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ABSTRACT

This work presents results pertinent to the study of

spatial diversity as a means for partially overcoming the

deleterious effects of the clear-air turbulent atmosphere

on direct detection and heterodyne optical communication

systems. For photon counting receivers, an averaged thres-

hold receiver is presented, which is seen to be simpler to

implement and to provide consistantly lower bit error rates

than optimized memoryless receivers. The heterodyne results

include the introduction of a partial tracking heterodyne

array; a discussion, both theoretical and experimental, of

IF signal magnitude probability distributions for static

heterodyne arrays; and a theoretical treatment of the prob-

ability distribution for a single heterodyne element with

angle-of-arrival tracking.

xi
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1. INTRODUCTION

The concept of using optical beams for communications

through the atmosphere is not a new one. As early as 458

B.C.E., the Greek Playwrite Aeschylus described how news of

the defeat of Troy was returned to Argos by a relay system

of beacon fires.l From this rather crude beginning, sophis-

ticated systems have been developed, with lasers being used

in place of bonfires and complex photoelectric devices in

place of the eyes of Greek slaves. This work is an investi-

gation into certain aspects of refinements in these detectors,

based on improved understanding of the effects of the clear-air

turbulent atmosphere on optical propagation.

In 1905, Einstein proposed that, while light behaves as

an electromagnetic wave in some respects, in other cases it

behaves like a particle.2 In one view, the most fundamental

detection process involves counting the individual photons,

or particles of the received signal. In the other view, the

received wave can be amplified by heterodyning, or mixing it

with a strong optical wave generated in the receiver structure.

Both of these detection processes will be considered here.
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The optical signal reaching a detector, however, can be

severely distorted by propagation through the atmosphere.3,4

Although fog, rain, snow, dust, atmospheric molecules, and

turbulence all can contribute to this distortion, the effects

of turbulence are probably the most pervasive, due to the

relatively minor contribution of molecular scattering and to

the intermittent nature of particulate scattering. Concen-

trating on the effects of turbulence, one finds that the

instantaneous distortion varies from point to point in the

detection plane. This leads to the concept of spatial diver-

sity. By judiciously combining the signals from several photon

counting or heterodyne detectors, one can partially overcome

the deleterious effects of atmospheric turbulence.

The investigation of what is meant by "judiciously com-

bining the signals" is, in general, a four step process

consisting of the following stages of development:

1) evaluation of the probability distribution of the

signals to be combined,

2) evaluation of optimum "memory1ess" combining structure

and resulting bit error rate,

3) evaluation of simplified "memory1ess" structures and

associated bit error rates,

4) evaluation of systems with memory - structures and

bit error rates,
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where a system with memory is one which uses information from

previous bits to evaluate the present one. It should be noted

that, in discussing bit error rates, the topic of interest has

been limited to digital communication systems.

For the case of photon counting elements, the theory of

the first three steps of this process has been developed by

Teich, et. al.5-8 The final stage is covered in Chapter 2 of

this work.

The heterodyne case is complicated by a number of possible

receiver configurations, which must be considered separately.

The first choice to be made is whether to combine the signals

after IF demodulation or before. For the former case, the

probability distribution of the IF signal magnitudes must be

evaluated in step 1. The latter requires knowledge of the

magnitude and phase statistics of the IF signals and will not

be considered in this work. The second choice is whether to

track angle-of-arrival fluctuations at each array element, to

track the average instantaneous angle-of-arrival over the

array, or to employ no tracking at all. The second configur-

ation is introduced in Chapter 3 of this work, and compared,

in terms of total array SNR, with the other two previously

presented receiver types.

In Chapters 4 through 6 of this work, the investigation

of signal combining structures for these six heterodyne receiver

configurations is begun. What has been accomplished is pre-

sented in Table I.



non
tracking

partial
tracking

full
tracking

4

pre demodulation

combining

post demodulation

comb ining

Table I. Status of diversity heterodyne investigation.

step 1

independent fading theory - Chap. 4

independent fading experimental - Chap. 5

correlated fading theory and
experiment- Chap. 6

step 1

independent fading theory - Chap. 4
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2. AVERAGEDTHRESHOLDRECEIVER FOR DIRECT DETECTION OF OPTICAL

COMMUNICATIONS THROUGH THE LOGNORMAL ATMOSPHERIC CHANNEL

1. Introduction

Several authors7,9 have looked at the problem of developing

efficient, practical, diversity receivers for direct detection of low

power optical communication signals. In this chapter, a different

receiver structure is developed that is simpler to implement than

either the optimum or the maximum a postepiori (MAP) receivers

developed by Teich and Rosenberg; it is seen to result in a lower bit

error rate than these previous receivers under a wide range of con-

ditions.

A block diagram of the general system under consideration is

given in Figure 2.1. The signal to the receiver will be assumed to

come from an array of high gain, photon counting detectors, so that

shot noise and background radiation are the major sources of noise

introduced in the detection process.ID,11 The optical field at each

detector consists of the signal after fading caused by the atmosphere

plus. an independent additive component due to background radiation.ID,11

Several assumptions have been made in order to reduce the number

of parameters to a manageable level. These have been chosen, however,

so that the results will be applicable to most practical systems.

Independent fading at each detector in the array is assumed for the

most efficient use of low signal levels.8 Under usual conditions,

the background radiation, due to band-limited Gaussian thermal sources,

can be considered to be a constant additive intensity at each detector.5,12

The transmitter is assumed to be of constant intensity; for most prac-

tical systems, the sampling rate imposed by modulation will be unable



MESSAGE MESSAGE.
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Fig. 2.1. Block diagram of general optical communication system. Specific receiver
structures will be examined for channels through the clear-air turbulent
atmosphere.
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to resolve source intensity f1uctuations,8 justifying this assumption.

For simplicity, only symmetric, binary, pulse-code modulation is con-

sidered, with bit rates faster than atmospheric fluctuations (- 500 Hz).4

In Section 2.11, those characteristics of the signal, the channel,

and the detection process pertinent to the rece~ver structure are de-

scribed in detail. Section 2.111 is a review of the approximate optimum

and MAP receivers, along with a derivation of the new averaged threshold

receiver and a limit to its applicability. Section 2.IV compares bit

error rates of these three receivers for various combinations of turbu1-

ence strength, background radiation level, signal to noise ratio,

number of diversity channels, and number of bits used for threshold

averaging.

II. General System Considerations

The effects of turbulence on the signal are described by the nor-

ma1ized fading parameter, defined as Z = I's/Is;3 where I'Sis the instant-

aneous optical signal intensity at a point in the receiver plane, and

IS is the intensity that would be present at that point in the absence

of turbulence. Based on both experimental and theoretical evidence, 3,13

Z is considered to be a lognormal random variable, with probability

density function:

p(Z) =
1

fucrz
(1)

where cr2is the normalized log-intensity variance. Scattering and

absorption by the atmosphere are neglected except for a possible

uniform reduction of the signal strength reaching the receiver plane.
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In addition to the received signal ZIS' a uniform (unresolved)

background illumination of intensity IB may be present so that,

at a point in the receiver plane, the optical intensity is given

by:

if 1 is sent (2a)

if 0 is sent (2b)

Note that, for simplicity, IS' IB, and a2 are assumed to be the

same at all detectors in the array.

An array of D photon counting detectors is mounted in the

receiver plane. The relative performance of receivers using 1, 2,

and 4 channel spatial diversity detector arrays will be explored

in Section 2.IV. The detectors in the array are assumed to be

spaced so that the fading at each detector is independent of that

at any other. This is an easy condition to meet in practice.

Eliminating non-zero correlation between adjacent detectors im-

proves bit error rates,8 and, by decoupling necessary calculations,

also results in simplified receiver structures.7

In order to easily find the integrated intensity over each

detector area and over the period of each bit, it is assumed that

1) the area of each detector is smaller than the coherence area of

the fading, and 2) the duration of each bit is shorter than the

coherence time. Actually, these conditions are not r~gorously

required in practice. If Z is replaced by its average value over

the detector area and bit period, then this new random variable

retains much of the log-normal characteristic.14 This averaged
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value of Z obviously satisfies the conditions of limited spatial

and temporal coherence just described. Note, however, that the log-

intensity variance, a2, must then be calculated differently.3,13

The number of photoelectrons emitted during a time T from a

photocathode of area A is a Poisson random variable15 described

by the conditional density function:

p(nIW) = 1 ~ -wn! e (3)

In this expression W, the integrated rate parameter, is defined as:

+ +
I(r,t) dr dt (4)

where n is the quantum efficiency of the photocathode, h is Planck's

constant, v is the frequency of the signal, and I(;,t) is the irradi-

ance at t, at time t. Using the assumptions of limited spatial and

temporal coherence of the fading, the integration reduces to multi-

plication by T and A so that W is given by:

if I is sent (Sa)

W = NB if 0 is sent (Sb)

Here NB is defined as (n/hv) A T IB and is equal to the mean number

of photocounts due to background radiation, and similarly,

NS = (n/hv) A T IS is the mean photocount due to signal intensity.

It has been assumed that individual photoelectrons can be resolved

and counted.

If HI is the hypothesis that a one was sent (signal is present)

and H is the hypothesis that a zero was sent (no signal), then theo



10

receiver, for an array of D independent detectors with independent

fading, must choose between Ho and HI. The decision is based on
+
n, which is a D-dimensional vector having components n. giving the1

photocount from each detector and having the following conditional

density functions:

D
II

i=l

p (n. I H )1 0

D 1
IIn.!
i=l 1

(6a)

or

D
II

i=l
(6b)

D
II

i=l
o

An approximation, for log-normal p(Z.), has been applied to this1

integral by Diament and Teich5 and by Teich and Rosenberg.7

Using the method of steepest descents, they find that:

1
n. !1
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+
where the D-dimensional vector Z is found from the condition that:o

n.Z. Ns In(Z. ) + 1 cr2
1 10 10 2

Z N + N - Z. Ns - = 0 for i
io S B 10 2a

(7b)

1, 2, ...D

III. Receiver Structures

The purpose of the receiver processor is to decide between Ho

and HI' and, based on a simple Bayes criterion calculation, it can

be shown that this decision should be made according to the likeli-

hood ratio test in order to minimize the total probability of error. 16

In this test, the function L is defined as:

+
L(n) (8)

+ +

and HI (Ho) is chosen for L(n) > «) O. In the event that L(n) = 0,

either HI or Ho can be chosen at random without affecting the total

probability of error. This type of receiver results in a total pro-

bability of error given by:

(9)

A. Optimum Processor

Based on the exact photocount density functions (6a,b),

the lowest probability of error is seen to result from the like-

lihood function:

L (10)
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However, this implies a degree of signal processing that may

be difficult to achieve in many real-time situations. If the

steepest descents approximation to p (~.IHI) is used instead of

the exact expression, the processor no longer needs to evaluate

the integrals in (10), and this results in a simplified likeli-

hood function given by:

D

L = L:

i=l

2

(
lnz. + 1.. (J2

)10 2

(11)

with the Z. points found from the set of equations (7b). A block10

diagram of this receiver, given in Figure '2.2, shows that it is still

a fairly complicated structure, requiring independent measurement of

(J2 in addition to a priori knowledge of NS and NB.

B. MAP Processor

A simpler processor structure than the approximate optimum

described above would have several advantages. Speed and reliability

generally increase as complexity decreases and, at the same time, the

cost of the system tends to decrease. One obvious simplification is

to assume that an estimate of the fading can be used as if the fading

were known exactly; then the likelihood function reduces to:

+ D

(

A

)

p(nIZ,Hl) Z.Ns A

L = In +' = ~ ni In -}- + 1 -ZiNS (12)
p(nIZ,Ho) i=l B
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where Z. is the receiver estimate of the fading at the i'th detector.
1

In the MAP receiver as described by Van Trees,16 the Z. are given by1

those values which maximize the a posteriori probability of the fading

at each detector, given that n. photocounts were received at that1

detector. In other words, the Z. are found from the condition that:1

i 1,2, ...D (13)

which is easily seen to reduce to the condition that equation(7b) be

satisfied for Z. = Z.. In this approximation, the receiver struc-
10 1

ture has been simplified, as shown in Figure 2.3, even though the

same inputs are still required.

c. Averaged Threshold Processor

The performance of the receivers described so far will

remain constant whether the message consists of long strings of data

or of a single bit. In practice, however, single bit messages are

rare and a large number of bits will be received, in many appli-

cations, while the fading remains essentially constant. Where this

holds, the signal can be averaged over several bits, and the Z. can1

then be found from the extended MAP condition:

a

dZ.
1

(p(z.1 n.) A = 0
1 1 Z. = Z.

1 1

i = 1,2, ...D (14)

where the average photocount over N bits is given by:

i 1,2, ...D (15)

N

n -1 Ln.--
1 N

j=1 ij
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Note that, once the data rate has been specified, the number of

averaging bits must be chosen carefully. It must be large enough

that, with high probability, the number to "ones" seen and the

1
number of "zeros" seen are each very close of ZN and, at the same

time, it must be small enough that the fading changes very little

during N bits. These factors will be explored in greater depth

below. Assuming, however, that N has been judiciously chosen,

equation (14) is easily reduced to the condition that:

In(Zi) + %-02

cr2

= 0 (16)

As N becomes large, the first two terms in equation (16) domi-

nate, and the expression approaches the asymptotic form:

n.
1.

(17)

Using this approximation in the likelihood function of equation(12)

results in a simplified function given by:

(

2n.

)

L = n. In ~ - 1 - 2n. + 2N
1. NB 1. B

(18)

It can be seen from the block diagram, Figure 2.4, that when com-

pared to "single bit" receivers, this is a very simple processor,

since measurement of cr2has been replaced by the more direct measure-

ment of the ni and knowledge of NS is no longer necessary.

While the averaged threshold receiver, described by equation (18),

can be used in a great many practical applications, there certainly

exist situations in which it is not applicable, since it was assumed
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in the derivation that each Z. is constant during the time that N
J.

bits are received. If "constant" is taken to mean that the fluc-

tuations in the fading should be much less than the uncertainty in

the receiver estimate of the fading, this assumption can be trans-

formed into an upper bound on the number of averaging bits. In

particular, it is shown in Appendix A that the condition:

(19)

must be satisfied, where I:ML is the Fresnel zone size, 1 is theo

inner scale of turbulence, R is the data rate, and vI is the compo-

nent of wind velocity perpendicular to the path.

IV. Bit Error Rates

The total probability of error for these receivers has been

calculated for a variety of parameter values, and is presented as

a function of signal to noise ratio in Figures 2.5 through 2.15

where signal to noise ratio is defined by y = NS/NB. In the

absence of turbulence (02 = 0), all of the receivers here reduce

to the same structure. Curves for this structure have been cal-

culated for comparison and are designated by O.

The MAP and approximate optimum curves are denoted by 1 and 2

respectively. In Figures 2.5 through 2.9, they were obtained from

Reference 8 and, in Figures 2.10 through 2.15, they were calculated

using the steepest descents approximation to Pl(ri).



19

The curves denoted by 3 are values for the averaged thres-

hold processor with infinite threshold averaging. In other words,

the value of peE) reported in curve 3 for any set of parameters is

found by taking the limit as N goes to infinity of peE) for the

averaged threshold processor with N bit averaging. For the two

and four channel diversity cases, the Hermite approximation17 to

~
the integral over p(Z) was used.

