Using the extracted network, Priori removes 

transcription factors with less than 15 downstream targets. Users can control the number 

of targets with the regulon_size parameter. 

3.6.3.1.3 Activity Scores 

Once the network is prepared, Priori generates an activity score for each 

transcription factor in an RNA-seq dataset. To calculate the activity score for a 
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transcription factor (𝑇𝐹"), Priori first calculates weights for its target genes (𝑤-.",0)1$%0#). 

The target gene weight is the product of the F-statistic (𝐹-.",0)1$%0#) and the Spearman 

correlation coefficient (𝜌-.",0)1$%0#) of the transcription factor 𝑇𝐹" and its target gene 

𝑡𝑎𝑟𝑔𝑒𝑡2 expression:  

𝑤-.",0)1$%0# = 𝐹-.",0)1$%0# ∗ 𝜌-.",0)1$%0# 	

𝑤-.",0)1$%0# =
@𝑧-." − 𝜇-.3C ∗ P𝑧0)1$%0# − 𝜇0)1$%03Q

𝜎-." ∗ 𝜎0)1$%03
∗
𝑐𝑜𝑣 P𝑟-." , 𝑟0)1$%0#Q
𝜎1$%" ∗ 𝜎1&'()*&#

 

(Equation 5) 

where i represents the range of transcription factors in a dataset, j represents the 

range of target genes for a given transcription factor 𝑇𝐹", and r represents the rank of the 

scaled counts relative to all features in the dataset. The non-negative, log2-normalized 

counts are used to calculate the F-statistic. 

Priori first uses the transcription factor-target gene weights to determine the 

direction of regulation. Priori defines k down-regulated targets among all j target genes 

as those with 𝑤-.",0)1$%0# < 0. Priori also identifies l up-regulated targets among all j 

target genes as those with 𝑤-.",0)1$%0# > 0. Priori then ranks the scaled target counts for 

each transcription factor grouped by their direction of regulation (𝑟0)1$%0#,0)1$%03+ or 

𝑟0)1$%0#,0)1$%03,). Priori weighs the ranks of the scaled counts using the target gene weight 

𝑤-.",0)1$%0#: 

𝑟40)1$%0#,0)1$%03+ = 𝑤-.",0)1$%0# ∗ 𝑟0)1$%0#,0)1$%03+ 

𝑟′0)1$%0#,0)1$%03, = 𝑤-.",0)1$%0# ∗ 𝑟0)1$%0#,0)1$%03, 

(Equation 6) 
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The resulting activity score for a given transcription factor (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦-.") is the 

summation of the weighted ranks:  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦-." =	−1V W 𝑟40)1$%0#,0)1$%03+

(56#+1%$78)0%(

9

X+ V W 𝑟40)1$%0#,0)1$%03,

7:+1%$78)0%(

8

X	 

(Equation 7) 

where downregulated genes are scaled by -1 prior to summation. Finally, the 

activity scores for each transcription factor are z-transformed relative to all other 

transcription factors and then again to all other samples in the dataset. 

3.6.3.2  Alternative Method: Evaluation of Transcription Factor 

Expression Only  

We wanted to understand the extent to which assessment of transcription factor 

expression enabled Priori to detect perturbed transcription factors. We designed an 

alternative method that only uses the transcription factor expression to infer transcription 

factor activity. To infer the activity for a transcription factor 𝑇𝐹", this alternative method 

first ranks the transcription factor scaled counts relative to other transcription factors in 

the dataset, 𝑟-.",-.3. The metho then scales these ranks by the total number of 

transcription factors, 𝑛-., and normalizes them using a normal distribution: 

𝑟-." =	
1
√2𝜋

𝑒+
1$%",$%.
#$%;<

!

, 	 

 

(Equation 8) 
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3.6.3.3  Alternative Method: Impact of Transcriptional Regulation Only 

We wanted to understand the extent to which assessment of transcriptional 

regulation on target genes enabled Priori to detect perturbed transcription factors. We 

designed an alternative method that only uses the impact of transcriptional regulation to 

infer transcription factor activity. The alternative method uses the same values of the 

weighted ranks (𝑟′0)1$%0#,0)1$%03+ or 𝑟′0)1$%0#,0)1$%03,) as calculated above. However, the 

resulting activity score for a given transcription factor (𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦-.") is the summation of 

the weighted ranks, but the down-regulated genes are not scaled by -1 prior to 

summation: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦-." =	V W 𝑟40)1$%0#,0)1$%03+

(56#+1%$78)0%(

9

X + V W 𝑟40)1$%0#,0)1$%03,

7:+1%$78)0%(

8

X	 

(Equation 9) 

The activity scores for each transcription factor are z-transformed relative to all 

other transcription factors and then again to all other samples in the dataset. 

3.6.3.4  Benchmarking Workflow 

3.6.3.4.1 Pre-Processing 

The decoupleR benchmarking workflow has been previously described63. The 

Holland et al. normalized gene expression counts and metadata for were downloaded 

Zenodo (https://zenodo.org/record/5645208)63. The normalized RNA-seq data was 

linearly shifted by the minimum value so all values were non-negative207. 

https://zenodo.org/record/5645208
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3.6.3.4.2 Transcription factor activity scores and p-values 

With the decoupleR workflow (version 2.0.0), we generated transcription factor 

activity scores for 11 methods including Priori: AUCell (version 1.16.0), FGSEA (version 

1.20.0), GSVA (version 1.42.0), MDT (version 1.0.0), ORA (version 1.0.0), UDT (version 

1.0.0), ULM (version 1.0.0), VIPER (version 1.28.0), WMEAN (version 1.0.0), and 

WSUM (version 1.0.0). decoupleR also generated normalized transcription factor activity 

scores for FGSEA, WMEAN, and WSUM as well as corrected scores for WMEAN and 

WSUM63. We generated transcription factor activity scores for each method using the 

default parameters. OmniPath (downloaded using OmipathR package version 3.6.0) and 

DoRothEA (downloaded using Dorothea package version 1.10.0), which assign 

confidence scores to their transcriptional relationships, were filtered for high confidence 

relationships (A, B, or C). We also calculated p-values for the Priori activity scores using 

a Student’s two-sided t-test with an FDR post-test correction.  

3.6.3.4.3 Area under the receiver operating characteristic and 

precision recall curves 

Using the decoupleRBench package (version 0.1.0), we generated AUROC and 

AUPRC values. Briefly, we ranked the absolute value of the activity scores from the 

decoupleR workflow for each experiment63. The activity scores were ranked separately 

for each method. We determined whether the perturbed transcription factors were 

among the top “n” scores. “n” was defined as the number of unique perturbed 

transcription factors in the dataset. There are 62 unique transcription factors in the 

Holland et al. perturbation dataset, which is the dataset that we used to compare the 

prediction accuracy of Priori to other methods207. Therefore, a true positive is assigned to 

a method whose perturbed transcription factor ranks among the top 62 activity scores. 



134 

 

For methods that use the Pathway Commons transcriptional relationships (a total of 610 

transcription factors), this is the top 10.2% of features. As the number of unperturbed 

transcription factors in the dataset substantially outnumbered the perturbed factors, we 

deployed a down-sampling strategy to compare an equal number. We calculated 

AUROC and AUPRC values for 100 down-sampling permutations. 

3.6.3.4.4 ARACNe Network 

In order to better understand whether Priori’s performance advantages depend 

on the design of its input transcription factor network, we generated VIPER activity 

scores using transcriptional relationships from TCGA ARACNe networks and an 

alternative network using ARACNe-AP66. We downloaded the TCGA ARACNe networks 

using the arcane.networks package (version 1.18.0). For the ARACNe-AP network, we 

computed it from the Holland et al. perturbation dataset207. ARACNe-AP requires a list of 

transcription factors in order to generate a gene regulatory network. We used a list of 

transcription factors from the Alvarez et al. 2016 publication that was provided by Dr. 

Mariano Alvarez on September 25, 201967. We excluded transcription factors that were 

not present in the Holland et al. dataset, resulting in an input list of 1,726 transcription 

factors. We ran ARACNe-AP (version 1.0, created with java 1.8.0_171-b11) with 100 

bootstraps, --p-value = 1E-8, and –random seeds = TRUE66. The consolidated 

interactome included 1,726 transcription factors and 302,444 interactions. 

3.6.3.4.5 Noise 

In order to investigate the robustness transcription factor activity scores to noise, 

we artificially altered the input data, including the gene expression data from the Holland 

et al. perturbation dataset and the transcriptional relationships from Pathway Commons, 

to each method. First, we added zero-centered, Gaussian-distributed noise to the gene 
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expression data using the stats package (R base version 4.1.3). We increased the 

amount of noise by altering the standard deviation of the Gaussian distribution. Next, we 

evaluated activity scores by artificially altering the Pathway Commons transcriptional 

relationships. We tested this in two ways. First, we randomly removed transcription 

factor-target gene pairs in the Pathway Commons prior network using the stats package 

(R base version 4.1.3). Second, we randomized the transcription factor-target gene pairs 

by sampling genes in the Holland et al. dataset with replacement. We replaced these 

selected genes as the target genes of randomly selected transcription factors using the 

stats package (R base version 4.1.3).   

3.6.3.5  Data Analysis 

3.6.3.5.1 Benchmarking Workflow 

Custom scripts were used to evaluate the results of the decoupleR benchmarking 

workflow. In order to compare the scores across the different methods, we z-transformed 

the transcription factor activity scores. We calculated the Spearman correlation between 

the activity scores and p-values of each method. 

3.6.3.5.2 TCGA BRCA 

The normalized gene expression counts and metadata from the Breast Invasive 

Carcinoma (TCGA, PanCancer Atlas) study were downloaded from cBioPortal 

(https://www.cbioportal.org)210,243. Priori scores were generated from the normalized 

gene expression counts linearly shifted by the minimum value using the same Pathway 

Commons, DoRothEA, or OmniPath relationships that were evaluated in the decoupleR 

benchmarking workflow. VIPER scores were generated  using the ARACNe BRCA 

network, --pleiotropy = TRUE,  and --eset.filter = FALSE66,67. Norm WMEAN scores were 

https://www.cbioportal.org/
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generated using Pathway Commons transcriptional relationships, --times = 100, --sparse 

= TRUE, and --randomize_type = rows63. ORA scores were generated using Pathway 

Commons transcriptional relationships, --n_up = 300, --n_down = 300, --n_background = 

20000, and --with_ties = TRUE. Custom scripts were used to exclude patients without 

basal or luminal BIDC. The Seurat package (version 4.4.0) was used to perform 

dimensional reduction on the Priori scores by PCA and UMAP239.  Survival data was 

analyzed for significance using a log-rank Mantel-Cox test. We assigned patients to 

“High” or “Low” groups depending on whether they were among the top 90% or bottom 

10% of the value of interest. Differential gene expression networks were generated from 

the normalized gene expression data using CausalPath (version 1.18.0)221. An FDR 

threshold of 0.001 was used to evaluate significant relationships following 100 

permutations. 

3.6.3.5.3 Beat AML 

The normalized gene expression counts and inhibitor AUC values from the Beat 

AML study were downloaded from GitHub 

(https://github.com/biodev/beataml2.0_data)229,230. Priori scores were generated from the 

normalized gene expression counts of baseline AML patient samples from the Beat AML 

cohort using the same Pathway Commons, DoRothEA, or OmniPath relationships that 

were evaluated in the decoupleR benchmarking workflow. These counts were also 

linearly shifted by the minimum value. VIPER scores were generated  using a trained 

ARACNe-AP network, --pleiotropy = TRUE, and --eset.filter = FALSE66,67. For the 

ARACNe-AP network, we computed it from the normalized RNA-seq data from Beat 

AML229,230. ARACNe-AP requires a list of transcription factors in order to generate a 

gene regulatory network. We used a list of transcription factors from the Alvarez et al. 

2016 publication that was provided by Dr. Mariano Alvarez on September 25, 201967. 

https://github.com/biodev/beataml2.0_data
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We excluded transcription factors that were not present in the Holland et al. dataset, 

resulting in an input list of 1,408 transcription factors. We ran ARACNe-AP (version 1.0, 

created with java 1.8.0_171-b11) with 100 bootstraps, --p-value = 1E-8, and --random 

seeds = TRUE66. The consolidated interactome included 1,402 transcription factors and 

320,632 interactions. Norm WMEAN scores were generated using Pathway Commons 

transcriptional relationships, --times = 100, --sparse = TRUE, and --randomize_type = 

rows63. ORA scores were generated using Pathway Commons transcriptional 

relationships, --n_up = 300, --n_down = 300, --n_background = 20000, and --with_ties = 

TRUE. Custom scripts were used to exclude patients without a diagnosis of AML or 

those with a prior myeloproliferative neoplasm. Priori scores and single-inhibitor drug 

AUC values on the same patient sample were evaluated using a Spearman correlation. 

Significant correlations were those with an FDR < 0.05. 

3.6.3.6  Cell Culture 

3.6.3.6.1 Cell Lines 

THP-1 cells (DSMZ) were cultured in RPMI (Gibco) supplemented with 10% fetal 

bovine serum (FBS, HyClone), 2 mM GlutaMAX (Gibco), 100 units/mL Penicillin, 100 

μg/mL Streptomycin (Gibco), and 0.05 mM 2-Mercaptoethanol (Sigma Aldrich). All cells 

were cultured at 5% CO2 and 37°C. Cell lines were tested monthly for mycoplasma 

contamination. 

3.6.3.6.2 CRISPR 

Two FOXO1 CRISPR guide RNAs in a pLentiCRISPR v2 backbone were 

obtained from GenScript244. The target sequence for guide RNA (gRNA) 1 is 

GCTCGTCCCGCCGCAACGCG and the sequence for gRNA 2 is 
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ACAGGTTGCCCCACGCGTTG. Additionally, a non-targeting CRISPR guide RNA 

(target sequence CCTGGGTTAGAGCTACCGCA) generated by scrambling the target 

sequence of LentiCRISPRv2-ACTB-C1 in a pLentiCRISPR v2 backbone was obtained 

from Addgene (catalog #169795). Lentivirus was produced by transfecting Lenti-X 293T 

cells (Clontech) with the SMARTvector transfer plasmid and packaging/pseudotyping 

plasmids. psPAX2 was a gift from Didier Trono (Addgene plasmid #12260; 

http://n2t.net/addgene:12260; RRID:Addgene_12260). The supernatant containing 

lentivirus was collected after 48 hours of culture and filtered with a 0.45 μm filter. THP-1 

cells were transduced with virus via spinnoculation in the presence of polybrene. 

Transduced cells were selected with 1 μg/mL puromycin to produce a stable cell line. 

3.6.3.6.3 CRISPR Validation 

FOXO1 knockdown was validated using Tracking of Indels by Decomposition 

(TIDE)245. Briefly, cellular DNA was PCR-amplified using primers upstream (sequence 

AAGTAGGGCACGCTCTTGAC) and downstream (sequence 

CGTTCCCCCAAATCTCGGAC) of the FOXO1 gRNA target sequences. The primers 

were designed in Geneious Prime and synthesized by Integrated DNA Technologies. 

Paramagnetic beads were used to purify the PCR DNA fragments (MagBio Ref #AC-

60001) and subsequently sequenced by EuroFins. Inference of CRISPR Edits (ICE) was 

performed using the Synthego web tool (https://ice.synthego.com/#/). 

3.6.3.6.4 Drug Sensitivity Assay 

Cells were cultured for 72 hours along a 7-point dose curve with venetoclax. Cell 

viability was assessed by CellTiter Aqueous colorimetric assay.    

https://ice.synthego.com/#/
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3.6.4  Quantification and statistical analysis 

Values are represented as the mean and error bars are the SEM unless 

otherwise stated. Python and R were used to perform statistical analyses. Significance 

was tested using two-sided Student’s t-test. Correlations were performed using 

Spearman’s rank method. Statistical significance in the survival analyses was 

determined by a log-rank Mantel-Cox test. Where appropriate, p values were adjusted 

for repeated testing using the Benjamini–Hochberg method.  
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3.10  Supplementary figures 

 

Figure S3.1: Priori demonstrated improved sensitivity and specificity when 
using transcriptional relationships from DoRoTHEA or OmniPath.  
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(A and B) Transcription factors in the perturbation dataset were identified using 

Pathway Commons transcriptional relationships. Transcription factors were 

delineated by whether they were (A) knocked-down or (B) over-expressed prior 

to RNA-seq. Statistical significance was determined by a two-sided Student’s t-
test. (C and D) Activity scores were generated using DoRothEA transcriptional 

relationships. The distribution of (C) AUPRC and (D) AUROC values across the 

100 down-sampling permutations. (E and F) Activity scores were generated 

using OmniPath transcriptional relationships. The distribution of (E) AUPRC and 

(F) AUROC values across the 100 down-sampling permutations.  
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Figure S3.2: ARACNe-generated networks are important for VIPER 
performance.  
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(A-C) Top 10 represented (A) cell lines and their associated (B) diseases and (C) 

organ sites used in the perturbation dataset. (D and E) VIPER activity scores 

were generated using transcriptional relationships from (D) TCGA ARACNe 

networks or (E) an ARACNe-AP network. The ARACNe-AP interactome was 
computed from the perturbation dataset. Mean AUPRC and AUROC values 

across the 100 down-sampling permutations for each network.  
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Figure S3.3: Priori’s predictions are robust to noise. 
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(A and B) Zero-centered, Gaussian-distributed noise was introduced to the 

Holland et al. perturbation gene expression data. The amount of noise was 

controlled by altering the standard deviation of the Gaussian distribution. Activity 

scores were subsequently generated using Pathway Commons transcriptional 
relationships. The distribution of (A) AUPRC and (B) AUROC values across the 

100 down-sampling permutations. (C and D) Transcription factor-target gene 

pairs were randomly removed from the prior Pathway Commons network. Activity 

scores were subsequently generated from the pruned networks. The distribution 

of (C) AUPRC and (D) AUROC values across the 100 down-sampling 

permutations. (E and F) Transcription factor target genes were randomized by 

sampling with replacement from genes sequenced in the Holland et al. 

perturbation dataset. Activity scores were subsequently generated from the 
randomized networks. The distribution of (E) AUPRC and (F) AUROC values 

across the 100 down-sampling permutations. 
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Figure S3.4: Prior transcription factor activity score, regardless of prior 
network, cluster by BIDC molecular subtype.  
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(A) Priori scores were generated from RNA-seq of 637 patients with BIDC using 

Pathway Commons transcriptional relationships. PCA dimensional reduction and 

projection of Priori. Dots are colored by the breast cancer molecular subtype. (B 

and C) Priori scores were generated from RNA-seq of 637 patients with BIDC 
using (B) DoRothEA or (C) OmniPath transcriptional relationships. UMAP 

dimensional reduction and projection of activity scores. Dots are colored by the 

breast cancer molecular subtype. (D) Priori identified transcription factor target 

genes using Pathway Commons transcriptional relationships. The expression of 

transcription factors and their target genes were evaluated using Spearman 

correlation. Statistical significance was determined using the Spearman 

correlation p-value with an FDR post-test correction. The Spearman correlation 

coefficient was used to determine down-regulated (R2 < 0) and up-regulated 
target genes (R2 > 0). (E-G) Activity scores were generated using (E) VIPER, (F) 

ORA, and (G) Norm WMEAN from RNA-seq of 637 patients with BIDC. UMAP 

dimensional reduction and projection of activity scores. Dots are colored by the 

breast cancer molecular subtype.  
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Figure S3.5: VIPER, ORA, and Norm WMEAN nominated distinct 
transcription factor regulators of BIDC pathogenesis.  
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(A and B) Unsupervised hierarchical clustering was performed using activity 

scores in Figure S3.4C and D. Distribution of FOXA1 Priori scores generated 

using (A) DoRothEA or (B) OmniPath transcriptional relationships among 

patients in clusters 1 and 2 (defined separately for each method). (C-E) 
Unsupervised hierarchical clustering was performed using activity scores in 

Figure S3.4E-G. Distribution of FOXA1 (C) VIPER, (D) ORA, and (E) Norm 

WMEAN scores among patients in clusters 1 and 2 (defined separately for each 

method).  (F and G) Mean absolute difference of FOXA1 Priori scores generated 

using (F) DoRothEA or (G) OmniPath transcriptional from patients in clusters 1 

and 2 (defined separately for each method). Transcription factor with the greatest 

absolute difference in activity scores between the two clusters is highlighted. (H-

