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Abstract 

Type 1 diabetes (T1D) is a chronic disease that requires those who live with it to regularly 

administer exogenous insulin to maintain blood glucose (BG) within a safe range.  Insufficient 

insulin dosing can cause high glucose, leading to complications such as diabetic retinopathy, 

neuropathy, and cardiomyopathy.  Too much insulin can cause low glucose, and when untreated, 

lead to coma or death.  T1D-related complications can be reduced with proper diet, exercise, and 

adherence to an insulin dosing regimen.  Decision support systems (DSS) can also help optimize 

glucose management by utilizing artificial intelligence (AI) and physician expertise to suggest 

adjustments to therapy parameters and behavior.  However, a lack of explainability in a DSS’s 

suggested changes may deter participants from understanding and following AI-generated 

recommendations.  In addition, manual calculation of meal insulin is still required by the 

participant.  Incorrect dosing of meal insulin is common due to human error in estimating 

carbohydrate amounts in foods which can lead to poor postprandial glucose outcomes. Fats and 

proteins have also been observed to affect postprandial glucose response (PPGR) and these are 

typically not considered when estimating mealtime insulin.  

This work begins with background on diabetes management and a discussion of the complexity of 

nutritional influences on PPGR, extending beyond carbohydrates to include fats and proteins.  In 

the second chapter, an 8-week randomized controlled study of a real-world DSS is discussed.  

Mixed effects models revealed that time-in range was improved by an average of 6.3% (P=0.001, 

CI 2.5%-10.1%) when participants accepted and followed system recommendations.  In the third 

chapter, machine learning (ML) algorithms are trained to predict three components of PPGR: net 

area under the curve (netAUC), minimum BG (minBG), and maximum BG (maxBG).  

Predictions of balanced random forest (RF) algorithms are combined with those of standard RF 

via regression models to reduce bias.  While systemic bias remains, final predictions are highly 
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correlated with observations for netAUC, minBG, and maxBG (R=0.62, R=0.61, R=0.7).  Feature 

importance reveals that past BG measurements, BG trend, and insulin on board primarily 

influence the PPGR and macronutrient contents were less relevant.  Finally, in the fourth chapter, 

future DSS integrations with PPGR models are discussed.  Future PPGR modeling may help DSS 

users calculate the appropriate amount of meal insulin, provide explainability to bolus 

calculations, and help guide individuals towards dietary choices that optimize PPGR. 
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Chapter 1 - Introduction  

Type 1 diabetes (T1D) is a chronic disease that affects approximately 1.6 million people in the 

United States alone [1].  People living with T1D are unable to produce endogenous insulin due to 

destruction of pancreatic beta cells caused by an autoimmune disorder, and therefore must deliver 

exogenous insulin to enable regulation of blood glucose [2].  Many people living with T1D are 

treated with multiple daily injection (MDI) therapy, a regimen in which insulin is delivered 

through needle syringes before meals or when glucose is too high [3].  Technological 

advancements have paved the way for automated insulin delivery (AID) systems, which utilize 

data from continuous glucose monitors (CGMs) to calculate and deliver insulin automatically [4].  

Studies have indicated that people using AID systems have improved glycemic outcomes 

compared to people using MDI therapy.  Many people choose not to use AIDs however, for a 

variety of reasons including cost and socioeconomic factors, physical limitations of wearing two 

devices on the body, and willingness or concerns by medical providers [5].   

The safe range for blood glucose is 70-180 mg/dL [6].  Blood glucose above this range is referred 

to ‘high glucose’, and below is referred to as ‘low glucose’.  The percentage of time spent within 

the safe range is referred to as % time in range (TIR).  CGMs are commonly used to aid in 

assessing blood glucose levels, enabling users to monitor glucose every 1-15 minutes and inform 

insulin dosing based on treatment modality [6].  Long-acting insulin is delivered by MDI users 

once or twice daily, and releases from the subcutaneous space into the blood stream to help keep 

blood glucose within range.  In addition to long-acting insulin, fast-acting insulin must be 

delivered when food is consumed to compensate for the rise in glucose caused by carbohydrate 

intake.  The amount delivered is typically determined by establishing an insulin-to-carbohydrate 

ratio (ICR) with support from a physician and adjusting when necessary.  The person oftentimes 

uses a bolus calculator that calculates the meal and correction insulin based on the person’s 
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current glucose level, the amount of correction insulin on board (IOB), and the amount of 

carbohydrates (CHO) in the meal that the person is going to eat [7].  This calculation is detailed 

in  Equation 1.  The goal of the bolus calculator is to recommend delivery of enough insulin to 

avoid excessive high glucose while avoiding low glucose.  There are serious risks associated with 

incorrect insulin doses.  Dosing too much or too little insulin can result in dangerously adverse 

events such as severe low glucose (<54 mg/dL) or extreme high glucose (>250 mg/dL).  Chronic 

exposure to elevated glucose levels can damage tissue and lead to peripheral neuropathy, 

retinopathy, and cardiovascular complications [8].  Exposure to severe low glucose can damage 

the heart and if left untreated can lead to seizure, coma, and even death [9].  

𝐵𝑜𝑙𝑢𝑠	𝑖𝑛𝑠𝑢𝑙𝑖𝑛 = 𝑀𝑒𝑎𝑙	𝑖𝑛𝑠𝑢𝑙𝑖𝑛 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛	𝑖𝑛𝑠𝑢𝑙𝑖𝑛 − 𝐼𝑂𝐵 

																											=
𝐶𝐻𝑂
𝐼𝐶𝑅

+	
𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝐵𝐺 − 𝑇𝑎𝑟𝑔𝑒𝑡	𝐵𝐺

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛	𝐹𝑎𝑐𝑡𝑜𝑟
− 𝐼𝑂𝐵	 

 Equation 1 - Bolus insulin calculation [7] 

Carbohydrates are considered to be the primary macronutrient which cause increases in glucose 

[10].  A person must therefore properly estimate the amount of carbohydrates in their meal to 

determine the correct amount of meal insulin to administer.  While insulin dosing can be made 

easier through the use of AID systems, accurate estimation of carbohydrates before meals is still 

required for people using current commercial AID systems and MDI systems.  In addition to 

glucose rise caused by carbohydrates, meals with high fat content are known to impact delayed 

gastric emptying, which can reduce the rate of carbohydrate absorption [11].  When the rate of 

carbohydrate absorption is reduced, blood glucose rises more slowly, which can further 

complicate insulin dosing and glucose regulation.  Another potential interaction was found in a 

study that suggested high fat in meals may decrease insulin sensitivity, requiring more insulin to 

be dosed as a result [12].  Meals with moderate to high protein content (28g – 57g) have been 

shown to elevate postprandial blood glucose in individuals with T1D, which will also increase 
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insulin dosing requirements [13].  Consuming meals with high levels of fat and protein can 

introduce additional complexity when determining an appropriate amount of mealtime insulin.  

There is insufficient information available, however, to incorporate macronutrient content into 

bolus calculators.  Fats and proteins impact glucose responses differently across various 

individuals with T1D and this makes it hard to define a set of guidelines on how to incorporate 

these macronutrients into bolus calculators [14, 15].  Varying strategies have been suggested to 

adjust dosing calculations based on fats and proteins, but including macronutrient data is not 

always beneficial. In a study of pediatrics and adolescents, there was increased risk of low 

glucose when including macronutrient data [16].  Due to these complexities, bolus calculators 

currently only utilize carbohydrates when calculating and recommending insulin dosage.  Lack of 

reliable methodology to incorporate contributions of protein and fats to glycemic response 

remains both a problem for people with T1D and an area of opportunity for improving diabetes 

management.  This work aims to help address this problem in chapter three, where machine 

learning algorithms including macronutrient content predict the PPGR. 

In addition to insufficient methodology to include more complete macronutrient information in 

bolus calculators, another hurdle to clear in appropriate meal insulin estimation lies in the 

accuracy of macronutrient estimation by individuals.  In a 2016 study, 61 adults were given a 

carbohydrate counting test based on commonly consumed foods [17].  A total of 82% of 

participants overestimated carbohydrate content by an average of 40%.  In another study by 

Gillingham, et al. [18], it was shown that while tracking food in logging apps and verified using 

nutritionists and food photography, only 22% of high protein meals and 17% of high fat meals 

were estimated accurately.  Furthermore, Gillingham et al. found that people consistently 

overestimated smaller meals and underestimated larger meals.  These findings demonstrate the 

challenges that bolus calculators face when used by people with T1D.  
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Given the overwhelming risk and complexity associated with living with T1D, much research has 

been invested in developing models to help simplify decision making for individuals through 

smartphone applications known as decision support systems (DSS).  DSSs can provide 

recommendations through automated methods such as machine learning models and rule-based 

systems, as discussed in the review by Tyler and Jacobs [19].  DSSs can integrate multiple types 

of heterogenous data such as CGM, insulin dosed, food logs, and exercise logs [20].  These 

collected data are used to generate personalized recommendations.  Example recommendations 

may include adjustments to long-acting insulin, adjustment of insulin-to-carbohydrate ratio, or 

adjusting correction factors at specific times of day [21].  Many DSSs have not been evaluated for 

clinical efficacy, and there is conflicting evidence for those which have been evaluated.  While 

recently studies have suggested that DSS use may not result in significant improvement in %TIR 

for MDI users [22], there is also evidence that when people using a DSS follow recommendations 

provided by the DSS, there are significant improvements in glycemic outcomes [23]. 

The CGM measurements in the period of time following a meal is referred to as the postprandial 

glucose response (PPGR).  A typical measure of PPGR includes calculating the area under the 

curve (AUC) of the CGM curve, which can be accomplished by numerical integration with the 

trapezoidal rule [24].  The AUC is informative because it is an indicator of whether or not the 

insulin dosed for the meal was sufficient.  Too little insulin may result in a larger AUC due to rise 

in glucose caused by insufficient meal insulin, whereas too much insulin can lead to a negative 

AUC relative to starting CGM.  Ideally, the glucose response should be minimal when insulin is 

appropriately dosed resulting in a near-zero AUC.  The AUC may be calculated in multiple ways.  