In case of finite averaging, the extended MAP receiver of

equations (14) and (15) turned out to result in a greater prob-

ability of error than the simpler averaged threshold receiver of

equation (18) and Figure 2.4; for this reason, the former was

ignored and the latter was included with 10 bit (curves 4) and 25

bit (curves 5) averaging. The Central Limit Theorem was used here

in assuming that the conditional density of n., given Z. and the1. 1.

number of "ones" received, is approximately Gaussian. Numerical

calculations of these curves for the four channel diversity cases

turned out to be prohibitively complex. The manner in which

finite averaging receivers approach the limiting case with in-

creasing N appears, however, to be relatively insensitive to

whether D = 1 or D = 2, and one would not expect from this that

it would be greatly different for D = 4.

The main conclusion to be drawn from the graphs is that the

infinite averaged threshold receiver results in lower bit error

rates than either the MAP or the approximate optimum in all cases

reported here. Moreover, these bit error rates can be very closely
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approximated by realizable finite averages. In cases where D NB

= 4, for example,it was found that N ~ 25/cr2 gives P(E) values

within 20% of the limiting values at Y = 20. For lower Y, con-

vergence is even faster and, while increasing D NB to 40 decreases

the rate of convergence, the decrease is slight.

If the inequality of Appendix A is not rigorously satisfied,

the performance of the averaged threshold receiver will be degraded

somewhat. This effect is of great practical importance and deserves

further investigation; it is, however, beyond the scope of this work.

The following caption is an explanation of Figures 2.5 - 2.15:

Figs. 2.5-2.15: Total probability of e~ror, P(E), vs. SNR, Y, for

various receiver structures. For each combination

of background radiation level, NB, number of diver-

sity channels, D, and log-intensity standard devi-

ation, cr,P(E) curves are denoted by:

o for cr = 0

1 for MAP receiver

2 for approximate optimum receiver

3 for infinite averaged threshold receiver

4 for 10 bit averaged threshold receiver

5 for 25 bit averaged threshold receiver



21

Fig. 2.5. N = 4, D = 1, cr = 1.5B
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Fig. 2.7 N = 4, D = 1, a = 0.5B
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Fig. 2.10. NB = 1, D = 4, CJ= 1.5
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Fig. 2.11.
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3. PARTIAL TRACKING OPTICAL HETERODYNEARRAYS

I. INTRODUCTION

The deleterious effects of atmospheric turbulence on optical

heterodyne detection systems have been studied extensively using

the average antenna gain, or SNR, as a measure of system perfor-

mance.18-20 In an attempt to improve the performance, a tracking

receiver has been proposed, in which the average tilt of the in-

coming wavefront is effectively cancelled by the action of a servo-

mechanism. 20-23 Another technique to increase the gain is to use

an N-elementarray insteadof a single collector aperture. This

chapter concerns a hybridization of these two techniques;a partial

tracking array, in which the average tilt across the entire array

is cancelled using a single tracking system.

In Section 3.11, the gain is derived for a tracking heterodyne

receiver whose aperture is contained within that of the tracking

system. This will be called a partial tracking element to dis-

tinguish it from the case where the receiver aperture and the

tracking system aperture are identical, called a full tracking

element. Adding identical array elements then allows comparison

of partial tracking arrays with those consisting of non tracking

and of full tracking elements. It is shown that the most effective

method of increasing the array gain is by increasing the array size

in far field applications, and by adding either partial or full

tracking in near field applications. Although full tracking results

in a greater improvement, it may be difficult to implement for an
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array. Partial tracking, on the other hand, can be accomplished

by simply steering either the signal beam or the local oscillator.

Finally, the well-known similarities between optical heter-

odyne receiver gain and optical resolution22,24 are recalled and

applied to the partial tracking results. This is shown to give

the explicit dependence of resolution and of the atmospheric modu-

lation transfer function (MTF) on exposure time.

II. THEORETICAL BACKGROUND

The basic expression for the average antenna gain, <G>, of a

single circular receiver aperture can be obtained from Ref. 20,

and is given by

(1)

+
where D is the aperture diameter, x is a two-dimensional position

vector in the receiver plane, W is the transmittance function of

the receiver aperture (W = 1 therefore, inside a circle of dia-

eter D and W = 0 elsewhere), i is the logarithm of the turbulence

induced singal amplitude perturbations (normalized by the mean

signal amplitude), ~ is the magnitude of the turbulence induced

+
phase perturbations, and a is the corrective tilt introduced by

the tracking system. The quantity a is a constant of proportionality

that can be arbitrarily set in order to compare various receivers.

In the results of Section 3.111, it will be set equal to (4/TIr )2o

where r -is a measure of the transverse coherence len g th of the. 0
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received field. Details of the calculation of r have been reportedo

for plane wave propagation, IS and these can be extended to spherical

wave propagation by multiplying by (8/3)3/5, (Ref. 23).

Since the distribution
-+ -+

of [£(xl) + £(x2)]
-+ -+-+

. x ] - [~(x ) - a1 2

is independent of the

; ~2]} and since inter-
J -+ -+

distribution of 1[~(xl) - a

gration commutes with ensemble averaging, Eq. (1) becomes20

(2)

-+

The assumption of Gaussian £(x) and some manipulation allows the

first ensemble average to be rewritten aslS

(3)

-+

where p = IXI

is defined as

the log-amplitude structure function V£(P)

-+ 2
£ (x2)] >.

Evaluation of the second ensemble average depends on three Lemmas

first presented in Ref. 23, and on using the exponential represen-

tation for the cosine function. Without duplicating this development,

we will note the result that

(4)

where V~(p), the phase structure function is defined as

-+ -+ 2
<[~(xl) - ~(x2)] >.
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~he second of the three Lemmas used in Eq. (4), which states that

-+ -+ -+

the distribution of ~(x) - a.x is independent of the distribution

-+

of a, must be viewed as an approximation. While it is an excellent

approximation for the cases of spherical and plane wave propagation

considered in this work, it should be noted that significant errors

develop if it is applied to Gaussian beam wave propagation through

strong turbulence.2S

It has been shown that22

(5)

-+
<a

-+
a>

where DT is the diameter of the circular aperture over which the

tracking system matches the signal wavefront and is not necessarily

the same as the signal aperture diameter. The phase structure

function, a rather complicated function of DTu, reduces to manage-

aBle form in two limiting cases.3 In the extreme far field, DT,

and therefore DTu, is much less than the Fresnel zone size /XL and

S/3

we have V~(DTU) ~ 3.44 (DTu/ro) . Where DT » /XL, one can assume

that DTu is also much larger than /XL over most of the range of

integration so that V(DTU) 6.88 (DTu/rO)S/3. Eq. (5) can then be

eyaluated for these two cases, resulting in

<! . !> 6.88 ro-S/3 DT-l/3 (far field) (6a)

<! . !> 2 X 6.88 ro-S/3 DT-1/3 (near field) (6b)
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Making use of the wave structure function V(p), which is equal

to Vt(p) + V~(p) and is given by V(p) = 6.88 (p/ro)S/3 independent

of near field/far field considerations,18 we see that

x [1 - C(P/DT)1/3]} (7)

where C = 1 in the near field and C 1/2 in the far field.

This can be simplified t020

<G>
16 1

= -:;;:-(D/ro)2 f u du [cos-1o

x exp [-3.44 (D/r )S/3 uS/3o

u -

(8)

which must be evaluated numerically.

The development of Eq. (8) is based on a circular tracking

aperture, so that <la~12> =

< lax 12,>Px 2 + <"lay/2>
(9)

which is used to arrive at Eq. (4). The result can be modified to

include a rectangular tracking ~perture of dimensions l by h by

expanding the phase front across the aperture and finding the rms

f1uctuatinns of the coefficients in the same manner as for circular

apertures.22 This results in

</a)2> = -72 (6.88 C r -S/3)l-1/3o

1/2
x ffff

-1/2
(lOa)
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<Ia 12> = -72y
1/2

x ffff

-1/2

(6. 88 C r - 5 / 3 ) Ct S / 3 / ~)o

(lOa)

(11a)

(lIb)

where it has been assumed that t ~ h. The errors in Eq. (11) are on

the order of 5% or less.

+
Comparison of Eq. (11) with Eq. (6) implies that <a

+
a> is the

same whether the tilt is averaged over an t by h square or over a

circle inscribed inside that square. This is not true however. A

more precise analysis shows that one should multiply the right hand

side of Eq. (6) by 1.026 and of Eq. (11) by .97 so that, as one would

expect, a larger averaging area results in a smaller amount of fluctu-

ations. Since the amount of smoothing added by the corners of the

square is so small, however, both of these numerical coefficients were

set equal to one for simplicity.

Note that for a square tracking aperture of dimension t = h = D,

identical to the signal aperture, < laxl2> = <lay/2>, and the wave-

front tilt is tracked exactly in both dimensions. For t > h = D,

Eq. (11) shows that both <laxl2 and <Iayl 2> are reduced and the wave-

front tilt over the signal aperture is not tracked exactly in either

axis. Although the y component of tilt is tracked better than the x

component, the difference is relatively small, and the effectiveness

Numerical integration results in

<Ia 12> 6.88 C r -5/3 tI/3
[1 + .107 (1 - )]x 0

<Ia 12> 6.88 C r -5/3 t-l/3 [1 + .295 (1 - )]y 0 t.
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of tracking along both axes is primarily determined by the longest

dimension, ~, which determines the amount of decorrelation in both

tilt axes.

Using Eqs. (9) and (11) in the simplification of Eq. (2) re-

suIts in

<G> (1 - u2)1/2]

C(uD/R-)1/3 (1 + .2 (1 - ~))J}

(12)

where I is the modified Bessel function of order zero.o

It should be mentioned at this point that the development above

is based on a Kolmogorov spectrum of index-of-refraction fluctu-

ations and ignores inner scale and outer scale effects. The results,

therefore, should be suspect for both very short and very long prop-

agation path lengths. The specific range of validity and the magni-

tude of the corresponding errors in V~ have been investigated by

Lutomirski and Yura.26

III. RESULTS

The value of <G> from Eq. (8) has been plotted against the

normalized aperture diameter D/r with the dependence on the ratioo

DT/D shown parametrically. These curves are presented in Figs. 3.1

and 3.2 for near and far field conditions, respectively. Tracking

over an infinite aperture is, as one might expect, equivalent to no

tracking at all and this curve agrees with previously reported values.18~20
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Fig. 3.1. Graph of average antenna gain <G> vs. normalized

aperture D/r for near field applications. Dependenceo

on normalized tracking diameter Dr/D is shown para-

metrically and the dashed line gives the free space

value for reference.
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Tt is easily seen from these results, and in fact from Eq.(8) directly,

that moving from the near field to the far field is equivalent to a

factor of eight increase in the ratio of Dr to D. Partial tracking,

therefore, more nearly approximates full tracking performance in the

far field, even though tracking results in a greater improvement

over non tracking in the near field.

Fig. 3.3 is a graph of <G> vs. number of diversity channels

for an array consisting of N identical apertures, each with D = 3.4 r .o

Using the well-known properties of the expected value operator, it is

easy to see that

<G> ::: <

N
L

i=l
G > =
i

N
L
i-I

(13)
<G >
i

It should be noted that G is proportional to signal power so that

Eq. (13) assumes that the IF currents are square-law demodulated and

then added. In the partial tracking case, Dr was taken to be the

diameter of the smallest circle that encloses N packed circles of

diameter D. In the near field, the addition of partial tracking is

roughly equivalent to doubling the array size, with full tracking

equal to about a factor of four increase, and it is probably most

reasonable to use small tracking arrays. In the far field, however,

full tracking results in only about 2 dB improvement over non tracking

and 1/2 dB or less over partial tracking. One would expect, then, to

find larger arrays with non tracking elements. Even where tracking is

desirable for some other reason (where one or both terminals of a

communications link are in motion, for example), a full tracking

antenna array can hardly be justified.
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Fig. 3.3. Graph of average antenna gain <G> vs. number of

array elements N for full (F), partial (P), and

non (N) tracking antenna arrays. Solid lines

give near field and dashed lines far field results.

D/r = 3.4.o
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It is tempting to reinterpret Eq.(8) in terms of parameters

pertinent to optical resolution studies. By comparison with the

results of Ref. 23, it is seen that the resolution R, defined as

the integral over all spatial frequencies of the system's ensemble-

average MTF divided by the limit of this integral as D + ~, is

given by Eq. (8) if DT or Eq. (12) if land h can be interpreted

in terms of the exposure time. Using Taylor's frozen turbulence

hypothesis,4 one can argue that an aperture of diameter D, exposed

for a time T, is sampling the tilt over an effective aperture of

dimensions D by D + VIT, where VI is the wind velocity component

perpendicular to the path. Fig. 3.4, therefore, is a plot of Eq.(l2)

with h = D and l = D + V T for several values of V T in the near
I I

field. The two limiting cases are identical to previously reported

results.23

By analogy with Refs. 23 and 24, the exposure time dependent

form of the atmospheric MTF is given by

MTF(f) = exp {-3.44 (ARf/ro)5/3 (14)

x [1 - CCARf)1/3 (D + V1.)-1/3 (1 + .2 D :1:1.)]}

x 10[32 C (ARf)2 ro-S/3 CD + V1T)-4/3 VIT]

where A is the optical wavelength, R is the focal length of the

imaging lens, and f is the spatial frequency of interest. Multi-

plying this equation by the MTF of the imaging optics results in

the total system MTF.23 For this reason, Eq.(l4) was called the
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meters Rand D.
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4. SIGNAL CURRENT PROBABILITY DISTRIBUTION FOR OPTICAL HETERODYNE

RECEIVERS IN THE TURBULENTATMOSPHERE. l: THEORY

I. INTRODUCTION

The performance of an optical heterodyne detection system can

be severely degraded by the presence of atmospheric turbulence, which

results in random fluctuations in the phase and amplitude of a co-

he rent optical signal. For each optical wavelength and set of propa-

gation conditions, these fluctuations limit the achievable average

antenna gain (i.e., signal-to-noise ratio) to a value equal to the

free space gain at some effective aperture diameter, r .18,l9,11o

If the actual aperture diameter is less than r , the average antenna
o

gain is only slightly less than the free space value for that aperture

while, for diameters larger than r , the gain asymptotically approacheso

the limiting value.

Depending on the ratio of the actual aperture diameter to r , ao

significant fraction of the phase front distortion that causes reduct-

ion of the signal can be represented by an average tilt of the incoming

wavefront across the aperture.22 For this reason, a tracking heter-

odyne receiver has been proposed21,22 in which the random tilts of the

signal are eliminated by the action of a servomechanism. In extreme

near-fieldapplications (i.e., D » the Fresnel zone size, ~), this

results in an average antenna gain that is greater than that of the

non-tracking (static) receiver at all diameters, and that increases

with aperture size until the diameter reaches about 3.4 r ,20,21o
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where the gain is about 4.3 times that of the static case.23 In

far-field applications, the increase in antenna gain with the addition

of tracking is less dramatic, although it is still noticeable.

Because of this limitation on the total useful signal power

that can be collected by a signal aperture, spatial diversity re-

ception becomes an important technique for overcoming the deleter-

ious effects of turbulence. A diversity receiver could either

combine the IF signals from several collecting apertures directly,

or combine the signals after demodulation. In order to find

optimum combining procedures to most effectively utilize this

technique, however, the pertinent density functions of the signal

need to be known (as has been demonstrated in diversity reception

by photon counting elements).7 To optimize combination after de-

modulation, the density function of the magnitude of the IF signal

is necessary and will be explored here. The statistics of the phase

of the IF signal are important if combination is done before demod-

ulation. This case will not be treated in this work.