J) Mean absolute difference of (H) VIPER, (I) ORA, and (J) Norm WMEAN 
activity scores from patients in clusters 1 and 2 (defined separately for each 

method). Transcription factor with the greatest absolute difference in activity 

scores between the two clusters is highlighted.   
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Figure S3.6: There is no survival difference when patients with BIDC are 
stratified FOXA1 activity scores generated by alternative methods.  
(A and B) Kaplan-Meier survival analysis of patients grouped by FOXA1 Priori 

scores generated using (A) DoRothEA or (B) OmniPath transcriptional 

relationships. Patients among the top 90% of scores were grouped into "High" 

and those in the bottom 10% were grouped into "Low". Statistical significance 

was determined by a log-rank Mantel-Cox test. (C-E) Kaplan-Meier survival 

analysis of patients grouped by FOXA1 (C) VIPER, (D) ORA, and (E) Norm 

WMEAN scores. Patients among the top 90% of scores were grouped into "High" 

and those in the bottom 10% were grouped into "Low". Statistical significance 
was determined by a log-rank Mantel-Cox test.  
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Figure S3.7: The alternative methods do not identify survival differences 
among patients with BIDC.  
(A and B) Kaplan-Meier survival analysis of patients grouped by ESR1 Priori 

scores generated using (A) DoRothEA or (B) OmniPath transcriptional 

relationships. Patients among the top 90% of scores were grouped into "High" 
and those in the bottom 10% were grouped into "Low". Statistical significance 

was determined by a log-rank Mantel-Cox test. (C-E) Kaplan-Meier survival 

analysis of patients grouped by (C) OR10H2 VIPER scores, (D) ACTL6A ORA 

scores, or (E) TGFβ2 Norm WMEAN scores. Patients among the top 90% of 

scores were grouped into "High" and those in the bottom 10% were grouped into 

"Low". Statistical significance was determined by a log-rank Mantel-Cox test. (F) 

Distribution of ORA ACTL6A activity scores. 
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Figure S3.8: The alternative methods have different predictions whether 
FOXO1 activity correlates with venetoclax sensitivity or resistance.  
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(A) Priori identified transcription factor target genes using Pathway Commons 

transcriptional relationships. The expression of transcription factors and their 

target genes were evaluated using Spearman correlation. Statistical significance 

was determined using the Spearman correlation p-value with an FDR post-test 
correction. The Spearman correlation coefficient was used to determine down-

regulated (R2 < 0) and up-regulated target genes (R2 > 0). (B) Priori scores were 

generated from RNA-seq of 859 patients with AML using Pathway Commons, 

DoRothEA, or OmniPath transcriptional relationships. Activity scores for each 

method and ex vivo drug response AUC data were evaluated using Spearman 

correlation. Statistical significance was determined using the Spearman 

correlation p-value with an FDR post-test correction. Overlap of significant 

activity score-inhibitor correlations for each method (including the significant 
Priori correlations from Figure 3.5A). (C) Activity scores were generated from 

RNA-seq of 859 patients with AML using VIPER, ORA, and Norm WMEAN. 

Activity scores for each method and ex vivo drug response AUC data were 

evaluated using Spearman correlation. Statistical significance was determined 

using the Spearman correlation p-value with an FDR post-test correction. 

Overlap of significant activity score-inhibitor correlations for each method 

(including the significant Priori correlations from Figure 3.5A). (D) Unique 

transcription factors associated with activity scores generated by Priori (using 
Pathway Commons transcriptional relationships), VIPER, ORA, and Norm 

WMEAN. (E and F) Spearman correlation of ranked venetoclax AUC and ranked 

Priori scores generated using (E) DoRothEA or (F) OmniPath transcriptional 

relationships. Statistical significance was determined using the Spearman 

correlation p-value with an FDR post-test correction. (G-I) Spearman correlation 

of ranked venetoclax AUC and ranked FOXO1 (G) VIPER, (H) ORA, or (I) Norm 

WMEAN scores. Statistical significance was determined using the Spearman 
correlation p-value with an FDR post-test correction.  
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Figure S3.9: Validation of FOXO1 knockdown by CRISPR.  
(A and B) THP-1 cells were transduced with lentiviral particles harboring 
expression cassettes for hSpCas9 as well as a non-targeting or FOXO1 gRNA. 

Sanger sequencing traces showing edited and control (cells with non-targeting 

gRNA) sequences in the region around the guide sequence. The horizontal black 

underlined region represents the guide sequence. The horizontal red underline 

represents the PAM site. The vertical black dotted line represents the cut site. (C) 

CRIPSR-Cas9-edited THP-1 cells were evaluated by the percentage of indels 

and knockout score, which is the proportion of indels that are a frameshift or are 

greater than 21 bp in length.
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 Chapter 4: Disruption of the MYC super-
enhancer complex by dual targeting of 

FLT3 and LSD1 in acute myeloid leukemia 

 
 

§ Combined LSD1 and FLT3 inhibition induces synergistic cell death in 

FLT3-ITD AML.  

§ The drug combination disrupts STAT5, LSD1, and GFI1 binding at the 

MYC blood super-enhancer, suppressing super-enhancer accessibility as 

well as MYC expression and activity.  

§ The drug combination results in the accumulation of repressive H3K9me1 

methylation, an LSD1 substrate, at MYC target genes.  

§ We validated these findings in 72 primary AML samples with the nearly 

every sample demonstrating synergistic responses to the drug 

combination.  

 
 

This work has been published in Molecular Cancer Research:   

Yashar WM, Curtiss BM, Coleman DJ, VanCampen J, Kong G, Macaraeg J, 

Estabrook J, Demir E, Long N, Bottomly D, McWeeney SK, Tyner JW, Druker BJ, 

Maxson JE, Braun TP. Disruption of the MYC Superenhancer Complex by Dual 

Targeting of FLT3 and LSD1 in Acute Myeloid Leukemia. Molecular Cancer Research 

2023 Jul 5238 
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4.1 Abstract 

Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute 

myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior 

work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase 

inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces 

synergistic cell death in FLT3-mutant AML. Multi-omic profiling revealed that the drug 

combination disrupts STAT5, LSD1, and GFI1 binding at the MYC blood super-

enhancer, suppressing super-enhancer accessibility as well as MYC expression and 

activity. The drug combination simultaneously results in the accumulation of repressive 

H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We validated these 

findings in 72 primary AML samples with the nearly every sample demonstrating 

synergistic responses to the drug combination. Collectively, these studies reveal how 

epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD AML. 

4.2  Introduction 

Mutations in Fms-like tyrosine kinase 3 (FLT3) occur in nearly a third of all 

patients with acute myeloid leukemia (AML) and are associated with an inferior overall 

survival246. The most frequent mutation in FLT3 is the internal tandem duplication (ITD) 

of the juxta-membrane domain247. While small molecule inhibitors of FLT3 kinase 

produce higher overall response rates and improved survival compared to salvage 

chemotherapy in patients with relapsed or refractory FLT3-ITD positive AML, FLT3 

inhibitor monotherapy is rarely curative and responses are short-lived248–250. There is a 

clinical need for approaches to deepen the initial response to FLT3 inhibitors, enabling 

longer-lasting clinical responses.  
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An approach to improving responses to FLT3 inhibitors in AML is to 

simultaneously target aberrant FLT3 activity and its downstream mediators. A major 

driver of mutant-FLT3-dependent oncogenesis is the MYC proto-oncoprotein (6–8)105,106. 

MYC, a critical regulator of proliferation and differentiation, is over-expressed in the vast 

majority of patients with AML251. Reactivation of MYC-controlled oncogenic networks by 

the bone marrow microenvironment promotes FLT3 inhibitor resistance116,251. These 

findings suggest that improved responses to FLT3 inhibitors may be achieved with 

combination strategies that target MYC-dependent proliferative programs.  

Direct inhibition of MYC has been an objective of anti-cancer therapeutic 

development for over the last twenty years. However, MYC has been considered 

undruggable due to its intrinsically disordered nature and lack of enzymatic activity252. 

Another approach is to instead disrupt the molecular mechanisms that drive MYC over-

expression. In blood cells, MYC expression is regulated by a blood-specific super-

enhancer complex (BENC), which is bound by numerous transcription factors and global 

chromatin activators122,253. Recent studies in AML cell lines have demonstrated that 

small molecule inhibitors targeting these activating chromatin complexes, including 

BRD4, resulted in a loss of MYC expression and leukemia cell death127–130. However, 

initial clinical trials have only shown modest clinical activity and substantial toxicity254.  

An alternate approach is to simultaneously target two factors that regulate MYC 

gene expression. The chromatin regulatory protein lysine specific demethylase 1 (LSD1) 

is a well-established regulator of MYC gene expression132–134. LSD1 regulates gene 

expression by removing activating methylation marks on lysine 4 of histone 3 (H3K4) 

and repressive methylation marks on lysine 9 of histone 3 (H3K9) or by recruiting 

repressive complexes to gene promoters141,142. Inhibitors of LSD1 have been shown to 

decrease MYC abundance and activity in AML cell lines and primary samples132–134. Our 

prior work and that of other groups shows that LSD1 inhibition augments the efficacy of 
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kinase inhibitors in AML133,134,153. However, the extent to which synergy exists between 

LSD1 and FLT3 inhibition and the underlying mechanism of drug synergy has not been 

investigated.  

Here we report ex vivo drug screening data on a cell line model of FLT3-ITD 

positive AML and primary FLT3-ITD positive AML samples demonstrating that LSD1 

inhibition potentiates the efficacy of FLT3 inhibition. Using high-sensitivity epigenetic 

profiling, we establish that dual FLT3/LSD1 inhibition disrupts regulatory factor binding at 

the MYC BENC, resulting in a loss of MYC expression. Using short-term ex vivo culture, 

we confirm that these transcriptional and epigenetic responses to combined FLT3/LSD1 

inhibition occur in primary FLT3-ITD positive leukemic blasts. Collectively, this data 

reveals how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD 

AML. 

4.3  Results 

4.3.1  Combined FLT3/LSD1 inhibition synergistically 
represses MYC transcriptional programs, while 
activating PU.1 transcriptional programs 

Prior work from our lab and others suggest that the combination of kinase and 

LSD1 inhibition may be an effective therapeutic strategy in multiple molecular subtypes 

of AML132–134,153. To establish whether this approach is effective for FLT3-ITD AML, we 

treated FLT3-ITD-positive (MOLM13 and MV4;11) and FLT3-ITD-negative (K562) cell 

lines with multiple FLT3/LSD1 inhibitor combinations. We observed potent synergy 

between the FLT3 inhibitors and LSD1 inhibitors in the FLT3-ITD-positive cell lines but 

not in the FLT3-ITD-negative cell lines, suggesting that this drug combination has 
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specificity for FLT3-ITD-positive AML (Figure 4.1A-B; Figure S4.1). In addition, we 

observed that the drug combination increased both early (Annexin V+/PI-) and late 

(Annexin V+/PI+) apoptosis populations with minimal toxicity to healthy CD34+ cells 

(Figure S4.2A-C). These results indicate that synergy exists between FLT3/LSD1 

inhibition in FLT3-ITD-positive AML. 

To understand the mechanism of synergy, we performed RNA-seq on MOLM13 

cells treated with quizartinib, GSK-2879552, or the combination for 24 hours. The 

majority of the 1,716 differentially expressed genes (80%; 1,374 of 1,716 genes) 

following the drug combination were not differentially expressed following single agent 

therapies (Figure S4.2D). Unsupervised clustering of differentially expressed genes 

revealed clusters of genes that were either up-regulated or down-regulated by the drug 

combination (Figure S4.2E). Transcription factor target gene enrichment analysis of the 

down-regulated genes revealed an enrichment of MYC target genes (Figure 4.1C; 

Figure S4.2F). To understand the potential impact of these down-regulated genes on cell 

viability, we investigated essential genes nominated from genome-wide CRISPR dropout 

screens performed in MOLM13 cells255. There were 74 genes, including MYC, that were 

differentially down-regulated by the drug combination and identified as depleting genes 

(Figure S4.2G). Notably, these genes were also enriched for MYC target genes (Figure 

S4.2H). In contrast, the genes up-regulated by the drug combination were enriched for 

SPI1/PU.1 targets. The SPI1 gene encodes the transcription factor PU.1, which is critical 

for coordinating myeloid differentiation152. To further corroborate these gene expression 

profiles, gene set enrichment analysis (GSEA) was performed, which revealed depletion 

of MYC target genes in cells treated with the drug combination (Figure 4.1D and E). 

Collectively, we observed that the combination activates an anti-proliferative and pro-

differentiative transcriptional program with repression of MYC target genes and 

activation of PU.1 target genes. 
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Figure 4.1: Transcriptional and chromatin dynamics in response to 
combined FLT3/LSD1 inhibition in FLT3-ITD-positive AML.  
A, MOLM13 cells were treated in triplicate with an 8x8 dose matrix of quizartinib 

and GSK-2879552 for 72 hours prior to viability assessment by CellTiter 
Aqueous colorimetric assay. Zero interaction potency (ZIP) synergy scores were 

calculated on the average values for each drug dose. The white box indicates the 

quizartinib and GSK-2879552 concentrations corresponding to maximal synergy. 

B, Quizartinib response curves with and without GSK-2879552 (638 nM, which is 

the concentration corresponding to maximal synergy in (A)). The GSK-2879552 

response curve with and without quizartinib is shown in Figure S4.1. C, MOLM13 

cells were treated with quizartinib (1 nM), GSK-2879552 (100 nM), the 

combination, or an equal volume of DMSO vehicle for 24 hours prior to RNA 
sequencing. Analysis was performed on genes with decreased expression with 

the drug combination relative to DMSO.  



163 

 

4.3.2  Combined FLT3/LSD1 inhibition disrupts 
chromatin dynamics at distinct genomic loci 

A key component of LSD1 inhibitor activity has been ascribed to displacement of 

GFI1/CoREST from chromatin and re-activation of enhancers associated with 

differentiation256. Therefore, to characterize the early chromatin dynamics following 

combined FLT3/LSD1 inhibition, we utilized cleavage under targets and tagmentation 

(CUT&Tag)31. We used CUT&Tag to assess changes in acetylation of histone 3 lysine 

27 (H3K27ac), a marker of transcriptional activation, in MOLM13 cells 2 hours following 

drug treatment. Unsupervised clustering of the regions with differential H3K27ac signal 

revealed four clusters (Figure 4.1F). The regions in cluster 1 were associated with 

repressed H3K27ac signal by the drug combination and were primarily localized to 

promoters (Figure 4.1G). The cluster 1 regions were also enriched for MYC motifs, 

consistent with the findings of decreased gene expression of MYC target genes (Figure 

4.1H). An example of a down-regulated region is observed at the PVT1 promoter, a 

known regulator of MYC expression (Figure S4.2I)257. Cluster 2 contained regions with 

increased H3K27ac signal largely driven by LSD1 inhibition. Cluster 2 regions were 

nearly equally distributed at promoter and non-promoter elements and were enriched for 

GFI1/GFI1B motifs. Cluster 3 regions were also localized at promoter and non-promoter 

elements and showed enrichment for RUNX motifs. RUNX1 is a critical regulator of 

myeloid differentiation and potentiates the transcriptional activation activity of PU.1258. 

D, E, GSEA was performed comparing the drug combination to DMSO. F, 
MOLM13 cells were treated with quizartinib (1 nM), GSK-2879552 (100 nM), the 

combination, or an equal volume of DMSO vehicle for 2 hours prior to CUT&Tag 

for H3K27ac. Unsupervised hierarchical clustering of regions with differential 

signal following drug treatment. G, Annotation of regions in clusters from (F). H, 
Motif enrichment of regions with differential H3K27ac signal. Top two de novo 

motifs with p-value <10-12 are shown.  
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An example of up-regulated non-promoter regions from clusters 2 and 3 were observed 

upstream of the lysozyme promoter, which is expressed in mature granulocytes (Figure 

S4.2J). These data collectively show that the drug combination alters the chromatin 

landscape at distinct genomic loci. Furthermore, based on pathway analysis and motif 

enrichment, MYC, GFI1, RUNX1, and PU.1 transcription factors are candidate regulators 

of these chromatin dynamics. 

4.3.3  Chromatin segmentation reveals that MYC-, 
STAT5-, and PU.1-driven molecular programs 
underlie the response to combined FLT3/LSD1 
inhibition 

Our CUT&Tag results revealed substantial changes in histone acetylation at both 

promoters and outside promoters in response to combined FLT3/LSD1 inhibition, 

arguing that both types of regulatory elements have distinct roles in the drug response. 

We therefore profiled a series of covalent histone marks in MOLM13 cells 6 hours 

following drug treatment. These marks enabled the segmentation of chromatin into 

promoters and enhancers. Trimethylation of histone 3 lysine 4 (H3K4me3) is primarily 

localized at promoters, whereas monomethylation of histone 3 lysine 4 (H3K4me1) is 

predominantly at enhancers28. We also profiled H3K27ac at this same time point to 

understand transcriptional activation at prompters and enhancers31. Following LSD1 

inhibition, we observed regions of increased H3K4me3 and H3K4me1 signal consistent 

with the known demethylase activity of LSD1 for H3K4me1/3 (Figure S4.3A-D)137,256. 

Unsupervised clustering of regions with differential H3K27ac signal at promoters and 

enhancers revealed multiple patterns of regulation. Similar to the global 2-hour 

acetylation CUT&Tag data, we observed a large cluster of repressed H3K27ac signal at 
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promoters (cluster P2) that were enriched for MYC motifs as well as a cluster of 

increased H3K27ac signal (cluster P1) enriched for GFI1/GFI1B motifs (Figure 4.2A and 

B). GO analysis revealed that cluster P2 regions are associated with cell cycle and 

proliferation (Figure S4.3E). At enhancers, we identified a cluster of suppressed 

H3K27ac signal (cluster E3) associated with STAT5 motifs along with a cluster of 

increased H3K27ac signal (cluster E4) enriched for SPI1/PU.1 motifs (Figure 4.2C and 

D; Figure S4.3F). This data suggests that combined FLT3/LSD1 inhibition 

simultaneously activates GFI1/GFI1B-bound promoters and represses the activation of 

MYC-bound promoters. In parallel, the drug combination suppresses STAT5-bound 

enhancers and activates PU.1-bound enhancers.  

To better characterize the transcription factors driving the response to combined 

FLT3/LSD1 inhibition, we profiled the genome-wide binding of multiple candidate 

transcription factors following single or dual drug treatment using chromatin 

immunoprecipitation sequencing (ChIP-seq), cleavage under targets and release using 

nuclease (CUT&RUN) and CUT&Tag. We then examined the signal of these factors at 

each cluster, identifying promoters and enhancers with differential H3K27ac signal 

following drug treatment (Figure 4.2E and F). We observed modest enrichment of LSD1 

at all acetylated promoter and enhancer regions. MYC signal was most pronounced at 

promoters (cluster P2) and enhancers (cluster E3) associated with H3K27ac signal 

suppressed by the combination. In both clusters, a greater loss of MYC signal was 

observed with combined FLT3/LSD1 inhibition compared with no drug or single drug 

controls. STAT5 binding was localized to enhancers with differential H3K27ac signal that 

were down-regulated by quizartinib and/or enriched for STAT5 motifs (clusters E1 and 

E3), which is consistent with studies demonstrating that STAT5 is a primary downstream 

target of FLT3 inhibitors259. Notably, combined FLT3/LSD1 inhibition resulted in a global 

depletion of STAT5 signal, including at clusters E1 and E3 (Figure S4.3G). PU.1 and  
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Figure 4.2:  Discrete components of the response to FLT3/LSD1 inhibition 
are mediated by promoters and enhancers.  
A, MOLM13 cells were treated with quizartinib (1 nM), GSK-2879552 (100 nM), 

the combination, or an equal volume of DMSO vehicle for 6 hours prior to 
CUT&Tag for H3K27ac, H3K4me1, and H3K4me3. On the basis of these marks, 

chromatin was segmented into promoters and enhancers. Unsupervised 

hierarchical clustering of differential H3K27ac signal at promoters. B, Motif 

enrichment of promoters with differential H3K27ac signal. Top four de novo 

motifs with p-value <10-12 are shown.  
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GFI1 showed specific enrichment at enhancers with increased differential H3K27ac 

signal following LSD1 inhibition (clusters E1 and E4). LSD1 inhibition led to a loss GFI1 

signal at these clusters, consistent with previously reported displacement of GFI1 from 

chromatin upon LSD1 inhibition256. While RUNX1 and CEBPA were enriched at both 

promoters and enhancers with differential H3K27ac signal, they did not demonstrate 

appreciable changes in signal following drug treatment (Figure S4.3H and I). Collectively 

these results implicate MYC, STAT5, PU.1, and GFI1 in the synergistic cytotoxicity of 

combined FLT3/LSD1 inhibition.  