The standard AUC is calculated including the CGM at the start of the meal and calculating the 

area under the entire CGM including the starting CGM.  Including the starting CGM leads to 

misleading results so it is typically excluded.  There are several other more relevant ways of 

calculating AUC: the incremental AUC (iAUC) and net AUC (netAUC).  NetAUC is a quantity 
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representing the total change in blood glucose relative to a starting value by summing both 

positive and negative CGM values under the curve relative to the stating glucose. This differs 

from a related measure, iAUC, which only considers positive CGM values that are above the 

starting glucose value while ignoring glucose values that are below the starting glucose value.  In 

this work, netAUC is calculated by subtracting the median CGM over the past 30 minutes at the 

start of the meal from each postprandial CGM value recorded.  Using the median of CGM values 

over the past 30 minutes is helpful to reduce the impact of CGM noise [25].  The trapezoidal rule 

is then utilized to approximate integration of both positive and negative area under the curve.  In 

addition to AUC metrics, it can also be insightful to observe the minimum blood glucose 

(minBG) and maximum blood glucose (maxBG) of the PPGR, which can be indicators of 

whether or not the patient experienced an adverse glycemic event.  Multiple factors impact the 

PPGR including the person’s sensitivity to insulin, the amount of insulin the person has in their 

body (insulin-on-board or IOB), the accuracy of the carbohydrate estimation, the timing of the 

meal insulin delivery relative to the consumption of the meal, and the macronutrient content of 

the meal that they are consuming [12, 13, 26, 27].   

Models that can predict the PPGR may be helpful for use in both DSSs and AID algorithms.  For 

example, a person using MDI therapy typically uses an insulin bolus calculator to determine how 

much insulin to inject into their body prior to consuming a meal.  A model that can accurately 

predict the person’s PPGR could potentially be used to calculate the exact amount of meal bolus 

insulin that should be administered to optimize the person’s TIR and minimize the time in high 

and low glucose.  Likewise, an AID would make use of an accurate model that can predict PPGR 

by determining how much meal insulin should be delivered by a hybrid AID that requires the 

person to announce meals to the system which will then deliver meal insulin.  

In the Chapter 2, analysis of a recently developed DSS called DailyDose is discussed.  This is 

followed by the introduction of a method of improving personalized DSS recommendations 
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through the integration of machine learning algorithms with the goal of predicting PPGR.  

Finally, future direction is provided on where this research can go next to further improve 

development of these systems to help those living with T1D improve PPGR. 
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Chapter 2 - DailyDose DSS in an 8-week randomized 

controlled study 

DailyDose is a DSS designed to help people living with T1D using MDI therapy improve their 

glucose control by providing weekly recommendations on modifications to carbohydrate ratios, 

correction factors, and long-acting insulin dosing [21].  It is built as an iPhone application which 

provides recommendations for changes to insulin dosing which are customized to each user based 

on CGM data, carbohydrate intake, and exercise.  The recommendation engine used in DailyDose 

is a k-nearest neighbors (KNN) algorithm, which was trained on virtual patient data to predict up 

to four changes to therapy parameters and behavioral changes each week based on glycemic 

features calculated from past user data.   

DailyDose was evaluated in an 8-week study.  25 adults living with T1D on MDI therapy were 

recruited, comparing 2-week baseline TIR prior to using DailyDose to TIR in the final 2 weeks 

using DailyDose [23].  Participants in the study used Dexcom G6 CGM (Dexcom Inc, San Diego, 

CA), InPen (Medtronic plc, Minneapolis, MN) for tracking bolus insulin, and Clipsulin (Glooko 

Inc, Mountain View, CA) for tracking basal insulin.  While there were no significant differences 

found between final 2-week TIR and baseline 2-week TIR, post-hoc analysis of data showed 

improvement in the weeks following times when participants followed recommendations given 

by DailyDose compared to weeks when participants did not follow the recommendations.  This 

study and the results are discussed further below and were published in Castle et al. 2022 [23]. 

Methods 

Data in the study were collected from user devices and logged in the DailyDose app.  Participant 

demographics can be found in Table 1.  Data collected by DailyDose included insulin doses from 

InPen and Clipsulin Bluetooth-enabled insulin dosing devices, along with CGM and meal bolus 
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calculators from within the app.  Acceptance or rejection of every recommendation for changes in 

correction factors, carbohydrate ratios, and long-acting insulin for each participant was tracked 

weekly.  A binary adherence variable was created based on whether or not participants followed 

recommendations provided by the DSS when dosing their meal, correction or long acting insulin.  

If participants did not follow these recommendations, a subsequent recommendation would then 

be generated asking them to follow dosing guidance.  Based on the presence of this new 

recommendation, it can be determined if they were taking the advice of the DSS or not. The 

change in the percent TIR was the primary outcome, calculated as the difference between the last 

two weeks and the first two baseline weeks of the study.  We did a secondary analysis whereby 

we calculated the difference in TIR between weeks to determine if there was an increased TIR on 

weeks following acceptance of recommendations provided by the app.   

Using the Stata version 16.1 software, a mixed effects regression model was fitted comparing 

differences in % TIR at the end of the study to baseline %TIR.  Post-hoc, an additional mixed 

effects model was fit to compare differences in %TIR between weeks when participants accepted 

recommendations compared with weeks when they did not follow recommendations.  Weeks 

were partitioned to compare those when participants had accepted and followed 50% or fewer of 

that week’s recommendations versus those who had accepted and followed 50% or more.  This 

grouping was selected to test whether accepting and following the majority of recommendations 

week-to-week resulted in improved TIR compared to otherwise not accepting and following 

recommendations. 

Table 1 - Participant demographics, DailyDose assessment 

Demographic  
Total participants, N 25 
Mean age, years 35.8 
Biological sex, N (%) 14 (56) F 

11 (44) M 
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Ethnicity (self-identified), N (%) White     22 (88) 
Asian     1 (4) 
Black/African American    2 (8) 

HbA1c, % 8.2 
Prior CGM use, N (%) 15 (60) 

 

Results 
There were no significant differences found in final TIR when compared to baseline TIR 

(P=0.25).  However, post-hoc analysis revealed that when comparing weeks when at least 50% of 

recommendations were accepted and followed compared with weeks when they were not 

followed, % TIR was found to significantly improve by an average of 6.3% (P=0.001, CI 2.5%-

10.1%) [23].  

The distribution of changes in %TIR week-to-week is shown in Figure 1.  The blue boxplot 

illustrates the weekly change in %TIR for weeks when participants did not accept and follow any 

recommendations provided by the app.  The orange boxplot illustrates the weekly change in 

%TIR for weeks when participants accepted and followed some recommendations, but not all of 

them.  Finally, the third boxplot in green represents the weekly change in %TIR for weeks when 

participants accepted and followed all recommendations.  

Adherence to bolus calculator recommendations was also analyzed post-hoc.  We found that out 

of 6694 boluses, the integrated bolus calculator was utilized 81.9% of the time.  67.5% of boluses 

delivered were within 0.5 units of the bolus calculator recommendation, while 14.7% were more 

than 0.5 units above this value, and 17.8% were more than 0.5 units below the recommendation.  

By analyzing bolus calculator adherence and TIR using an additional mixed effects model, we 

found a 16.9% increase in TIR in weeks that participants consistently delivered boluses within 0.5 

units of recommended values compared to weeks in which the bolus calculator was not used at all 

(P=0.012).  Importantly, usage of the calculator was not associated with increased risk of low 

glucose (P=0.159).   
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Figure 1 - Change in %TIR versus acceptance of recommendations [28] 

 

Discussion 

While overall there were no improvements in %TIR compared to baseline, in post-hoc analysis 

we found significant improvement in weeks following when participants accepted and followed 

recommendations.  In addition, analysis of bolus calculator adherence showed that following the 

bolus calculator consistently led to substantial increases in %TIR compared to when the bolus 

calculator was not followed.  Interviews with participants after the study indicated that a possible 

barrier to recommendation acceptance was simply not understanding why the recommendation 

was proposed in the first place and why it would be beneficial to follow the recommendation.  

Explainability in DSS predictions may help participants understand and accept recommendations 

for DSSs.  Other potential barriers to acceptance of recommendations included not having 
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adequate time to review and understand the recommendations.  Incorporating this feedback in 

future design may lead improvements in overall rates of acceptance and adherence to DSS 

recommendations. 
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Chapter 3 - Forecasting postprandial glucose 

response using nutrient information and balanced 

random forests 

Administration of correct prandial insulin boluses remains a persistent challenge for individuals 

regardless of insulin treatment modality.  Carbohydrates are the primary macronutrient which 

cause blood glucose concentration to rise and are typically the only macronutrient used by bolus 

calculators.  However, it is well documented that meals with high fat content delay gastric 

emptying by affecting rate of glucose absorption [11].  In addition, meals with high protein 

content can result in elevated blood glucose [13].  In the absence of reliable bolus calculation 

methods which include fats and proteins, there may be an opportunity to utilize macronutrient 

information in combination with CGM and insulin data to forecast components of the PPGR 

using machine learning models.  

Glucose forecasting itself is a widely explored topic.  There have been many different approaches 

which generally fall under data-driven modeling, physiological modeling, and a mix of both [29].  