As a first step toward the consideration of optimum diversity

reception, approximate expressions are derived for the probability

density functions of the IF signal magnitudes from both static and

tracking optical heterodyne receivers operating in the far-field

of the receiver. Following Ref. 22, the phase front is expanded

in a finite series of orthonormal polynomials over the aperture

area, and the mean signal currents are found as functions of the
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instantaneous fading parameters. Then, in Sections 4.111 and 4.IV

the approximate density functions, considering shot noise, 10g-

amplitude fluctuations, and phase front distortion, are developed

using a steepest descents integration. In Section 4.V, numerical

results are given for several combinations of log-amplitude vari-

ance and the ratio D/r. In the next chapter, experimental resultso

are presented showing that, for the static receiver, the approxi-

mation is a reasonable one.

II. SIGNAL CURRENTS

The 1ens1ess optical heterodyne receiver diagrammed in Fig. 4.1

will be considered here since, from photocurrent considerations,

this configuration is equivalent to the more practical one utilizing

a converging lens and a smaller detector area. 18 The two-dimensional

+
vector x denotes a position in the detector plane, where the orgin of

the coordinate system is the center of the aperture, imaged on the

The local oscillator wave will be assumed to be a uniform

amplitude, plane wave, described by

+
E (x)o (2)

where A , fo' and ~ are the oscillator amplitude, frequency, ando 0

phase. Similarly, the signal will be assumed to be an initially

photodetector surface. The aperture itself is assumed to be a circle

of diameter D, so that its transmission function is given by

C.

if II 1/2D+
W(x) =

II

(1)

0, if > 1/2 D
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Fig. 4.1. Block diagram of a generalized optical heterodyne

receiver.
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uniform plane wave which is distorted by propagation through atmos-

pheric turbulence resulting in a wave at the receiver that may be

described by

E (~) = A (~) exp
[
i (21Tf t + <p (~)

Js s s s (3)

+ +
where A (x), f , and <p (x) are the amplitude, frequency, and phases s s

of the received signal wavefront.
+ +

Both A (x) and <p (x) are times s

varying statistical quantities. In the following development, the

appropriate statistical description of relevant quantities related

+ +
to A (x) and <p(x) are introduced as required.s s -

For a photodetector with quantum efficiency ~, the total photo-

current is given by

i (4)

In a well designed optical heterodyne system, the probability

that A will be much larger than A will be high so that the A 2o s s

term can be dropped, and Eq. (4) reduces to

i = ~(1T/8)D2A 2 +~A Jd~ W(~) A (~) cosG1T~ft + <p (~) -<p
]o 0 s t S 0

(5)

Here, the second term, oscillating at the beat frequency,

~f = f
s f , is the instantaneous signal current i .o s

In extreme far-field applications the normalized covariance

function of the log-amplitude b (D) is very nearly equal to one.4X
+

Therefore, A (x) can be considered to be constant over the apertures

area and can be replaced by Z A , where A is the signal that woulds s

be present in the absence of turbulence and the normalized fading
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parameter Z is defined by this substitution. The instantaneous

signal current can then be represented by

. -
f

-+ -+

[

-+

~i = DA A Z dx W(x) cos 2n6ft - ~ + ~ (x)s 0 s 0 s (6)

Since most interesting applications will be in the far-field, this

condition is not overly restrictive.

For large A , the first term in Eq. (5) is the average photo-o

current, and the shot noise associated with this current is the

only source of detector noise that needs to be considered. 10,11

The rms noise current, therefore, is given by

i = (2ieB)1/2 = (nDeB)1/2 7D2
1 A

n 0

where e is the electronic charge and B is the system bandwidth.

(7)

The development below will deal with the normalized signal,

i ~= i Ii , rather than the absolute value of i .s s n s This is given by

, l2yz f
-+ -+

[
-+

]is = nR2 dx W(x) cos 2n6ft - ~o + ~s(x) (8)

where R = t D and y, the rms current signal-to-noise ratio that

would be present in the absence of turbu1ence,lB is given by

Following Reference 22, the distorted wavefront of the sig-

na1 will be represented by a finite series of orthonormal po1y-

nomials over the aperture area, so that

6

~5 (~) ~ 'E
k=l

(9)

-+

with the polynomials Fk(x) defined below:

(lOa)
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is a change in the average phase over the aperture.

(lOb)

(IDe)

are the average horizontal and vertical tilts.

(IOd)

is the spherical deformation, and finally,

(IDe)

(IDE)

represent a hyperbolic deformation.

These six polynomials are orthonormal over the aperture area

and the coefficients are found, in the usual manner, by

(11)

+
In order to justify truncating the series expansion of ~(x) afters

six terms, it is noted that, for D ~ r , the mean square error intro-o
22

duced by this truncation is less than or equal to about 0.06 rad2.

The signal current then becomes

< =I2YZ/nR2 f d~ W(~i cos(znMt - ~o + k akFk(~~

=nyz/nR2iCOS(UMt - ~o + aIFI) f d~ W(~) cos(tz akFk(~~

- sin(Znm - ~o + alFl) f d~ \;(~) sin(tz akV~~}
(12)
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A. Static Case

In order to facilitate evaluation of the integrals in Eq.(12),

the assumption will be made that, in the static case, the second

+
order terms in ~ (x) can be neglected. This limits the usefulnesss

of the results here to aperture diameters on the order of r oro

smaller,22 a limitation which applies to practical static receivers

anyway. 10 The substitution is made that

and the integrals in Eq. (12) can easily be evaluated, resulting in

(14a)

and

(14b)

where Jl(~) is the first order Bessel function.

Putting Eq. (14) back into Eq.(12) and taking the time average

of the beat frequency oscillations, the rms value of the normalized

conditions, ~ will seldom exceed 3.83, and the absolute value of

Jl can be replaced by Jl. This assumption will be made in Section

4.111 so that the integral over ~ can be evaluated by the method of

steepest descents, and the resulting error will be discussed in

Section4.V.

signal current is found to be

I = 2yZ Lh ()/ I (15)

where the vertical bars denote the absolute value. Under usual
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B. Tracking Case

With angle-of-arrival tracking added, a2 and a3 are assumed

to be held at zero by the action of a servo loop and the second

order terms become important. The substitutions are made that

(16b)

and the angular integration becomes straightforward. For the radial

integration, however, the following functions must be defined for

numerical evaluation

(17a)

(17b)

where J (St) is the zero order Bessel function.o

With these definitions

so that the rms value of the normalized signal current is given by

(19)

III. PROBABILITY DENSITY FlfNCTION - STATIC RECEIVER

The probability density function of the normalized rms signal

current in the static optical heterodyne receiver is given by

p(I) = ff dX db p(II X,b) p(X) p(b) (20)

1

C(a,S) =f cos(at) J (St) dt- 0
0

1

S(a,/3) = f sin (at) J (/3t) dt
0

0

(18a)

C , = 1TR2[cos(t a) C(a, B) + sin(t a) .

-+- -+- -+-

f dx W(x) cos L akFk (x)k=4

S(a,B)] (18b)

f d W() sin (t4 akFk( .R2 [Sin(t a)C(a,B) cos(t a)

S(a,B)]
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where X, the normalized log-amplitude, is equal to In(Z), and the

independence of X and ~ has been assumed.

In a well designed system, shot noise associated with the local

oscillator intensity will completely mask all other sources of detector

noise. While shot noise is a Poisson process, the local oscillator

photocurrent will generally be large enough to be considered Gaussian.10

If X and ~ are known, therefore, and after filtering, the IF signal con-

sists of the signal current i plus a zero mean Gaussian noise currents

with standard deviation i. The normalized rms signal current, then, isn

a Gaussian random variable with standard deviation of one and mean

given by Eq.(15) so that

p(I IX,~) = 2- exp L ~(I
/i; L

(21)

The normalized log-amplitude X will be considered to be a Gaussian

random variable3,4 with variance a 2. It should be mentioned at this
X

point that under conditions of very high path integrated turbulence,

the actual distribution of amplitude fluctuations deviates from the

assumed log~normal form.27 It can easily be seen from conservation of

18

energy considerations that the mean of X must be equal to -a 2, soX

that

p(X) =
1

&a X
(22)

The quantities (2/!;R) a2 and (2//ITR) a3 are proportional to the

x and y components of the angle of arrival of the signal, respectively.

They are, therefore, like the angle of arrival components, independent,
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zero mean, Gaussian random variables, each with the same variance,

which will be denoted by cr~2. From this it follows that the para-

meter ~ must have the Rayleigh density function

~

{

62

}

p(6) = --- exp - ____
cr 2 2cr 2
6 6

(23)

An approximation, using the method of steepest descents, was used

to evaluate the integral in Eq.(20). This method has also been used

to evaluate analogous expressions in cases of direct detectionS,28 and

is found to give excellent agreement to numerical evaluations in both

cases. First, Eq.(20) is rewritten as

pel)
1

21T cr 2
~

(24a)

where (24b)

f(X,~)
1 2

_ - (X + (]2)
2cr2 X
X

2
~+ln6

2
2cr6

T4e stationary point (X ,~ ) is found from the pair of coupledo 0

equations

(~~-)
I

X ,6
o 0

= (1 - 2yZ Jl(~ )/~ ) 2yZ Jl(6 )/6 + -1- (X + cr 2) = 0
o 0 0 0 00 (]2 0 X

X
(25a)

(25b)

where Zo In X. The determinant B is defined byo
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(26)B =

~ a2f_
axa~ a~2

(X ,~ )o 0

with

(27a)

(27b)

(27c)

The signal current density function, then, is given by

p(I)

exp [- ~ (I

-~
20' 2

X

(28)

IV. PROBABILITY DENSITY FUNCTION - TRACKING RECEIVER

The probability density function of the normalized rms signal

current in the tracking optical heterodyne receiver is given by

p(I) = fffdX da dB p(IIX, a, S) p(X) p(a) p(8) (29)
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As in the static case, the normalized rms signal current is a Gaussian

random variable with standard deviation of one and mean given by Eq.(l9),

so that

p(rlx, a, B) =
1

/2; (30)

Note that the functional dependence of C and S on a and B has been sup-

pressed for convenience, rather than stated explicitly.

The density function of the log-amplitude fluctuations is the same

as for the static case, but the phase terms are a little more complex.

Assuming, from symmetry considerations, that <~2 (~» has a constant

+
value at any point around the edge of the aperture (i.e., I x 1= R), it

can easily be shown that a4, as, and a6 are independent random variables,

and <a42> = <as2> = <a62>. This last statement is consistent with the

statement in Ref. 4 that <a42> = 1/3[<a42> + <a42> + <as2>]. It is also

obvious from sYmmetry that <a4> = <as> = <a6> = o.

That a4, as' and a6 are Gaussian random variablesfollowsdirectly
+

from the fact that each is obtained from the Gaussian variable ~(x) by

the action of a linear operator. The variables a and S, then, have

Gaussian and Rayleigh statistics, respectively, with density functions

given by

(3Ia)

(3Ib)

1 a2pea) = exp - -
&0 20 2a a

2B B2
pCB) = --- exp - ---

°0 2 0 2a a

where 0 2 = <
12 a42

>a
1TR6
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The signal current density function, therefore, is given by

p(I) =
2 (2rr)-3/2

Iff dX da dB exp[f(X, a, B)]
(J3
a

(32a)
(J
X

where

2_~ B2
2(J 2 - 2 + In Ba (Ja

I 2
f(X, Ch B) = - "2(1- yZ/C2 + S2)

(32b)

(33a)

a
~= 0
(J2
a

(33b)

a ,o (I - YZo

C ac + s ~ 2B
aB 3B _ ~

Ic2 + S2 (J 2
a

(33c)

Applying the method of steepest descents once more, the stationary

point is now found from the three coupled equations

()I(Xo' ao' B ) = (I - YZo /C2 + S2 ) YZo /C2 + S20
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It turned out in all case~ that ao = 0 so that (~~)10x~, 0, 80)= 0

and X and 8 can be found from the simplified equat~onso 0

(35)

where

(B )ax2
= (I - 2yZ C) yZ C

I
(36a)--

a 2
X

(I - 2yZ C) yZ G~) (36b)

(
a2f

)= (I _ yZ C) yZ
aa2

1
(36c)--

a 2
a

(
a2C

)
y2Z2 ~ _ ~ 1C --

a 2 8 2a 0

(36d)

(I - YZoC(O, 80)) YZoC(O, 80) - (xo+ Ox2) = 0
(34a)

a
X

( ) eC) 280 1 (34b)
I - YZoC(O, 80) YZo a6 (0, 8 ) - --; + a- = 0000

a

The determinant B isheregivenby

a2f ° a2f

ax2 axa8

B = I 0
a2f

0
aa2

a2f 0 a2f
axa8 a82

'(Xo' 0, 80)
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and the probability density function of the signal is given by

v. DISCUSSION

The final probability density functions for the static and tracking

cases have been plotted as functions of the normalized rms signal current

and are presented in Figs. 4.2 through 4.5 for several parameter values.

In each graph, the density function in the absence of turbulence

(0 = 0A = 0 = 0) is present for comparison,and is denotedby O. TheX u ex

curves labeled by Sand T are for the static and tracking receivers respect-

ively, in the presence of turbulence.

In all cases presented, the mean current SNR, y, has a value of ten.

Values shown for the log-amplitude standard deviation are 0.3, corres-

ponding to relatively low turbulence levels, and 0.8, which is the maximum

value under saturated conditions.

The phase fluctuations in the static case are described by 0tJ.2,which

has been defined as «4/TIR2) a22>. It can easily be seen geometrically

that this must be equal to <k2 ~2> where k is the wavenumber of the

optical signal, e is the angle between the receiver aperture plane and

the average phase front along the x axis, and the assumption has been

~ade that tan e = e.

zaO [ 1 r 1 2
p(I) = exp - - I - yZ C(O, B) - ---- (x + 0 2)o 0 3 H2o 0 20 2 0 X

X ex X

a 2 a 2J

-- (37)
20 2 0 2

ex ex
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It can be seen that

C1 2
t.

D (D)
s

4
1.72 (D!r)5/3o

(38)

where D (D) is the structure function of phase, C 2 is the refractives n

index structure constant, and L is the path length. Implicit in Eq.(38)

is the assumption that the phase structure function is very nearly equal

to the total wave structure function, which is a very good approximation

in the near field3 or under conditions of saturated amplitude fluctu-

ations.29 Even where these conditions are not satisfied, the phase

fluctuations are overestimated by no more than a factor of two. The

coefficient of (D/r )5/3 is calculated in Ref. 18 by a different methodo

and found to be 1.77, which is in excellent agreement with the results

here. Accepting the results of Ref. 18, then

(39)

Both density functions were calculated for (D/r ) = 1 and (D/r ) = 21.o 0

In Section 4.111, it was assumed that the absolute value bars

around Jl(t.) could be dropped. To find the effects of this assumption,

it is seen that, to first order

co CX>

co co

J
7.02

J
co 1

- dX dt.p(X) pCt.) ~
3.83 -co y2IT

(40)
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since the first negative portion of Jl(~) lies in the region where

3.83 < ~ < 7.02. In Figs. 4.3 and 4.4, the curves for the static re-

ceiver are double valued for very small signal currents. The dashed

line in each case is the uncorrected value, whil~ the solid curve takes

into consideration the first order correction term, which was negligible

in all cases for which D/ro = t.

The curves in the tracking case are essentially the same for D/r =o

I or D/r o = ~ and, in fact, change very little in the limit as D/ro goes

to zero. Where D/r is on the order of one or less, therefore, amplitudeo

fluctuations are the major effect of turbulence on signal current, so

that the density function can be approximated by

P(I)

(4Ia)

where

(
r - y2

)
y2 + ~

(
X + a 2

)
= 0

o 0 2 0 Xa
X

(4lb)

This fact also confirms that second order phase terms can be neglected

probability shifts to lower signal currents and the curves broaden.