4.3.4  Loss of MYC expression is critical for the response 
to combined FLT3/LSD1 inhibition 

Our transcriptomic and epigenetic analyses nominated MYC as a key driver of 

the molecular responses to combined FLT3/LSD1 inhibition. We observed that combined 

FLT3/LSD1 inhibition results in the suppression of MYC transcript abundance and in a 

genome-wide decrease in MYC binding (Figure 4.3A and B). We confirmed that the 

transcriptional suppression of MYC was associated with a decrease in MYC protein 

abundance (Figure S4.4A). Modulation of MYC target gene expression can be 

influenced both by changes in MYC gene abundance and activity. MYC regulates the 

transcription of cell cycle proteins through the recruitment of pause-released factors to 

poised RNA Polymerase II (RNA PolII)260. We observed that the drug combination 

increased RNA PolII signal at MYC-bound gene transcription start site (TSS; Figure  

C, D, Same analyses as (A) and (B) were performed at enhancers. E, MOLM13 

cells were treated with quizartinib (1 nM), GSK-2879552 (100 nM), the 

combination, or an equal volume of DMSO for 6 hours. LSD1, MYC, and STAT5 

binding was assessed by ChIP-seq. PU.1 and GFI1 binding was assessed by 

CUT&RUN. Transcription factor binding profiles at promoters with differential 
H3K27ac identified in (A). F, Transcription factor profiles at enhancers with 

differential H3K27ac identified in (C).  
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Figure 4.3: MYC expression is suppressed by combined FLT3/LSD1 
inhibition and is associated with STAT5 regulatory activity.  
A, Normalized MYC counts from RNA-seq presented in Figure 4.1. Statistical 

significance was determined by two-way ANOVA with a Holm-Šidák post-test 

correction. B, MYC binding profile at consensus peaks from MOLM13 ChIP-seq 

presented in Figure 4.2. C, MOLM13 cells were treated with quizartinib (1 nM), 

GSK-2879552 (100 nM), the combination, or an equal volume of DMSO vehicle 

for 6 hours prior to CUT&Tag for RBP1. RBP1 binding profile at RBP1 and MYC 

co-bound regions. D, MOLM13 cells were transduced with lentiviral particles 
harboring a doxycycline-inducible MYC expression vector. Cells were treated 

with doxycycline (1 µg/mL) or DMSO for 48 hours and then plated in an 8x8 

matrix of quizartinib and GSK-2879552 for 72 hours prior to viability assessment 

by CellTiter Aqueous colorimetric assay.  
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4.3C). Although the drug combination also results in increased RNA PolII signal at gene 

bodies, the RNA-PolII pause index shows that the accumulation of paused RNA PolII at 

gene TSS exceeds the amount present at gene bodies (Figure S4.4B and C). Overall, 

this data indicates that the drug combination disrupts the ability of MYC to promote RNA 

PolII pause release at its target. In addition, we observed an increase in TP53 protein 

levels, and an enrichment of a phosphoprotein network controlled by TP53 following the 

drug combination, consistent with repression of MYC-dependent cell cycle regulation 

(Figure S4.4D). Together, these findings suggest a mechanism of combined FLT3/LSD1 

that suppresses MYC expression and activity.  

AUC data from the 311 nM GSK-2979552 isoline (the concentration 

corresponding to maximal synergy in the MYC over-expressed MOLM13 cells) is 

shown. Dose responses and synergy over the entire drug matrix is shown in 

Figure S4. Statistical significance was determined by two-way ANOVA with a 

Holm-Šidák post-test correction. E, Spearman’s correlation of normalized MYC 
gene counts and predicted transcription factor activity scores. Activity scores 

were inferred from baseline RNA-seq performed on patients in the Beat AML 

cohort. Transcription factors are ranked by goodness of fit (R2). F, MOLM13 cells 

were transduced with lentiviral particles harboring a doxycycline-inducible STAT5 

short hairpin RNA (shRNA) knockdown vector. Western blot for STAT5 and β-

actin following treatment with doxycycline (1 µg/mL) or DMSO for 48 hours. G, 
GSK-2879552 AUC of MOLM13 STAT5 knockdown cells treated with 
doxycycline (1 µg/mL) or DMSO for 72 hours. The GSK-2879552 response 

curves are shown in Figure S4.5. Statistical significance was determined by 

Student’s t-test. H, qPCR assessment of gene expression in MOLM13 cells 

expressing a doxycycline-inducible STAT5B shRNA. Cells were treated with 

doxycycline (1 µg/mL) for 48 hours prior to the addition of GSK-2879552 (100 

nM) for 24 hours. Expression was normalized to GUSB as an endogenous 

control. Statistical significance was determined by two-way ANOVA with a Holm-

Šidák post-test correction. ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p 
< 0.001, **** = p < 0.0001, TSS = transcription start site, TES = transcription end 

site.  
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To evaluate the importance of MYC expression to the mechanism of dual 

FLT3/LSD1 inhibition, we derived a MOLM13 cell line with a doxycycline-inducible MYC 

expression construct (Figure S4.4E and F). MYC over-expression resulted in decreased 

sensitivity to the drug combination (Figure 4.3D; Figure S4.4G-I). In addition, MYC over-

expression attenuated the induction of apoptosis by the drug combination (Figure 

S4.4J). These data suggest that forced expression of MYC partially abrogates the effect 

of combined FLT3/LSD1 inhibition. 

To identify potential regulators of MYC gene expression in AML that may mediate 

the response to the combination, we analyzed transcription factor activity from RNA-seq 

on 681 primary AML samples. We generated scores for each sample that reflected the 

predicted activity of 468 different transcription factors. Correlation of these transcription 

factor activity scores with MYC gene expression revealed a strong positive correlation 

with STAT5 transcription factor activity (Figure 4.3E). As FLT3 is a known activator of 

STAT5, we generated MOLM13 cell lines with perturbed STAT5 activity to evaluate its 

role in the response to combined FLT3/LSD1 inhibition259. Knockdown of STAT5A and/or 

STAT5B resulted in increased sensitivity to GSK-2879552 (Figure 4.3F and G; Figure 

S4.5A-F). Furthermore, we observed synergy between STAT5 knockdown and GSK-

2879552, demonstrating that a loss of STAT5 activity is sufficient to recapitulate a 

portion of the quizartinib effect (Figure S4.5G-J). STAT5 knockdown resulted in reduced 

expression of MYC as well as dysregulated expression of drug combination response 

markers, ADAM23 and G0S2, which were nominated from our RNA-seq analysis (Figure 

4.3H; Figure S4.5K and L). To evaluate whether a decreased STAT5 activity is 

necessary for drug combination efficacy, we created MOLM13 cells stably expressing 

Stat5a1*6 (Figure S4.6A and B). Mutant Stat5a1*6 harbors two point mutations, 

rendering it constitutively active261,262. Stat5a1*6 expression markedly attenuated 

synergy between FLT3 and LSD1 inhibition, demonstrating that STAT5 is a critical target 
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of the drug combination (Figure S4.6C-F). Collectively, these results show that the 

STAT5-MYC axis plays a major role in the response to dual FLT3/LSD1 inhibition.  

4.3.5  FLT3 inhibition suppresses STAT5 binding to the 
MYC blood super-enhancer 

To identify the mechanism by which STAT5 regulates MYC expression in FLT3-

ITD AML, we examined our STAT5 ChIP-seq data. While we did not identify a STAT5 

binding event at the MYC promoter, ranking STAT5 peaks by normalized signal revealed 

a strong binding event at the MYC BENC consistent with previous findings (Figure 

4.4A)122,263. Notably, the MYC BENC was among the cluster of enhancers associated 

with suppressed H3K27ac signal and STAT5 signal depletion following combined 

FLT3/LSD1 inhibition (cluster E3). STAT5-bound elements within the MYC BENC 

showed a significant decrease in H3K27ac signal after treatment with quizartinib or the 

drug combination (Figure 4.4B). To characterize the changes in accessibility of the MYC 

BENC we performed assay for transposase-accessible chromatin with high-throughput 

sequencing (ATAC-seq)257. This analysis revealed a loss of accessibility across all 

modules in response to drug combination treatment (Figure 4.4C-E). Evaluation of 

STAT5 binding and H3K27ac signal revealed several sub-modules that also display 

dynamic behavior in response to drug treatment but have not been previously 

characterized (A0.1-0.5, C1, G1). Collectively, our findings nominate the MYC BENC as 

a crucial locus for down-regulation of MYC gene expression by dual FLT3/LSD1 

inhibition. 
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Figure 4.4: FLT3-Inhibition represses MYC expression through a loss of 
STAT5 binding to the MYC blood super-enhancer cluster.  
A, STAT5-bound regions from Figure 4.2 ranked by ChIP-seq signal. B, 
H3K27ac CUT&Tag signal AUC at STAT5-bound BENC elements. H3K27ac 
signal data is from MOLM13 cells in Figure 4.1 whereas the STAT5 signal data is 

from MOLM13 cells in Figure 4.2. Statistical significance was determined by two-

way ANOVA with a Holm-Šidák post-test correction. C, ATAC-seq was 

performed on MOLM13 cells quizartinib (1 nM), GSK-2879552 (100 nM), the 

combination, or an equal volume of DMSO for 24 hours. Representative histone 

modification and transcription factor tracks (from DMSO conditions in Figure 4.2) 

shown at the extended MYC locus. D, ATAC signal AUC at all MYC BENC 

modules. Statistical significance was determined by two-way ANOVA with a 
Holm-Šidák post-test correction.  
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4.3.6  LSD1 inhibition represses the expression of MYC 
and its target genes by altering GFI1 and histone 
modification dynamics 

Our data demonstrates that dual FLT3/LSD1 inhibition suppresses MYC gene 

expression by displacement of STAT5 from the MYC BENC. However, the MYC BENC 

is bound by many other transcription factors, indicating that drug combination efficacy 

may be dependent on interruption of MYC BENC-bound factors in addition to STAT5. 

Prior studies have shown that LSD1 inhibitor monotherapy decreases MYC 

expression132–134. A critical component of LSD1-inhibitor efficacy is the disruption of 

LSD1 scaffolding of GFI1 from the CoREST transcription repressor complex256. 

Examination of our GFI1 CUT&RUN data confirmed that GFI1 is bound to the MYC 

BENC but is disrupted by the drug combination at module C (Figure 4.5A; Figure S4.7A-

E). To evaluate the importance of GFI1 in the response to combined FLT3/LSD1 

inhibition, we generated MOLM13 cell lines with doxycycline-inducible knockdown of 

GFI1 (Figure S4.7F and G). We found that GFI1 knockdown increased sensitivity to 

FLT3 inhibition and enhanced FLT3-inhibitor-dependent repression of MYC and its 

target genes (Figure 4.5B and C; Figure S4.7H and I). Collectively, this data indicates 

that displacement of GFI1 binding by LSD1 inhibition reduces MYC expression and is 

important to combined FLT3/LSD1 inhibitor response. 

Our data demonstrates that dual FLT3/LSD1 inhibition exerts a portion of its 

activity via a STAT5- and GFI1-dependent decrease in MYC gene expression. However, 

MYC over-expression only partially reverses the impact of combination treatment,  

E, ATAC, STAT5 ChIP-seq, and LSD1 ChIP-seq signal at twelve BENC 

modules. ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p 

< 0.0001. 
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Figure 4.5: LSD1 inhibition disrupts GFI1 binding at the MYC BENC and 
induces a gain of H3K9me1 binding at MYC-bound promoters.  
A, GFI1 CUT&RUN signal from Figure 4.2 at five BENC modules. B, MOLM13 

cells were transduced with lentiviral particles harboring a doxycycline-inducible 

non-targeting codon (NTC) or GFI1 shRNA knockdown vector.  
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suggesting the involvement of additional mechanisms. Prior work has shown that LSD1 

inhibitor efficacy is also dependent on activation of PU.1-bound enhancers and 

subsequent induction of myeloid differentiation150. Our transcriptional and epigenetic 

data shows that combined FLT3/LSD1 inhibition results in the activation of PU.1 target 

genes and acetylated enhancers enriched for PU.1 motifs. Therefore, we evaluated 

whether this transcriptional signal resulted in immunophenotypic differentiation of AML 

blasts. Drug treatment did result in a modest increase in CD11b expression, however the 

majority of treated cells remained CD11b negative (Figure S4.8). To evaluate whether 

PU.1-dependent activation of this differentiation-associated gene expression program 

Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, 

Verma A, Steidl U. Myelodysplastic syndrome progression to acute myeloid leukemia 

at the stem cell level. Nat Med. 2019 Jan;25(1):103-110. doi: 10.1038/s41591-018-

0267-4. Epub 2018 Dec 3. Erratum in: Nat Med. 2018 Dec 19;: PMID: 30510255; 

PMCID: PMC6436966. 

Quizartinib AUC of cells treated with doxycycline (1 µg/mL) or DMSO for 72 

hours. Substantial knockdown was observed in the absence of doxycycline 

treatment, so only doxycycline-treated samples were compared. The quizartinib 

response curves are shown in Figure S4.7. Statistical significance was 

determined by Student’s t-test. C, qPCR assessment of gene expression in cells 
treated with doxycycline (1 µg/mL) for 48 hours prior to the addition of quizartinib 

(1 nM) for 24 hours. Expression was normalized to GUSB as an endogenous 

control. Statistical significance was determined by two-way ANOVA with a Holm-

Šidák post-test correction. D, MOLM13 cells were transduced with lentiviral 

particles harboring a doxycycline-inducible SPI1 shRNA knockdown vector. 

Western blot for PU.1, which is encoded by SPI1, in cells treated with 

doxycycline (1 µg/ml) or an equivalent volume of DMSO for 48 hours. E, F, Cells 
were treated with doxycycline (1 µg/mL) or DMSO for 48 hours and then plated in 

an 8x8 matrix of quizartinib and GSK-2879552 for 72 hours prior to viability 

assessment. AUC data from the 311 nM GSK-2979552 isoline (the concentration 

corresponding to maximal synergy in the SPI1 knockdown MOLM13 cells) is 

shown. Dose responses and synergy over the entire drug matrix is shown in 

Figure S4.9. Statistical significance was determined by two-way ANOVA with a 

Holm-Šidák post-test correction. G-I, MOLM13 cells were treated with quizartinib 

(1 nM), GSK-2879552 (100 nM), or the combination for 6 hours prior to 
CUT&Tag for H3K9me1. Normalized signal for H3K9me1 at LSD1-bound 

regions, LSD1 and MYC co-bound regions, and at regions bound by LSD1 but 

not MYC. J, Schematic describing the drug combination mechanism. ns = not 

significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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was necessary for drug effect, we evaluated the impact of SPI1 (gene coding for PU.1) 

knockdown. PU.1-deficient cells demonstrated no significant reduction in drug synergy, 

arguing that the PU.1-driven pro-differentiation gene expression program is dispensable 

for the cytotoxic drug effect (Figure 4.5D-F; Figure S4.9A-F). 

In other cell types, LSD1 plays a role in gene activation via removal of repressive 

mono- and demethylation of histone 3 lysine 9 (H3K9me1/2)139. To evaluate this possible 

mechanism, we profiled the genome-wide distribution of H3K9me1 using CUT&Tag . 

LSD1 inhibition, with or without FLT3 inhibition, resulted in an accumulation of H3K9me1 

at MYC target genes co-bound with LSD1 (Figure 4.5G-I). This was accompanied by a 

loss of the reciprocal activating mark acetylated histone 3 lysine 9 (H3K9ac), consistent 

with the observed decrease in the expression of MYC target genes (Figure S4.9G).  

These findings suggest that dual inhibition of FLT3/LSD1 exerts locus-specific effects on 

the chromatin landscape by interrupting STAT5 and GFI1/CoREST transcriptional 

regulation as well as altering the balance of repressive H3K9 marks at MYC-bound 

promoters (Figure 4.5J).  

4.3.7  Efficacy of combined FLT3/LSD1 inhibition in 
primary AML samples 

To understand the activity of dual FLT3/LSD1 inhibition in primary AML patients, 

we performed a 3-day ex vivo drug assay on 72 primary AML samples. Nearly every 

sample (94%; 68 of 72 samples) demonstrated a synergistic increase in efficacy of dual 

agent therapy over single agents alone (Figure 4.6A and B; Figure S4.10A). Although 

synergy was observed regardless of FLT3 mutation status, the mean quizartinib AUC 

was lower in FLT3-ITD-positive samples (140.1) as compared to FLT3-wildtype samples 

(172.4) or samples harboring a FLT3 mutation other than FLT3-ITD (168.2; Figure  
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Figure 4.6: Combined FLT3/LSD1 inhibition drives synergistic cell death by 
repressing a MYC-dependent transcriptional network in primary AML 
blasts.  
A, Primary AML blasts from 72 total samples (18 FLT3-ITD-positive) were 

cultured for 72 hours along a 7-point curve with either quizartinib, GSK-2879552, 

or equimolar amounts of the drug combination.  
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S4.10B). To characterize the determinants of response to combined FLT3/LSD1 

inhibition, we generated transcription factor activity scores on baseline RNA sequencing 

performed on the cohort. Predicted MYC and STAT5B transcription factor activity were 

among the strongest correlates with the degree of combination synergy (Figure 4.6C). 

CDK4, a known transcriptional target of MYC, was the strongest correlate264. These 

findings reveal that AML samples with high baseline MYC activity have the greatest 

sensitivity to combined FLT3/LSD1 inhibition. 

To characterize the response to combined FLT3/LSD1 inhibition in patient 

samples, we performed drug sensitivity studies and RNA-seq on 6 FLT3-ITD-positive 

patient samples treated with single or dual agent therapy. Similar to the pattern of 

Cell viability was assessed by CellTiter Aqueous colorimetric assay. Excess over 

Bliss was calculated using cell viability at corresponding drug concentrations. 

Each bar represents the mean excess over Bliss across all concentrations. Bar 

color indicates FLT3 mutation status. B, Dose response curves for quizartinib, 

GSK-2879552, and the drug combination in a FLT3-ITD-positive AML sample 
from (A). C, Spearman’s correlation of excess over Bliss and predicted 

transcription factor activity. Transcription factors were ranked by goodness of fit 

(R2). D, Primary blasts from a FLT3-ITD-positive AML sample were treated in 

triplicate with an 8x8 dose matrix of quizartinib and GSK-2879552 for 72 hours 

prior to viability assessment by CellTiter Aqueous colorimetric assay. ZIP 

synergy scores were calculated on the average values for each drug dose. E, 
AUC data from the 628 nM GSK-2979552 isoline (the concentration 
corresponding to maximal synergy in (D)) is shown. Statistical significance was 

determined by Student’s t-test. F, Bulk RNA-seq was performed on six FLT3-

ITD-positive patient samples treated in triplicate with 500 nM quizartinib, 500 nM 

GSK-2879552, both drugs in combination, or an equivalent volume of DMSO for 

24 hours. MYC transcription factor activity was inferred from RNA-seq. Statistical 

significance was determined by two-way ANOVA with a Holm-Šidák post-test 

correction. G, Unsupervised hierarchical clustering of differentially expressed 

genes following drug treatment. H, Transcription factor target enrichment from 
clusters in (G). I, J, GSEA was performed comparing the drug combination to 

DMSO. ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 

0.0001. 
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synergy observed in cell lines, we found drug synergy across a broad range of doses 

(Figure 4.6D and E). In addition, the drug combination synergistically induced apoptosis 

in primary AML blasts (Figure S4.10C and D). MYC expression and predicted activity 

was down-regulated in all samples by the drug combination, although differing patterns 

of individual drug effect were observed (Figure 4.6F; Figure S4.10E). Unsupervised 

hierarchical clustering of differentially expressed genes across all 6 samples revealed a 

similar pattern to what was observed in MOLM13 cells (Figure 4.6G). Nearly a quarter of 

the differentially expressed genes in the patient samples were also identified in the 

MOLM13 cells (26.0% of up-regulated genes and 18.4% of down-regulated genes; 

Figure S4.10F and G). Transcription factor target analysis revealed suppression of MYC 

target genes and activation of SPI1/PU.1 target genes following combined FLT3/LSD1 

inhibition (Figure 4.6H; Figure S4.10H). Finally, GSEA revealed the drug combination 

decreased expression of MYC target genes and increased expression of differentiation-

associated genes (Figure 4.6I and J; Figure S4.10I). Collectively, this data confirms the 

findings of MYC gene expression and transcription factor activity from AML cell lines in 

primary AML blasts.   