Data-driven modeling includes various statistical and machine learning algorithms, such as deep 

neural networks, gradient boosted trees, random forest, and least squares regression [30, 31, 32, 

33].  These algorithms utilize current and past CGM data to forecast future glucose values over 

various prediction horizons, from 15 minutes up to several hours in the future.  Various additional 

features may be included, such as delivered insulin, carbohydrates, time of day, exercise events, 

and other related features to the patient’s current state.  Rather than learning relationships 

between input features and future glucose values, physiological modeling approaches utilize 

systems of differential equations to describe glucose-insulin/glucagon dynamics [34, 35].  While 
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not performing at the same level as state-of-the-art ML in terms of predictive accuracy, an 

advantage to using physiological models lies in their direct interpretability.  Machine learning 

models can run the risk of learning correlations between insulin and blood glucose which violate 

known relationships and could potentially put individuals using these forecasting algorithms at 

risk [36].  When interpretability is difficult or not possible due to the model’s complexity or 

black-box nature, a best practice is to instead use tools which allow explainability in the model’s 

predictions [24].  Explainability allows for insight into which features or parameters drives the 

output of the model.  Some examples of explainability algorithms are SHAP [37], LIME [38], and 

permutation feature importance, which was originally proposed by Breiman and Cutler in a 

technical report for random forest [39].  

A persistent challenge in glucose forecasting is prediction of low glucose and very high glucose 

due to the infrequent occurrence of these events in real-world data relative to the time most 

people spend in target range or in high glucose.  This challenge is not unique to glucose 

forecasting.  When defined in the context of any model learning from imbalanced data, such as 

classification, regression, or clustering, the modeling task can be referred to as imbalanced 

learning [40].  For most regression tasks, mean square error (MSE) or mean absolute error is 

computed over the target and predictions values.  Each sample in the target variable distribution 

has equal weighting when evaluating errors in prediction and providing feedback to update 

learned model parameters.  As a result, patterns for more commonly observed values are 

optimized, which can lead to poorer performance for infrequently observed examples [41].  There 

have been several proposed strategies to address imbalanced regression problems.  One strategy 

involves partitioning the target distribution into regions of common and uncommon outcomes 

[42].  Examples which lead to common outcomes may be under-sampled in the preprocessing 

phase, and those which lead to less common outcomes may be over-sampled.  One disadvantage 

to this approach is the possibility of increased likelihood of overfitting as the additional examples 
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are simply duplicated and may not provide additional meaningful information [43].  The 

Synthetic Minority Over-sampling Technique for Regression (SMOTER) algorithm has been 

developed as an alternative to create new synthetic examples based on the original data to address 

this problem [44].  However, these examples are created through linear interpolation of existing 

samples and can also present the risk of producing examples without additional meaning, 

especially in complex high dimensional feature spaces.  Another proposed method is to augment 

existing samples by adding a small amount of Gaussian noise (GN) to create additional synthetic 

examples [42].  It has also been proposed that SMOTER and GN be combined into an algorithm 

called SMOGN [45].  The idea behind SMOGN is that it may be beneficial to reduce the risk of 

creating less meaningful new examples through interpolation by switching strategy when samples 

are very far apart from each other.  GN is applied to the samples in the distant case, allowing for 

switching between both SMOTER and GN depending on proximity in output space as determined 

by k-nearest neighbors.  Finally, rather than manipulating the training data directly, it is also 

possible to redefine the loss function in a way which penalizes prediction error for extreme 

examples more heavily than commonly observed examples [46].    

In terms of glucose forecasting for glycemic ranges, both random forest and transformer-based 

deep learning models have achieved high accuracy in predicting low glucose and high glucose, 

evaluated on data from participants living with T1D [47].  In a recent review of glucose 

forecasting algorithms, it was found that random forest, gradient boosted trees, and neural 

network models yielded highest accuracy on prediction horizons up to 45 minutes with CGM data 

as input [48].  A study by Mosquera-Lopez, et al. also studied the use of long-short-term-memory 

(LSTM) neural networks to forecast blood glucose with high accuracy over 30-minute and 60-

minute prediction horizons [33].  A significant contribution of this study was the introduction of 

the glucose variability impact index (GVII), a method which quantifies how glucose variability 

may impact the accuracy of algorithm predictions.  It was found that GVII was highly correlated 
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with RMSE (R≥0.64, P < 0.001).  Finally, in another study, it was noted that the random forest 

algorithm may be better suited to learn complex patterns related to low glucose detection given 

temporal features [49].  

Forecasting PPGR using nutrient information and other factors can be viewed as a special case of 

glucose forecasting.  In work by Zeevi, et al. [25], various interactions between gut microbiome, 

physiological factors, food nutrition, and PPGR are studied on a large cohort of 800 participants 

living without diabetes.  In this study, a gradient-boosted regression model was trained on 

numerous meal features, such as carbohydrates, fats, protein, alcohol and caffeine content, 

sodium, total calories, fiber, sugar, and more.  Physiologic features for each participant were also 

included, along with CGM data, exercise, defecation routine, and information from clinical tests.  

The trained model was found to predict iAUC highly correlated with actual iAUC from the 

PPGRs (R=0.68).  A major finding from this work was that while the iAUC of the PPGR is 

reproducible within the same individual consuming the same meal consistently, it varies 

significantly between individuals even when they consume the same foods.  This suggests the 

need to train personalized models for forecasting the PPGR.  Analysis of feature importance via 

partial dependence plots revealed several nutritional interactions with iAUC.  Carbohydrates were 

found to be positively correlated with iAUC.  Higher fat content in meals relative to amount of 

carbohydrates was observed to lower iAUC, potentially due to delayed gastric emptying.  It was 

observed that fiber content in the meal raise iAUC for that meal, but more fiber consumed over 

the past 24 hours was associated with overall lower iAUC.  In addition, differences in gut 

microbiome were found to contribute to whether foods resulted in a positive or negative outcome.  

Specifically, some bacterium associated believed to ferment carbohydrates and fiber were 

observed to lower iAUC, and some bacterium thought to associate with higher risk of obesity 

were associated with higher iAUC.  Following Zeevi, et al.’s work, another study was conducted 

in 2019 on a cohort of 327 midwestern Americans to investigate if these findings would 
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generalize beyond the Israeli population [50].  A gradient-boosted trees regression model was 

trained with the same input features.  It was found that once again, the predicted iAUC was 

highly correlated (R=0.62) with actual iAUC.  Root mean square error (RMSE) was also 

computed to be 14.82 mg/dL*h.  While this work is promising for those living without diabetes, it 

was ultimately not tested or validated on a cohort of individuals living with T1D.  Other studies 

have also worked to predict PPGR in participants with gestational diabetes but without 

microbiome data [51, 52].  In addition to iAUC, rise in blood glucose and maximum blood 

glucose were predicted with high correlation as observed previously.   

Recent work by Annuzzi, et al. utilized artificial neural networks to predict postprandial blood 

glucose values in people with T1D with the goal of investigating nutritional influence [53].  To 

explore relationships between input variables and PPGR, an AI explainability algorithm called 

SHAP was leveraged [54].  In this study, 25 individuals were recruited for one week.  Detailed 

food diaries were recorded for every meal, from which macronutrient information were extracted 

in addition to fiber, overall calories, and glycemic index.  Glycemic features related to prior half 

hour CGM readings were created, including statistical characteristics of the measurements such 

as mean, median, standard deviation, kurtosis, skew, peak-to-peak, minimum, and maximum.  

Meal-time insulin boluses were included as features, along with smaller boluses recently 

delivered by the pump.  With these features as inputs, the neural network was trained to forecast 

postprandial blood glucose values with up to a two-hour prediction horizon.  SHAP was then 

applied and used to analyze feature importance.  They found the features with the highest 

importance to be the prior 30 minutes of CGM readings, followed by meal carbohydrates, 

glycemic load, fats, and recently delivered bolus.  

Better understanding and anticipation of the effects of a meal on an individual’s PPGR prior to 

consumption could greatly benefit users of DSSs and AID devices for people living with T1D.  In 

this chapter, forecasting various aspects of the PPGR is explored using meal data recorded from a 
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cohort of 364 participants living with T1D from the type 1 diabetes in exercise (T1Dexi) initiative 

[55].  Machine learning models were trained to predict netAUC, minimum blood glucose, and 

maximum blood glucose over a three-hour prediction horizon.  These models were trained on 

input features, including various CGM statistics, select demographics, insulin dosing, and 

physician reported meal macronutrients.  Random forest was chosen as the primary model 

algorithm due to its high performance on small tabular data sets along with increased 

interpretability [56].  In order to try to overcome the challenge of predicting less common 

observations of low glucose and high glucose, secondary balanced random forest regression 

models were trained by modifying the bootstrap sample for each tree to oversample less common 

glycemic excursions while under-sampling common events.  In addition, to overcome the 

difficulty extrapolating beyond frequently observed training examples, regression models were fit 

to learn the best weighting of predictions from each model and combine them in an effort to 

reduce residual error.  The ultimate goal of this work is to apply the predictions of these models 

to help those living with T1D to better anticipate PPGR in automated meal detection for use in 

AIDs [57] and in improved smart bolus calculators for use in decision support settings [21].  

More accurate and personalized prandial insulin bolus calculations may improve glucose 

outcomes. 

Methods 

Data Sourcing and Demographics  

Data for modeling were sourced from the T1DEXI study [55], which aimed to analyze and 

understand glycemic responses of individuals living with T1D during exercise. Participants in the 

study participated in a 4-week data collection period during which CGM, insulin, exercise (heart 

rate and accelerometry) were recorded using a Verily fitness watch and food data were self-

reported and validated using food photography (remote food photography method or RFPM) [58] 

and nutritionist scoring. The results of this study indicated a significant interaction between 
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glycemic response and exercise.  Specifically, it was found that those who participated in aerobic 

exercise experienced a large drop in glucose (-18 ± 39 mg/dL), followed by interval exercise (-14 

± 32 mg/dL), and resistance exercise (-9 ± 36 mg/dL) [55].  Exercise improved TIR on active 

days compared with sedentary days, but active days were also found to be associated with slightly 

higher rates of low glucose.  While the primary focus of this study was to capture glucose 

changes during different types of exercise, there are many examples of PPGRs with clinician 

provided nutrient analysis of meals in this data set.  Analysis of these data offers rare insight into 

PPGRs of those living with T1D under real-world settings.  In this work, we utilized the time-

series data collected during the study from CGM, insulin pumps, fitness watches, and nutrient 

information.  Specifically, we examined a subset of PPGRs during which subjects consumed 

meals but did not exercise in the following three hours after the start of the meal due to the 

possible interaction of exercise on the PPGR.  Overall demographics for the T1DEXI study are 

provided in Table 2. 