The general shape (i.e., skewness) of the curves, however, still depends

to a large degree on the log-amplitude variance.

in the static receiver.

In the limit as D/r goes to zero, the static receiver is identical0

to the tracking. As D/r takes on larger values, however, the peak0
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5. SIGNAL CURRENT PROBABILITY DISTRIBUTION FOR OPTICAL HETERODYNE

RECEIVERS IN THE TURBULENT ATMOSPHERE. 2: EXPERIMENT

I. INTRODUCTION

In the previous chapter approximate expressions were developed

for the probability density functions describing the magnitudes of the

IF signals from optical heterodyne receivers operating in the presence

of clear air turbulence, both with and without active tilt-tracking

systems. In this chapter the theoretical predictions for the non-

tracking, or static, receiver are compared with measurements of the

signal distribution from a static receiver that was used to detect a

632.8 nm signal propagating through 1.6 km of the open atmosphere.

In the derivation of the predicted density, given in Eqs.(25)

through (28) of the last chapter, several assumptions and idealizations

have been made. For example, both the transmitter and the local oscil-

lator were considered to be perfectly monochromatic and to have constant

amplitude and frequency. In designing the experimental apparatus, the

emphasis was not on duplicating these idealizations but rather on re-

producing, insofar as possible, conditions under which optical heterodyne

detection might be practically used. This chapter is, therefore, not a

rigorous test of the theoretical model but is instead an investigation

i~to the accuracy with which that model can be used to predict the per-

formance of a typical system. As an example, instead of trying to

amplitude7 and frequency-stabilize the transmitter, every attempt was

~de to keep the transmitter package small, lightweight, and simple.

It consists, therefore, of an inexpensive two milliwatt Helium-Neon
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laser, two converging lenses comprising a two power transmitting

telescope, and a hand operated steering mirror. The intensity that

would be present at the receiver under diffraction limited conditions

is estimated to be on the order of 0.5 ~W/cm2, which is divided be-

tween two major longitudinal modes so that only about one-half of

this contributes to the IF signal.

From the transmitter, the signal propagates across 1.6 km of

flat, featureless farmland at a height of about two meters. Because

of the uniformity of the range, the measurement of temperature, atmos-

pheric pressure, and temperature structure constant CT2 is made at one

point and assumed to be constant along the path. From these measurements,

along with the mean signal and the mean and variance of the local oscil-

lator signal alone, estimates were made of the parameters necessary to

calculate the predicted curve for each data run. In parameter estimation,

as in hardware design, the emphasis was on the simple, practical appli-

cation of the theory, rather than on trying to optimize agreement between

theory and experiment through complex curve fitting. The next section is

a description of the receiver that was used, and this is followed by a

discussion of the method used to fit the theoretical parameters to oper-

ating conditions. The results presented in Section 5.IV show that the

results of Chapter 4, at least in the static case, comprise a good

approximation to the operation of an actual receiver, even for cases

where the normalized aperture diameter, D/r , is larger than one.o

II. RECEIVER DESCRIPTION

An optical heterodyne receiver, which is diagrammed in Fig. 5.1

and described in detail in Appendix E, has been built and installed
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at the end of the 1.6 km propagation range. The receiver optics collect

the signal, mix it with the local oscillator beam, and deliver it to an

optical detector. The IF signal from this detector is fed into an

amplitude demodulator. In addition, the mixed optical signal also goes

to a separate optical detector, from which the IF signal is frequency

demodulated and used as the error signal in a frequency lock loop. Any

frequency changes in the received signal are then tracked by the local

oscillator.

The receiver antenna consists of a 200 mm Tins1ey-Cassegrain te1e-

scope which is focused at infinity to collimate the signal and project

it onto the surface of a ten percent reflecting beamsp1itter, where it

is mixed with the beam from the local oscillator. Following the beam-

splitter there are two optical paths. In one path, the reflected local

oscillator beam and the transmitted signal are projected onto a vari-

able aperture directly in front of the photomultiplier tube that drives

the loop. In the other path, the transmitted local oscillator beam,

comBined with the reflected signal, is reflected from a front surface

steering mirror and projected onto another variable aperture. The

optical reduction between the front of the collecting telescope and this,

the signal aperture, is a factor of 5.3 and the effective telescope

aperture is variable from .21 cm to 5.1 cm. Immediately behind the sig-

na1 aperture is a collecting lens to focus the signal onto the photo-

multiplier tube from which the signal is demodulated.

The IF signal from the loop photomultiplier tube goes into an

amplifier-limiter and from there into a discriminator with center

frequency at the desired IF. For this receiver the center frequency
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is 29.5 MHz. The output of the discriminator goes into a high voltage

amplifier which drives the frequency control of a Spectra-Physics 119

He-Ne laser. The rear mirror of the 119 is mounted on a piezoelectric

element so that the cavity length of the laser is a function of the voltage

across the element, and the laser functions as a voltage controlled oscil-

lator, closing the loop. The bandwidth of the loop response is about one

kilohertz, which is sufficient to track thermally induced frequency shifts.

To minimize the effects of higher frequency acoustic vibrations, therefore,

the entire receiver is rigidly mounted on a concrete slab.

The IF signal from the receiver signal photomultiplier tube is

filtered, mixed down to one megahertz electronically, and fed into a

full wave rectifying envelope detector. In the theoretical work, an

idealized demodulator was assumed which allows the magnitude of the

IF signal to be found with no distortion of signal or noise character-

istics. Envelope demodulation, although a very good approximation to

this ideal whenever the signal is much larger than the noise envelope,

introduces distortion when the magnitude of the signal is small.

Synchronous demodulation introduces less distortion, and in all prob~

ability would have provided better agreement. However, it was not

used in this experiment due to the added complexity.

III. PARAMETER ESTIMATION

In each data run, the output signal from the above receiver was

directly recorded on an F.M. tape recorder both with the optical signal

present and with it blocked to obtain reference levels for normalization.

In addition, instantaneous point measurements were made of the temper-

ature, T, atmospheric pressure, P, and temperature structure constant,
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CT2, the last being measured with a pair of balanced micro thermal probes

at ten cm. separation and employing 100 second time averaging. The tape

recorded data was converted to digital format and processed on a digital

computer. Knowledge of the meteorological conditions allowed estimates

to be made of the theoretical parameters.

The refractive index structure constant is found from the relationship3

(1)

and is used, along with physical dimensions of the system, for parameter

estimation. From the optical carrier

length, L, and the structure constant

wavelength in microns, A , the path~

of turbulence strength, C 2, then

characteristic coherence length r for each turbulence level can be foundo

from the equation18 (2)

r
o
= 1.2 x 10-8 A 6/5

~
L-3/5 C -6/5

n
= 8.22 x 10-11 C -6/5n

FDom this, the' tilt ,fading parameter cr~2 ,can be found from the relation-

ship given in the last chapter

cr 2
~ 1.72 (D/r )5/3o (3)

Here D is the effective aperture diameter at the front end of the col-

lecting telescope and is equal to 5.3 times the diameter of the variable

aperture in front of the signal photomultiplier tube.

The derivation of Eq.(2), however, is based on the propagation of an

infinite plane wave while the experiment was made with a finite beam wave.

The mutual coherence function of a finite beam, and hence the second order

m~ents of the received field, is essentially the same as that for a point

source provided that30
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L»~ k vlO[1/p02+ 1/\..T02J-1/2 (4)

about 2.5 rom, this inequality holds at all turbulence levels. Also,

the largest effective aperture diameter used, 8.5 rom, is significantly

less than the Fresnel zone size, and the second order moments of the

received field can be found from the spherical wave theory in the far-

field regime. Thus, the structure function of phase differs from the

plane wave case by a constant factor,4 so that

r
o (sph)

= 1.8 r
o (plane) = 1.48 x 10-10 C -6/5n (5)

This value was used in Eq.(3) to find a~2.

Since the inner scale of turbulence, generally on the order of a

few millimeters,4 is also much less than the Fresnel zone size, the

spherical wave theory predicts that the log-amplitude variance will

be given by3

a 2 = 0.124 k7/6 L11/6 C 2 =
X n

1.38 x 1013 C 2n
(6)

as long as this is small enough that saturation of the scintillation

does not occur. In this experiment, however, where predicted values

of a~2 range from 0.6 to 7.0, the phenomenon of saturation must be

considered. A number of experimental investigations of saturation in

spherical wave propagation have been made4,31,32 showing that a gen-
X

erally follows the value predicted by Eq.(6) until it reaches a value

of about 0.8. It then remains fairly constant at this level with

wherew is the diameter of the beam at the transmitter, k is its0

wavenumber, and p , the l/e diameter of the spherical wave MCF, is0

equal to 0.83 times the plane wave r given by Eq.(2). Since w was
0 0
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increasing turbulence. This simple formulation agrees well with experi-

mental evidence over the range of interest here, and will be used to

estimate the log-amplitude standard deviation.

The third and final parameter needed to calculate the theoretical

curves is y, the current signal-to-noise ratio that would be present in

the absence of turbulence. Since it is not possible to turn off the

turbulent atmosphere in order to make this measurement, an estimate based

on the expected value of the normalized signal, <I> , has been used.

From Eq. (24) of the last chapter, it is easy to find an expression for

the mean signal predicted by the theory, which can then be solved for

y, resulting in

y <I>
a 2
tJ.

4 (

a 2 a 2

) /exp ~ + -}- sinh

a 2
tJ.

4
(7)

which was calculated for each data run.

Normalization of the signal was accomplished by letting

I (S + N - <N»/a N (8)

where S + N is the recorded signal value, aN is the standard deviation

of the shot noise, and <N>, the mean value of the shot noise, is not

zero due to rectification. With signal present, however, I',will be

less than that given by Eq.(8), falling in fact, within the range

(9)

For I'~ery small, it will be very close to the left hand side of the

possible range while, for large values, it will approach the right hand

side.
Since the total width of the allowed region, <N>/aN, becomes less

significant as S + N becomes large, the estimate given by Eq.(8) is more
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reasonable than the other obvious possibility. It was also seen to

provide consistently better agreement with experimental results.

IV. RESULTS

For each data run the value of the signal plus noise was recorded,

generally for a period of one or two minutes. The transmitted beam was

then blocked and the local oscillator shot noise alone was recorded for

a similar period of time. At the same time the meteorological measure-

ments were made. After norma1izatio~ the probability density function

of the recorded signal, p(I), was plotted against the normalized signal,

I. The results are given for several typical data runs in Figs. 5.2

through 5.5. Theoretical curves (solid lines), including the first

order correction (dashed lines) in cases where it is significant, were

calculated for comparison with the experimental points (X's). In each

case the calculated value of the quiescent atmosphere signa1-to-noise

ratio, y, is indicated.

The agreement is generally very good, although there are two major

factors that introduce consistent inaccuracies. The first of these is

the assumption that the absolute value bars in Eq. (15) of the last

chapter may be dropped, which is an increasingly bad assumption with

increasing values of D/r. The second major source of disagreemento

seems to result from making a single point measurement of CT2 and

using this to infer all three of the theoretical parameters.

The magnitude of the first effect is clearly seen in Figs. 5.2

through 5.4. The first of these is a case where D/r is less than oneo

and the correction term is negligible. In the next case, where D/r o

equals one, dropping the absolute value bars introduces a noticeable
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error at very small signal levels. For signals greater than zero,

however, the distribution is still very well approximated by the un-

corrected theory. In Fig. 5.4, D/r is greater than one and, althougho

this violates a condition of the theoretical derivation, excellent

agreement is obtained. The correction term in this case has a greater

influence and also must be applied at larger signal levels.

In Figs. 5.2 and 5.3, the theoretical curve drops off more rapidly

than experimental points with increasing signal levels. This feature,

in varying degrees, is common to a large number of data runs and can

probably best be explained by considering the measurement of C 2 thatn

was used in parameter estimation. Several comparisons have been made

of optically and thermally measured C values.33,34n These experiments

have shown the thermally measured values to be consistently lower and to

exhibit large fluctuations. With this in mind, a number of the worst

cases were plotted and C 2 was increased until good qualitative agree-n

ment was obtained. Figure 5.5 is a typical result. The solid line is

based on the thermally measured value of C , and the dashed line givesn

the corrected theory with C higher by a factor of 1.8. This differ-n

ence is within the spread between optically and thermally measured

values of C as reported by Pearson and by Dowling and Livingston.n

The better fit to a theoretical curve using an increased value of C ,n

as seen in Fig. 5.5, suggests that use of a point thermal measurement

of C to determine the value of the theoretical paramenters for com-n

parison with the experimental data may account for a major portion of

the small discrepancy between theory and experiment. The increase in

C required to account for this difference agrees both in magnitude andn
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direction with the discrepancies between optically and thermally measured

C found previously. 33, 34n

The development of Chapter 4 for the case of the static optical

heterodyne receiver, therefore, is felt to be an excellent approximation

to the performance of practical systems. With the addition of the first

order correction term, agreement is seen to extend to D/r values largero

than one and seems to be limited primarily by inaccuracies inherent in

thermal C 2 measurements. Additional data, presented in Figs. 5.6 throughn -

5.19, supports these conclusions, although it should be mentioned thgt

only conditions of saturated log-amplitude fluctuations were available.

In the last chapter it was noted that the general shape of the den-

sity functions depends strongly on amplitude fluctuations. Since these

fluctuations are log-normal, this effect can be seen in a comparison of

the data with a log-normal probability density function. A fit of the

data to a distribution of the form

p(I) r,:- L- exp [- (In I - II )2I 2<Y 2]v2TI<Y
l

I In I In In I

(10)

(lla)

(llb)

Where III and <yI2 are the measured mean and variance of the data.

Typical results of this investigation are presented in Figs. 5.20

through 5.24. In all cases the discrepancies between the curve and the

data are larger than statistical fluctuations of the data, which implies

is easily accomplished by setting

. 2 2
<Yln 12 = In(<YIIllI+ 1)

llln I = In III - ;aln I

2
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that the data does not have a pure log-normal distribution. In addi-

tion, °12 is always larger than the saturation value of 0.64 that one

would expect for amplitude fading only. One can conclude, therefore,

that log-normal amplitude fading is not the only source of signal

fluctuations.

At the same time one finds that the log-normal approximation is

instructive qualitatively. For small y and large D/r , as in Fig. 5.20,o

the data is obviously not log-normal. In the other cases, however, and

especially in Figs. 5.21 and 5.22 where D/r is small, the fit is mucho

better. This suggests that, at least in saturation, amplitude fluctu-

at ions are the major source of total signal fluctuations. Care should

be exercised in drawing this conclusion, however, since the angle-of-

arrival fluctuations are Rayleigh distributed and, qualitatively at least,

the Rayleigh and log-normal distributions can be very similar.
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6. N-FOLD PROBABILITY DISTRIBUTION OF AN OPTICAL HETERODYNE RECEIVER

ARRAY IN THE TURBULENT ATMOSPHERE

I. INTRODUCTION

In Chapter 4 an approximate expression was derived for the prob-

ability density function of the IF signal magnitude from an optical

heterodyne detector operating in the clear air turbulent atmosphere.

The effects of local oscillator intensity induced shot noise, log-

normal amplitude fluctuations, and Gaussian phase front perturbations

were considered. Using a steepest descents approximation to the con-

volution integral containing these three processes, expressions were

derived for heterodyne receivers incorporating active tracking systems

to negate the effects of random tilting of the incoming signal wavefront

and also for receivers without this feature.

In Chapter 5 experimental results were presented for the case of

the non-tracking, or static, receiver. The amplitude demodulated signal

was recorded from a receiver that was used to detect a .633 ~ signal

after propagation through 1.6 km of the open atmosphere. Simultaneous

measurement of meteorological parameters allowed comparison of theory

and experiment.