4.3.8  Dual FLT3/LSD1 inhibition suppresses MYC super-
enhancer accessibility in primary AML blasts 

Our initial investigations in AML cell lines demonstrate that suppression of 

chromatin accessibility at the MYC BENC is an important mechanism of cytotoxicity 

produced by combined FLT3/LSD1 inhibition. To validate this mechanism in primary 

AML, we performed single-cell ATAC-seq on primary AML blasts from three FLT3-ITD-

positive patients 24 hours after treatment with combined quizartinib and GSK-2879552 

or DMSO. Cell type identification using a reference dataset and predicted CD34 
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expression revealed that the samples were largely of GMP-like myeloid blasts (Figure 

S4.11A-F). Clustering revealed population shifts in response to treatment (Figure 4.7A-

F; Figure S4.11G-I). Assessment of accessibility at the MYC BENC showed that these 

population shifts were associated with decreased accessibility at most BENC modules 

(Figure 4.7G-J). However, each sample showed a distinct pattern of change. Sample 

2684 showed a decrease in the majority of modules, 2645 demonstrated the most 

prominent decrease in modules A and G, and sample 2603 exhibited the strongest 

decrease in modules F and G. To understand the regions that are associated decreased 

accessibility following drug combination treatment, we calculated the peak score fold 

change among peaks identified in each condition. In sample 2684, ranking by log2 peak 

score fold change revealed that MYC BENC module C was amongst the regions with the 

greatest decrease in accessibility (Figure 4.7K). Collectively, these results demonstrate 

that suppression of MYC BENC accessibility is a conserved feature of the response to 

dual FLT3/LSD1 inhibition in primary AML samples. However, patient-to-patient 

heterogeneity does exist, suggesting diversity in the regulatory factors that sustain MYC 

BENC accessibility in primary AML samples. 

4.3.9  Combined FLT3/LSD1 inhibition disrupts human 
LSC colony formation 

Our single-cell ATAC-seq data indicates that dual FLT3/LSD1 inhibition targets 

GMP-like leukemic blasts. Previous studies have established that leukemic blasts 

originate from a small number of leukemia stem cells (LSCs)265. It has been suggested 

that to fully eradicate the bulk disease, new therapeutic strategies must not only target 

leukemic blasts, but also eliminate residual LSCs266. Therefore, we wanted to 

understand the impact of combined FLT3/LSD1 inhibition on primary patient LSCs. 
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Figure 4.7: Dual FLT3/LSD1 inhibition results in a shift from a MYC super-
enhancer-high to a MYC super-enhancer-low cell state in primary AML 
blasts.  
A-C, Single-cell ATAC-seq was performed on three AML patient samples 

following treatment with quizartinib (500 nM) and GSK-2879552 (500 nM) or an 
equivalent volume of DMSO for 24 hours.  
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LSCs have been immunophenotypically characterized using cell surface 

markers. We utilized fluorescence-activated cell sorting (FACS) to enrich LSCs from 

three primary patient samples. Specifically, we isolated hematopoietic stem and 

progenitor cells (CD34+CD38-) expressing at least one previously identified LSC marker 

(IL1RAP, CD123, CD45RA; Figure S4.12A)267–270. We sorted 40,000 enriched LSCs and 

performed colony forming assays in the presence of drug (Figure S4.12B). We observed 

a significant decrease in the number of colonies from LSCs treated with combined 

FLT3/LSD1 as compared to those exposed to vehicle (Figure S4.12C and D). This data 

suggests that combined FLT3/LSD1 disrupts primary patient clonogenicity.   

4.4  Discussion 

Activating mutations in FLT3 are amongst the most common molecular events in 

AML246. While FLT3 inhibitors are clinically available, they produce only modest 

improvements in survival249,250. Here, we demonstrated that LSD1 inhibition potentiates 

the efficacy of FLT3 inhibition in FLT3-ITD AML cell lines and primary cell blasts. High-

resolution transcriptomic and epigenetic profiling revealed that the mechanism of 

synergy is in part due to depletion of regulatory transcription factor binding, STAT5 and 

GFI1, at the MYC BENC. Moreover, we identified additional evidence that dual 

FLT3/LSD1 inhibition results in the accumulation repressive H3K9me1 marks at MYC-

UMAP of DMSO-treated and drug-treated cells colored by cluster. D-F, Percent 

of cells assigned to each cluster. Dynamic clusters were identified as the 

populations that shift between DMSO-treated and drug-treated conditions. 

Dynamic clusters are highlighted with gray shading between bars. G-I, AUC of 

accessibility at each BENC module. J, Pseudo-bulked accessibility at the MYC 
BENC modules separated by treatment condition. K, Peak score fold change 

was calculated between peaks in DMSO-treated and combination-treated cells 

within dynamic clusters. Peaks are ranked by log2(peak score fold change).  
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controlled proliferation genes. These findings reveal how epigenetic therapies augment 

the activity of kinase inhibitors in FLT3-ITD AML. 

A crucial component to the mechanism of FLT3/LSD1 inhibitor synergy was 

altering MYC expression through regulation of the MYC BENC (Figure 4 and Figure 4.7). 

While others have demonstrated that MYC transcription can by altered by inhibiting 

general chromatin regulators, disruption of MYC BENC activity by combined epigenetic 

modulatory drugs and kinase inhibitors is a novel approach to targeting this central 

oncogenic regulator127–130. Our single-cell ATAC-seq analysis revealed substantial 

variation in the pattern of MYC BENC module utilization between AML samples at 

baseline and in response to drug treatment. Indeed, other studies have suggested that 

each BENC module is bound by a distinct set of transcription factors and regulates MYC 

expression in specific blood cell lineages122. Understanding MYC BENC module 

utilization between molecularly-defined AML subtypes and its impact drug responses is 

an important question for future studies.   

Prior work on LSD1 inhibitors has largely implicated the pro-differentiation effects 

of these drugs as the central mechanism of cytotoxicity. Our work here shows that LSD1 

inhibition activates enhancers that are associated with PU.1 (Figure 4.2). Other groups 

have shown that suppression of SPI1 expression results in a block in LSD1-inhibitor-

induced differentiation and decreased cytotoxicity150. While our work confirmed the role 

of PU.1 as a putative mediator of LSD1-inhibitor responses, we found that SPI1 

knockdown had little effect on the transcriptional or cytotoxic response to dual 

FLT3/LSD1 inhibition (Figure 4.5). Moreover, combined FLT3/LSD1 inhibition did not 

seem to have a major effect on myeloid differentiation (Figure S4.8). It is unclear 

whether the PU.1-associated transcriptional effects observed in our study are important 

to the drug effect. Investigation of the pro-differentiation effects of dual FLT3/LSD1 

inhibition will be an important question for future investigation.  
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Previous studies of LSD1 inhibitors have also demonstrated that drug efficacy is 

dependent on the interruption of LSD1 scaffolding activity rather than its demethylation 

activity132,151. Our work confirmed that a critical component of LSD1 inhibitor activity is 

the disruption of LSD1 binding to GFI1/CoREST (Figure 4.5). However, LSD1 inhibition 

also resulted in the accumulation of repressive H3K9me1 marks at the promoters of 

MYC target genes. While LSD1 canonically demethylates activating H3K4 marks, 

alternative LSD1 complexes remove repressive H3K9 methylation marks in cells from 

other tissues, resulting in transcriptional activation139,140. In prostate cancer, LSD1 forms 

a chromatin-associated complex with androgen receptor that demethylates H3K9 and 

de-represses androgen receptor target genes. In neuronal cells, on the other hand, an 

LSD1 isoform, LSD1+8a, complexes with supervillain and demethylates H3K9me2 to 

regulate neuronal differentiation. Interestingly, the H3K9 demethylation activity of LSD1 

may be slightly antagonized by FLT3 inhibition as H3K9me1 signal in cells treated with 

the drug combination was lower than in those only treated with LSD1 inhibition. Further 

work needs to be done to nominate binding factors with LSD1 or LSD1 isoforms that, as 

a complex, functions as a transcriptional activator by H3K9 demethylation and how these 

complexes are affected by FLT3 inhibitors.  

Collectively, our work demonstrates that LSD1 inhibition enhances the activity of 

FLT3 inhibition in FLT3-ITD AML. The efficacy of the drug combination is dependent on 

the simultaneous disruption of STAT5 and GFI1 from the MYC blood super-enhancer 

complex, resulting in repressed MYC expression, as well as the accumulation of 

repressive H3K9me1 at MYC target genes.  
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4.5  Methods 

4.5.1  Cell and Patient Sample Culture 

4.5.1.1  Cell Lines 

MOLM13 cells (DSMZ) were cultured in RPMI (Gibco) supplemented with 10% 

fetal bovine serum (FBS, HyClone), 2 mM GlutaMAX (Gibco), 100 units/mL Penicillin, 

and 100 µg/mL Streptomycin (Gibco). MV4;11 and K562 cells (ATCC) were cultured in 

IMDM supplemented with 20% fetal bovine serum (FBS, HyClone), 2 mM GlutaMAX 

(Gibco), 100 units/mL Penicillin, and 100 µg/mL Streptomycin (Gibco). All cells were 

cultured at 5% CO2 and 37°C. Cell lines were tested for mycoplasma concentration at 

the time of freezing as well as monthly for any cell lines in culture. Cell lines were 

authenticated by the OHSU Cell Line Authentication service, which uses Promega’s 

GenePrint 10 system to confirm the identity of human cell lines by short tandem repeat 

analysis. All cell clines were maintained below fifteen passages. 

4.5.1.2  Patient Samples 

All patients gave written informed consent to participate in this study, which was 

conducted in accordance with the Declaration of Helsinki and had the approval and 

guidance of the institutional review boards at Oregon Health & Science University 

(OHSU), University of Utah, University of Texas Medical Center (UT Southwestern), 

Stanford University, University of Miami, University of Colorado, University of Florida, 

National Institutes of Health (NIH), Fox Chase Cancer Center and University of Kansas. 

Samples were sent to the coordinating center (OHSU; IRB#9570; #4422; 

NCT01728402) where they were coded and processed. Mononuclear cells were isolated 

by Ficoll gradient centrifugation from freshly obtained bone marrow aspirates or 
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peripheral blood draws. Clinical, prognostic, genetic, cytogenetic, and pathologic lab 

values as well as treatment and outcome data were manually curated from patient 

electronic medical records. Genetic characterization of the leukemia samples included 

results of a clinical deep-sequencing panel of genes commonly mutated in hematologic 

malignancies (Sequenome and GeneTrails [OHSU]; Foundation Medicine [UT 

Southwestern]; Genoptix; and Illumina). Patient samples were cultured in RPMI with 

10% FBS and 10% HS-5 conditioned media (ATCC) or SFEMII supplemented with 1x 

StemSpan CD34+ Expansion Media and 1 µM UM729 (StemCell Technologies). 

4.5.1.3  Colony Assay 

Whole bone marrow was obtained (AllCells) and CD34+ cells were selected 

using CD34 MicroBead Kit (Miltenyi Biotec) according to manufacturer’s instructions. For 

the colony assay, 500 CD34+ cells were used per replicate and plated in MethoCult™ 

H4435 Enriched (StemCell Technologies). The four groups were treated with quizartinib 

(1 nM), GSK-2879552 (100 nM), the combination, or DMSO. Plates were incubated for 

14 days in 5% CO2 and 37°C. Samples were imaged using STEMvision (StemCell 

Technologies) and blinded prior to counting by another investigator by assigning letters 

randomly. ImageJ (NIH) was used to count colonies after blinding. 

4.5.1.4  Drug Synergy 

Drug synergy was assessed using an 8 x 8 matrix of drug concentrations. Cells 

were treated for 72 hours prior to MTS assay to evaluate viability. Cell viability was used 

to calculate drug synergy with SynergyFinder based on the ZIP reference model271. 
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4.5.1.5  RNA Interference 

Two SMARTvector Inducible short hairpin RNAs (shRNAs) for Human SPI1 

(V3IHSHER_10431275, V3IHSHER_10642739), two for STAT5A (V3IHSHEG_6691183, 

V3IHSHEG_4988581) two for STAT5B (V3IHSHER_4778243, V3IHSHER_6411380) 

and two for GFI1 (V3IHSHER_5266412 and V3IHSHER_5697821) in a hEF1a-

TurboRFP or hEF1a-TurboGFP (STAT5A) backbone were obtained from Horizon 

Discovery. Both SPI1 shRNA constructs showed effective knockdown of SPI1. STAT5A 

V3IHSHEG_6691183 was specific for STAT5A, STAT5A V3IHSHEG_4988581 was 

ineffective against either STAT5A or STAT5B, STAT5B V3IHSHER_6411380 was 

selective for STAT5B, and V3IHSHER_4778243 knocked down both STAT5A and 

STAT5B. GFI1 V3IHSHER_5266412 produced effective GFI1 knockdown while 

V3IHSHER_5697821 was ineffective. Lentivirus was produced by transfecting Lenti-X 

293T cells (Clontech) with FuGENE (Promega #E2311) and Opti-MEM (ThermoFisher 

#31985062) as well as the SMARTvector transfer plasmid and packaging/pseudotyping 

plasmids. psPAX2 was a gift from Didier Trono (Addgene plasmid #12260) and pMD2.G 

was a gift from Didier Trono (Addgene plasmid #12259). The supernatants containing 

lentivirus was collected after 48 hours of culture and filtered with a 0.45 um filter. 

MOLM13 cells were transduced with virus via spinnoculation in the presence of 

polybrene. Transduced cells were selected with 1 µg/mL puromycin to produce a stable 

cell line.  

4.5.1.6  MYC Over-expression 

For human MYC over-expression, pDONR223_MYC_WT was a gift from Jesse 

Boehm & Matthew Meyerson & David Root (Addgene plasmid #82927) and cloned into 

pCW57.1, a gift from David Root (Addgene plasmid #41393). Lentiviral particles were 
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generated as above and MOLM13 cells were selected after viral transduction with 1 

µg/mL puromycin. After selection, cells were treated with 1 µg/mL doxycycline for 48 

hours prior to experiments.  

4.5.1.7  Stat5a1*6 Over-expression 

For Stat5a1*6 over-expression, pMXs-IRES-Puro (pMX Empty) was acquired 

from Cell Biolabs Inc. (#RTV-014) and pBABE-Stat5a1*6 was acquired from Addgene 

(#130668). Retroviral particles were generated by transfecting 293T17 cells (ATCC 

Number #CRL-3216) with FuGENE (Promega #E2311) and Opti-MEM (ThermoFisher 

#31985062) as well as pCMB-VSV-G (Addgene plasmid #8454), pUMCV (Addgene 

plasmid #8449), and the appropriate transfer plasmid. The supernatants containing 

retrovirus was collected after 48 hours of culture and filtered with a 0.45 um filter. 

MOLM13 cells were transduced with virus via spinnoculation in the presence of 

polybrene. Transduced cells were selected with 1 µg/mL puromycin to produce a stable 

cell line.  

4.5.1.8  LSC FACS 

CD34+ cells were isolated from patient samples using CD34 MicroBead Kit 

(Miltenyi Biotec) according to manufacturer’s instructions. Cells were subsequently 

stained with Calcein Violet (BioLegend #425203) as well as the following antibodies: 

CD45RA FITC (BD Pharmigen #55488), IL1-RAP PE (R&D Systems #FAB676P), 

CD123 PE (BD Pharmigen #554529), CD38 APC (BD Pharmigen #555462), and CD34 

APC-Cy7 (BioLegend #343513). Stained cells were analyzed and sorted into cytokine-

enriched methylcellulose (MethoCult StemCell #H4435) using a Sony SH800S. 40,000 

cells were sorted from each patient sample per replicate (n=3) per drug condition (n=2). 

The methylcellulose was treated with 500 nM quizartinib and 500 nM GSK-2879552 or 
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an equivalent volume of DMSO. Plates were incubated for 10 days in 5% CO2 and 37°C. 

Samples were imaged using STEMvision (StemCell Technologies) and blinded prior to 

counting by another investigator by assigning letters randomly. FIJI (NIH) was used to 

count colonies after blinding. 

4.5.2  Sequencing Methods 

4.5.2.1  Bulk RNA-Seq 

MOLM13 cells were treated with 1 nM quizartinib, 100 nM GSK-2879552, the 

combination, or equal volume of DMSO for 24h. Total RNA was isolated using a RNeasy 

Plus Mini Kit (Qiagen). BGI performed the library preparation and sequencing with 50 

base pair (bp) single-end (SE) sequencing. Patient samples were cultured in 10% HS-5 

CM/RPMI with 20% FBS and treated with 500 nM quizartinib, 500 nM GSK-2879552, the 

combination, or the equivalent volume of DMSO for 24 hours. Total RNA was isolated 

with RNeasy Micro kit (Qiagen) according to the manufacturer’s instructions. Libraries 

were prepared using the NEBNext Low Input RNA Library Prep Kit for Illumina (NEB) 

according to the manufacturer’s instructions. Libraries were sequenced by the OHSU 

Massively Parallel Sequencing Shared Resource (MPSSR) using 100 bp SE sequencing 

on an Ilumina NovaSeq S1 flow cell. 

4.5.2.2  Bulk ATAC-Seq 

MOLM13 cells were treated with 1 nM quizartinib, 100 nM GSK-2879552, the 

combination, or an equivalent volume of DMSO for 24 hours. After treatment, 50,000 

cells per replicate were harvested for Fast-ATAC sequencing performed as previously 

described272.  In brief, cells were resuspended in cold PBS and tagmentation master mix 

(25 μL of 2x tagmentation buffer, 2.5 μL of TDE1 [Illumina], 0.5 μL of 1% digitonin; 2x 
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tagmentation buffer: 66 mM Tris-Acetate, pH 7.8, 132 mM potassium acetate, 20 mM 

magnesium acetate, 32% v/v N,N-Dimethylformamide) was added. Samples were 

incubated at 37°C for 30 minutes. DNA was purified using Zymo Clean and Concentrator 

5 Kit (Zymo). Transposed DNA was amplified and purified as described previously with 

adapted primers273,274. Samples were quantified using Qubit dsDNA HS Assay Kit 

(Invitrogen), pooled, and sequenced by BGI using 50 bp paired-end (PE) sequencing.  

4.5.2.3  CUT&Tag 

MOLM13 cells were treated with 1 nM quizartinib, 100 nM GSK-2979552, the 

combination, or an equal volume of DMSO for 2 or 6 hours. Benchtop CUT&Tag was 

performed as previously described275. In brief, cells were counted, harvested, and 

centrifuged for 5 min at 300xg at room temperature. Cells were washed 2X in 1.5 mL 

wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 1x Protease 

inhibitor cocktail). Concanavalin A magnetic coated beads (Bangs Laboratories) were 

activated in binding buffer by washing 2X (20 mM HEPES pH 7.5, 10 mM KCl, 1 mM 

CaCl2, 1 mM MnCl2). Washed cells were separated into 100,000 cell aliquots and 10 μL 

of activated beads were added to each sample. Samples were rotated end-over-end for 

7 minutes at room temperature. A magnetic stand was used to separate beads and the 

supernatant was removed. Primary antibody was diluted 1:50 in antibody buffer (20 mM 

HEPES pH 7.5, 150mM NaCl, 0.5 mM Spermidine, 1× Protease inhibitor cocktail, 0.05% 

digitonin, 2 mM EDTA, 0.1% BSA). The following antibodies were diluted 1:100 in dig-

300 buffer (20 mM HEPES pH 7.5, 300 mM NaCl, 0.5 mM Spermidine, 1× Protease 

inhibitor cocktail, 0.01% digitonin) and added to samples as previously described: 

H3K27ac (Abcam #ab4729), H3K4me1 (CST #5326), H3K4me3 (CST #9751), RBP1 

(CST #2629), H3K9me1 (Diagenode #C15410065), H3K9ac (Diagenode #C15410004), 

CEBPA (CST #8178), and Normal Rabbit IgG (CST #2729)275. Samples incubated for 1 
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hour at room temperature on nutator. Samples were washed 2X with dig-300 buffer then 

resuspended in tagmentation buffer (dig-300 buffer with 1 mM MgCl2). Samples were 

incubated at 37°C for 1 hour. DNA was extracted with phenol:chloroform extraction. 