Table 2 - T1DEXI Study Demographics [55] 

Demographic  
Total participants, N 503 
Age, years 36.7 (14) 
Biological sex, N (%) 367 (73) F 

136 (27) M 
Weight, lbs 161.5 +/- 30.6 
Ethnicity (self-identified), N (%) White     459 (91.4) 

Do not wish to answer/Don’t know     13(2.6) 
Asian     10 (2) 
Black/African American    10 (2) 
More than one race     8 (1.6) 
American Indian/Alaskan Native    2 (0.4) 

HbA1c, % 6.7 +/- 0.77 
Duration of diabetes, years 17.9 +/- 13 
CGM use, N (%) Dexcom       423 (88.5) 

Medtronic     42  (8.8) 
Abbott         13 (2.7) 

Insulin modality, N (%) Closed loop     225 (44.7) 
SAP     189 (37.6) 
MDI     89 (17.7) 
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Out of the 503 participants with available data, 364 had sufficient data for meal analysis and 

modeling.  A PPGR was considered eligible for analysis if there was sufficient data in the PPGR 

as discussed further in the following pre-processing section.  Multiple daily injection (MDI) users 

were excluded from this analysis due to issues with dosing accuracy.  After applying the 

exclusion criteria, 4493 meals remained for ML training and analysis.  Demographics for this 

subset of participants are shown in Table 3. 

Table 3 - T1DEXI Study Demographics – Meal Analysis Subset 

Demographics  
Total participants, N 364 
Age, years 36.5 +/- 13.8  
Biological sex, N (%) 271 (75) F 

93 (25) M 
Weight, lbs 161.3 +/- 29.2 
Ethnicity (self-identified), N (%) White     333 (91.5) 

Asian     9 (2.5) 
Black/African American    7 (1.9) 
Do not wish to answer/Don’t know     8 (2.3) 
More than one race     5 (1.4) 
American Indian/Alaskan Native     2 (0.6) 

HbA1c, % 6.6 +/- 0.72 
Duration of diabetes, years 18.1 +/- 12.9 
CGM use, N (%) Dexcom       312 (88.9) 

Medtronic     34  (9.7) 
Abbott         5 (1.4) 

Insulin modality Closed loop     195 (53.6) 
SAP     169 (46.4) 

Total meal events, N 15640 
Meal exclusion/inclusion (reason) 4493 – Included 

5549 – Excluded (Bolus during PPGR) 
2733 – Excluded (Exercise during PPGR) 
2641 – Excluded (Insufficient length) 
143 – Excluded (Missing CGM) 
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Selection of target variables 

We predicted three components of the PPGR over a three-hour horizon following the start of the 

meal: netAUC, maxBG, and minBG.  NetAUC, as previously defined, represents both positive 

and negative changes in the PPGR relative to the glucose at the start of the meal.  The maxBG 

and minBG are the respective maximum and minimum blood glucose values over the PPGR 

prediction window. In many other studies, iAUC is used as a metric to quantify PPGR [25, 50, 

51, 52].  However, iAUC fails to describe drops in BG levels in the PPGR which are below the 

starting CGM.  We observed many instances when glucose dropped following a meal.  iAUC is 

not an effective variable for the many instances when substantial glucose drops occurred after a 

meal was consumed.  Instead, we used netAUC as the outcome variable of interest.  Prediction of 

both maxBG and minBG were also used as they are more interpretable glucose outcomes that a 

person with T1D can use to better understand how their insulin dosing will impact the glucose 

response. 

Pre-processing and feature extraction  

Some features analyzed in prior work by Zeevi, et al. [25] were included as inputs in the models 

that we developed.  These meal features include macronutrients for each meal (carbohydrates, 

protein, fats), alcohol, caffeine, fiber, sodium, sugar, and total calories.  In addition, baseline 

HbA1c from blood testing, participant demographics (sex, weight, height, BMI), total 

carbohydrates consumed in the 3, 6, and 12 hours leading to the meal, total fiber consumed in the 

past 12 and 24 hours, and calories consumed in the prior 2, 3, 6, and 12 hours.  Carbohydrates-to-

fat ratio were computed for each meal and used as features in the model.  A small value (1e-12) 

was added to all fat amounts to allow for the calculation in the case of zero carbs or fats.  

Glucose and time of day features were used as inputs as outlined in [57].  These features are 

insulin on board (IOB), total daily insulin requirement (TDIR), participant age, insulin-to-

carbohydrate ratio, and ratio of IOB relative to TDIR.  TDIR was estimated for each participant 
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based on median of insulin summed over all days while in the study.  The insulin-to-carbohydrate 

ratio (ICR) was determined by a physician and adjusted as necessary.  However, we did not have 

this data available for participants in the study, so a feature that estimates the ratio of short-acting 

insulin administered relative to the average amount administered was instead calculated for each 

meal consumed by each participant.  We named this feature ‘CR_ratio’ and computed with the 

following method.  Since the carb ratios may differ for a participant based on the time of day, 

meal events from each participant were split into several time windows:  11pm to 7am, 7am to 

11am, 11am to 4pm, and 4pm to 11pm.  For each participant and each meal window, average 

carb-to-insulin ratios were calculated by dividing each meal carbohydrate amount by amount of 

insulin delivered for the meal and computing the mean.  This resulted in an average carb ratio for 

each participant in each meal window (CR_avg).  Then, for an individual meal event, the ratio of 

carbohydrates to insulin was calculated (CR_t0).  The meal CR_ratio was then computed by 

dividing CR_avg by CR_t0 to determine if more insulin or less insulin was taken for that meal 

than normal.  This method has a limitation of relying on participant-estimated carbohydrates, 

which may introduce additional uncertainty in model predictions.  Finally, for each dose of basal 

and bolus insulin, the feature for IOB assumed a linearly decay of insulin boluses given over a 

four-hour period.  A table of features and calculations is provided in Table 4 and distributions of 

features in provided in Figure 4. 

In order to create feature vectors for training the machine learning algorithm, meal times were 

located for each subject as recorded during the study in food logs.  While user entered 

macronutrient estimations were available, we instead used the nutrient estimation as reviewed and 

confirmed by nutritionists via RFPM.  This is because, as previously mentioned, user estimated 

macronutrient content can be less accurate when compared to clinician estimations.   

For each meal record, an event window was constructed spanning between two to three hours 

following a meal and preceding the meal, based on availability of data.  To reduce noise, some 
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events were filtered out based on possible disturbances occurring.  Specifically, meal events were 

excluded from analysis if exercise occurred during the meal window, the meal window was less 

than two hours, a bolus was taken more than 30 minutes after consumption of the meal, or if more 

than 75% of CGM data was missing after linear interpolation was applied when there were CGM 

gaps of less than or equal to 20 minutes.  To allow for more meal events for training, a meal event 

was not excluded if a second insulin bolus occurred within the first 30 minutes of consuming a 

meal.  If a bolus was taken 30 minutes after the meal began, the meal time was set to be the time 

of bolus delivery.  For this case, features and targets were also calculated beginning at the time of 

bolus delivery. 

Table 4 - Input features and calculations 

Feature Name Calculation 

Meal carbohydrates content (g) As evaluated by RFPM 

Meal protein content (g) As evaluated by RFPM 

Meal fat content (g) As evaluated by RFPM 

Meal alcohol content (oz) As evaluated by RFPM 

Meal caffeine content (mg) As evaluated by RFPM 

Meal fiber content (g) As evaluated by RFPM 

Meal sodium content (mg) As evaluated by RFPM 

Meal sugar content (mg) As evaluated by RFPM 

Total meal calories (Kcal) As evaluated by RFPM 

Sum of carbohydrates (g) consumed prior to 

meal over: 

- 3 hours (36 samples) 

- 6 hours (72 samples) 

- 12 hours (144 samples) 

 

; 𝑐𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠!
"

!#$
	

𝑁 ∈ {36, 72, 144} 

Sum of fiber (g) consumed prior to meal over: 

- 12 hours (144 samples) 

- 24 hours (288 samples) 

; 𝑓𝑖𝑏𝑒𝑟!
"

!#$
	

𝑁 ∈ {144, 288} 

Sum of calories (Kcal) consumed over the 

previous: 
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- 2 hours (24 samples) 

- 3 hours (36 samples) 

- 6 hours (72 samples) 

- 12 hours (144 samples) 

; 𝑐𝑎𝑙𝑜𝑟𝑖𝑒𝑠!
"

!#$
	

𝑁 ∈ {24, 36, 72, 144} 

Participant HbA1c As reported in baseline demographics 

survey 

Paricipant sex (M/F) As reported in baseline demographics 

survey 

Participant age (years) As reported in baseline demographics 

survey 

Participant weight (lbs) As reported in baseline demographics 

survey 

Participant height (in) As reported in baseline demographics 

survey 

Participant BMI As reported in baseline demographics 

survey 

Glucose at the time of prediction [57] 𝐶𝐺𝑀% 

Time series of glucose measurements 

corresponding to one-hour worth of data 

sampled at 5-minute intervals before the 

prediction time  [57] 

𝐶𝐺𝑀%&'		

ℎ ∈ {1,2,3, … , 12} 

Glucose rate of change (GROC) at the time of 

prediction [57] 

𝐶𝐺𝑀% − 𝐶𝐺𝑀%&(

Δ𝑡
 

Average GROC during the hour prior to 

prediction [57]  

1
13
; 𝐺𝑅𝑂𝐶%&'

()

'#$
 

Count of GROC values over the hour prior to 

prediction that are greater than pre-defined 

thresholds  [57] 

; 𝑓(𝐺𝑅𝑂𝐶%&'
()

'#$
) 

𝑓(𝐺𝑅𝑂𝐶%&') = 	 Q
1, 𝑖𝑓	𝐺𝑅𝑂𝐶% > 𝑡ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 	

𝑡ℎ ∈ {0.0,0.5,1.0, 1.5,2.0,2.5,3.0, 6.0} 

Average glucose over one hour prior to 

prediction time [57] 

1
13
; 𝐶𝐺𝑀%&'

()

'#$
 

Average glucose calculated from two hours to 

one hour prior to prediction time [57] 

1
12
; 𝐶𝐺𝑀%&'

)*

'#(+
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Difference in average glucose during the last 

half hour vs. the preceding half hour [57] 

1
6
; 𝐶𝐺𝑀%&'

()

'#,
−
1
7
; 𝐶𝐺𝑀%&'

-

'#$
 

Average difference between glucose over 30 

minutes prior to prediction with respect to the 

glucose value exactly 30 minutes prior to 

prediction time [57] 

1
6
; (𝐶𝐺𝑀%&'

.