In this chapter the results of the last two chapters are extended

to include the joint probability density function of the IF signal mag-

nitudes from an array of N detectors with arbitrarily correlated ampli-

tude fading and phase front perturbations. Both theoretical and experi-

mental results are presented for the static receiver case. The tracking

receiver is not treated in this work. The channel model and experimental
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configuration are essentially extensions of those used in the previous

work, and the necessary modifications are presented as needed.

The general N-fold probability density function is presented in

Section 6.11 and one finds that for arrays of more than a few elements

the result is a rather complex expression. Section 6.111 treats the

specific case of a two element array in some detail. It is seen here

that the distribution of large signals is influenced primarily by the

amount of amplitude correlation, while small signal levels are more

sensitive to the amount of correlation between the phase front tilts.

Experimental results, discussed in Section 6.IV demonstrate the appli-

cability of the theoretical approximation to actual system performance

for N equal to two.

II. GENERAL THEORY

The first effect to consider is atmospheric fading of the received

signal amplitude. Let Z., the normalized fading parameter for the i'th1

detector, be defined as the instantaneous signal amplitude at that de-

tector divided by the amplitude that would be present in the absence of

turbulence. This can then be used to define Xi as In Z. + C.., where
1 X11

C .. is the i'th diagonal element of the log-amplitude covariance matrixX11

C , and is, therefore, the log-amplitude variance at the i'th detector.X
-+

The N-dimensional column vector X, then, is a jointly Gaussian random

vector3~ 6, 35 with probability density function.

-+ -N/Z
I

-+
1

1 +
t

-1-+
p(X) = (Z~) C exp(--Z X C X)

X X
(1)
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The second atmospheric effect is a random perturbation of the

incoming signal wavefront. If the aperture diameter D is on the order

of r or less, where r is a measure of the coherence diameter of theo 0

received signal, this perturbation is well approximated by considering

the average tilt of the incoming wavefront across D.3 A random vector

+
~ is, therefore, defined with~. proportional to the magnitude of the

1

tilt at the ilth detector. Because of this relationship to the angle-

of-arrival of the signal, resolving each~. into its x- and y-direction
1

components in the detector plane yields two jointly Gaussian random

vectors3,4 with density functions

(2a)

-1- -N/2
I 1

+ l + t -1+
p(Ll ) = (21T) C~. exp(-z ~ C~ ~)y y y y y

(2b)

+ +
where the column vectors ~ and ~ have covariance matrices C~ and C~ 'x y x y

respectively. Since ~.2 = ~ i2 + ~ .2 and since, assuming an isotropic
1 x y1

-1 -1.
atmosphere, C~ i . = C~.. , th1s leads to

x 1 Y11

+
p (~)

where the effects of non-zero correlation coefficients are contained in

+

the function GN(~). The derivation and properties of this function are

left to Appendix F.

The final source of signal current fluctuations is in the detection

process itself. In a well designed system the local oscillator intensity

will be large enough that the shot noise associated with it is the pre-

dominate source of detector noise10,11,18 and is, moreover, approximately
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Gaussian. For simplicity, the variance of the shot noise will be assumed

to be one; all signal currents are scaled accordingly. To the shot noise

at each detector is added the rms current due to the optical sig~al at

that detector. At the i'th detector, this is given by 2Yi Zi IJl(Ai)/Ail ;

where Y. is the rms signal current that would be present in the absence1

of turbulence and Jl is the first order Bessel function. In the develop-

ment that follows, however, the absolute value bars around Jl(Ai) will

be dropped. The range of validity of this approximation and an estimate

of the magnitude of the resulting error outside of that range have been

+
discussed in Chapters 4 and 5. The signal current vector I, then has

the conditional density function approximately given by

+
/

+ +
p(I X, A)

N/2 N 2
(21T)- exp[-1-2: (I. - 2y. Z. Jl (A.) / A . )]

i=l 1 1 1 1 1

(4)

+ + +
Using the independence of X and A, p(I) can be expressed as the

following 2N-fold integral:

+

J
+

f
+ +++ + -r

p(I) = dX dA p(IIX,A) p(x) p(~) (5)

which can be approximated using the method of steepest descents.

First the function f(X,t.)is defined by

N 2
-1..XtC

"""1+

f(X,t.)= -!- (I. - 2y. Z. Jl(A.)/A.)
X

i=l 1 1 1 1 1 L X

(6)
N

+ (lnA. - 1c 6. ..-1 A 2) + 1 G (1). 1 X11 i n1= N
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The stationary points X and! are then found from the 2N coupledo 0

equations

+ +
X , t:,.o 0

o

a2f a2f--
a~at:,.N at:,.labN

+ +
X = Xo
+ +
b = bo

These definitions lead directly to the resu1t36 that

+ -t -t -t -t ++
p(I)~IC I Ic~ I Ic~ I I-BI exp[f(X,I1)] (9)

X x y 0 0

(lL) 1+ = 0 i = 1, 2, ... N (7)
+

at:,.. X , t:,.

J. o 0

and the matrix Bis defined by

a2f . . . a2f a2f . . . a2f
aX""L aXl a aXl at:,.l

aXl at:,.N1

a2f . . . a2f a2f . . . a2f-
ax/axla aat:,.l

axNat:,.N

B =1
I (8)

a2f . . . a2f a2f . . . a2f

aXlabl aat:,.l at:,.l:':
at:,.lat:,.N
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III. N = 2

In the special case of

+
sion can be found for p(~).

a two detector array, an analytical expres-

Since, in addition, this case lends itself

to graphical presentation, it is worth considering in some detail.

Note first that the log-amplitude covariance matrix matrix can be

expressed as

(10)

Details of the calculation of the normalized log-amplitude variance,

a 2, and correlation coefficient, r, have been presented elsewhere,3,4,32X X

and will not be repeated here. In a similar manner the assumptions

leading to Eq. (F5) allow the substitution

(11)

where expressions for the phase parameter variance, ~~2, and correlation

coefficient, r~, are presented in Appendix G.

Using these substitutions and Eq. (G5), the function f becomes

1 2
2a 2 (l-r 2) (Xl
X X

(12)
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The stationary points (X ,! ) are found from the four coupled equationso 0

(13)

(X ,! )o 0
= 0

where

af

ax.
].

(I.
J..

2y. Z. Jl (d.)/d.) 2y. Z. Jl(d.)/d.].]. ].]. ].]. ].].

1 (x - r X)
a 2 (l-r 2) i X j
X X

af
~ = (I. - 2y. Z. Jl(d.)/d.) 2y. Z. (J (d.) - 2 Jl(d.)/d.)/d.
~ui ]. ].]. ].]. ].]. 0 ]. ].].].

(i,j) = (1,2), (2.1) (14)

where Jo and 11 are the zero order Bessel function and first order modified

Bessel function, respectively. With the solutions of Eq. (13), it is

straightforward to find

(15)

The results of Eq. (15) are presented graphically in Figures 6.1

through 6.4. In order to show the effects of varying the correlation

coefficients, all other parameters are constant from figure to figure; in

particular, Yl = Y2 = 10, aX = 0.8, and D/ro = 1. Another feature of the

graphs that should be mentioned is that any calculated value that turned

out to be less than 10-6 was arbitrarily set equal to 10-6. This was
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Fig. 6.3a: Same as Fig. 6.1 except that r = 1 and r~ = o.X
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done in order to obtain a clearer graphical representation of the

function over the remaining probability range.

First, Figure 6.1 is a plot of the above case with independent

fading at the two detectors (r = r~ = 0). As one would expect fromX

Chapter 4, this function exhibits ridges along the lines II ~ 2 and

12 ~ 2, falling off sharply from the peak along the line II = 12.

Figure 6.2 displays partial correlation with r = r~ = t causing theX

peak probability to be shifted to a slightly lower value, and the dis-

tribution to be more tightly grouped along the line II = 12.

In Figures 6.3 and 6.4, the relative effects of correlated ampli-

tude and phase fluctuations are demonstrated. The first case is for

r = 1 and r~ = 0, in which the distribution has a fairly sharp ridgeX

along II = 12, especially where II and 12 are greater than about

two. The second case is for r = 0 and r~ = 0.711 which correspondsX

to a separation p equal to D and is, therefore, the maximum value

allowable. While this looks at first glance very much like the case

of independent fading, it actually introduces more distortion than the

previous case over the range where II and 12 are less than about two.

Correlated phase and amplitude fluctuations, therefore, influence the

distribution of currents primarily at small and large current levels,

respectively.

IV. EXPERIMENTAL RESULTS

The experimental configuration for this work is the same as that

described in Chapter 5 with two basic modifications. First, three

additional signal detectors were added, allowing simultaneous recording

of four identical channels. The aperture centers form a square approxi-

mate1y 10 em. on a side. As in Chapter 5, this is not the separation of
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the physical apertures, but of their images at the front of the co11ect-

ing telescope. The second modification was the addition of a chopping

wheel at the transmitter and of a radio link to allow recording of the

transmitter state along with the data. This was done in anticipation of

bit error rate measurements and has no effect on the results presented

here.

Typical experimental results are presented in Figures 6.5 and 6.7.

The corresponding theoretical curves are given in Figures 6.6 and 6.8,

where the parameters necessary to the theory were inferred from meteo-

ro10gica1 measurements using the same relationships as in Chapter 5.

Of the two additional parameters, r~ was found from the results of

Appendix G and r was taken from the results of Clifford, et. a1..~2X

For the fixed detector spacing used here, r was found to be esentia11y
X

zero in all cases.

Agreement between theory and experiment was found to be generally

very good, as demonstrated by the figures. The predicted probability

thought to a~ise from inaccuracies inherent in single point, thermal

measurements of turbulence strength. Because of this, the major source

of discrepancies between the two-dimensional theory and experiment is

probably due to a consistant underestimation of turbulence strength.

peaks, however, tend to be lower, broader, and to occur at slightly

higher current levels than the measured peaks. These same qualitative

features are also observed for single detector cases where they are
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Fig. 6.5 a: Plot of experimental probability distribution p(I)

vs. signal current vector (11,12) for case with

estimated parameters Yl = 17, Y2 = 16, Ox = 0.8,
D/r = 0.75, r = 0, and r~ = 0.24. Graph iso X
truncated at p(I) = 10-4 for clarity.
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of Fig. 6.5.
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Fig. 6.7a: Same as Fig. 6.5 except that Y1 = 29, Y2 = 28,

cr = 0.8, D/r = 1, r = 0, and r~ = 0.34.X 0 X
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7. SUMMARY

The focus of this work has been on optical communications through

the clear-air turbulent atmosphere. Both single detector and detector

array systems have been considered for photon counting receivers and

also for optical heterodyne receivers. In this chapter the major con-

clusions that have resulted will be summarized.

In the direct detection case an averaged threshold receiver has

been developed for symmetric binary, pulse-code modulated communications.

In addition, a condition was derived for the number of bits that may be

used in establishing the threshold. Bit error rates for this receiver

were compared with those for previously developed optimum and suboptimum

fixed threshold receivers for various combinations of turbulence strength,

background radiation level, signal-to-noise ratio, number of diversity

channels, and, in the newly developed processor, number of bits used for

threshold averaging. This new receiver was seen to be a much simpler

structure to implement. In addition, it was seen to result in a signif-

icantly lower bit error rate under most reasonable operating conditions.

Also introduced in this work is the concept of a partial tracking

optical heterodyne array receiver. Using the average antenna gain as a

measure of receiver performance, the relative effects of partial and

full tilt tracking and of increased diversity on the performance of a

heterodyne receiver were investigated. It was shown that the most

effective method of increasing the array gain is by increasing the array

size in far field applications, and by adding either partial or full

tracking in near field applications. In the latter case, full tracking
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results in a greater improvement, but is more difficult (and costly)

to implement.

It was also noted that the expressions developed for the partial

tracking heterodyne receiver could be applied directly to a problem in

atmospheric imaging systems. This relationship was used to state

explicity the dependence of image resolution and of the atmospheric

modulation transfer function on exposure time.

The final area of investigation of this work was into the probability

density function of the IF signal magnitude from an optical heterodyne

receiver. Expanding the atmospherically distorted phase front in a

series of othonormal polynomials across the detector aperture allowed

the signal current to be found for arbitrary amplitude fading and phase

front distortion. An integral expression for the probability density

function including these two atmospheric effects and local oscillator

shot noise was approximated using the method of steepest descents.

This general approach was applied to one, two, and N detector arrays

of non tracking receivers and also to single detectors with tilt tracking.

Actual probability density functions were also measured on a system

consisting of a ReNe laser transmitter operating at 632.8 nm, a 1.6 km

propagation path through the open atmosphere, and a one or two detector,

non tracking opticai heterodyne receiver. The goal of this investigation

was to develop a theoretical expression that is simple to evaluate, and

at the same time, fairly accurately models the performance of a practical

receiver configuration. Chapters 4 through 6 of this work demonstrate

the realization of this goal, at least under the experimental conditions

that were available.
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Appendix A

In the averaged threshold receiver structure of Eq.(18) of Chapter

2, the fading was assumed to be constant during a period of time given

by T = N/R which will be true, for all practical purposes, if we can

expect ~Z, the fluctuation in Z during T, to be much less than the error

in Z, the receiver estimate of the fading. In other words, we will re-

quire that:

«~Z)2> « «~Z)2> (Al)

If ~Z is small we can let ~Z ~ (dZ/dt) T. Then, using Taylor's

frozen turbulence hypothesis and assuming a homogeneous, locally iso-

tropic atmosphere with stationarity of the log-amplitude variance, it

can easily be shown that:

24.6 vi 2 02N2

(AL)S/6 1 1/9 R2o

(A2)

For the right side of the inequality we look at the variance of n
A

and transform this to the variance of Z with the result that:

4

N N 2
S

(A3)

Solving for the number of averaging bits, we have the requirement that:

( )
2/3 2

)N « 0.546 (AL)S/18 1 1/9 ---~ (l N + N + eO N 2
o vI a NS 2 S B S

(A4)

In order to show this graphically, we make the assumptions that 1)

/ / 1 02 2

101 9 ~ (2mm)1 9 and 2) 2 NS + NB «e NS ' so that the right side of

this inequality reduces to:

(AS)
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This is shown in Fig. A.l for a wide range of parameter values where

rationalized MKS units have been used exclusively. Note that N ismax

a minimum for 0 = 1.0 and that the values at 0 = 0.5 and 1.5 are virtually

identical. Logarithmic interpolation and extrapolation of tAL values

are valid.
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Fig. A.I. Upper bound on number of averaging bits, N , vs. ratio

of data rate to perpendicular wind velocity, R/v1 wi~Bx dependence
on log-intensity standard deviation, a and Fresnel zone si~e,

IlL, shown parametrically. Lower curve in each doublet corresponds

to a = 1.0 and the upper one to a = 0.5 or 1.5, where the doublets
are labeled by 1) for IlL = 1.0, 2) for IlL = 0.1, and 3) for
IlL = 0.01.
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Appendix B

Three separate FORTRAN computer codes were used in Chapter 2

to generate the bit error rate curves in the one detector case. This

appendix presents listings of these codes, each followed by a partial

glossary of variable names. The extention of each to multiple detectors

was straightforward in all cases and the multiple detector codes are,

therefore, not included.

The first listing was used to find the probability of error for

the approximate optimum and MAP receivers from the relationship

P(E)

n"
T

I:
n=O

(Bl)

where nT is the largest integer for which L is less than zero in the

case of each receiver. The steepest descents approximation to p(nIHl)

given by Eq.(7) was used.