Samples were amplified by PCR using custom Nextera primers at 400 nM and 

NEBNext276. PCR conditions were set to: 72°C for 5 minutes, 98°C for 30 seconds, 14 

cycles of 98°C for 10 sec, 63°C for 10 sec, and 72°C for 1 minute. Libraries were purified 

with AMPure Beads (Beckman) and sequenced by the OHSU MPSSR on an Ilumina 

NovaSeq using 50 bp SE sequencing or NextSeq 500 using 37 bp PE sequencing. 

4.5.2.4  CUT&RUN 

MOLM13 cells were treated with 1 nM quizartinib, 100 nM GSK-2979552, the 

combination, or an equal volume of DMSO 24 hours. CUT&RUN was performed as 

previously described277. Briefly, concanavalin A magnetic coated beads (Bangs 

Laboratories) were washed 2x in binding buffer (20 mM HEPES pH 7.5, 10 mM KCl, 1 

mM CaCl2, 1 mM MnCl2). 500,000 cells per replicate were washed 2x with wash buffer 

(20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 1x Protease inhibitor 

cocktail). Cells were bound to beads by nutating for 10 minutes at room temperature. 

Cells were permeabilized and incubated overnight at 4°C on nutator with primary 

antibody in antibody buffer (wash buffer, 0.001% digitonin, 3 mM EDTA). The following 

antibodies were used at 1:50 PU.1 (Invitrogen #MA5-15064), GFI1 (Abcam #ab21061), 

and normal rabbit IgG (CST #2729). Bead slurry was washed 2x with dig wash buffer 

(wash buffer, 0.001% dig) and resuspended with dig wash buffer and 1x pAG-MNase 

(Epicypher). Cells were incubated for 10 minutes on nutator at room temperature then 

washed 2x with dig wash buffer followed by resuspension in pAG-MNase reaction mix 

(dig wash buffer, 2 mM CaCl2). Bead slurry was incubated for 2 hours at 4°C on nutator. 

STOP buffer (340 mM NaCl, 20 mM EDTA, 4 mM EGTA, 50 µg/mL RNase A, 50 µg/mL 
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glycogen, 0.02% dig) was then added, then tubes were incubated at 37°C for 10 

minutes. DNA was extracted using phenol:cholorform extraction. Libraries were 

prepared using NEBNext Ultra II DNA Library Prep Kit (NEB), modified for CUT&RUN as 

previously described278. After adapter ligation fragments were cleaned up with 1.75x 

AMPure beads (Beckman). Following PCR amplification, libraries were purified 2x with 

1.2x AMPure beads to rid of adaptor fragments. Libraries were quantified on the 2100 

Bioanalyzer instrument (Agilent) with the High Sensitivity DNA Analysis Kit (Agilent). 

Libraries were pooled and sequenced by MPSSR on a NextSeq 500 sequencer 

(Illumina) using 37 bp PE sequencing. 

4.5.2.5  ChIP-Seq 

ChIP-seq was performed using the SimpleChIP plus Enzymatic Chromatin IP Kit 

(Cell Signaling Technology). For each replicate, 20 million cells were fixed in 4% 

formaldehyde (Sigma-Aldrich) for 10 minutes at room temperature then quenched with 

glycine, washed and stored at -80oC until use. Nuclei were extracted according to the 

manufactures instructions and treated with 1.25 μL MNase in 500 μL Buffer B at 37oC for 

20 minutes. Samples were sonicated on a Qsonic sonicator at 50% amplitude for 5 

cycles of 15 sec on 15 sec off on ice. Crosslinks were reversed on a small aliquot of 

extracted chromatin quantified by OD260. A total of 5 µg of chromatin was used for each 

immunoprecipitation. The following antibodies were used: LSD1 (Abcam #ab17721), 

MYC (CST #13987), RUNX1 (Abcam #ab23980), STAT5 (CST #94205S) and rabbit IgG 

(CST #2729). After overnight incubation, complexes were captured using protein G 

beads. Crosslinks were reversed and libraries prepped using an NEBNex Ultra II for 

DNA Library Prep kit. Libraries were sequenced by the OHSU MPSSR. The STAT5 

libraries were sequenced by Genewiz using a HiSeqX and 150 bp PE sequencing.  
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4.5.2.6  Reverse Phase Protein Array (RPPA) 

MOLM13 cells were treated for 24 hours with 1 nM quizartinib, 100 nM GSK-

2979552, the combination. Cells were washed 2x in PBS then flash frozen. Cell pellets 

were lysed and processed by the University of Texas MD Anderson Cancer Center 

Functional Proteomics RPPA Core Facility.  

4.5.2.7  Single Cell ATAC-Seq 

Patient samples were treated with 500 nM quizartinib and 500 nM GSK-2879552 

or an equal volume of DMSO for 24 hours. Nuclei were prepared using the 

demonstrated protocol for primary cell nuclei extraction from 10x Genomics. ATAC 

libraries were prepared using Chromium Single Cell ATAC Library and Gel Bead kit v1.1 

(10x Genomics, 1000176). Libraries were sequenced with 50 bp PE sequencing by the 

OHSU MPSSR.  

4.5.3  Primary AML Blast Dataset 

Gene mutation, drug response, and gene expression data from primary AML 

blasts was accessed through the Beat AML database246. Samples from collected from 

patients who were in remission or had a history of myelodysplastic syndrome at the time 

of collection were excluded from downstream analysis. Samples with quizartinib/GSK-

2979552 single and dual agent drug response data were selected and stratified by 

FLT3-ITD mutation status. Gene expression dataset was downloaded in the form of 

reads per kilobase of exon per million reads mapped (RPKM).  
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4.5.4  Cell and Patient Sample Culture 

4.5.4.1  Flow Cytometry 

To assess differentiation, MOLM13 cells were treated with 1 nM quizartinib, 100 

nM GSK-2879552, the combination, or an equal volume of DMSO for 72 hours. Cells 

were stained with CD14 BV421 (BioLegend #301830) and CD11b PE-Cy7 (BD 

Pharmigen #557743). Stained cells were analyzed using a Sony SH800S. The flow 

cytometry data was subsequently analyzed using FlowJo. 

4.5.4.2  Apoptosis 

Apoptosis was assessed 48-72 hours after drug treatment by flow cytometry 

using an eBioscience Annexin V -APC apoptosis detection kit (ThermoFisher) according 

to the manufacturer's instructions.  

4.5.4.3  Western Blot 

For MYC abundance, MOLM13 cells were treated with 1 nM quizartinib, 100 nM 

GSK-2979552, the combination, or an equivalent volume of DMSO for 24 hours. Cells 

were lysed using cell lysis buffer (Cell Signaling Technologies [CST] #9803) containing 

protease inhibitor cocktail (Sigma-Aldrich #11697498001). Lysates were mixed with 3X 

SDS sample buffer (75 mmol/L Tris [pH 6.8], 3% SDS, 15% glycerol, 8% β-

mercaptoethanol, and 0.1% bromophenol blue) then incubated for 5 minutes at 95°C. 

Samples were run on Criterion 4–15% Tris-HCl gradient gels (Bio-Rad). Gels were 

transferred to PVDF membranes, then blocked in Tris-buffered saline with 0.1% Tween 

(TBS-T) and 5% bovine serum albumin (Sigma-Aldrich #A3059-500G). Blots were 

probed with MYC (CST #13987), PU.1 (Invitrogen #MA5-15064), GFI1 (Abcam 

#ab21061), STAT5 (CST #94205), H3 (CST #4620), or β-actin (CST #8457) antibodies 
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at 1:1000 in TBS-T overnight at 4°C. Membranes were incubated for 1 hour at room 

temperature with HRP-conjugated secondary antibody (CST #7074S) at 1:1500. 

SuperSignalTM West Pico PLUS Chemiluminescent Substrate (ThermoFisher) was 

used to develop blots. Imaging was performed on BioRad ChemiDoc Imaging System 

and analyzed using Image Lab (Bio-Rad). 

4.5.5  Data Analysis 

4.5.5.1  Bulk RNA-Seq 

Raw reads were trimmed with Trimmomatic and aligned with STAR279,280. Two 

MOLM13 replicates were identified as outliers during QC and excluded from 

downstream analysis. Differential expression analysis was performed using DESeq2281. 

Raw p values were adjusted for multiple comparisons using the Benjamini-Hochberg 

method. MOLM13-essential genes were identified from a genome-wide CRISPR/Cas9 

dropout screen255. Significant genes were selected using a false discovery rate (FDR) 

cut-off of 0.05. Gene set enrichment analyses were performed using Enrichr and Gene 

Set Enrichment Analysis (GSEA)282–284. Enrichr compiles and queries annotated gene 

set libraries, including ChEA283–285. Enrichr, we reported the odds ratio (the likelihood 

that the gene set of interest is enriched relative to background gene sets) and the -log10 

FDR-adjusted p-value. From GSEA, we included the enrichment score, normalized 

enrichment score, and FDR adjusted q-value. Transcription factor activity scores were 

generated using Priori286.  

4.5.5.2  Bulk ATAC-Seq Analysis 

ATAC libraries were aligned to the human genome (hg38) using BWA-MEM and 

sorted using SAMtools287,288. Duplicates were marked with Sambamba, duplicates and 
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mitochondrial reads were removed289. Counts per million (CPM) normalized tracks were 

generated with deepTools290. Differential accessibility was assessed with DESeq2281. 

Gene ontology (GO) analysis was performed using Genomic Regions Enrichment of 

Annotations Tool (GREAT)291. CPM-normalized tracks were merged with bigWigMerge 

and visualized using Integrative Genomics Viewer292. 

4.5.5.3  CUT&Tag and CUT&RUN Analysis 

CUT&Tag and CUT&RUN libraries were aligned to the human genome (hg38) 

using Bowtie2 and the following options --local --very-sensitive-local --no-unal --no-

mixed --no-discordant --phred33 -I 10 -X 700293. Peaks were called using GoPeaks and 

the following option -mdist 1000165. High confidence peaks were defined as those 

present in at least two replicates. Consensus bed files were formed by merging the high 

confidence peaks from DMSO, quizartinib, GSK-2979552, and the combination using 

BEDTools294. Differential peaks were identified using DESeq2 with default parameters281. 

Heatmaps were produced using the ComplexHeatmap package from Bioconductor295. 

Peaks were annotated to the nearest feature using ChIPseeker296. GO analysis was 

performed using GREAT291. Counts tables for differential peaks were produced using 

multicov from BEDTools294. CPM-normalized tracks, global signal heatmaps, and plot 

profiles at specified regions were generated using deepTools290. Active promoters were 

defined by the presence of H3K4me3 and H3K27ac within 1000 bp of a TSS. Active 

enhancers were defined by the presence of H3K4me1 and H3K27ac beyond 1000 bp of 

a TSS. CPM-normalized tracks were merged with bigWigMerge and visualized using 

Integrative Genomics Viewer292. Signal within 1500 kb upstream and downstream of 

LSD1-bound peaks as well as those that include or exclude MYC and PU.1 was 

quantified using computeMatrix reference-point from deepTools290. Signal was scaled 

and visualized with a heatmap using the ComplexHeatmap package from 
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Bioconductor295. RNA polymerase II (RNA PolII) pause indices were calculated by first 

quantifying RBP1 signal within a -30 to +100 bp window around each transcription start 

site (TSS) and within the gene bodies. After normalizing the signal by region length, the 

pause index is calculated by dividing the TSS normalized signal by the gene body signal. 

Spearman correlation of transcription factor binding sites was assessed using 

multiBigwigSummary and plotCorrelation from deepTools290. 

4.5.5.4  ChIP-Seq 

ChIP-seq libraries were aligned to the human genome (hg38) using bowtie using 

the following options -v 2 -m 1 --best –strata. Peaks were called using MACS2 callpeak 

with the -narrow option and IgG library used as the control41. Bigwigs for signal 

visualization were generated by sequentially converting alignments to bed files, big bed 

files then CPM-normalized bigwig files using UCSC Kent Utilities. Signal at enhancers 

and promoters was evaluated using deepTools290. The STAT5 super-enhancer-like 

analysis was performed using the HOMER findPeaks -super command124.  

4.5.5.5  Reverse Phase Protein Array (RPPA) 

The University of Texas MD Anderson Cancer Center Functional Proteomics 

RPPA Core Facility linearized, normalized, and batch-corrected (Level 4) the 

phosphoproteomic data. The data was analyzed with CausalPath (v 1.2.0) using a 

significant change of mean value transformation, an FDR threshold of 0.2, and 100 

permutations for significance297. The causal network was visualized on the CausalPath 

web server causalpath.org.   

http://causalpath.org/
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4.5.5.6  Drug Synergy 

Since Beat AML provides cell viability values at set drug concentrations, it was 

not amendable to ZIP synergy analysis. Instead, we calculated excess over Bliss using 

the Bliss Independence conditional response curve in base R298. The R stats package (v 

3.6.2) was used to calculate the spearman correlation between excess over Bliss and 

predicted transcription factor activity scores from Priori286.  

4.5.5.7  Single Cell ATAC-Seq 

To understand sample cell type populations, single-cell ATAC-seq libraries were 

aligned to the human genome (hg19) using 10x Genomics Cell Ranger299. ATAC-seq 

fragment coverage was quantified in a common coordinate system using Signac 

FeatureMatrix()300. The common coordinate system was created by segmenting the 

hg19 genome into 5,000 bp bins. Signac was used to generate an integrated object from 

each fragment file, using a TSS enrichment of three and 1,000 unique fragments as 

cutoffs300. Sample and reference dataset transfer anchors were identified using Signac 

FindTransferAnchors() and then mapped with Signac MapQuery300. The Healthy 

Hematopoiesis dataset compiled by Granja et al. 

(https://github.com/GreenleafLab/MPAL-Single-Cell-2019) was the reference dataset 

used in this analysis. Cells were assigned cell type labels according to their mapping to 

the reference latent space. Predicted CD34 expression was inferred using Signac 

GeneActivity()300. 

To analyze the drug effects on chromatin accessibility, single-cell ATAC-seq 

libraries were aligned to the human genome (hg38) using 10x Genomics Cell Ranger299. 

ArchR was used in R to generate Arrow files for each fragment file, using a TSS 

enrichment of four and 5,000 unique fragments as cutoffs301. An ArchRProject was 

https://github.com/GreenleafLab/MPAL-Single-Cell-2019
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created for each patient sample. Latent semantic indexing (LSI) was preformed using 

the addIterativeLSI function and clusters were added using the addClusters function. 

The UMAP for each patient sample, with both drug conditions integrated, was 

generated. The percent of cells from each treatment condition was used to identify the 

dynamic clusters. Pseudo-bulk replicates from the dynamic clusters were normalized to 

TSS enrichment and used to generate bigwigs. The bigwigs were used to produce 

deepTools matrices to assess accessibility at the MYC BENC modules290. The bar plots 

were generated using ggplot2. Peaks were called on pseudo-bulk replicates from the 

dynamic clusters using the ArchR addReproduciblePeakSet command and MACS241,301. 

Dynamic cluster peaksets from the same patient were combined using BEDTools 

intersect –loj command294. Peaks were ranked by their peak score and the log2(peak 

score fold change) between dynamic clusters was calculated using a custom script. 

4.5.6  Quantification and Statistical Analysis 

Values are represented as the mean and error bars are the SEM unless 

otherwise stated. Prism software (version 9.1; Prism Software Corp.) or R was used to 

perform statistical analyses. Significance was tested using Student’s t-test or two-way 

ANOVA followed by Holm-Šidák post-test correction unless otherwise stated. For 

differential analysis of RNA-seq, CUT&Tag, CUT&RUN, and ATAC-seq p-values were 

adjusted for repeated testing using the Benjamini-Hochberg method.  

4.5.7  Data Availability 

All raw and processed sequencing data generated in this study have been 

submitted to the NCBI Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE190785. 
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4.8 Supplementary figures 

 

Figure S4.1: Drug synergy between FLT3 and LSD1 inhibitors in FLT3-ITD 
and FLT3-wildtype cell lines.  
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A, Dose response curves for GSK-2879552 with and without quizartinib (1 nM, 

which is the concentration corresponding to maximal synergy in Figure 4.1). B, 
MOLM13 (FLT3-ITD-positive) cells were treated with an 8x8 matrix of gilteritinib 

and GSK-2879552 or (C) gilteritinib and ORY-1001 in triplicate. D, MV4;11 
(FLT3-ITD-positive) cells were treated with an 8x8 matrix of quizartinib and GSK-

2879552, (E) gilteritinib and GSK-2879552, or (F) quizartinib and ORY-1001 in 

triplicate. G, K562 (FLT3-wildtype) cells were treated with an 8x8 matrix of 

quizartinib and GSK-2879552, (H) gilteritinib and GSK-2879552, or (I) gilteritinib 

and ORY-1001 in triplicate. Cell viability was assessed after 72 hours of culture 

using CellTiter Aqueous colorimetric assay. Synergy was assessed using the ZIP 

method.  
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Figure S4.2: Efficacy of dual FLT3/LSD1 inhibition in MOLM13 cells.  
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A, B, MOLM13 cells were treated quizartinib (1 nM), GSK-2879552 (100 nM), the 

combination, or an equal volume of DMSO vehicle for 48 hours prior to 

assessment of apoptosis by flow cytometry. Early apoptosis is Annexin V positive 

and propidium iodide negative. Late apoptosis is Annexin V positive and 
propidium iodide positive. Statistical significance was determined by two-way 

ANOVA with a Holm-Šidák post-test correction. C, CD34+ cells from healthy 

donor marrow were plated in complete human methocult media along with 

quizartinib (1 nM), GSK-2879552 (100 nM) the combination, or an equal volume 

of DMSO. Colony number was assessed after 14 days of growth. Statistical 

significance was determined by two-way ANOVA with a Holm-Šidák post-test 

correction. D, Overlap of differentially expressed genes following single-agent or 

dual-agent therapy. E, Unsupervised hierarchical clustering of differentially 
expressed genes and F, complete transcription factor target enrichment from 

RNA-seq data in Figure 4.1. G, Overlap of differentially down-regulated genes by 

the drug combination and MOLM13-essential genes identified in a genome-wide 

CRISPR/Cas9 screen. H, Transcription factor target enrichment of shared genes 

in (G). I, J, Example tracks from H3K27ac CUT&Tag described in Figure 4.1. ns 

= not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.   
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Figure S4.3: Epigenetic impact of dual FLT3/LSD1 inhibition.  
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A, Unsupervised hierarchical clustering of regions with differential H3K4me3 

signal at promoters assessed by CUT&Tag from MOLM13 cells treated with 

quizartinib (1 nM), GSK-2879552 (100 nM), the combination, or an equal volume 

of DMSO for 6 hours. B, Motif enrichment of promoters with differential H3K27ac 
signal. Top four de novo motifs with p-value <10-12 are shown. C, Unsupervised 

hierarchical clustering of regions with differential H3K4me1 signal at enhancers 

assessed by CUT&Tag from MOLM13 cells treated with quizartinib (1 nM), GSK-

2879552 (100 nM), the combination, or an equal volume of DMSO for 6 hours. D, 
Motif enrichment of regions with differential H3K4me1 signal at enhancers. Top 4 

enriched transcription factor motifs are shown. E, F, GO analysis of differential 

H3K27ac signal at (E) promoters and (F) enhancers from analysis in Figure 4.2. 