'#$
− 𝐶𝐺𝑀%&-) 

Binary value, set to 1 if the ROC at prediction 

time is greater than 5 mg/dL/min [57] 
Q1, 𝑖𝑓	𝐺𝑅𝑂𝐶% > 5
0,															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Binary value, set to 1 if the ROC at prediction 

time is greater than 7 mg/dL/min [57] 
Q1, 𝑖𝑓	𝐺𝑅𝑂𝐶% > 7
0,															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Time of day (hour, 0-23) [57] cos Z2𝜋
ℎ𝑜𝑢𝑟
24 \ 

sin(2𝜋
ℎ𝑜𝑢𝑟
24

)	 

 

Model selection  

Random forest [59] regression models were trained for each specified target variable.  While 

some of the other publications choose to train gradient boosted trees [25, 50], random forest was 

selected due to increased interpretability and similar predictive accuracy in early experiments.  

One weakness with tree-based algorithms, however, is difficulty extrapolating beyond examples 

observations in the data [60].  This problem was encountered when predicting less common 

observations (e.g. low glucose) in the tails of target distributions as shown in Figure 2.  In an 

attempt to correct this, inspiration was drawn from other work adapting random forest to learn 

from imbalanced data in classification contexts [61, 62].  These works point out that a bootstrap 

sample may not contain any of the less common observations in practice, which increase the 

difficulty learning to predict.  In Using Random Forest to Learn Imbalanced Data [61], a 

modification to random forest is suggested as a potential solution, which increases the ratio of 

minority examples observed by each tree through the application of a sampling heuristic such as 

stratified bootstrapping, over and under-sampling, or balancing both the number of minority and 
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majority samples.  To adapt this for the regression context, the “balanced random forest” is 

implemented by computing a histogram over the target distribution and drawing bootstrap 

samples uniformly from each bin.  This ensures that each tree in the forest is trained on a 

subsample containing rarer examples.   

 

Figure 2 - Target distributions 

Figure 3 shows the results of utilizing the balanced random forest algorithm on netAUC.  While 

balancing the random forest helped to overcome some limitations predicting at the lower and 

upper ranges, as shown in decreased bias in quartiles 1 and 4, the bias was not eliminated.  This 

also came at the cost of decreased accuracy for the under-sampled majority examples residing in 

quartiles 2 and 3, for which the standard random forest had higher accuracy.  In order to try to 

leverage the accuracy of the random forest model and the balanced random forest model in 

different quartiles, we employed two different strategies to combine the predictions of each 

classifier: linear regression and Multivariate Adaptive Regression Splines (MARS) [63]. 

The bivariate linear regression model for combining random forest predictions is defined as 

follows: 
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𝑦  =  𝑏  +  𝑎(𝑥(  +  𝑎)𝑥) 

Equation 2 - Bivariate linear regression 

where 𝑥( represents the prediction of random forest with standard sampling and 𝑥) represents the 

prediction with the balanced random forest with uniform sampling to ensure adequate 

representation of the minority observations.  The coefficients 𝑎( and 𝑎) are weights that are 

learned during training. Linear regression fits a plane in this case, attempting to minimize the 

mean square error between the combined model predictions and the ground truth data.   

We explored other ways of combining outputs of the random forest and the balanced random 

forest.  A Multivariate Adaptive Regression Splines (MARS) model was trained for the same task 

of combining the outputs of the two models.  The advantage of using the MARS algorithm lies 

within its flexibility to adapt to non-linear regions in the data through the use of hinge functions, 

which may be helpful when assigning higher weight to one region of the target distribution versus 

another.  This results in piecewise linear regression.  The specific python implementation of the 

algorithm used in this work is referred to as EARTH [64]. 
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Figure 3 - Quartile bias in random forest versus balanced random forest 

 

Hyperparameter tuning and model validation 

In preparation for model training, 4493 meal events were separated randomly into training, 

validation, and test sets such that each participant was represented in only one of the sets of data.  

After splitting, the training partition contained 72% of the data, while the remaining 15% and 

13% were allocated to the validation and test sets, respectively.  The distributions of features in 

each set are shown in Figure 4.  Bayesian hyperparameter tuning was then performed on the 

training and validation sets to select values for maximum tree depth, minimum leaf samples, 

minimum samples to split a node, and number of trees.  The search was executed for 100 

different hyperparameter combinations for each model utilizing the Weights and Biases software 
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[65].  Machine learning models were implemented using the python version 3.8 software and the 

scikit-learn framework, and visualizations were generated using matplotlib and seaborn libraries 

[66, 67, 68].  The best hyperparameters were found by tuning and minimizing the mean squared 

error of the predictions ( Table 5).  The results of training each individual random forest model 

and combining their predictions through regression models are shown in the following 

subsections.  

 Table 5 - Hyperparameter tuning search ranges and final values 

  Best values found 
Hyperparameter Search range NetAUC MinBG MaxBG 
Number of trees Minimum: 5 

Maximum: 1000 
301 32 634 

Minimum leaf samples Minimum: 1 
Maximum: 10 

10 7 9 

Minimum samples to 
split a node 

Minimum: 2 
Maximum: 10 

10 9 7 

Maximum tree depth Minimum: 1 
Maximum: 10 

10 4 10 

 

Finally, during analysis it was found that simply combining the predictions of each model did not 

necessarily lead to a single model which provides good accuracy across all regions of each target 

distribution.  However, several models consistently provide better accuracy in some quartiles.  

For each target, models were ranked based on which performed best in each quartile of the target 

distribution.  We developed a quartile-based selection method which utilized predictions from 

each model to estimate which quartile in the target distribution the true value was within.  

Specifically, the output of the models were averaged to obtain the estimate.  Based on which 

quartile the estimate fell within, the prediction from the best performing model in that quartile 

was selected as the final output.  This algorithm is detailed in Equation 3.  
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For an input meal feature vector: 

1. Obtain predictions y!"#$	by running through each model 

y!"#$ = $y%"%, 	y%&'(')*#$_"%, 	y%*,-&.)'/.,)_(.)#'", y%*,-&.)'/.,)_0123' 

2. Compute the mean of y!"#$, y(!"#$ 

y(!"#$ =
1
4+y!"#$.

4

.56

 

3. Use y(!"#$ to estimate which quartile in the target distribution the true target value may reside 
a. If y(!"#$	is greater than or less than target observation max/min values, set to max/min  
b. For each (upper_bound, lower_bound, quartile_number) in quartile range: 

i. If upper_bound ≥ y(!"#$ ≥ lower_bound 

Return quartile_number 

4. Look up best model for quartile_number and return that prediction 

Equation 3 - Quartile-based selection algorithm 

 

Boxplots showing model performance in each quartile for NetAUC are shown in Figure 5.  

Wilcoxon signed-rank testing is performed for all pairs using the statannotations library [69], 

only those with significant differences are shown as indicated by asterisks.  Repeated measured 

are accounted for by grouping by subject and computing the mean error in each quartile.  For 

NetAUC, the predictions of the linear model were best in terms of mean error for quartiles 1 

through 3.  In quartile 1, there were no significant differences between alternative models and all 

were significantly better than standard random forest.  In quartile 2, “combination – MARS” and 

“combination – linear” yielded lowest median ME and were not significantly different from each 

other.  In quartile 3, the linear regression model provided the best ME.  Finally, in quartile 4, the 

balanced random forest was ranked the best model due to its ME closest to zero. 

An alternative view is shown in Figure 6 as a lineplot.  Each colored dot represents median ME 

for the corresponding model in that quartile.  The error bars represent the IQR for the ME in that 

quartile.  It is important to note that there is systemic bias in predictions of the model.  The 

positive bias in Q1 and high negative bias in Q4 indicate that predictions are trending towards the 

distribution mean. 
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Figure 4 - Input feature distributions 
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Figure 5 - NetAUC validation mean error across quartiles 
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Figure 6 - Lineplot of NetAUC validation mean error across quartiles 

The same pattern is followed for MaxBG and MinBG in the following Figure 7-Figure 10 with a 

summary of the best models in each quartile provided in Table 6.  For MaxBG, quartile-based 

selection strategy appears to work well in balancing the difference in predictions between models 

across quartiles.  The same systemic bias remains as observed in NetAUC modeling. 