If, in the averaged threshold receiver, an infinite number of

averaging bits can be used, the instantaneous fading can be known

exactly. The second listing is of a program to calculate, for this

case,
(B2)

00

P(E) t !o dZ p(Z)

using the trapezoidal rule for numerical integration. In the multiple

+
detector cases the Hermite approximation to the integral over p(Z) was

used due to run time limitations.

For a finite number of averagulg bits the result is a more complex

expression:
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where k, the number of "1" bits during the average time, is a Bino-

mially distributed random variable. The threshold nT is the largest

integer value of n for which L is less than zero in Eq.(18). The third

program performs the operations indicated in Eq.(B3) after making the

simplifying assumption that n is large enough to approximate its actual

conditional distribution, which is Poisson, by a Gaussian so that the

sum over n can be replaced by the error function.

QO 00 nT

P(E) = t fo dZ 2: p(n/Hl,Z) [1 - 2: p(n1k,Z)]n=O k=O

nT
(B3)

(10. 00 00

+ t fa dZ 2: p(nlH ,Z) 2: p(k) p(nlk,Z)
n=O 0 k=O n=O
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C P(ERROR) FOR APPROXIMATE OPTIMUM AHD MAP RECEIYERS
C WITH D = 1
C

DOUBLE PRECISIOH PHS~ RHF
CALL SEARCH (l,~HIPUT~d~B)
CALL SEARCH (2,'OUTPUT'~2~B)

IB FORMAT (3E1B.4)
READ (5, HI) SD, RNS, RNB

2B FORMAT (' SD = ~, F5.2 ~ ~ HS = '.<F4.B " HB = ',-F4.B)
WRITE (6,2B) 5D, RHS~ RHB
YAP. = SD*SD
RHF = 1.B
FMAP = -l.B
FOPT = -1.B
CALL F20 (SD, RHS, RHB, B.111,20)
PS = <EXP(-ZO*RHS-RHB - B.5*<ALOG(ZO)+B.5*YAR)*(ALOG(ZO)+11I.5*YAR)

1 IYAR» I SQRT(l.B+VAR*ZO*RHS)
PHS = EXP(-RHB)
EHB = PHS
DO 5BB I = l,28B
RH = I

RHF = RHF * RH
CALL FZO <SD, RHS~ RHB~ RH~ ZO)
HPS = (ZO*RHS+RHB).*RH * EXP<-ZO*RHS-RHB-B.S* <ALOG(ZO)

1 +8.S*VAR)*<ALOG(ZO)+B.S*YAR)/VAR)I (RHF * SQRT(1.8
2 -VAR*ZO*RNS* (RH*RNB/«ZO*RNS+RHB)*<ZO*RHS+RHB»-l.B»)
HPHS = «RHB**RH)/RHF)*EHB
RL = RH * ALOG(ZO*RHS/RHB+1.B) - ZO*RHS - B.S*(ALOG(ZO)

1 +8.S*YAR)*<ALOG<ZO)+B.S*YAR)/YAR - B.S*ALOG(l.B -
2 VAR*ZO*RHS*(RH*RHB/({ZO*RHS+RHB)*<ZO*RHS+RHB»-l.B»
IF (RL.GT.B.B) GO TO 48B

28B CALL MAP (RHS~ RHB~ RH~ ZO~ R)
IF (R.LT.B.B) GO TO 458
IF (FMAP.GT .B.B) GO TO 26B

25B FORMAT (' I1AP '~' KT = ',F12.21' P(S) ='~
1 E12.S,~ POolS) = ',E12.S~' P(E) = ',E12.S)
PHSl = 1.8 - PHS
ERR = B.S * (PS+PHSl)
WRITE (6,2SB) RH, PS~ PHSL ERR
FHAP = FI1AP + 2.8

26B IF <FOPT) 45B, 458~ 68B
4BB IF (FOPT.GT.B.B) GO TO 448
41B FORMAT (' OPT ',I KT = ',F12.21' P(S) = "

1 E12.5,' P(HS) = ',E12.5,' P(E) = '~E12.S)
PHS1 = 1.8 - PHS
ERR = B.5 * (PS+PHSl)
WRITE (6,41111)RH~ PSI PHS!. ERR
FOPT = FOPT + 2.111

44B IF (FI'IAP)288, 28B, 6BB
4SB PS = PS + HPS

PHS = PHS + HPHS
SBB COHTINUE
6BB CONTIHUE

CALL SEARCH (4,B,1~B)
CALL SEARCH (4,B,2,8)
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CALL EXIT
END

C
C CALCULATESSTATIONARYPOINT 20 USING NEWTON'S METHOD
C

SUBROUTINE F20 (SD. RNS, RNB. RN, X2)
X2 = ABS(RN - RNB + 9.991) I RNS

24 Xl = X2
F = RN*Xl*RNS I (Xl*RNS+RNB) -Xl*RNS - ALOG(Xl) I (SD*SD) -9.5
Fl = RN*RNB*RNSI «Xl*RHS+RHB)* (Xl*RNS+RNB»-RNS-l ./(Xl*SD*SD)
X2 = Xl - F/Fl
IF (X2) 25. 25, 26

25 X2 = Xl/2.9
GO TO 24

26 CONTINUE
IF (ABS«X2-X1> IX2) - 1.9E-95) 28, 28.24

28 CONTINUE
RETURN
END

C
C CALCULATES MAP RECEIVER LIKELIHOOD FUNCTION R
C

SUBROUTINE MAP (RNS, RNB. RN, 20. R)
R = RN * ALOG(20*RHS/RNB + 1.9) - 20 * RHS
RETURN
END
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~RR P(E)

FMAP MAP threshold flag

FOPT approximate optimum threshold flag

HPNS
p(nIHO)

p(nIHl)

P(False Alarm)

HPS

PNSl

PS P(Miss)

R MAP L (Eq. 12)

RL approximate optimum L (Eq.ll)

RN n

RNB

RNF n!

RNS

SD

20 2 or 2
o
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C P(ERROR) FOR AVERAGED THRESHOLD RECEIVER
C WITHD = 1 AND INFINITE THRESHOLDAVERAGING
C

DOUBLE PRECISION PHB(2B8), FACT(288), DNB, DNS, PH8,
1 PH1, PE8, PEl, DSD, VAR, Z
CALL SEARCH (l,'INPUT'd,8)
CALL SEARCH (2,'OUTPUT',2,8)

IB FORMAT (3EI8.4)
READ (5, IB) SD, RNS, RNB

2B FORMAT (I' D = 1 ',' $D = ',FS.3,' NS = ',FS.B,
1 ' HB = ',FS.B)
WRITE (6.2B) SD, RHS, RNB
DNB = RNB
DNS = RNS
D SD = SD
VAR = DSD * DSD
PEl = B.B
PEO = B.8

C
C P (N ! HO SIGNAL)
C

FACT<l) = 1.8

PH8(1) = DEXP(-DNB)
DOl a 8 K = 2, 28 B
RH = K - 1
FACT(K) = FACT(K-l) * RH
PH8(K) = (DHB**RH I FACHK» * PH8(1)

18B CONTINUE
C
C Z INTEGRATION
C

Z = 8.5D-93
DO 68a I = 1.588B
PH1 = OEXP(-Z*DNS - DNB)
PHO = B.B

C
DO SOB J = 1.198
RH = J
Rl = RH*DLOC(Z*DHS/DHB+l.8) -Z*OHS
IF (RL) 4S9. 46B. 470

4S8 PHl=PHl+«Z*DHS+OHB)**RH/FACT(J+l»*DEXP(-Z*DNS-DHB)
GO TO 50B

460 PHl=PHl+B.5*«Z*DHS+DHB)**RH/FACT(J+l»*DEXP(-Z*DNS-DNB)
PHB = PHB + O.S*PHB(J+l)
GO TO S8a

470 PHB = PHB + PHB(J+l)
IF (PHB(J+l)/PHB.LT.1.BD-95) GO TO 51B

SOB CONTINUE
C
51B PHI

1
PHB
1
PEa
PEl

= PH1*DEXP(-B.5*<DLOG(Z)+B.5*VAR)*(DLOC(Z)+B.S*VAR)/VAR)I
(2 .58663*DSD*Z)
= PH8*OEXP(-B.5*(OLOG(Z)+B.5*VAR)*(DLOC(Z)+B.S*YAR)/VAR)I
(2. 59663*DSO*2)
= PEB + PH8
= PE 1 + PHI



IF (PEI.EG.B.B) GO TO 59B
IF (PHI/PEl .GT.l.SD-95) GO TO 59S
IF (PHS/PES.LT. 1.80-85) GO TO 619

599 Z = Z + 1.9D-93
6813 CONTINUE

c
6113 PEl = PE1*1.BD-83

PES = PES*I.BD-B3
PEE = B.5 * (PEB+PE1)

628 FORMAT (/' APPROXIMATE MAP RECEIVER III KT = "
1 15/' P(MISS) = ',015.5,' P(FALSE ALARM) = ',015.5,
2 'P(E) = ',E15.5)
WRITE (6,629) 1. PEl, PES, PEE
CALL SEARCH (4,8.1,B)
CALL SEARCH (4,B,2,8>
CALL EXIT
END
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FACT (n+l) n!

PEO P(False Alarm)

PEl P(Miss)

PEE P (E)
00

PHO
p(Z) 'E p(nIHO'Z)

n=nT+l

nT
PHI

p(Z) 'E p(nIHl,Z)
n=O

PNO(n+l)
p(nIHO)

RL L (Eq.18)

RN n

RNB
NB

RNS
NS

SD a
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C P(ERROR) FOR AYERAGED THRESHOLDRECEIVER
C WITH D = 1 AND FINITE THRESHOLD AVERAGING
C

DHIENSIOHFACT<lBBB),POISUBBB), RNT(IBBB), PUBBB)
CALL SEARCH (1,'IHPUT1',1.B)
CALL SEARCH (2,IOUTPUT',3,B)

C
4B FORHAT (3EIB.4,IIB)

READ (5,4B) RHS,RHB,SD,NAYE
HDSUM = RNS + RHB
YAR = SD*SD
RNAV = NAYE
NAY1 = HAYE + 1
PIUS = B.B
PFA = B.B
FACT< 1) = B.B
POIS<I) = EXP(-RNB)
RHH1) = RNB

C
C GENERATES FACTORIAL AND THRESHOLDS
C

DO l1B H = 2, HDSUM
RH = N - 1
FACT(H) = FACT<N-l)
POIS(H) = POIS(N-l)
IF (RN-RNB) 5B, 5B,

SB RH2 = RHB
GO TO 11 B

6B RHI = RN + RNB I RHS
DO IBB I = 1, 5B
F = RH * ALOG(RNI/RHB) - RHl + RHB
Fl = RH/RN1 - 1.B
RH2 = RHI - F/FI
IF (ABS(RNI-RH2) .LT. 1.BE-4*RN2) GO TO liB
RNl = RH2
RHHN) = RH2

+ ALOG(RH)
* RHB I RH
6B

IBB
l1B

C
C GENERATES BINOMIAL DISTRIBUTION
C

P(I) = B.S ** RNAV
DO 15B K = 2, NAYl
RK = K - 1

lSB P(K) = P(K-l) * (RNAV-RK+l.B) I RK
C
C INTEGRAL OYER Z
C

DO 7BB IZ = 1, 1BB

Z = IZ
Z = B.Bl * Z

C
C SUM OF DISTRIBUTIONOVER H
C

PIHI = B.B
PIH2 = B.B
PBHl = BB
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PH1 = B.B
PH2 = B.B
DO 5BB K = 1, HAY1
RK = K - 1
RKT = 5B.B * RHAY * (RNT{N) -2.B*RK*Z*RHS/RNAY -RNB)

1 I SQRT(RK*Z*RNS +RHAY*RNB)
C ERF IS ERROR FUNCTION SUBROUTINE

PNLT = ERF(RKT)
PH1 = PH1 + P(K) * PNLT
RKT = 5B.B * RHAY * (RNT(N) -2.B*RK*RNS/(Z*RNAV) -RHB)

1 I SQRT(RK*RNS/Z +RNAY*RHB)
PNLT = ERF(RKT)

5SB PH2 = PH2 + P(K) * PNLT
C

P1Hl = P1H1 + EXP( RN*ALOC(Z*RNS+RNB) - Z*RNS-RNB
1 - FACT(N) ) '" (1.B-PH1)
A = RH*ALOC(RHS/Z+RHB) - RNS/Z-RNB- FACT(N)
IF (A . LT. -1 BB. B) COT 0 55B
P1H2 = P1H2 + EXP(A) * (1.D-PH2)

55B CONTINUE
PBH1 = PBH1 + POIS(H) * PH1
PBH2 = PBH2 + POIS(N) * PH2

EiDB CONTINUE
C

PZ = EXP(-B.S* (ALOC(Z)+B.5*YAR) * (ALOC(Z)+B.5*YAR)
1 I YAR) I (2.5B663 * SD * Z)

PZINY = EXP(-B.5* (ALOC(Z)-B.5*YAR) * (ALOG(Z)-B.5*YAR)
1 I YAR) I (2.5B663 * SD * Z>

PI'tIS = PI'tIS + PZ*P1Hl + PZIHV*P1H2
PFA = PFA + PZ*PBHl + PZINV*PBH2

7BB CONTINUE
C

PI'tIS = (PMIS - B.S*PZ*P1H1 - B.5*PZINV*P1H2) I 1BB.B
PFA = (PFA - B.5*PZ*PBHl - B.5*PZIHY*PBH2) I lBB.B
PE = B.5 * (PI'tIS + PFA)

8SB FORHAT(3E1S.5)
WRITE (7,8BB) PI'tIS. PFA, PE

2BSB CONTINUE
CALL SEARCH (4,B.1.8)
CALL SEARCH (4,8.3,B)
CALL EXIT
END

PBH2 = B.B
DO 6BB H = 1, HDSUI't
RH = H - 1

C
C SUM OYER K
C



148

FACT(n:H) In (n! )

NAVE N

P(k+1) p(k)

PE P (E)

PFA P(Fa1se Alarm)

PMlS P(Miss)

POlS (n+1) p(nIHO)

PZ p(Z)

PZlNV p (l/Z)

RNB
NB

RNS
NS

SD (J



149

Appendix C

What follows is a listing of the FORTRAN computer code that was

used to evaluate the integral in Eq.(8) of Chapter 3. For each value

of D/r (DRO), the corresponding value for <G> (SNR) is printed, alongo

with their respective logarithms (ALD and ALP) to simplify plotting.

The program to evaluate Eq.(12) is identical except for statement number

100 and was, therefore, not presented.
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C SNR FOR HETERODYNE RECEIVER WITH PARTIAL
C ANGLE-OF-ARRIVAL TRACKING.TRAPEZOIDALRULE
C INTEGRATION OF EQ.8.
C

CALL SEARCH (2,' OUTPUT', 2,13)
113 FORMAT (E15.5)

READ (LUJ) C
C C = DT I D (HEAR FIELD)
C C = 8 * DT I D (FAR FIELD)

DO 3aB ND = 1, 313
ALD = ND
ALD = ALD * B.l - 1.B
DRO = IB.B ** ALD

C DRO = D I RB
SNR = B.B
DO laB NU = 1, IBBB

U = HU
U = U * B. BB!

IBB SNR = SNR + U * ( ATAH(SQRT(l.B-U*U)/U) - SQRT(l.B-U*U)
1 * U ) * EXP(-1.29 * (U*DROh*1.6666667
2 * (1.B-(U/C)**B.3333333»

SHR = 5.B92B6E-3 * DRO*DRO* SNR
ALP = ALOGIB(SHR)

2BB FORMAT (4E1S.5)
WRITE (6,21118) DRO, ALD, ALP, SNR

3BB CONTINUE
CALL SEARCH (4,111,2,9)
CALL EXIT
END
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Appendix D

This appendix contains listings of the FORTRAN computer codes

that were used to generate the figures of Chapter 4, each followed

by a partial glossary of variable names. The first two of these

calculate p(I) values for the static and tracking receivers, respect-

ively. In each case Newton's method is used in order to obtain the

stationary points.