Dot size represents the binomial fold enrichment and color represents the -
log10(FDR p-value) of the GO Biological Process term. G, STAT5 binding profile 

at consensus peaks from MOLM13 ChIP-seq presented in Figure 4.2. H, 
MOLM13 cells were treated with quizartinib (1 nM), GSK-2879552 (100 nM), the 

combination, or an equal volume of DMSO for 6 hours. RUNX1 binding was 

assessed by ChIP-seq and CEBPA binding was assessed by CUT&Tag. 

Transcription factor binding profiles at promoters with differential H3K27ac signal 

identified in Figure 4.2. I, Transcription factor profiles at enhancers with 

differential H3K27ac signal identified in Figure 4.2.  
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Figure S4.4: Dual FLT3/LSD1 inhibition suppresses MYC expression and 
activity.   
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A, Western blot for MYC in MOLM13 cells treated with quizartinib (1 nM), GSK-

2879552 (100 nM), the combination, or an equivalent volume of DMSO for 24 

hours. B, MOLM13 cells were treated with quizartinib (1 nM), GSK-2879552 (100 

nM), the combination, or an equal volume of DMSO vehicle for 6 hours prior to 
CUT&Tag for RBP1. Cumulative distribution of RNA PolII pause-indices at RBP1 

and MYC co-bound regions. C, AUC of RNA PolII pause-indices within the 25-

95% cumulative distribution. Statistical significance was determined by 

Kolmogorov-Smirnov test with an FDR post-test correction. D, Differential 

phosphoprotein network enrichment in MOLM13 cells treated for 24 hours with 1 

nM quizartinib and 100 nM GS-K2979552 or an equivalent volume of DMSO. E, 
MOLM13 cells were transduced with lentiviral particles harboring a doxycycline-

inducible MYC expression vector. MYC expression was assessed 48 hours after 
the addition of doxycycline (1 µg/mL) and normalized to GAPDH as an 

endogenous control. Statistical significance was determined by Student’s t-test. 

F, Western blot for MYC and β-actin in MOLM13 cells harboring a doxycycline-

inducible MYC expression vector following treatment with doxycycline (1 µg/mL) 

or DMSO for 48 hours.  G, H, Cells were treated doxycycline (1 µg/mL) or an 

equivalent volume of DMSO for 48 hours then plated in triplicate in an 8x8 matrix 

of concentrations of quizartinib and GSK-2879552 for 72 hours. Cell viability was 

measured using CellTiter Aqueous colorimetric assay. Synergy was assessed 
using the ZIP method. I, Quizartinib response curves in MOLM13 cells harboring 

a doxycycline-inducible MYC expression construct treated with and without 

doxycycline (1 µg/mL) and/or GSK-2979552 (311 nM, which is the concentration 

corresponding to maximal synergy in the MYC over-expressed MOLM13 cells in 

(G)). J, Cells were treated with doxycycline (1 µg/mL) for 48 hours then with 

quizartinib (1 nM), GSK-2879552 (100 nM), the combination, or an equal volume 

of DMSO for 48 hours. Apoptosis was assessed using flow cytometry for Annexin 
V and PI. Statistical significance was determined by two-way ANOVA with a 

Holm-Šidák post-test correction. ns = not significant, * = p < 0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001.  



210 

 

 

Figure S4.5: STAT5 and MYC play a key role in the response to FLT3/LSD1 
inhibition.   
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A-C, MOLM13 cells were transduced with lentiviral particles harboring a 

doxycycline-inducible STAT5 knockdown. Cells were induced with doxycycline (1 

µg/mL) for 48 hours. Validation of knockdown of STAT5A and STA5B by qPCR 

relative to GUSB endogenous control. Significance was determined by Student’s 
t-test. D-F, Dose response curves for GSK-2879552 with and without doxycycline 

(1 µg/mL). G, H, 8x8 drug synergy matrices between GSK-2879552 and (G) 

STAT5A, (H) STAT5B, or (I) STAT5A and STAT5B knockdown (induced by 

doxycycline) were performed in triplicate in MOLM13 cells with viability assessed 

by CellTiter Aqueous colorimetric assay after 72 hours of drug exposure. ZIP 

synergy scores were calculated on the average values for each drug dose. J, 
MOLM13 cells harboring a doxycycline-inducible non-targeting control (NTC) 

short hairpin RNA (shRNA) construct were treated doxycycline (1 µg/mL) or an 
equivalent volume of DMSO for 48 hours then plated in triplicate in an 8x8 matrix 

of concentrations of GSK-2879552 and doxycycline for 72 hours. Cell viability 

was measured using CellTiter Aqueous colorimetric assay. Synergy was 

assessed using the ZIP method. K, L, qPCR assessment of gene expression in 

MOLM13 cells expressing a doxycycline-inducible (K) STAT5A or (L) STAT5A+B 

shRNA. Cells were treated with doxycycline (1 µg/mL) or an equivalent volume of 

DMSO for 48 hours prior to the addition of GSK-2879552 (100 nM) for 24 hours. 

Expression was normalized to GUSB as an endogenous control. Statistical 
significance was determined by two-way ANOVA with a Holm-Šidák post-test 

correction. ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p 

< 0.0001. 



212 

 

 

Figure S4.6: Stat5 over-expression diminishes the efficacy of combined 
FLT3/LSD1 inhibition.  
A, MOLM13 cells were transduced with retroviral particles harboring a Stat5a1*6 

expression construct. Validation of Stat5a over-expression by qPCR normalized 

to GUSB expression. Significance was determined by a two-tailed Wilcoxon test. 

B, Western blot for STAT5 and β-actin in MOLM13 cells harboring an empty or a 

Stat5a1*6 expression vector. C, D, Cells were plated in triplicate in an 8x8 matrix 
of concentrations of quizartinib and GSK-2879552 for 72 hours. Cell viability was 

measured using CellTiter Aqueous colorimetric assay. Synergy was assessed 

using the ZIP method. E, Quizartinib response curves in cells treated with and 

without GSK-2979552 (168 nM, which is the concentration corresponding to 

maximal synergy in the Stat5a1*6 over-expressed MOLM13 cells in (D)). F, AUC 

data from the 168 nM GSK-2979552 isoline. Statistical significance was 

determined by two-way ANOVA with a Holm-Šidák post-test correction. ns = not 

significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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Figure S4.7: GFI1 knockdown weakens the effects of dual FLT3/LSD1 
inhibition.  
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A-E, AUC of GFI1 CUT&RUN signal from Figure 4.2 at five BENC modules. F, 
Validation of GFI1 knockdown by qPCR relative to GUSB endogenous control. 

Statistical significance was determined by Student’s t-test. G,  MOLM13 cells 

harboring doxycycline-inducible NTC or GFI1 shRNA were treated with 
doxycycline (1 µg/mL) for 48 hours and then probed for GFI1 and β-actin. H, 
Dose response curves for MOLM13 cells harboring a doxycycline-inducible NTC 

or GFI1 shRNA with doxycycline (1 µg/mL). I, qPCR assessment of gene 

expression in MOLM13 cells expressing a doxycycline-inducible GFI1 shRNA. 

Cells were treated with doxycycline (1 µg/mL) for 48 hours prior to the addition of 

quizartinib (1 nM) for 24 hours. Substantial knockdown was observed in the 

absence of doxycycline treatment, so only doxycycline-treated samples were 

compared. Expression was normalized to GUSB as an endogenous control. 
Statistical significance was determined by two-way ANOVA with a Holm-Šidák 

post-test correction. ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 

0.001, **** = p < 0.0001. 
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Figure S4.8: Combined FLT3/LSD1 inhibition does not substantially alter 
myeloid differentiation.  
A-D, Flow cytometry assessment of CD11b and CD14 surface markers in 

MOLM13 cells treated with quizartinib (1 nM), GSK-2879552 (100 nM), the 
combination, or an equal volume of DMSO for 72 hours. Representative 

histograms of surface marker signal with the dotted lines indicating positive 

signal cut-off. E-G, Percent of cells expressing cell surface markers as defined by 

the gates in (A-D). Statistical significance was determined by two-way ANOVA 

with a Holm-Šidák post-test correction. ns = not significant, * = p < 0.05, ** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001. 
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Figure S4.9: SPI1 knockdown does not disrupt dual FLT3/LSD1 inhibition 
synergy.  
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A, B, MOLM13 cells were transduced with retroviral particles harboring a 

doxycycline-inducible SPI1 vector (shRNA construct 401). Cells were plated in 

triplicate in an 8x8 matrix of concentrations of quizartinib and GSK-2879552 for 

72 hours. Cell viability was measured using CellTiter Aqueous colorimetric assay. 
C, Dose response curves in MOLM13 cells harboring a doxycycline-inducible 

SPI1 shRNA construct 401 with quizartinib. Cells were treated with and without 

doxycycline (1 µg/mL) and/or GSK-2979552 (311 nM, which is the concentration 

corresponding to maximal synergy in the SPI1 knockdown MOLM13 cells 

following doxycycline in (B)). D, E, Same as (A) and (B) except with the SPI1 

shRNA construct 405. F, Same as (C) except with the SPI1 shRNA construct 

405. G, MOLM13 cells were treated with quizartinib (1 nM), GSK-2879552 (100 

nM), the combination, or an equal volume of DMSO for 6 hours prior to CUT&Tag 
for H3K9ac or H3K9me1. Normalized histone modification CUT&Tag signal at 

LSD1-bound regions, MYC-bound regions, LSD1 and MYC co-bound regions, 

and LSD1-bound regions not bound by MYC. H3K27ac, H3K4me1, and 

H3K4me3 CUT&Tag signal and LSD1 and MYC ChIP-seq peaks from Figure 4.2 

were examined. ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, 

**** = p < 0.0001. 
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Figure S4.10: Efficacy of dual FLT3/LSD1 inhibition in primary AML 
samples.  
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A, Primary AML blasts from 72 total samples (18 FLT3-ITD-positive) were 

cultured for 72 hours along a 7-point curve with either quizartinib, GSK-2879552, 

or equimolar amounts of the drug combination. Cell viability was assessed by 

CellTiter Aqueous colorimetric assay. Excess over Bliss was calculated using cell 
viability at corresponding drug concentrations. Each bar represents the mean 

excess over Bliss across all concentrations. Bar color indicates MLL re-

arrangement status. B, Mean drug AUC in patient samples grouped by FLT3 

mutation status. Statistical significance was determined by two-way ANOVA with 

a Holm-Šidák post-test correction. C, D, Primary AML blasts were treated with 

quizartinib (500 nM), GSK-2879552 (500 nM), the combination, or an equivalent 

volume of DMSO for 24 hours. Apoptosis was assessed by flow cytometry for 

Annexin V and PI after 48 hours of drug exposure. Statistical significance was 
determined by two-way ANOVA with a Holm-Šidák post-test correction. E, RNA-

seq was performed on six independent, FLT3-ITD-positive patient samples 

treated in triplicate with 500 nM quizartinib, 500 nM GSK-2879552, both drugs in 

combination, or an equivalent volume of DMSO for 24 hours. MYC gene 

expression in each individual sample is shown. Statistical significance was 

determined by two-way ANOVA with a Holm-Šidák post-test correction. F, G, 
Overlap of differentially up-regulated and down-regulated genes following drug 

combination treatment in primary AML blasts from (E) and in MOLM13 cells from 
Figure S4.2. H, Transcription factor target enrichment from clusters in Figure 

4.6G. I, Select GSEA was performed comparing the drug combination to DMSO. 

ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. 
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Figure S4.11: Single-cell ATAC-seq cell population dynamics in primary 
patient samples following treatment with dual FLT3/LSD1 inhibition.  
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A-C, Primary AML blasts from three FLT3-ITD-positive samples were treated 

with quizartinib (500 nM) and GSK-2879552 (500 nM) or an equal volume of 

DMSO vehicle for 24 hours prior to single-cell ATAC sequencing. Cells were 

mapped to a latent UMAP space created from a reference healthy hematopoiesis 
dataset. Cells were assigned cell type labels according to their mapping to the 

reference UMAP. D-F, Predicted CD34 expression calculated from chromatin 

accessibility for each cell type population. G-I, Percent change in cluster 

populations defined in Figure 4.7 between DMSO and combination treatments.   
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Figure S4.12: Dual FLT3/LSD1 inhibition disrupts LSC clonogenicity.  
A, FACS strategy to isolate LSCs from CD34-enriched primary patient samples. 

Cells were sorted based on fluorescent cell surface markers and plated in 

triplicate into cytokine-enriched methylcellulose media. Representative 

histograms of surface marker signal with the dotted lines indicating positive 

signal cut-off. B, Schema of LSC sorting into colony assays. C, Representative 
images of colony assays at day 10. D, Quantification of the colony phenotype 

shown in (C). Statistical significance was determined by Student’s t-test. ns = not 

significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.
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 Chapter 5: Differentiation state plasticity as 
a mechanism of BCL2 inhibitor resistance 

in acute myeloid leukemia 

 
 

§ BLC2 inhibition promotes the production of differentiated CD34-CD38+ 

AML cells.  

§ BCL2 inhibition was not associated with increased apoptosis of immature 

CD34+CD38- cells, suggesting that the outgrowth of differentiated CD34-

CD38+ cells was likely not due to selective killing of immature cells.  

§ Single-cell chromatin accessibility sequencing revealed that short-term 

BCL2 inhibition primes immature AML cells for myeloid differentiation.  

§ Long-term BCL2 inhibition in a PDX model of FLT3-ITD/NPM1-mutant 

AML resulted in a depletion of HSC-like cells and an outgrowth of 

progenitor-like cells.   

 
 

An abstract of this work has been published in Blood:   

 Yashar WM, Pacentine IV, Tsuchiya M, Macaraeg J, Taherinasab A, Evans-

Dutson S, O’Connell B, Lusardi T, Szczepanski N, Yardimci GG, Adey AC, Maxson JE, 

Braun TP. Differentiation State Plasticity as a Mechanism of BCL2 Inhibitor Resistance 

in Acute Myeloid Leukemia. Blood, 2023 November 28302  



224 

 

5.1  Introduction 

Acute myeloid leukemia (AML) is composed of a heterogeneous population 

exhibiting characteristics of normal myeloid cells, including immature, HSC-like cells and 

differentiated, monocyte-like cells84. The balance of immature and differentiated AML 

cells within a patient is important clinically. Immature cells are acutely sensitive to 

treatment with venetoclax, a BH3 mimetic that blocks the anti-apoptotic activity of 

BCL2163. BCL2-inhibitor-based therapeutic strategies are the standard of care among 

patients with untreated or relapsed/refractory AML unfit for chemotherapy. While these 

strategies result in a remission rate of nearly 70%, most patients who do achieve 

remission ultimately relapse159. Frequently, the relapsed disease is composed of 

differentiated, monocyte-like leukemic cells163. Given the importance of BCL2 inhibitors 

to the clinical management of AML, it is critical to understand the mechanisms by which 

BCL2 inhibitor treatment results in monocytic relapse. 

Disease relapse has been traditionally thought to emerge from intrinsically 

resistant cells that confer a survival advantage under therapeutic pressure157. Several 

studies have suggested that differentiated AML cells have a survival advantage in the 

setting of BCL2 inhibition due to a reliance on anti-apoptotic proteins other than 

BCL2163,164. Immature AML cells express high levels of BCL2, whereas cells primed for 

lympho-myeloid or granulocytic-monocytic progenitor cell fates express high levels of 

MCL-1 and BCL-XL, respectively. However, these studies do not explain why patients 

with dominant, differentiated subclones frequently achieve long-lasting remission with 

BCL2-inhibitor-based strategies163. Therefore, the intrinsic resistance of differentiated 

AML cells appears to be an insufficient model to describe BCL2 inhibitor resistance. An 

alternative model of therapeutic resistance is that cancer cells transcriptionally adapt to a 

resistant phenotype and acquire a survival advantage under therapeutic pressure157. In 
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the context of BCL2 inhibitor resistance, the extent to which the emergence of 

differentiated cells results from selective pressure or adaptive changes to the cell 

differentiation state is unclear.  

In our work, we have investigated the response to BCL2 inhibition in AML. We 

found that BLC2 inhibition resulted in a dose-dependent decrease in immature AML cells 

and a simultaneous increase in differentiated AML cells. Notably, this reduction of 

immature cells was not due to the induction of apoptosis, suggesting that BCL2 inhibition 

did not selectively kill immature AML cells. Single-cell chromatin accessibility revealed 

that short-term BCL2 inhibition primed leukemic cells for a shift in their differentiation 

state. Following long-term BCL2 inhibition in an AML patient-derived xenograft (PDX) 

model, we observed a depletion of hematopoietic stem cell (HSC)-like AML cells and an 

emergence of hematopoietic progenitor-like AML cells. These findings support the role of 

differentiation state plasticity in BLC2 inhibitor resistance. 

5.2  Results 

5.2.1  A leukemia stem cell model stably produces 
immature and differentiated cells  

Investigating the association between venetoclax sensitivity and AML cell 

differentiation state is difficult since functional studies in primary AML cells are 

technically challenging. Moreover, most immortalized human AML cell lines are 

homogenous and do not recapitulate the hierarchical organization of hematopoiesis. To 

model the functional hematopoietic hierarchy in vitro, we sought an indefinitely growing 

AML culture system (OCI-AML8227) that produces clonogenic progenitors and 

terminally differentiated cells303. To characterize the differentiation state heterogeneity of 
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OCI-AML8227 cells, we investigated the frequency cell surface markers associated with 

differentiation, including CD34 (hematopoietic stem and progenitor cells), CD38 

(committed hematopoietic progenitors but not stem cells), and CD14 

(monocyte/macrophage).  We found a small population of immature CD34+CD38− cells 

and a larger population of differentiated CD34-CD38+ and CD34-CD38− cells (Figure 

5.1a). To understand whether the immature AML cells produced the differentiated cells,  

we immunomagnetically fractioned the OCI-AML8227 cells by CD34 expression. We 

then monitored the surface marker expression over seven days. We found that the 

relative fraction of immature CD34+CD38− cells significantly declined over this period 

(Figure 5.1b-d). Moreover, we observed that the fraction of CD34+CD38−CD14+ cells 

increased over this same period. These findings suggest that immature CD34+ OCI-

AML8227 cells produce a stable population of differentiated cells.  

 

Figure 5.1: Immature CD34+ OCI-AML8227 cells maintain a heterogenous 
population of immature and differentiated AML cells. 
a. OCI-AML8227 cells were cultured for three days before assessment of cell 

surface markers by flow cytometry. b-d. OCI-AML8227 cells were 

immunomagnetically fractioned by CD34 surface expression. These cells were 
subsequently cultured for 3, 5, and 7 days before flow cytometry. P-values were 

calculated by one-way ANOVA followed by Holm–Šidák post-test correction. ns = 

not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.  
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5.2.2  BCL2 inhibition promotes the production of 
differentiated AML cells  

Previous studies have shown that differentiation state is an key determinant of 

venetoclax sensitivity163. To understand whether the OCI-AML8227 system was 

appropriate to investigate this relationship, we treated OCI-AML8227 cells with 

venetoclax after immunomagnetic fractionation by CD34 expression. Consistent with 

previous studies in AML patient samples, we found that immature CD34+ AML cells were 

significantly more sensitive to venetoclax than differentiated CD34- cells (Figure 5.2a, b). 

These findings indicate that OCI-AML8227s are an appropriate model to study the 

relationship between differentiation state and venetoclax sensitivity. 

Patients with AML who relapse on venetoclax treatment often present with a 

differentiated, monocyte-like disease163. To understand how venetoclax impacts AML 

differentiation state, we studied the cell surface marker expression in OCI-AML8227 

cells exposed to venetoclax for 72 hours. We observed a significant dose-dependent 

decrease in the number of live CD34+CD38- cells (Figure 5.2c). Conversely, we 

observed a significant increase in the number of differentiated CD34-CD38+ cells with 

venetoclax treatment (Figure 5.2d).  While venetoclax increased the number of apoptotic 

cells, no substantial differences were observed between mature and immature fractions 

(Figure 5.2e, f). These findings indicate that BCL2 inhibition is promoting the 

differentiation of AML cells. 