Table 6 - Best models selected by quartile for each target distribution 

Model Q1 Q2 Q3 Q4 
NetAUC Combination - 

linear 
Combination - 
linear 

Combination – 
linear 

Balanced random 
forest 

MaxBG Combination - 
MARS 

Combination - 
linear 

Combination – 
linear 

Balanced random 
forest 

MinBG Combination - 
linear 

Combination - 
linear 

Balanced random 
forest 

Balanced random 
forest 
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Figure 7 - MaxBG validation mean error across quartiles 
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Figure 8 - Lineplot of MaxBG validation mean error across quartiles 

 

Finally, the same pattern is once again observed for MinBG prediction.  The quartile-based 

selection method worked well for this task in balancing the models in quartiles 2 through 4, but 

ultimately bias still remained.  Predictions in quartile 1 could be potentially dangerous given the 

large error at a low blood glucose range. 
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Figure 9 - MinBG validation mean error across quartiles 
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Figure 10 - Lineplot of MinBG validation mean error across quartiles 

   

Results 

Following validation, the training and validation data sets are combined and applied to train final 

models based on the strategy selected in model selection and validation.  Final model mean error 

is aggregated per subject on the holdout sets for each forecasted component of PPGR and shown 

in the following Figure 16.  Generally, the models which were ranked as best in validation were 

also best in holdout.  For NetAUC, the quartile-based selection method improves bias across the 

first, third, and fourth quartile.  There is no significant change in bias in the second quartile, 

matching accuracy with the standard random forest model.  In prediction of maximum blood 

glucose, the quartile-based selection method also resulted in improved mean error relative to 
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random forest in all quartiles.  Finally, for prediction of minimum blood glucose, the results of 

quartile-based selection closely followed the balanced random forest as also observed in the 

validation set.  Across all models systemic bias remained as can be observed in positive bias in 

the first quartile steadily decreasing to negative bias in the fourth quartile.  

 

Figure 11 - NetAUC holdout mean error across quartiles 
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Figure 12 - Lineplot of NetAUC holdout mean error across quartiles 



 

 39 

 

Figure 13 - MaxBG holdout mean error across quartiles 
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Figure 14 - Lineplot of MaxBG holdout mean error across quartiles 
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Figure 15 - MinBG holdout mean error across quartiles 
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Figure 16 - Lineplot of MinBG holdout mean error across quartiles 

Feature importance was also plotted for each random forest model using the standard scikit-learn 

implementation.  Permutation importance was chosen rather than mean decrease in impurity as it 

is more robust to misleading results due to high cardinality of features.  Each feature is shuffled 

over several iterations to observe the mean decrease in accuracy when the model’s relationship 

between input and its target is broken.  The top four feature importances found through this 

method are listed in Table 7. 

Table 7 - Top 4 feature importances as calculated by permutation method 

Model 1st important  
feature 

2nd important  
feature 

3rd important 
feature 

4th important 
feature 

NetAUC Groc_0 Cgm_20 Cgm_30 Hba1c 
MaxBG Starting_cgm Hba1c Groc_0 Carbs 
MinBG Starting_cgm Iob_tdir_ratio Groc_0 Cgm_5 
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Figure 17 - NetAUC random forest feature importance computed via permutation method on holdout set 
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Figure 18 - MaxBG random forest feature importance computed via permutation method on holdout set 
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Figure 19 - MinBG random forest feature importance computed via permutation method on holdout set 
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Feature importance is an interesting diagnostic because it provides insight into which inputs the 

model finds to be informative when making a prediction given the training data.  For NetAUC, 

the glucose rate of change at prediction time along with prior CGM readings and HbA1c were 

relied on by the random forest model the most.  Other features, such as ratio of IOB to TDIR, 

height, and age were also important but to a lesser degree.  In the MaxBG prediction model, 

starting CGM was by far the most important feature.  HbA1c and glucose rate of change at 

prediction time contributed, but to a lesser degree.  Carbohydrates consumed at the time of meal 

and calories over the past 12 hours appeared to also have a small impact.  Similar feature 

importance was observed in MinBG prediction, with CGM reading at the time of the meal 

contributing the most.  However, the IOB to TDIR ratio and prandial glucose rate of change were 

the next most important features.  Many of the other features did not contribute substantially to 

predictive accuracy. 

A useful tool to evaluate the safety of the maxBG and minBG predictions is the Parkes consensus 

error grid [70].  Predictions within the “A” region of the grid are considered to be accurate and 

safe.  Predictions in the “B” region are less accurate but also generally considered to be safe.  

Regions C-E become progressively more dangerous [24].  In the following Figure 20 and Figure 

21, the predictions generated by the quartile-based selection method are shown on this grid.  For 

the maximum BG prediction task, 99.2% of predictions are within the safe regions of A and B.  

0.7% of the data lie within the C range, which is slightly more dangerous as a higher BG level is 

predicted than the actual outcome.  There are no predictions within the more dangerous D and E 

zones.  Finally, for minimum BG prediction, 89.4% of predictions are within the safer range.  

8.7% of predictions fall within the C zone and 1.5% are within the D zone.  Predictions within 

these zones could be more dangerous to a person using these predictions in decision support 

settings if they lead to administration of larger insulin boluses when not indicated.   
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Figure 20 - MaxBG holdout set predictions - Parkes error grid  
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Figure 21 - MinBG holdout set predictions - Parkes error grid  

 

Finally, in  Table 8 the final holdout evaluation metrics are reported based on the final 

predictions of the quartile-based selection method.  For all models, high correlation was observed 

(Pearson R > 0.61).  The MaxBG model had the highest coefficient of determination (R2 = 0.47), 

while the MinBG model had the lowest score (R2 = 0.09).  The low score for MinBG implies that 

the model is insufficient to fully capture the variance in the data, and that more examples or 

features may be required to improve performance. 
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 Table 8 - Holdout set evaluation metrics 

Model ME ± std (mg/dL) RMSE ± std (mg/dL) R R2 

NetAUC 4.68 ± 17.59 20.24 ± 12.64 0.64 0.34 

MaxBG 2.98 ± 20.90 33.11 ± 13.68 0.70 0.47 

MinBG 14.48 ± 22.59 26.36 ± 21.41 0.61 0.09 

 

Discussion 

Overall, we have shown that while there is bias in the predictions of the netAUC, MaxBG, and 

MinBG of the PPGR, using data balancing approaches significantly reduces this bias.  These 

models may be used to inform decision support around calculation of meal insulin boluses to help 

people understand how their insulin dosing and macronutrient intake could impact their glucose 

response.  While the maxBG predictions were clinically safe according to the Parkes error grid 

(Figure 20), use of the MinBG model could be unsafe to use in a clinical setting due to the high 

bias as observed in mean error ( Table 8) and the Parkes error grid analysis (Figure 21).  This 

process highlights the complexity of developing safe and robust augmentations to decision 

support systems.  However, it is important to note that the results of analysis of feature 

importance can provide insight into patterns the model has learned, which can be iteratively used 

to revisit and understand the underlying data.  In the subset of data included in this analysis, 

participants were not exercising or consuming additional food within the subsequent three hours 

following the meal.  As the data were sourced from an exercise study initiative, this substantially 

reduced the amount of events available for the machine learning model to use for training.  In 

addition, many meal events had boluses during the postprandial forecasting window which 

presented an additional unknown disturbance.  
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Figure 22 - Histogram of time-to-maximum blood glucose (5-minute sample number) in event window (left) Histogram 
of time-to-minimum blood glucose (5-minute sample number) in event window (right) 

Examining feature importance from the models shows that for NetAUC, the glucose rate of 

change, prior CGM readings, and IOB to TDIR ratio were important to the prediction.  The model 

appeared to leverage nutritional information but to a lesser extent.  When examining feature 

importance for MaxBG and MinBG, the most important feature by far was the starting CGM, 

followed by IOB to TDIR for MinBG.  For minimum BG, normalized insulin on board makes 

sense as a predictor as it will directly influence lowering of blood glucose over the prediction 

window.  It is more surprising, however, that the starting CGM value is the primary influence of 

accuracy for these two models.  Taking a closer look at the data itself helps to reveal why this 

may be.  In Figure 22, time to maximum blood glucose and time to minimum blood glucose are 

plotted in terms of frequency and the 5-minute sample number for which the statistic occurred.  

For the majority of events, participants began eating when they had high blood glucose and after 

eating glucose dropped.  The second highest majority of observations had glucose that increased 

consistently during the postprandial glucose prediction window. The third highest number of 

observations peaked slightly less than an hour into the event.  Similarly, in the case of minimum 

blood glucose, many participants entered the meal event low or were declining to a low within the 

following 15 minutes.  The second highest majority hit a low at the end of the three-hour 

postprandial glucose prediction window.  It is possible that this pattern is picked up by the 
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machine learning algorithm during the learning process.  If this is truly the case, more data would 

not help solve the problem, and instead a different approach to learning from data would be 

needed.  One such approach could involve clustering PPGRs based on whether or not they are 

expected to rise, fall, or exhibit other patterns.  Based on the clusters, patterns in the data could be 

observed and classifiers trained to predict outcomes if the patterns are predictable with respect to 

input features.   

Finally, data imbalance is a notorious and challenging problem in machine learning.  While we 

attempted to correct for this imbalanced through balanced sampling techniques, the systemic bias 

ultimately remained and could not be overcome with the balanced random forest alone.  This 

resulted in overall predictions from all models trending towards the distribution means.  Evidence 

of this pattern can be observed in Figure 16 in which there is consistent positive bias in the first 

quartile, declining across each quartile to high negative bias in the fourth quartile.  However, it is 

worth noting that the work did offer insight on how modifying the bootstrap sample can modestly 

boost predictive accuracy in the regression context.  Specifically, the balanced random forest 

consistently decreased bias in the fourth quartile for each model.  In addition, the quartile-based 

model selection method resulted in good compromise between the predictions of the collection of 

models.  Despite these methods, ultimately the quality and distribution of data matters and can be 

difficult to overcome with imbalance correction alone.  