The third program calculates the function

g(I) =f
7.02

f
oo

3.83
_00

1

dX d~ p(X) p(~) Iz.IT

(Dl)

exp [-+ (I - 2yZJl(~)/~)2J

using a steepest descents approximation to the integral over X and

trapezoidal rule integration over~. The correction term for a par-

ticular I is then found to be, from Eq.(40) of Chapter 4, g(-I) - g(I).
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C P(I) FOR HETEROOYNE RECEIVER WITHOUT ANGLE-OF-ARRIVAL
C TRACKING <FRO" EQ. 28)
C

CALL SEARCH <l,'INPUT',l.B)
CALL SEARCH <2,'OUTPUT',2,B)

5B FOR"AT (4EIB.4)
READ (5,5111)SX, SO, 01, GA

Xl = - SX*SX
OEll = SO
RIHO = 2.B * GA * EXP(Xl) * AJ1(OEL1) I 01
IHD = RIHD

RIHD = IHD * 01
DO 5BB I = 1, 3BBB

RI = I - 1
RI = RIHD + RI * DI

CALL XODO (Xl,DEL1,RI,GA,SX,SD.XO,DELO,B,ZO,RIBAR)
Pl = EXP(-11I.5 * (RI-RIBAR) * (RI-RIBAR)

1 - B.5 * (XO/SX+SX)* (XO/SX+SX)
2 - B.5 * DELO * OELO I (SO*SO»
3 * DELO I (SQRT(B) * SX * SD*SD)

4BB FOR"AT (F15.2, E15.5)
WRITE (6,4I11B) RI. Pl
IF (RI .LT. GA) GO TO 5BI1I
IF (Pl .LT. 1.BE-5) GO TO 6BB

5111BCONTINUE
PAUSE 4

6111BCONTINUE
Xl = - SX*SX
DEll = SD
RIHD = 2.B * GA * EXP(Xl) * AJ1(OEL1) I 01

IHD = RIHO
RIHD = IHD * 01

00 15BB I = 1, 3BBB
RI = I

RI = RIHD - RI * DI
CALL XODO (X1,DEL1,RI,GA,SX,SD,XO,DELO,B.ZO,RIBAR)
P1 = EXP(-B.5 * (RI-RIBAR)* (RI-RIBAR)
1 - B.5 * (XO/SX+SX) * (XO/SX+SX)
2 - B.5 * OElO * DELO I (SD*SD»
3 * OElO I (SQRT(B) * SX * SD*SD)
WRITE (6,4I11B) RI, PI

IF (P1 .LT. 1.BE-5) GO TO 16BB
15BB CONTINUE

PAUSE 4
16BB CONTINUE

CALL SEARCH (4,B,1,B)
CALL SEARCH (4,B,2,11I)
CALL EXIT
END

c

C CALCULATES STATIONARY POINTS XO AND DELO
C FRO" E9S. 25 USING NEWTON'S "ETHOD
C

SUBROUTINE XODO (Xl,DEll.RI.GA,SX,SO,XO.OELO,B,ZO,RIBAR)
DO IBI1IL = 1, IBB
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XO = Xl
20 = EXP(XO)
DELO = DEll
RIBAR = 2.B * GA * 20 * AJ1(DElO)

C AJl IS FIRST ORDER BESSEL FUNCTION DIVIDED BY
C ARGUMENT

RIBO = 2.8 * GA * 20 * AJ8(DElO)
C AJa IS 2ERO ORDER BESSEL FUNCTION

FX = (RI-RIBAR) * RIBAR - XO/(SX*SX) - 1.8
FD = (RI-RIBAR) * (RIBO-2.B*RIBAR) / DELO

1 - DElO/(SD*SD) + 1.B/DElO
F2XX = (RI-2.B*RIBAR) * RIBAR - 1.a/(SX*sX)
F2XD = (RI-2.8*RIBAR) * (RIBO-2.B*RIBAR) / DElO
F2DD = (RI-RIBAR) * (6.8*RIBAR-DElO*DElO*RIBAR-3.B*RIBO)

1 / (DElO*DElO) - 1.8/(SD*SD) - 1.B/(DElO*DElO)
2 - (RIBO-2.8*RIBAR) * (RIBO-2.B*RIBAR) / (DElO*DElO)

B = F2DD*F2XX - F2XD*F2XD
Xl = XO + (FD*F2XD-FX*F2DD) / B
DEll = DElO + (FX*F2XD-FD*F2XX) / B
IF (ABS«XI-XO)/XO) .GT. 1.BE-4) GO TO IBB
IF (ABS«DElI-DElO)/DElO) .GT. 1.BE-4) GO TO IBB

RETURN
laB CONTINUE

PAUSE 3
RETURN

END
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B determinantB (Eq.26)

DELO tJ.
o

DI resolutionof results

F2DD a2f/atJ.2(Eq.27c)

F2XD a2f/aXatJ.(Eq.27b)

F2XX a2f/ax2 (Eq.27a)

FD af/atJ. (Eq.25b)

FX af/ax (Eq.25a)

GA y

PI p(I) (Eq.28)

RI I

SX cr
X

XO X
o

zo zo
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C P(I) FOR HETERODYNE RECEIVER WITH ANGLE-OF-ARRIYAL
C TRACKING (FROM EQ. 37)
C

COMMON CC05(21), C5IN(21). CJO(21)
CALL 5EARCH (l.'INPUT'.l.B)
CALL SEARCH (2.' OUTPUT' .2.B)

5 FORMAT (4E1B.4)
READ (5,5) S)(.5A. GA, DI
CCOS( 1) = 1. B
CSIN(1) = 1.B
CJO( 1) = 1. B
DO IBB K = 2, 21

RK = K - 1
CCOS(K) = - B.5 * CCOS(K-l)I (2.B*RK*RK-RK)
CSIH(K) = - B.5 * CSIN(K-l) I (2.B*RK*RK+RK)
CJO(K) = - CJO(K-l) I (RK*RK)

IBB CONTINUE
)(1 = -SX*5X
A41 = B.B
A a 1 = 5A

RBB = GA * EXP(Xl) * C(A41.AQ1) I DI
IRBB = RBB

RBB = IRBB * DI .

C
DO 7BB I = L 2BB
RI = I
RI = RBB - RI * DI

DO 5BB KNT = 1, IBB
C LOOP CALCULATES STATIONARY POINTS XO. A40, AND AQO
C FROM EQ5. 33 USING NEWTON'S METHOD

XO = )(1

20 = EXP(XO)
A40 = A41
AQO = AQl
CO = C(A40.AQO)
50 = S(A40.AQO)
C41 = DC4(A40,AQO)
541 = DS4(A40.AQO)
Cal = DCQ(A40,AQO)
SQl = D5Q(A40.AQO)
C42 = D2C4(A40.AQO)
542 = D2S4(A40.AQO)
ca2 = D2CQ(A40,AQO)
SQ2 = D25Q(A40.AQO)
C22 = D2CQ4(A40.AQO)
522 = D25Q4(A40.AQO)

RIB = SQRT(CO*CO + SO*SO)
RIBAR = GA * 20 * RIB
W4 = GA * 20 * (CO*C41 + 50*541) I RIB
WQ = GA * 20 * (CO*CQl + 50*SQ1) / RIB
FX = <RI-RIBAR) * RIBAR - XO/(SX*SX) - 1.B
F4 = (RI-RIBAR) * W4 - A40/<5A*5A)
Fa = (RI-RIBAR) * WQ - 2.B*AQO/(5A*SA) + 1.B/AQO

F2XX = <RI-2.B*RIBAR) * RIBAR - 1.B/(5X*SX)
F244 = -W4*W4 + (RI-RIBAR) * GA*20/RIB
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1 * (-W4*W4/(GA*GA*ZO*ZO) + CO*C42 + 50*542 + C41*C41 + S41*541)
2 - l.a/(SA*SA)
F2QQ = -WQ*WQ + (RI-RIBAR) * GA*ZO/RIB

1 * (-WQ*WQ/(GA*GA*ZO*ZO) + CO*C92 + 50*5Q2 + C91*CQl + S91*SQl)
2 - 2.a/(SA*SA) - 1.B/(AQO*AQO)
F2X4 = (RI-2.B*RIBAR) * W4
F2XQ = (RI-2.B*RIBAR) * WQ
F2Q4 = -W4*YQ + (RI-RIBAR) * (-W4*WQ/RIBAR

1 + GA*ZO/RIB * (CO*C22 + SO*922 + C41*CQl + S41*9Ql»
B = DEHF2XX. F2X4. F2XQ. F2X4. 1=244. F2Q4. F2XQ. F2Q4. F2QQ)

Xl = XO - DET<FX, F4, FQ. F2X4, F244, F2Q4.
1 F2XQ. F2Q4. F2QQ) I B
A41 = A40 - DEHF2XX. F2X4, F2XQ. FX. F4. FQ.

1 F2XQ. F294. F2QQ) I B
AGt = AQO - DEHF2XX, F2X4. F2XQ. F2X4. F244. F2Q4.

1 FX. F4. Fa) / B
C

IF (ABS«XI-XO)/XO) .GT. l.BE-5) GO TO 5aB
IF (ABS«AIH-AQO)/AQO) .LT. l.BE-5) GO TO 6BB

5BB CONTINUE
PAUSE 1

6BB CONTINUE
PI = 2.B * Aao * EXP( -B.5*(RI-RIBAR)*<RI-RIBAR)

1 - B.5*<XO+9X*SX)*(XO+SX*SX)/(SX*9X)
2 - B.5*(A40*A40+2.B*AQO*AQO)/(SA*5A) )
3 I (SX * SA*SA*SA * SaRT(-B»

659 FORMAT (F15.3. EI5.S)
WRITE (6.659) RI, PI
IF (PI .LT. I.BE-7) GO TO 8BB

7BB CONTINUE
BBB CONTINUE

Xl = -SX*SX
A41 = B.B
Aai = SA

RBB = GA * EXP(Xl) * C(A41,AQ1) I DI
IRBB = RBS

RBB = IRBB * DI
C

DO 17BB I = 1. 2BB

RI = I - 2
RI = Ree + RI * DI

DO ISBB KHT = 1. IBB
XO = Xl
ZO = EXP(XO)
A40 = A41
AGO = AQI
CO = C<A40.AQO)
50 = S<A40.AQO)
C41 = DC4(A40.AQO)
541 = DS4(A40.AQO)
CQI = DCQ(A40.AQO)
S91 = DSQ(A40,AQO)
C42 = D2C4(A40,AQO)
542 = D254(A40.AQO)
CQ2 = D2CQ(A40.AQO)
5Q2 = D2SQ(A40,AQO)
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C22 = D2CQ4(A40.AQO)
522 = D2SQ4(A40.AQO)

RIB = SQRT(CO*CO + 80*50)
RIBAR = GA * 20 * RIB
(,,14= GA * 20 * (CO*C41 + SO*S41) I RIB

WQ = GA * 20 * (CO*CQl + SO*5Ql) I RIB
FX = (RI-RIBAR) * RIBAR - XO/(5X*SX) - 1.B
F4 = (RI-RIBAR) * (,,14- A40/(5A*SA)
FQ = (RI-RIBAR) * WQ - 2.B*AQO/(5A*SA) + 1.B/AQO

F2)c;X= (RI-2.B*RIBAR) * RIBAR - 1.9/(SX*SX)
F2044 = -W4*W4 + (RI-RIBAR) * GA*ZO/RIB

1 * (-W4*W4/(GA*GA*ZO*20) + CO*C42 + SO*S42 + C41*C41 + S41*541)
2 - 1.9/(SA*SA)
F2QQ = -(,JQ*WQ+ (RI-RIBAR) * GA*20/RIB
1 * (-WQ*WQ/(GA*GA*ZO*20) + CO*CQ2 + SO*5Q2 + CQ1*CQl + SQ1*SQ1)
2 - 2.9/(SA*SA) - 1.9/(AQO*AQO)
F 2 X 4 = (R I - 2 ./9 * RIB A R) * (,J4

F2XQ = (RI-2.B*RIBAR) * (,JQ
F2Q4 = -("I4*("IQ+ (RI-RIBAR) * (-("I4*WQ/RIBAR

1 + GA*ZO/RIB * (CO*C22 + SO*S22 + C41*CQl + S41*SQ1»
B = DEHF2XX. F2X4, F2XQ. F2X4. F244, F2Q4. F2XQ. F2Q4. F2QQ)

Xl = XO - DET<FX, F4, FQ, F2X4, F244, F2Q4,
1 F2XQ, F2Q4, F2QQ) I B
A41 = A40 - DEHF2XX, F2X4, F2XQ, FX, F4, FQ.

1 F2XtL F2Q4, F2QQ) I B
AQI = AGO - DET( F2XX, F2X4, F2XQ, F2X4, F244, F2Q4,

1 FX, F4. FQ) l B
C

IF (ABS«X1-XO)/XO) .GT. 5.BE-5) GO TO 15BB
IF (AB5«AQ1-AQO)/AQO) .LT. l.BE-5) GO TO 169B

15BB CONTINUE
PAUSE 1

16BB CONTINUE
Pl = 2.B * AGO * EXP( -B.5*(RI-RIBAR)*(RI-RIBAR)

1 - 8.5*(XO+SX*SX)*(XO+SX*SX)/(SX*SX)
2 - B.5*(A40*A40+2.B*AQO*AQO)/(SA*SA) )
3 I (SX * SA*SA*SA * SQRT(-B»
WRITE (6,65B) RI. PI
IF (Pl .LT. l.BE-7) GO TO 18BB

178B CONTINUE
18BB CONTINUE

CALL SEARCH (4,B,1,B)
CALL SEARCH (4.B,2,B)
CALL EXIT
END

C
C C(A,B) = INTEGRAL a TO 1 OF COS(AT) * JB(BT) DT
C

/

FUNCTION C(A,B)
COMMON CCOS(21), CSIN(21), CJO(21)

X = A * A
Y = B.25 * B * B
C = B.B

IF (A.EQ.B.a) GO TO IB
DO 5 K = 1, 21

RK = K - 1
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DO 5 L = 1, 21
RL = L - 1

5 C = C + CCOS(K) * CJO(L)* X**RK * Y**RL I (RL+RK+8.5)
C = 9.5 * C
RETURN

18 DO 15 L = 1. 21
RL = L - 1

15 C = C + CJO(L) * Y**RL I (RL+B.5)
C = B.5 * C
RETURN
END

C
C S(A.B) = INTEGRAL B TO 1 OF SIN(AT) * JB(BT) DT
C

FUNCTION S(~LB)
COMMOH CCOS(21 )., C5IH(21), CJO( 21)
IF (A.EQ.B.B) GO TO 1B

X = A * A
V = B.25 * B * B
S = B.B

DO 5 K = 1, 21
RK = K - 1

DO 5 L = 1, 21
RL = L - 1

55= S + CSIN(K) * CJO(L) * X**RK * Y**RL I (RL+RK+1.B)
S = 8.5 * A * S
RETURH

18 S = B.B
RETURH
EHD

C
C DC4 = DC/DA
C

FUNCTION DC4(A.B)
COMMOH CCOS(21). C5IN(21), CJO(21)
IF (A.EQ.S.B) GO TO 1B

X = A * A
Y = B.25 * B * B
C = B.B

DO 5 K = L 21
RK = K - 1

DO 5 L = 1. 21
RL = L - 1

5 C = C + CCOS(K) * CJO(L) * X**RK * Y**RL * RK I (RL+RK+8.5)
DC4 = C I A
RETURN

1B DC4 = B.8
RETURN
END

c
C DS4 = DS/DA
C

FUHCTION DS4(A.B)
CO~tMOH CCOS(21), C5IH(21), CJO(21)