5.2.3  Short-term BCL2 inhibition primes the induction of 
differentiation in AML cells  

To understand the transcriptional dynamics following exposure to venetoclax, we 

evaluated genome-wide single-cell chromatin accessibility in OCI-AML8227 cells 24 
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hours after drug treatment. We found that cells from both conditions had chromatin 

accessibility profiles resembling normal myeloid cells (Figure 5.3a, b). We observed that 

the CMP LMPP-like cells associated with venetoclax treatment resided farther up the 

 

Figure 5.2: BCL2 inhibition results in the outgrowth of differentiated AML 
cells. 
a. OCI-AML8227 cells were immunomagnetically fractioned by CD34 surface 

expression and then cultured for three days along a 7-point curve in venetoclax. 
b. Area under the curve (AUC) of drug curves in (a). c-f. Unfractionated OCI-

AML8227 cells were cultured for three days in DMSO or venetoclax before 

assessment of cell surface markers and Annexin-V by flow cytometry. P-values 

were calculated by (b) Student's t- test and (c-f) one-way ANOVA followed by 

Holm–Šidák post-test correction. ns = not significant, * = p < 0.05, ** = p < 0.01, 

*** = p < 0.001, **** = p < 0.0001.  
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myeloid lineage than the DMSO-treated CMP LMPP-like cells. Despite this, short-term 

venetoclax therapy only resulted in a minor increase in the number of AML cells 

resembling GMPs and CD14 monocytes (Figure 5.3c). To further characterize the 

effects of venetoclax on differentiation,  we performed a pseudotime trajectory analysis, 

 

Figure 5.3: Short-term BLC2 inhibition promotes the progression of 
immature AML cells into the myeloid lineage. 
a-c. OCI-AML8227 cells were cultured for 24 hours in DMSO or venetoclax 
before single-cell ATAC sequencing (scATAC-seq). Cells were mapped to a 

latent UMAP space created from a reference healthy hematopoiesis dataset 

(grey). Cells were assigned cell type labels according to their mapping to the 

reference latent space. d, e. Pseudotime was inferred using k=10 from DMSO- 

and venetoclax-treated cells. P-value was calculated using Wilcoxon t-test. f. 
Pseudotime was binned into intervals of 1.5. ns = not significant, * = p < 0.05, ** 

= p < 0.01, *** = p < 0.001, **** = p < 0.0001.  
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where increasing pseudotime values are associated with more differentiation (Figure 

5.3d). Using this approach, we found that venetoclax-treated cells were associated with 

significantly greater pseudotime values than the DMSO-treated cells (Figure 5.3e, f). 

These findings show that differentiation increases rapidly after exposure to venetoclax.  

5.2.4  Long-term BCL2 inhibition drives a differentiation 
shift in a mouse PDX model of AML  

Our findings suggest that short-term inhibition of BLC2 primes immature AML 

cells for myeloid differentiation. We wanted to understand how long-term BLC2 inhibition 

shifted the AML differentiation state in a clinically relevant model. We evaluated the 

effects of long-term BLC2 inhibition in a PDX model of FLT3-ITD/NPM1-mutant AML 

(Figure 5.4a). Since venetoclax is not typically used as a monotherapy, we evaluated the 

effects of combined venetoclax and azacitidine. Fifteen weeks post-engraftment, we 

randomized the mice into control and treatment groups based on their peripheral blood 

chimerism levels (Figure 5.4b). We performed single-cell RNA-seq (scRNA-seq) from 

harvested bone marrow in the control and treatment groups. Similar to our scATAC-seq 

analysis, we identified cell types using a reference dataset (Figure 5.4c, d). We found 

that venetoclax/azacitidine treatment was associated with a depletion of HSC-like AML 

cells, along with a subsequent increase in the CMP LMPP-like and early erythrocyte-like 

population. These findings provide pre-clinical evidence supporting the role of 

differentiation state plasticity following venetoclax treatment.  

5.2.5  Conclusions 

In our work, we have investigated the response to BCL2 inhibition in AML. We used an 

AML cell model (OCI-AML8227) that stably produces a heterogeneous population of 



231 

 

immature and differentiated AML cells. Consistent with previous studies in AML patient 

samples, we found that immature CD34+ cells were significantly more sensitive to BCL2 

inhibition than differentiated CD34- cells. BLC2 inhibition resulted in a dose-dependent 

decrease in immature CD34+CD38- cells and a simultaneous increase in differentiated 

CD34-CD38+ cells. Notably, this reduction of immature cells was likely not due to the 

 

Figure 5.4: Long-term BCL2 inhibition is associated with an emergence of 
differentiated AML cells. 
a. Study schematic (created using BioRender). b. Mean ± SD is shown. P-values 

were calculated using Student's t-test comparing groups on the same day. c-e. 
scRNA-seq was performed from harvested bone marrow. Cell types were 

identified as described in Figure 3a-c, except with a scRNA-seq dataset (grey). 
ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001.  
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induction of apoptosis. Single-cell chromatin accessibility profiling revealed that while 

short-term BCL2 inhibition resulted in a minor increase in the number of differentiated 

AML cells, it primed cells for a shift in their differentiation state. Following long-term 

BCL2 inhibition in an AML PDX model, we observed a depletion of HSC-like cells and a 

subsequent emergence of CMP LMPP-like and early erythrocyte-like cells. These 

findings support the role of differentiation state plasticity in BLC2 inhibitor resistance.  

5.3  Methods and materials 

5.3.1  Cell culture 

5.3.1.1  OCI-AML8227 cell culture 

OCI-AML8227 cells were provided by Dr. John Dick (University of Toronto) under 

a materials transfer agreement. These cells were shipped frozen on dry ice and then 

thawed in a water bath set to 37°C. A thaw media consisting of 49.5% FBS (HyClone), 

49.5% X-VIVO 10 (Lonza #04-380Q), and 1% DNAse I (Roche #11284932001) was 

slowly added drop-wise to the cells. They were incubated for 10 minutes at room 

temperature and then washed twice with DPBS (Gibco). After washing, the cells were 

transferred into the culture media consisting of sterile filtered (0.22 um, EMD Milipore 

#SE1M179M6) 20% BIT (StemCell Techologies #9500) and 80% X-VIVO 10 

supplemented with IL-3 (10 ng/mL; Peprotech #200-03), SCT (100 ng/mL; Peprotech 

#300-07), IL-6 (20 ng/mL; Peprotech #200-06), Flt3-Ligand (50 ng/mL; Peprotech #300-

19), G-CSF (10 ng/mL; Peprotech #300-23), and TPO (25 ng/mL; Peprotech #300-18). 

Unless otherwise stated, OCI-AML8227 cells were cultured in the inner eight wells of a 

24-well plate with the outer wells filled with DBPS. Additionally, OCI-AML8227 cells were 



233 

 

seeded at a concentration of 4e5 cells per well and then incubated for 48 hours in 5% 

CO2 and 37°C before experiments. 

5.3.1.2  Immunomagnetic fractionation 

OCI-AML8227 were immunomagnetically fractioned for CD34 surface expression 

using CD34 Microbeads (Miltenyi Biotec #130-046-702). Cells were resuspended in 

sterile filtered (0.22 um) MACS buffer (0.5% BSA and 2 mM EDTA). Cells were 

incubated with CD34 Microbeads for 30 minutes at 4°C. The beads were washed from 

the media, resuspended in MACS buffer, and then passed through a MACS Cell 

Separator LS column (Miltenyi Biotec #130-042-401) with a pre-separation cell strainer 

(Miltenyi Biotec #130-101-812). The column was washed three times with MACS buffer. 

CD34+ OCI-AML8227 cells were isolated from the LS column flow through off of the 

MACS separator. 

5.3.1.3  Flow cytometry 

OCI-AML8227 cells were first counted using a Bio-RAD TC20 Automated Cell 

Counter to assess differentiation. An equal number of cells in each condition were 

stained with CD34 FITC (BD Pharmigen Cat #555821), CD38 APC (BD Pharmigen Cat 

#555462), and CD14 BV421 (BioLegend #301830). Stained cells were analyzed using a 

Sony SH800S. The flow cytometry data was subsequently analyzed using FlowJo. The 

number of cells was calculated by multiplying the fraction of cells in a quadrant by the 

number of cells counted before flow cytometry was performed.  
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5.3.1.4  Apoptosis 

Apoptosis was assessed 72 hours after venetoclax treatment by flow cytometry 

using an eBioscience Annexin V-FITC apoptosis detection kit (ThermoFisher #88-8102-

72) according to the manufacturer's instructions.  

5.3.1.5  Drug Sensitivity 

OCI-AML8227 cells were cultured for 72 hours along a 7-point curve of 

venetoclax (ABT-199; Selleckchem #S8048). Cell viability was assessed by CellTiter 

Aqueous colorimetric assay.   

5.3.2  Mouse xenograft model 

5.3.2.1  Mice 

NSG-SGM3 mice (Strain #013062) were obtained from The Jackson Laboratory. 

All animals were maintained on a standard 12-hour light and 12-hour dark cycle and 

provided ad libitum access to water and food (Purina Mills laboratory rodent diet 5001). 

7-week-old male mice were used for experimentation. All experiments were conducted in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals and 

approved by the Institutional Animal Care and Use Committee of Oregon Health & 

Science University304.  

5.3.2.2  Mouse xenograft model  

Splenic cells from an FLT3-ITD, NPM1-mutant AML, patient-derived murine 

model were obtained from the Dana Farber Cancer Institute (Model #CPDM_1061X). 

Non-irradiated donor mice were engrafted with 1e6 cells by tail vein injection. 
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5.3.2.3  Drug preparation and treatment 

Venetoclax (MedChemExpress #HY-15531) and azacitidine (MedChemExpress 

#HY-10586) were reconstituted with dimethyl sulfoxide (DMSO), sterile filtered (0.2 μM), 

and stored in aliquots at −80°C. On the day of treatment, venetoclax was reconstituted 

with PEG300 (Selleckchem #S6704), Tween-80 (MedChemExpress #HY-Y1891), and 

ddH20. Azacitidine was reconstituted with PEG300 and ddH20. Venetoclax was 

administered by oral gavage for five days on and two days off for a total of 21 days. 

Azacitidine was administered every day for 21 days by intraperitoneal injection. Weights 

were measured daily during treatment, and doses were recalculated to ensure the mice 

received a consistent dose of 50 mg/kg venetoclax and 2.5 mg/kg azacitidine305,306. 

5.3.2.4  Mouse xenograft study 

Complete blood counts were obtained weekly starting 15 weeks following 

engraftment (Day 0) using an automated counter (Scil Vet abc). Flow cytometry was 

used to monitor for human blood chimerisms and was performed on BD LSRFortessa 

with human CD45 FITC (Invitrogen #11-0459-42) and mouse CD45 APC (Invitrogen 

#17-0451-82) antibodies. Mice were assigned into control and treatment groups based 

on their Day 0 engraftment levels. Daily treatment administration was maintained 

between Days 21-37. Blood and bone marrow smears were prepared from mice found 

deceased or at the time of sacrifice (Day 48).   

5.3.3  Sequencing 

5.3.3.1  Single-cell ATAC-seq 

OCI-AML8227 cells were treated with 1 μM venetoclax for 24 hours before 

assessment of chromatin accessibility. Single-cell ATAC-seq was performed using the 
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s3ATAC-seq protocol as previously described8. Briefly, nuclei were isolated from OCI-

AML8227 cells using nuclei isolation buffer (10 mM HEPES-KOH pH 7.2 [Fisher 

Scientific #BP310-500 and Sigma Aldrich #1050121000], 10 mM NaCl [Fisher Scientific 

#S271-3], 3 mM MgCl2 [Fisher Scientific #AC223210010], 0.1% IGEPAL-CA630 [Sigma 

Aldrich #I3021], 0.1% Tween-20 [Sigma Aldrich #P-7949], and EDTA-free Pierce 

protease inhibitor [ThermoFisher #A32955]). Nuclei were tagmented in tagmentation 

buffer (132 mM TAPS [[tris(hydroxymethyl)methylamino]propanesulfonic acid] pH 8.5 

[Sigma Aldrich #T0647], 264 mM potassium acetate [Sigma Aldrich #P1190], 40 mM 

magnesium acetate tetrahydrate [Sigma Aldrich #M5661], 12 mM D-Glucosamine sulfate 

[Fisher Scientific #AAJ6627106], and NN-Dimethylformamide [Sigma Aldrich #D4551]) 

using Tn5 transposase (Scale Biosciences). During tagmentation, nuclei were incubated 

for 30 minutes at 42°C while shaking at 300 RPM on an Eppendorf ThermoMixer C. 

Tagmented nuclei were pooled, stained with DAPI (Cell Signaling Technologies #4083), 

and sorted into a 96-well plate using a Sony SH800S cell sorter. Nuclear proteins were 

denatured by incubation at 55°C  for 15 minutes on an Eppendorf Mastercycler nexus 

with the lid heated to 90°C. Linear extension and adapter switching were performed in 

nuclei resuspended in 300 nM LNA oligo, 1.5% Triton-X100 (Sigma Aldrich #T8787), 

and VeraSeq PCR Mix (Qiagen #P7610L) on an Eppendorf Mastercycler nexus. qPCR 

was performed using VeraSeq Buffer II (Qiagen #B7102), 10 mM dNTPs (ThermoFisher 

#R0192), and VeraSeq Ultra Polymerase (Qiagen #P7520L). Libraries were cleaned 

using the DNA Clean & Concentrator-5 kit (Zymo Research #D4013) and then were 

size-selected using MagBind TotalPure NGS Binding Beads (Omega Biotech #M1378-

01). Cleaned libraries were quantified using an Invitrogen Qubit and an Agilent 

TapeStation. Libraries were diluted to 600 pM and then sequenced with 100 bp PE on 

an Illumina NextSeq 2000. 
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5.3.3.2  Single-cell RNA-seq 

Nuclei were extracted from harvested bone marrow and then prepared using the 

demonstrated primary cell nuclei extraction protocol from 10x Genomics. RNA libraries 

were prepared using Chromium Single Cell RNA Library and Dual Index Next GEM 

Single Cell 3’ Reagent Kits v3.1 (10x Genomics #PN-1000268). Libraries were 

sequenced with 100 bp PE sequencing by the OHSU MPSSR.  

5.3.4  Analysis 

5.3.4.1  Single-cell ATAC-seq 

Single-cell ATAC-seq libraries were demultiplexed with the Tn5, i5, and i7 

barcodes and the Tn5 tagmentation plate position using a custom script. The 

demultiplexed fastqs were aligned to the human genome (hg19) using bwa align288. 

Aligned fastqs were filtered for chromosomes 1-22, X, Y, and M, and insert sizes 

between 20-10,000 bp using SAMtools307. Duplicates were removed using a custom 

script. ATAC-seq fragment coverage was quantified in a common coordinate system 

with Signac FeatureMatrix()Field 299 for each deduplicated BAM. The common 

coordinate system was created by segmenting the hg19 genome into 5,000 bp bins. 

Signac was used to generate an integrated object from each fragment file, using a TSS 

enrichment of two and 1,000 unique fragments as cutoffs300. Sample and reference 

dataset transfer anchors were identified using Signac FindTransferAnchors() and then 

mapped with Signac MapQuery300. The Healthy Hematopoiesis scATAC-seq dataset 

compiled by Granja et al. (https://github.com/GreenleafLab/MPAL-Single-Cell-2019) was 

the reference dataset used in this analysis308. Cells were assigned cell-type labels 

according to their mapping to the reference latent space. Pseudotime was calculated on 

an integrated object containing DMSO- and venetoclax-treated cells using monocle3309.  

https://github.com/GreenleafLab/MPAL-Single-Cell-2019
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5.3.4.2  Single-cell RNA-seq 

Single-cell RNA-seq libraries were aligned to the murine genome (mm10) using 

10x Genomics Cell Ranger299. Seurat was used to generate an integrated object from 

each library, which included features present in at least 10 cells, cells with at least 500 

features and at most 8,000 features, and cells with at most 15% of features associated 

with mitochondrial genome310. Cell cycle genes were regressed during gene count 

normalization and scaling with Seurat. Sample and reference dataset transfer anchors 

were identified using Seurat FindTransferAnchors() and then mapped with Seurat 

MapQuery310. The Healthy Hematopoiesis scRNA-seq dataset compiled by Granja et al. 

(https://github.com/GreenleafLab/MPAL-Single-Cell-2019) was the reference dataset 

used in this analysis308. Cells were assigned cell-type labels according to their mapping 

to the reference latent space.  

5.3.5  Quantification and Statistical Analysis 

Values are represented as the mean, and error bars are the SEM unless 

otherwise stated. Prism (version 9.1; Prism Software Corp.) or R was used for statistical 

analyses. Significance was tested using Student’s t-test or one-way ANOVA followed by 

Holm-Šidák post-test correction unless otherwise stated.  
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 Chapter 6: Conclusions and future 
directions 

6.1  Identification of histone modification peaks 
from CUT&Tag data using GoPeaks 

6.1.1  Conclusions 

Histone modifications regulate gene transcription and are associated with genetic 

regulatory elements, including enhancers and promoters. Regions of modified histones 

can be identified using next-generation sequencing techniques, including ChIP-seq, 

CUT&Tag, and CUT&RUN, as stacks of aligned reads13,18–20.  Algorithms have been 

developed to identify genome-wide enrichment of aligned reads, also known as peaks, 

and distinguish peaks of modified histones from noise and artifacts. ChIP-seq peak 

calling methods, including MACS2, were designed to address the high background rate 

in ChIP-seq. As a result, they are vulnerable to mistaking background signal as peaks, 

particularly when the background is low41–43. While SEACR was developed to perform 

transcription factor peak calling from low background CUT&RUN data, no method has 

been designed to call peaks from histone modification CUT&Tag data43. In our work, we 

developed GoPeaks and compared its performance against commonly used peak calling 

algorithms to detect histone modifications frequently used in epigenetic studies. We 

showed that GoPeaks detects peaks of histone modifications that are frequently used in 

epigenetic studies, including H3K4me3, H3K4me1, H3K27me3, and H3K27ac with high 

sensitivity and specificity. Notably, GoPeaks demonstrated an improved ability to identify 

H3K27ac peaks, which are critical to localizing active regulatory non-coding elements 
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throughout the genome, over other standard peak calling algorithms. Moreover, we 

showed that GoPeaks is able to detect peaks from other epigenetic profiling techniques, 

including ChIP-seq, CUT&RUN, and ATAC-seq. 

6.1.2  Future directions 

GoPeaks was developed to identify peaks from bulk CUT&Tag data. However, 

peak calling is not limited to ChIP-seq and CUT&Tag and is essential for analyzing 

various epigenetic profiling data. Therefore, we investigated whether GoPeaks identifies 

transcription factor peaks from CUT&RUN and chromatin accessibility peaks from 

ATAC-seq. We showed that GoPeaks was able to robustly identify peaks in both of 

these modalities. While these findings reassured us, the field is rapidly moving away 

from bulk sequencing techniques in favor of single-cell sequencing189,311. To keep up 

with the pace of single-cell sequencing technologies, future studies need to adapt 

GoPeaks to identify peaks from scATAC-seq and scCUT&Tag data. Data sparsity is a 

well-documented limitation of most single-cell modalities7. Since GoPeaks was designed 

to identify regions of enriched signal in the context of low background, it is well-

positioned to be applied to single-cell data. However, it is unclear whether GoPeaks will 

need to deploy common single-cell strategies, such as pseudobulking, to improve its 

robustness and reduce the false discovery rate in the setting of single-cell sequencing 

data312. Future studies should investigate the ability of GoPeaks to call peaks from 

single-cell sequencing epigenetic profiling data.  
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6.2  Predicting transcription factor activity using 
prior biological information  

6.2.1  Conclusions 

Dysregulation of normal transcription factor activity is a common driver of 

disease. Many methods have been developed to infer transcription factor activity from 

RNA-seq data50–52. These approaches differ based on how they select gene expression 

features, either using the expression of the transcription factors themselves, every gene 

in the dataset, genes from expert-curated sets, or genes nominated from network 

inference analysis59–63,65,66. Despite advances in these methods, however, recent studies 

have highlighted that grounding predictions using transcription factor activity methods 

remains challenging68–72. Despite this, several precision medicine clinical studies use 

inferred transcription activity from bulk RNA-seq as a marker to guide clinical decisions. 