Limitations 

The limitations of this work should be discussed.  As detailed in Methods, data are only included 

from participants of AID and open loop pump modalities.  This is because MDI users needed to 

manually log when they dosed with long-acting and short-acting insulin, resulting in a lack of 

reliable data.  In the future, devices such as Bluetooth-enabled smart pens may help to more 

accurately track doses.  For AID modalities, the insulin pump automatically logs this information 

making it more accurate.  Another limitation lies within the available data.  Other studies have 
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shown microbiome has a significant impact on PPGR [25, 50].  Such data were not available for 

this analysis, which may have limited the predictive accuracy of the ML models.  These studies 

also involved standardized meals for participants in order to limit the variability introduced by 

different dietary choices.  We also use nutritional information as evaluated by nutritionists, which 

will not be available in practice when used within an MDI or decision support system. When an 

individual’s own estimation is to be relied on, this will introduce additional uncertainty in model 

predictions.  Finally, the exclusion of meal events based on possible disturbances such as 

exercise, an additional meal, or bolus delivery resulted in a much narrower set of events for 

analysis than commonly encountered in daily life of participants.   
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Chapter 4 - Conclusion 

There still exists ample opportunity to continue work on improving DSSs.  While overall use of 

the DailyDose app did not lead to improved TIR, post-hoc analysis revealed that adherence to 

provided recommendations leads to increased TIR.  This is promising for future work aiming to 

improve overall rate of recommendation acceptance.  The integration of an algorithm which is 

better able to anticipate personalized prandial insulin boluses given nutritional information could 

also be promising and help improve glycemic outcomes.  Final model predictions in maximum 

blood glucose forecasting task yielded 99.5% safe predictions in Parkes error grid analysis, 

indicating potential usefulness in clinical settings.  In the minimum blood glucose forecasting 

model, this was lowered to 89.7% of predictions increasing the risk of danger to participant.  

Attempts to improve model forecasting were consistently helpful in the fourth quartile, but 

ultimately systemic bias persisted throughout all models indicating that more work is to be done 

to improve performance.  Through examining feature importance in the random forest, it was 

shown which factors were heavily utilized during prediction time.  These features are useful in 

better understanding patterns in the data to build more robust models.   

Future work 

DSSs such as DailyDose may be improved with the integration of an algorithm which can 

successfully and accurately forecast components of PPGR.  There are several benefits to 

including PPGR prediction into the app, including the ability to improve bolus calculation with 

personalized incorporation of meal macronutrients and the ability to change meal macronutrient 

profile to see how the delivered bolus and response might change.  Another benefit of including 

PPGR models is increased explainability.  Interviews with study participants revealed that many 

participants may not have understood recommendations or the benefit of the recommendations.  
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Removing this barrier may help increase acceptance of recommendations and possibly lead to 

better glycemic control.   

More work is needed for a postprandial glucose forecasting algorithm to be integrated with a DSS 

such as DailyDose.  First, it will be necessary to include data from MDI users in modeling.  In 

addition, the systemic bias would need to be corrected as observed in the forecasting models 

presented here.  Feature importance analysis revealed that the primary driver for minimum and 

maximum BG prediction was the starting CGM.  It is possible that the starting CGM influences 

the learned bias, which may be alleviated with more data procured through a future study.  

However, more data would only be helpful if the time-to-max and time-to-min changes with more 

samples as well.  Ultimately, different approaches to modeling may be required, such as a 

clustering technique which groups PPGRs based on trend and learns which features are associated 

with the PPGR.  Other factors have also been observed in studies to influence PPGR, such as 

microbiome and standardized meals for participants [25, 50].  Controlling for meal variance could 

in turn also increase the accuracy of reported nutrients in a future study.  Through additional 

study data and application of alternative modeling techniques, it may be possible to leverage 

these models in a way which improves quality of life for those living with T1D.  

 

 

 

 

 



 

 55 

References 

[1]  Centers for Disease Control and Prevention, "National Diabetes Statistics Report," 2023. 

[Online]. Available: https://www.cdc.gov/diabetes/data/statistics-report/index.html. 

[2]  A. L. Burrack, T. Martinov and B. T. Fife, "T Cell-Mediated Beta Cell Destruction: 

Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes," Frontiers in 

endocrinology, 2017.  

[3]  J. B. McGill and A. Ahmann, "Continuous Glucose Monitoring with Multiple Daily Insulin 

Treatment: Outcome Studies," Diabetes technology & therapeutics , vol. 19, no. S3, p. S3–

S12, 2017.  

[4]  Sherr, Jennifer L., et al., "Automated Insulin Delivery: Benefits, Challenges, and 

Recommendations. A Consensus Report of the Joint Diabetes Technology Working Group 

of the European Association for the Study of Diabetes and the American Diabetes 

Association," Diabetes Care 1, vol. 45, no. 12, pp. 3058-3074, 2022.  

[5]  M. E. Pauley, C. Berget and L. H. Messer, "Barriers to Uptake of Insulin Technologies and 

Novel Solutions," Medical devices (Auckland, N.Z.), vol. 14, p. 339–354, 2021.  

[6]  Foster, N. C., Beck, R. W., Miller, K. M., et al., "State of Type 1 Diabetes Management and 

Outcomes from the T1D Exchange in 2016-2018," Diabetes technology & therapeutics, 

vol. 21, no. 2, pp. 66-72, 2018.  

[7]  R. M. Bergenstal, "Understanding Continuous Glucose Monitoring Data," Role of 

Continuous Glucose Monitoring in Diabetes Treatment, 2018.  



 

 56 

[8]  S. Schmidt and K. Nørgaard, "Bolus calculators," J Diabetes Sci Technol, vol. 8, no. 5, pp. 

1035-41, 2014.  

[9]  J. Lucier and R. S. Weinstock, "Type 1 Diabetes," 3 March 2023. [Online]. Available: 

https://www.ncbi.nlm.nih.gov/books/NBK507713/. [Accessed 24 February 2024]. 

[10]  P. E. Cryer, "Hypoglycemia in type 1 diabetes mellitus," Endocrinology and metabolism 

clinics of North America, vol. 39, no. 3, p. 641–654, 2010.  

[11]  S. J. Gillespie, K. D. Kulkarni and A. E. Daly, "Using Carbohydrate Counting in Diabetes 

Clinical Practice," Journal of the American Dietetic Association, vol. 98, no. 8, pp. 897-

905, 1998.  

[12]  P. Boulby, R. Moore, P. Gowland and R. C. Spiller, "Fat delays emptying but increases 

forward and backward antral flow as assessed by flow-sensitive magnetic resonance 

imaging," Neurogastroenterology and motility, pp. 27-36, 1999.  

[13]  S. Laxminarayan, J. Reifman, S. S. Edwards, H. Wolpert and G. M. Steil, "Bolus 

Estimation—Rethinking the Effect of Meal Fat Content," Diabetes technology & 

therapeutics, vol. 17, no. 12, pp. 860-866, 2015.  

[14]  Paterson, M., et al., "The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 

Diabetes: Implications for Intensive Diabetes Management," Current diabetes reports, vol. 

15, no. 9, p. 61, 2015.  

[15]  A. Wolpert, A. Atakov-Castillo, A. Smith and M. Steil, "Dietary fat acutely increases 

glucose concentrations and insulin requirements in patients with type 1 diabetes: 

implications for carbohydrate-based bolus dose calculation and intensive diabetes 

management," Diabetes care, vol. 36, no. 4, pp. 810-816, 2013.  



 

 57 

[16]  Smith T. A., Smart C. E., Fuery M. E. J., et al, "In children and young people with type 1 

diabetes using pump therapy, an additional 40% of the insulin dose for a high-fat, high-

protein breakfast improves post- prandial glycaemic excursions: a cross-over trial," Diabet 

Med, vol. 38, no. 7, 2021.  

[17]  S. Annan, L. Higgins, E. Jelleryd, T. Hannon, S. Rose, S. Salis, J. Baptista, P. Chinchilla 

and M. Marcovecchio, "ISPAD Clinical Practice Consensus Guidelines 2022: Nutritional 

management in children and adolescents with diabetes," Pediatric diabetes, vol. 23, no. 8, 

pp. 1297-1321, 2022.  

[18]  L. T. Meade and W. E. Rushton, "Accuracy of Carbohydrate Counting in Adults," Clinical 

diabetes : a publication of the American Diabetes Association, vol. 34, no. 3, pp. 142-147, 

2016.  

[19]  Gillingham, M. B., et al, "Assessing Mealtime Macronutrient Content: Patient Perceptions 

Versus Expert Analyses via a Novel Phone App," Diabetes technology & therapeutics, vol. 

23, no. 2, pp. 85-94, 2021.  

[20]  N. Tyler and P. G. Jacobs, "Artificial Intelligence in Decision Support Systems for Type 1 

Diabetes," Sensors, vol. 20, no. 11, p. 3214, 2020.  

[21]  R. Nimri, M. Phillip and B. Kovatchev, "Decision Support Systems and Closed‐Loop," 

Diabetes technology & therapeutics, vol. 24, no. S1, pp. S-58, 2022.  

[22]  Tyler, N. S., et al., "An artificial intelligence decision support system for the management 

of type 1 diabetes," Nature metabolism, vol. 2, no. 7, pp. 612-619, 2020.  



 

 58 

[23]  Unsworth, R, et al., "Safety and Efficacy of an Adaptive Bolus Calculator for Type 1 

Diabetes: A Randomized Controlled Crossover Study," Diabetes Technology & 

Therapeutics, vol. 25, no. 6, pp. 414-425, 2023.  

[24]  Castle, J. R., et al., "Assessment of a Decision Support System for Adults with Type 1 

Diabetes on Multiple Daily Insulin Injections," Diabetes Technology & Therapeutics, vol. 

24, no. 12, pp. 892-897, 2022.  