While there is an increasing number of single-cell and spatial -omic modalities available 

to clinical researchers, many larger cohorts most commonly use markers identified from 

bulk RNA or DNA sequencing. Therefore, it is critical to develop methods that can 

robustly detect aberrant transcription factor activity from primary patient bulk RNA-seq 

data.  

In our studies, we developed a computational method called Priori that uses 

prior, peer-reviewed biological information to infer transcription factor activity. Our 

method has two major advantages over the existing methods. First, Priori identifies 

transcription factor target genes using carefully extracted transcriptional regulatory 

networks from Pathway Commons205,206. Using these transcriptional relationships, Priori 

fits linear models to the expression of transcription factors and their target genes. 

Second, comparison with a third-party benchmarking workflow reveals that Priori detects 
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aberrant transcription factor activity from 124 gene perturbation experiments with higher 

sensitivity and specificity than 11 other methods. We applied Priori and three different 

methods nominated from the benchmarking workflow to generate activity scores from 

two large primary patient datasets, TCGA BRCA and Beat AML. We demonstrate that 

Priori can be deployed to discover significant predictors of survival in breast cancer and 

identify mediators of drug response in leukemia from primary patient samples that were 

not robustly detected using the other methods.  

6.2.2  Future directions 

Priori generates transcription factor activity scores by fitting linear models to gene 

expression data. Linear models have many benefits for biologists, including ease of 

interpretation. For example, Priori generates individual target gene weights, allowing 

users to understand the contribution of each target gene to the overall activity score. 

This will enable researchers to triage targets that may be important drivers of 

transcriptional regulation. However, computational biology is rapidly adopting non-linear 

models. Conceptually, models such as random forest, support vector regression, k-

nearest neighbors, or artificial neural networks can capture non-linear relationships 

between transcription factors and their target genes. While we were encouraged to see 

that Priori identified perturbed transcription factor activity better than other methods, 

Priori’s predictions still have room for improvement. It would be worthwhile to empirically 

test other model structures, separately or in combination with linear models, to 

understand which structure best captures transcriptional relationships.  

Priori uses transcriptional relationships from Pathway Commons as prior 

information. The Pathway Commons relationships have many benefits, including 

grounding findings in literature-supported biological information from a vast dataset (22 
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high-quality databases with over 5,700 detailed pathways and 2.4 million 

interactions)205,206. However, Pathway Commons is designed to curate and generalize 

transcriptional relationships across many tissue types. Transcription factor regulation is 

likely context-dependent. MAX, for example, functions as an inhibitor when binding to 

DNA as a heterodimer with MNT or MXD1 and as an activator when binding as a 

heterodimer with MYC313. While the generalized transcriptional relationships from 

Pathway Commons are likely tuned by Priori when generating the target gene weights, 

Priori’s performance may be improved with refined prior data. It may be more 

appropriate to generate Priori activity scores using disease-specific networks. Other 

groups have deployed a similar approach, including the authors of VIPER. They 

encourage researchers to generate activity scores using their pre-trained networks 

inferred from TCGA datasets65. Moreover, single-cell sequencing may allow researchers 

to generate context-dependent networks. There are major efforts to characterize normal 

and diseased tissue at single-cell resolution. One such effort, Tabula Sapiens, is 

compiling a multi-organ, single-cell transcriptomic atlas of humans. Resources like this 

will provide an unprecedented ability to study the regulatory dynamics of transcription 

factors within different cell types. Since transcription factors and target genes have a 

lead-lag relationship, mathematical models, including Granger causality, can infer 

transcription factor and target gene relationships314. These inferred transcriptional 

relationships could be used to refine the generalized Pathway Commons relationships 

for each dataset. The utility of context-dependent prior networks grounded in literature-

supported relationships to predict transcription factor activity should be further explored.  

Our work identified 11,075 significant inhibitor-transcription factor activity 

relationships from 859 patients with AML using Priori. Previous findings showed that 

disruption of FOXO1 activity sensitized MCL cell lines to venetoclax232. As this 
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relationship had not been tested in leukemia, we evaluated it using a CRISPR-Cas9 

knockdown of FOXO1 in a cell line model of monocytic AML. We found that FOXO1 

knockdown sensitized these cells to venetoclax, consistent with Priori’s prediction. While 

we were encouraged by these findings, it would be beneficial to systematically test these 

significant inhibitor-transcription factor activity relationships using an arrayed CRISPR 

screen. Guide RNA libraries comprised of Cas9 single guide RNAs can be developed to 

target one gene per well in a multi-well plate315. Cas9-expressing monocytic AML cells 

can be therapeutically perturbed with small molecule compounds, such as venetoclax, 

and then evaluated for cell viability. This technique would identify transcription factors 

whose knockdown sensitizes monocytic AML to venetoclax. This experiment would not 

only allow us to evaluate the robustness of Priori’s predictions but also design rationale 

combination therapies with venetoclax.  

6.3  Disruption of the MYC super-enhancer with 
dual FLT3/LSD1 inhibition in FLT3-ITD AML  

6.3.1  Conclusions 

Mutations in FLT3 are among the most common mutations in AML and confer a 

poor prognosis. The use of FLT3 inhibitors has demonstrated improved clinical benefits 

in the setting of relapsed/refractory FLT3-ITD AML compared to salvage chemotherapy. 

However, FLT3 inhibitors are rarely curative, and patient remissions are short-lived, 

limiting their use as adjuncts to conventional therapy. Thus, there is a need for new 

therapeutic drug combinations to treat this disease.  

LSD1 inhibitors have shown promise to improve clinical responses to FLT3 

inhibitors. My lab revealed in an unbiased drug screen that LSD1 inhibition enhances the 
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efficacy of a JAK/STAT kinase inhibitor in JAK/STAT-driven AML153. As the JAK/STAT 

signaling pathway is activated downstream from FLT3, we reasoned that LSD1 inhibition 

might also improve the activity of FLT3 inhibitors in FLT3-ITD AML316–320. In our studies, 

we showed that LSD1 enhanced the activity of FLT3 inhibitors in FLT3-mutant AML. 

Multi-omic profiling revealed that the drug combination disrupts STAT5, LSD1, and GFI1 

binding at the MYC BENC, suppressing super-enhancer accessibility as well as MYC 

expression and activity. Combined LSD1 and FLT3 results in the accumulation of 

repressive H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We 

validated these findings in 72 primary AML samples, with nearly every sample 

demonstrating synergistic responses to the drug combination. Collectively, these studies 

reveal how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD 

AML. 

6.3.2  Future directions 

A crucial component of the FLT3/LSD1 inhibitor synergy mechanism was altering 

MYC expression by regulating the MYC BENC. While others have demonstrated that 

MYC transcription can be altered by inhibiting general chromatin regulators, disruption of 

MYC BENC activity by combined epigenetic modulatory drugs and kinase inhibitors is a 

novel approach to targeting this central oncogenic regulator127–130. Our scATAC-seq 

analysis revealed substantial variation in the MYC BENC module utilization pattern 

between AML samples at baseline and in response to drug treatment. Indeed, other 

studies have suggested that a distinct set of transcription factors binds each BENC 

module and regulates MYC expression in specific blood cell lineages122. Understanding 

MYC BENC module utilization between molecularly defined AML subtypes and its 

impact on drug responses is crucial for future studies.   
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Prior work on LSD1 inhibitors has broadly implicated the pro-differentiation 

effects of these drugs as the central mechanism of cytotoxicity. Our work here shows 

that LSD1 inhibition activates enhancers associated with PU.1. Other groups have 

demonstrated that suppression of SPI1 expression results in a block in LSD1-inhibitor-

induced differentiation and decreased cytotoxicity150. While our work confirmed the role 

of PU.1 as a putative mediator of LSD1-inhibitor responses, we found that SPI1 

knockdown had little effect on the transcriptional or cytotoxic response to dual 

FLT3/LSD1 inhibition. Moreover, combined FLT3/LSD1 inhibition did not significantly 

affect myeloid differentiation. It is unclear whether the PU.1-associated transcriptional 

effects observed in our study are crucial to the drug effect. Investigation of the pro-

differentiation effects of dual FLT3/LSD1 inhibition will be a necessary question for future 

investigation.  

Previous studies of LSD1 inhibitors have also demonstrated that drug efficacy is 

dependent on the interruption of LSD1 scaffolding activity rather than its demethylation 

activity132,151. Our work confirmed that a critical component of LSD1 inhibitor activity is 

the disruption of LSD1 binding to GFI1/CoREST. However, LSD1 inhibition also resulted 

in the accumulation of repressive H3K9me1 marks at the promoters of MYC target 

genes. While LSD1 canonically demethylates activating H3K4 marks, alternative LSD1 

complexes remove repressive H3K9 methylation marks in cells from other tissues, 

resulting in transcriptional activation139,140. In prostate cancer, LSD1 forms a chromatin-

associated complex with androgen receptor that demethylates H3K9 and de-represses 

androgen receptor target genes. In neuronal cells, on the other hand, an LSD1 isoform, 

LSD1+8a, complexes with supervillain and demethylates H3K9me2 to regulate neuronal 

differentiation. Interestingly, the H3K9 demethylation activity of LSD1 may be slightly 

antagonized by FLT3 inhibition as the H3K9me1 signal in cells treated with the drug 
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combination was lower than in those only treated with LSD1 inhibition. Further work 

needs to be done to nominate binding factors with LSD1 or LSD1 isoforms that, as a 

complex, function as a transcriptional activator by H3K9 demethylation and how these 

complexes are affected by FLT3 inhibitors.  

We demonstrated that combined FLT3 and LSD1 inhibition effectively induces 

leukemic cell death in FLT3-ITD AML cell line models and primary patient samples. 

While ex vivo treatment of cell lines and primary patients is useful for its ease of use, this 

system may only partially reflect in vivo disease. Our work provides a preclinical 

rationale for using combined FLT3 and LSD1 inhibition in FLT3-ITD AML, which needs 

to be validated clinically. Since our findings have been released, a Phase I clinical trial 

investigating the efficacy of combined iadademstat and gilteritinib in patients with 

relapsed/refractory FLT3-ITD AML has been initiated (FRIDA Trial; ID #NCT05546580). 

This trial will not only evaluate the safety, tolerability, pharmacokinetics, and 

pharmacodynamics of combined FLT3 and LSD1 inhibition but also to understand the in 

vivo mechanism of the drug combination. As a part of this trial, we will have access to 

pre- and post-treatment bone marrow and peripheral blood samples from these patients. 

Using scATAC-seq, we can understand how the drug combination disrupts 

transcriptional regulation at the MYC BENC. The FRIDA trial and subsequent clinical 

investigations will be necessary to understand the efficacy of combined FLT3 and LSD1 

inhibition among patients with FLT3-ITD AML.  
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6.4  Differentiation state plasticity following BCL2 
inhibition in AML 

6.4.1  Conclusions 

Frequently, the relapsed disease following venetoclax-based-therapeutic 

strategies is composed of differentiated, monocyte-like cells163. Several studies have 

suggested that differentiated AML cells have a survival advantage in the presence of 

BCL2 inhibition due to a reliance on alternative anti-apoptotic proteins163,164. However, 

these studies do not explain why patients with dominant, differentiated subclones 

frequently achieve long-lasting remission with BCL2-inhibitor-based strategies163. 

Therefore, simple selection of differentiated cells appears insufficient to describe BCL2 

inhibitor resistance. Increasing evidence shows that therapeutic pressure can facilitate 

transcriptional programs that confer drug resistance. In the context of BCL2 inhibitor 

resistance, the extent to which the emergence of differentiated AML cells is the result of 

intrinsic resistance or transcriptional adaptation is unclear. 

In our studies, we found that BCL2 inhibition promotes the differentiation of AML 

cells. Using an AML cell line model (OCI-AML8227) that recapitulates the functional 

hematopoietic hierarchy, we showed that venetoclax decreases the number of immature 

CD34+CD38- cells and simultaneously increases the number of differentiated CD34-

CD38+ cells. To understand the transcriptional dynamics following venetoclax treatment, 

we investigated the single-cell chromatin accessibility profiles of OCI-AML8227 cells 

treated with venetoclax for 24 hours. This short-term venetoclax treatment primed 

immature HSC-like and CMP LMPP-like AML cells for myeloid differentiation. To 

understand the effects of long-term venetoclax treatment in a clinically relevant model, 

we performed a venetoclax drug study in a PDX mouse model of FLT3-ITD/NPM1-
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mutant AML. We found that venetoclax depleted HSC-like AML cells and increased the 

production of early erythrocyte-like and CMP LMPP-like cells. These findings highlight 

the role of differentiation state plasticity as a mechanism of resistance to venetoclax.  

6.4.2  Future directions 

Our studies investigating the mechanism of BCL2 inhibition have relied on 

temporal snapshots using single-cell sequencing data. While this data has allowed for a 

high-throughput dissection of the heterogeneous response to BCL2 inhibition, it does not 

provide a complete view of the drug effect. Single-cell sequencing cannot link the 

detailed states of cells to their ultimate fate, as cells are destroyed in the process of 

measurement. Moreover, given the high-dimensional nature of single-cell sequencing 

data, pseudotime trajectory inference can nominate several cell fate trajectories from the 

same data321. Single-cell barcoding methods have been developed to link the whole 

transcriptome of the cell to its long-term dynamic behavior. One system, called Lineage 

and RNA recovery (LARRY), labels cells with lentivirally-delivered DNA barcodes322. 

Each barcode consists of a 28 randomer in the 3′ untranslated region of an enhanced 

green fluorescent protein transgene (eGFP) controlled by a ubiquitous EF1α promoter. 

Barcoded eGFP transcripts can be captured using standard single-cell sequencing 

methodologies, including 10x Genomics. We have created a concentrated lentivirus 

containing the LARRY plasmids and transduced OCI-AML8227 cells. We have 

generated single-cell 10x Genomics libraries from LARRY-barcoded OCI-AML8227 cells 

24 hours and 72 hours following venetoclax treatment. In future studies, we need to 

amplify the LARRY barcodes of these libraries, which we have already demonstrated is 

feasible in a pilot experiment. Once we have sequenced these libraries, we will be able 

to trace the trajectories of the immature and differentiated AML cell populations and 

nominate putative regulators of transcriptional adaptation to venetoclax. With an 
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understanding of the adaptive mechanism of resistance to BCL2 inhibition, we can select 

alternative targets to prevent the outgrowth of resistant populations. 

Our investigation of BCL2 inhibitor resistance showed that venetoclax decreased 

the number of immature CD34+CD38- OCI-AML8227 cells without changing the 

apoptosis rate. This is a crucial finding as the putative mechanism of BCL2 inhibition is 

the reactivation of intrinsic apoptosis in AML cells160. To understand the apoptosis rate in 

drug-treated cells, we measured levels of Annexin-V, a phospholipid-binding protein with 

a high affinity for phospholipid phosphatidylserine (PS)323. In normal healthy cells, PS is 

located on the cytoplasmic surface of the plasma membrane. During apoptosis, PS is 

translocated to the extracellular side of the plasma membrane. In our study, we 

measured cell surface markers associated with differentiation and Annexin-V using flow 

cytometry. Notably, we excluded cellular debris from our flow cytometry analysis, 

potentially excluding apoptotic cells from our analysis. This is necessary to correct for 

cellular auto-fluorescence. While we could still observe a significant increase in the 

number of apoptotic, differentiated CD34-CD38+ OCI-AML8227 cells at 72 hours, this 

limitation highlights the importance of orthogonal measurements. During apoptosis, 

caspase-3 is responsible for the proteolytic cleavage of many essential proteins324. 

Activated caspase-3 cleaves the substrate between fluorogenic substrates N-Acetyl-

Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (Ac-DEVD-AMC), generating highly 

fluorescent AMC. As cleavage of DEVD-AMC only occurs in apoptotic cells, the amount 

of AMC produced is proportional to the number of apoptotic cells in a sample. Future 

studies should compare the rates of caspase-3 activity following venetoclax treatment to 

better understand its effects on apoptosis in immature and differentiated AML cells. 

We found that short-term treatment with BCL2 inhibition primed HSC-like and 

CMP LMPP-like AML cells for myeloid differentiation. While these early time points are 
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important to understand the transcriptional dynamics following venetoclax treatment, we 

have only observed changes in differentiation-associated cell surface markers 72 hours 

post-therapy. While it is likely that we would observe an increase in the number of 

differentiated AML cells 72 hours following venetoclax using scATAC-seq, this study has 

yet to be completed. Moreover, this scATAC-seq time point would help with the 

nomination of molecular regulators mediating the differentiation shift. These studies 

would help us understand the molecular mechanism underlying the differentiation shift 

induced by BCL2 inhibition. 

While our findings show that BCL2 inhibition promotes the differentiation of 

immature AML cells, the mechanistic underpinning of this phenomenon needs to be 

clarified. To nominate putative regulators of the differentiation shift induced by 

venetoclax, we analyzed the short-term venetoclax scATAC-seq data of OCI-AML8227 

cells. Differential peak analysis comparing the venetoclax- and DMSO-treated HSC-like 

and CMP LMPP-like AML cells revealed 184 differentially downregulated and 44 

differentially upregulated peaks. Transcription factor motif analysis of the differentially 

downregulated peaks nominated several transcription factors. In particular, nuclear 

respiratory factor 1 (NRF1) motifs were significantly enriched (p = 1x10-12). NRF1, along 

with nuclear factor erythroid-derived 2-like 2 (NFE2L2 also known as NRF2), are 

Cap`n'Collar family transcription factors, which have a documented role in mitochondrial 

biogenesis325,326. To understand the importance of NRF1/2 in AML, I generated Priori 

transcription factor activity scores from baseline RNA-seq data of 707 AML patients229. I 

correlated these scores to the van Galen AML subtypes and ex vivo venetoclax 

sensitivity. I found that predicted NRF1 and NRF2 activity was significantly associated 

with Monocyte-like AML cells (R2 = 0.346 and 0.770, respectively), suggesting that these 

factors are active in differentiated cells. Moreover, I found that the predicted activity of 
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NRF1 and NRF2 are significantly associated with venetoclax resistance (R2 = 0.334 and 

0.625, respectively). Notably, predicted NRF2 activity is the 19th highest correlate with 

venetoclax activity out of 233 significant relationships. The relationship between NRF1/2 

activity and the pro-differentiative effects of venetoclax need to be further interrogated. 

While the short-term venetoclax scATAC-seq data provided insights into the impact of 

venetoclax, this library was only sequenced to 100 million reads. Deeper sequencing, as 

well as an understanding of the chromatin accessibility profiles at 72 hours following 

venetoclax treatment, will help determine the role of NRF1/2 or other putative regulators. 

Once these transcription factor(s) are identified, their causal relationships can be 

interrogated with functional genetic studies, including CRISPR-Cas9 knockdown. 

Identifying a molecular mechanism of venetoclax differentiation will nominate new 

targets and inform more effective, rational BLC2-inhibitor-based therapeutic strategies. 

Our investigation of BCL2 inhibitor resistance has primarily relied on a leukemia 

stem cell line, OCI-AML8227. This model is helpful as it maintains a functional 

hematopoietic hierarchy and stably produces immature, differentiated AML cells. 

However, it is vital to understand the generalizability of the pro-differentiative effect of 

venetoclax in models other than OCI-AML8227. Several other leukemia stem cell 

models could help validate the findings from OCI-AML8227, including MUTZ3 or OCI-

AML22327,328. More importantly, this hypothesis should be directly tested in primary 

patient samples. These samples can be obtained from the Beat AML initiative, which has 

collected frozen viables from over 900 patients with AML. There is a ready supply of 

samples available to evaluate our findings. 
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6.5  Summary  

The work in this dissertation reveals how the investigation of transcriptional 

dysregulation in AML unveils novel therapeutic strategies. Two major findings emerged 

from this work. First, we found that combined FLT3 and LSD1 inhibition induced 

synergistic cell death in FLT3-ITD AML. Utilizing computational methods that we 

developed, GoPeaks and Priori, we showed that this drug combination suppressed 

transcriptional regulators of the MYC blood super-enhancer complex and its activity. 

These findings propose a novel therapeutic strategy for patients with FLT3-ITD AML, 

which is currently under investigation in a Phase I clinical trial. Second, we determined 

that BCL2 inhibition induces the differentiation of immature AML cells. These findings 

revealed a novel resistance mechanism to BCL2 inhibition, which can be targeted to 

prevent the outgrowth of resistant populations.  
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