[25]  Jacobs, P. G., et al, "Artificial intelligence and machine learning for improving glycemic 

control in diabetes: best practices, pitfalls and opportunities," IEEE reviews in biomedical 

engineering, 2023.  

[26]  Zeevi, D., et al., "Personalized nutrition by prediction of glycemic responses," Cell, vol. 

163.5, pp. 1079-1094, 2015.  

[27]  American Diabetes Association, "Postprandial Blood Glucose," Diabetes Care, vol. 24, no. 

4, p. 775–778, 2001.  

[28]  M. Metwally, T. O. Cheung, R. Smith and K. Bell, "Insulin pump dosing strategies for 

meals varying in fat, protein or glycaemic index or grazing-style meals in type 1 diabetes: A 

systematic review," Diabetes Research and Clinical Practice, vol. 172, 2021.  

[29]  Castle, J. R., Espinoza, A.Z., Tyler, N.S., et al., "771-P: Acceptance of Decision Support 

Recommendations Improves Time in Range for People Living with Type 1 Diabetes on 

Multiple Daily Injections.," Diabetes, vol. 71, no. Supplement_1, p. 771–P, 2022.  

[30]  M. Munoz-Organero, "Deep Physiological Model for Blood Glucose Prediction in T1DM 

Patients," Sensors(Basel, Switzerland), vol. 20, no. 14, p. 3896, 2020.  



 

 59 

[31]  Prendin, F., Del Favero, S., Vettoretti, M., et al., "orecasting of Glucose Levels and 

Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven 

Algorithms Based on Continuous Glucose Monitoring Data Only," Sensors, vol. 21, no. 5, 

p. 1647, 2021.  

[32]  Syafrudin, M., Alfian, G.,Fitriyani, N.L., et al., "A Personalized Blood Glucose Prediction 

Model Using Random Forest Regression," 2022 ASU International Conference in 

Emerging Technologies for Sustainability and Intelligent Systems, pp. 295-299, 2022.  

[33]  A. Zale and N. Mathioudakis, "Machine Learning Models for Inpatient Glucose 

Prediction," Current Diabetes Reports, vol. 22, p. 353–364, 2022.  

[34]  C. Mosquera-Lopez and P. G. Jacobs, "Incorporating Glucose Variability into Glucose 

Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the 

Prediction Consistency Index: An LSTM Case Example," Journal of Diabetes Science and 

Technology, vol. 16, no. 1, pp. 7-18, 2022.  

[35]  B. Huard and G. Kirkham, "Mathematical modelling of glucose dynamics," Current 

Opinion in Endocrine and Metabolic Research, 2022.  

[36]  Resalat, N., Youssef, J. E., Tyler, N., et al., "A statistical virtual patient population for the 

glucoregulatory system in type 1 diabetes with integrated exercise model," PLOS ONE, vol. 

14, no. 7, p. e0217301, 2019.  

[37]  Prendin, F., Pavan, J., Cappon, G., et al, "The importance of interpreting machine learning 

models for blood glucose prediction in diabetes: an analysis using SHAP," Scientific 

reports, vol. 13, no. 1, p. 16865, 2023.  



 

 60 

[38]  S. M. Lundberg and S. I. Lee, "A unified approach to interpreting model predictions," Proc. 

31st Int. Conf. Neural Inf. Process. Syst., pp. 4768-4777, 2017.  

[39]  M. T. Ribeiro et al., ""Why should i trust you?“: Explaining the predictions of any 

classifier," Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, pp. 1135-

1144, 2016.  

[40]  L. Breiman and A. Cutler, "Technical report: Random forests manual v4: UC Berkeley," 

2003. [Online]. Available: 

https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf. [Accessed 24 

February 2024]. 

[41]  H. Haibo and M. Yunqian, "Imbalanced learning: foundations, algorithms, and 

applications," Wiley-IEEE Press, vol. 1, no. 27, p. 12, 2013.  

[42]  R. Ribeiro and N. Moniz, "Imbalanced regression and extreme value prediction," Mach 

learn, vol. 109, pp. 1803-1835, 2020.  

[43]  P. Branco, L. Torgo and R. P. Ribeiro, "Pre-processing approaches for imbalanced 

distributions in regression," Neurocomputing, vol. 343, pp. 76-99, 2019.  

[44]  Y. Yang, K. Zha, Y. Chen, H. Wang and D. Katabi, "Delving into deep imbalanced 

regression," International Conference on Machine Learning, pp. 18842-18851, 2021.  

[45]  L. Torgo, R. P. Ribeiro, B. Pfahringer and P. Branco, "Smote for regression," In Portuguese 

conference on artificial intelligence, pp. 378-389, 2013.  

[46]  P. Branco, L. Torgo and R. Ribeiro, "SMOGN: A Pre-Processing Approach for Imbalanced 

Regression," Proceedings of Machine Learning Research, vol. 74, pp. 36-50, 2017.  



 

 61 

[47]  R. Alejo, J. M. Sotoca, V. García and R. M. Valdovinos, "Back propagation with balanced 

MSE cost function and nearest neighbor editing for handling class overlap and class 

imbalance," In International Work-Conference on Artificial Neural Networks, pp. 199-206, 

2011.  

[48]  R. Sergazinov, M. Armandpour and I. Gaynanova, "Gluformer: transformer-based 

personalized glucose forecasting with uncertainty quantification," ICASSP 2023-2023 IEEE 

International Conference on Acoustics, Speech and Signal Processing, pp. 1-5, 2023.  

[49]  Liu, K., Li, L., Ma, Y., et al., " Machine Learning Models for Blood Glucose Level 

Prediction in Patients With Diabetes Mellitus: Systematic Review and Network Meta-

Analysis," JMIR Med Inform, vol. 11, p. e47833 , 2023.  

[50]  Dave, D., DeSalvo, D. J., Haridas, B., et al., "Feature-Based Machine Learning Model for 

Real-Time Hypoglycemia Prediction," J Diabetes Sci Technol, vol. 15, no. 4, pp. 842-855, 

2021.  

[51]  Mendes-Soares, H., et al., "Assessment of a Personalized Approach to Predicting 

Postprandial Glycemic Responses to Food Among Individuals Without Diabetes," JAMA 

network open, vol. 2, no. 2, 2019.  

[52]  Pustozerov, E. A., et al., "Machine learning approach for postprandial blood glucose 

prediction in gestational diabetes mellitus," IEEE Access, vol. 8, pp. 219308-219321, 2020.  

[53]  Pustozerov, E. A., et al., "The role of glycemic index and glycemic load in the development 

of real-time postprandial glycemic response prediction models for patients with gestational 

diabetes," Nutrients, vol. 12, no. 2, p. 302, 2020.  



 

 62 

[54]  Annuzzi, G., Apicella, A., Arpaia, P., Bozzetto, L., Criscuolo, S., et al., "Exploring 

Nutritional Influence on Blood Glucose Forecasting for Type 1 Diabetes Using Explainable 

AI," IEEE journal of biomedical and health informatics, 2023.  

[55]  S. M. Lundberg and S. I. Lee, "A unified approach to interpreting model predictions," 

Advances in neural information processing systems, vol. 30, 2017.  

[56]  Riddell, M. C., et al., "Examining the Acute Glycemic Effects of Different Types of 

Structured Exercise Sessions in Type 1 Diabetes in a Real-World Setting: The Type 1 

Diabetes and Exercise Initiative (T1DEXI)," Diabetes care, vol. 46, no. 4, pp. 704-713, 

2023.  

[57]  Xu, P., Ji, X., Li, M. et al., "Small data machine learning in materials science," npj Comput 

Mater, vol. 9, no. 42, 2023.  

[58]  Mosquera-Lopez, C., et al., "Enabling fully automated insulin delivery through meal 

detection and size estimation using Artificial Intelligence," NPJ digital medicine, vol. 6, no. 

1, p. 39, 2023.  

[59]  Martin, C. K., Han, H., Coulon, S. M, et al., "British Journal of Nutrition," A novel method 

to remotely measure food intake of free-living individuals in real time: the remote food 

photography method, vol. 101, no. 3, p. 446–456, 2008.  

[60]  L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.  

[61]  H. Zhang, D. Nettleton and Z. Zhu, "Regression-enhanced random forests," arXiv preprint, 

p. arXiv:1904.10416, 2019.  



 

 63 

 

[62]  C. Chen, A. Liaw and L. Breiman, "Using Random Forest to Learn Imbalanced Data," 

2004.  

[63]  T. Vink, "Adjusting the bootstrap in Random Forest," 15 June 2022. [Online]. Available: 

https://timvink.nl/blog/post-balanced-trees/#balancing-class-weight. [Accessed 5 February 

2024]. 

[64]  J. H. Friedman, "Multivariate Adaptive Regression Splines," The annals of statistics, vol. 

19, no. 1, pp. 1-67, 1991.  

[65]  J. Rudy, "py-earth: A Python implementation of Jerome Friedman’s Multivariate Adaptive 

Regression Splines," 2013. 

[66]  L. Biewald, "Experiment Tracking with Weights and Biases," 2020. [Online]. Available: 

https://www.wandb.com/. 

[67]  Pedregosa, F., Varoquaux, G., Gramfort, A., et al., "Scikit-learn: Machine Learning in 

Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.  

[68]  M. L. Waskom, "seaborn: statistical data visualization," Journal of Open Source Software, 

vol. 6, no. 60, p. 3021, 2021.  

[69]  J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing in Science & 

Engineering, vol. 9, no. 3, pp. 90-95, 2007.  

[70]  Charlier, F., Weber, M., Izak, D. et al., "Statannotations (v0.6)," Zenodo, 2022. 

[71]  Parkes, J. L., et al., "A new consensus error grid to evaluate the clinical significance of 

inaccuracies in the measurement of blood glucose," Diabetes Care, vol. 23, pp. 1143-1148, 

2000.  