X = A :I< A
'( = B. 25 * B * B
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s = a.B
IF (A.EQ.B.B) GO TO 1B
DO 5 K = 1, 21

RK = K - 1
DO 5 L = 1, 21

RL = L - 1
5 S = S + CSIN(K) * CJO(L) * X**RK * V**RL* (RK+B.5) I (RL+RK+1.B)

DS4 = S
RETURN

13 DO 15 L = 1, 21
RL = L - 1

15 S = S + CJO(L) '" Y**RL ... 8.5 I (RL+1.8)
DS4 = S
RETURN
END

C
C DCQ = DC/DB
C

FUNCTION DCQ(A,B)
COMMONCCOS(21), CSIH(21), CJO(21)

X = A * A
V = B.25 ... B * B
C = B.B

IF (A.En.B.B) GO TO 18
DO 5 K = 11 21

RK = K - 1
DO 5 L = 1, 21

RL = L - 1
5 C = C + CCOS(K) ... CJO(L) * X**RK ... Y**RL ... RL / (RL+RK+B.5)

Dcn = C I B
RETURN

1a DO 15 L = 1, 21
RL = L - 1

15 C = C + CJO(L) '" Y**RL '" RL / <RL+B.5)
DCQ = C I B
RETURN
END

C
C Dsa = DS/DB
C

FUNCTION DSQ(A,B)
COMMON CCOS(21), CSIN(21), CJO(21)
IF (A.EQ.B.B) GO TO 1a

X = A '" A
Y = B.25 * B ... B
S = B.B

DO 5 K = 1, 21
RK = K - 1

DO 5 L = 1, 21
RL = L - 1

5 S = S + CSIN(K) * CJO(L) '" X**RK * Y**RL ... RL I (RL+RK+l.B)
Dsa = A ... S / B
RETURN

18 DSQ = B.B
RETURN
END
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C
C D2C4 = D2C/DA2
C

FUNCTION D2C4(A,B)
COMMON CCOS(21), CSIN(21), CJO(21)

X = A * A
\'= B.25 * B * B
C = 8.S

IF (A.EQ.S.B) GO TO IB
DO 5 K = 2, 21
RK = K - 1

DO 5 L = I, 21
RL = L - 1

5 C = C + CCOS(K) * CJO(L) * X**(RK-l.8) * V**RL
1 * RK * (RK-8.5) / (RL+RK+8.5)
D2C4 = 2.B * C
RETURN

IB DO 15 L = 1, 21
RL = L - 1

15 C = C + CdO(L) * Y**RL * B.5 ! CRL+i.3.
D2C4 = -C
RETURN
END

C
C D254 = D2S/DA2
C

FUNCTION D2S4(A,B)
COMMON CCOS(21), CSIH(21), CJO(21)
IF (A.EQ.B.B) GO TO 18

X = A * A
Y = B.25 * B * B
S = B.B

DO 5 K = I, 21
RK = K - 1

DO 5 L = 1, 21
RL = L - 1

5 S = S + CSIN(K) * CJO(L) * X**RK * Y**RL
1 * RK * CRK+B.5) / (RL+RK+l.B)
D2S4 = 2.B * S I A
RETURH

IB D2S4 = B.B
RETURN
END

C
C D2CQ = D2C/DB2
C

FUNCTION D2CQ(A,B)
COMMON CCOS(21), CSIN(21), CdO(21)

X = A * A
V = 8.25 * B * B
C = B.B

IF (A.EQ.B.B) GO TO 18
DO 5 K = I, 21

RK = K - 1
DO 5 L = 1, 21

RL = L - 1



5 C = C + CCOS(K) * CJO(L) '"X**RK * Y**RL
1 '" RL '" (RL-B.5) I (RL+RK+8.5)
D2CQ = 2.B * C I (8*B)
RETURN

18 DO 15 L = 1. 21
RL = L - 1

15 C = C + CJO(L) '"V**RL * RL * (RL-B.5) I (RL+B.5)
D2CQ = 2.B * C I (8*B)
RETURN
EHD

C
C D2SQ = D2S/DB2
C

FUNCTION D2SQ(A.B)
COMMON CCOS(21). CSIH(21). CJO(21)
IF (A.EQ.S.B) GO TO 18
X = A * A
V = B.25 '" 8 '" B
S = B.8

DO 5 K = I. 21
RK = K - 1

DO 5 L = 1, 21

RL = L - 1
5 S = S + CSIH(K) * CJO(L) * X**RK * Y**RL
1 '" RL '" (RL-B.5) I (RL+RK+l.B)
D2SQ = 2.B * A * S I (8*B)
RETURH

IS D2SQ = B.B
RETURN
END

C
C D2CQ4 = D2C/DADB
C

FUNCTION D2CQ4(A.B)
COMMOH CCOS(21), CSIH(21), CJO(21)
IF (A.EQ.S.B) GO TO IB
X=A*A
V = B.25 '"B * 8
C = B.B

DO 5 K = 1, 21
RK = K - 1

DO 5 L = 1, 21
RL = L - 1

5 C = C + CCOS(K) * CJO(L) * X**RK * Y**RL
1 * RK * RL I (RL+RK+B.5)
D2CQ4 = 2.B * C I (A*B)
RETURN

IB D2CQ4 = B.B
RETURH
END

C
C D2SQ4 = D2S/DADB
C

FUNCTION D2SQ4(A.B)
COMMONCCOS(21).CSItH21),CJO(21)

X = A '" A

161



162

Y = B.25 * B * B
C = B.B

IF (A.EG.B.B) GO TO 1B
DO 5 K = 1, 21

RK = K - 1
DO 5 L = 1, 21

RL = L - 1
5 S = S + CSIN(K) * CJO(l) * X**RK * V**Rl

1 * RL * (RK+9.5) I (RL+RK+1.B)
D2SQ4 = 2.9 * SIB
RETURN

1B DO 15 l = 1, 21
Rl = l - 1

15 S = S + CJO(l) * V.*Rl * Rl * B.5 I (Rl+1.B)
D2SQ4 = 2.B * SIB
RETURN
END

C
C DET: 3 X 3 DETERMINANT
C

FUNCTION
DET = A1

1 - A2
2 + A3

RETURN
END

DET(A1,A2,A3,B1,B2,B3,C1,C2,C3)
* (B2*C3 - B3*C2)
* (Bl*C3 - B3*C1)
* (Bl*C2 - B2*C1)
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A40 a
0

AQO So

C22 a2c/aaas

C41 ac/aa

C42 a2c/aa2

CCOS coefficients of Taylor's expansion of cosine function

CJO coefficients of Taylor's expansion of zero order

Besse] function

CQ1 ac/as

CQ2 a2c/as2

CSIN coefficients of Taylor's expansion of sine function

DI resolution of results

F244 a2f/aa2 (Eq.36c)

F2Q4 a2f/aaas

F2QQ a2f/as2 (Eq.36d)

F2X4 a2f/aXaa

F2XQ a2f/aXas (Eq.36b)

F2XX a2f/ax2 (Eq.36a)
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F4 ai/ao. (Eq. 33b)

FQ ai/as (Eq.33c)

FX ai/ax (Eq.33a)

GA y

PI p(I) (Eq.37)

RI I

S22 a2s/ao.as

S41 as/ao.

S42 a2s/ao.2

SA (J'a

SQl as/as

SQ2 a2s/as2

sx (J
x

XG X
0

zo z
0



C
C

CORRECTION TERM FOR NON-TRACKING P(I) ( EQ. 4 B)

CALL SEARCH (i,'INPUT'd,B)
CALL SEARCH (2,'OUTPUT',2,B)

18 FORMAT (4E1B.4)
READ (5.un SX, SD. DI, GA

TCA = 2.9 ,.GA
YX = SX * SX
VD = SD * Sf>
lEND = 18.B I DI

DO JBB I = L IEND
RI = I
RI = -5.B + RI * DI
XO = - YX

P = 3.83171 * EXP(-B.5 ,. (RI*RI + 14.682 IYD»
p = p + 7.B1559 * EXP(-B.5 * (RI*RI + 49.2185/\1D»
p = B.5 * SX * P
DO IBB K = I. 99

D = K
D = 3.83171 + 3.18388E-2 * D

CALL FXO (XO, TGA, D. RI. YX. VD, RIBAR. FXX)
P = P + D * EXP(-B.5* «RI-RIBAR)*<RI-RIBAR)

1 + (XO+VX)*(XO+VX)/YX + O*D/YD» I SQRT(-FXX)
lOB CONTINUE

P = 8.398942 * 3.18389E-2 * P I (SX*YD)
2BB FORMAT (FIB.2. E15.5)

WRITE (6,28B) RI, P
3BB CONTI NUE

CALL SEARCH (4,8.1.9)
CALL SEARCH (4,0,2.9)
CALL EXIT
END

C
C CALCULATIONOF STATIONARVPOINT FOR STEEPEST DESCENTS
C INTEGRATIONOYER X
C

SUBROUTINE FXO(XO. TGA. D. RI, YX. YD. RIBAR. FXX)
DO IBBB L = I, 18B

Xl = XO
RIBAR = TGA * EXP(Xl) * AJ1(D)

C AJI IS FIRST ORDER BESSEL FUNCTIONDIYIDED
C BV ARGUMENT

FX = (RI-RIBAR) * RIBAR - (Xl+YX)/YX
FXX = (RI-2.8*RIBAR)* RIBAR - I.B/YX
XO = Xl - FX I FXX
IF (ABS«XI-XO)/X1) .GT. l.BE-5) GO TO 10BB

RETURN
18BB CONTINUE

PAUSE 1
RETURN
END

165



166

Dl resolution of results

FX af/ax

FXX a2f/ax2

GA y

P gel) (Eq. D1)

RI I

SD o-

sx 0-
X

XO stationary point
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Appendix E

In the final two chapters of this work, experimental results

have been presented for the signal distribution from an optical heter-

odyne receiver which was described briefly in the text of these chapters.

In this appendix the actual receiver that was used is described in more

detail, including design schematics. These are given in Figs. El

through E13 with a few words of explanation below.

Fig. El. Receiver Block Diagram.

In this figure the main functional blocks of the frequency lock

loop, the four signal channels, the photomultiplier tube power dis-

tribution, and the current monitoring circuitry are outlined showing

their interrelationships. The following figures detail the design of

each of these blocks.

Fig. E2. Optics.

The signal is collected by the telescope and mixed with the local

oscillator laser at the surface of a ten per cent reflecting beamsplitter.

Separation of the signal into four channels is begun by the four inde-

pendent steering mirrors and the process is completed by the four

aperture slide plate located in front of the detector boxes. The optics

form an image of the front of the telescope at this slide plate that is

reduced by a factor of 5.3. The virtual apertures at the telescope form

a square 10 cm. on a side with each having a diameter that can be varied

from 0.21 cm. to 5.1 cm.

Fig. E3. Loop Photomultiplier Tube.

The photomultiplier tube anode feeds a tuned circuit centered at

29.5 MHz and with -3dB points at 28.8 MHz and 30.3 MHz. The IF signal,
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taken from a 50 ohm tap on the inductor, is fed into the frequency

discriminator block while the D.C. component of the current is low

pass filtered and fed into the current monitoring circuit.

Fig. E4. Discriminator.

The signal is next fed into an RGH Electronics IF package which

amplifies and then envelope demodulates it. The amplified IF signal

is put through an RGH discriminator package with center frequency at

29.5 MHz and the frequency demodulated signal is sent to the sample

and hold circuitry. The amplitude demodulated signal from the IF

strip is fed into the sample and hold control circuit.

Fig. E5. Sample and Hold Control.

A sample and hold circuit was designed into the system so that

the loop would lock onto its last known value during periods when the

optical signal was blocked by the chopping wheel. The discriminator

output is sampled whenever either 1) the switch in the control circuit

is in the "continuous" mode, or 2) the amplitude demodulated signal

from the IF strip is greater than the comparator threshold with the

switch in the "chopped" mode. In attempting to adjust the comparator

threshold, however, it was discovered that the frequency demodulation

of the IF signal was more sensitive than the amplitude demodulation.

In addition, the tuned circuit at the photomultiplier anode insured

that the peak frequency of the noise spectrum was the same as the lock-on

frequency so that the loop did not drift rapidly during periods of no

signal. The result was that the best performance was obtained by run-

ning the loop in the "continuous" mode.

Fig. E6. Sample and Hold.

The sample and hold circuitry, always sampling in the "continuous"

mode, feeds into a gain of one amplifier which operates in either an
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"inverting" or a "non-inverting" mode. The local oscillator frequency

will be higher or lower than that of the signal depending on the position

of this switch. This makes no practical difference in the operation of

the loop or in the signal channels, however.

Fig. E7. Loop Gain Control.

A two stage amplifier controls the loop gain. The first stage is a

low voltage amplifier with gain continuously variable from 0 to 2.5.

The second stage is capable of 0 to 300 V outputs and has a switchab1e

gain control. Optimum loop performance occurs with this switch in a

gain 100 position which results in an overall loop response of about

one kHz. The loop is locked by manually sweeping the adjustable offset

voltage of the high voltage amplifier stage. The gain control output

is fed into the control electronics of a Spectra Physics' 119 laser

which acts as a voltage controlled oscillator, completing the loop.

Fig. E8. Oscillator.

This circuit generates a 28.5 MHz electrical signal and feeds it

to each of the four signal channels.

Fig. E9. Signal Photomultiplier Tube Box.

In each of the four signal channels the photomultiplier anode

current feeds into a tuned circuit identical to that in the loop

detector. The D.C. component is fed to the monitoring circuit while

the IF component is mixed with the oscillator output. The resultant

lMHz signal is passed to the rectifier through a line driver and trans-

mission cable.
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Fig. EIO. Rectifier.

This is one of the four identical full wave rectifiers that

begin envelope demodulation of the signals.

Fig. Ell. Low Pass Filter.

The final stage of envelope demodulation is accomplished with

an eight pole Bessel filter. The -3dB point of the filter is at 200

kHz.

The final two figures give details of the photomultiplier tube

power distribution and of the metering circuit that was used to monitor

the D.C. anode current through the tubes.
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Appendix F

Since! and! are independent random vectors, we have, from
x y

Eq.(2) of Chapter 6

(F1)

p(! , ! ) = (21T)-N Ic~ ,-t Ic~ ,-t exp( -t ! tc~ -1 t 2)x Y x Y x x x

- -~ ! tc~ -rt )y y y

Changing to polar corrdinates

(F2)

and integrating over the N angular variables yields

21T

p (!) = (21T) -N I C~x ,-1- I c~yI-1- J n. J t.1dS1 .. .~dSN
o

(F3)

be rearranged to give

p(!) = Ic~ I-! Ic~
I
-t~

[
t.. exp(-} C~ ..-It..~)

]x y i=l 1 X11 1

I

21T N N

X (21T)-NJ "'

J dS1...dSN exp
[ -~ f: .L t.i6. (F4)

o 1=1J=l J

-1 -1 ilj

]
I

X (C~.. cosS. cosS. + C~.. sinS. sinS.)x~ 1 J y~ 1 J

-+

Comparison of F4 with Eq.(3), therefore, implies that GN(t.) is defined

by the expression contained within the curly brackets.
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+

Evaluation of GN(~) for the general case is seen to be rather

complex. If all off-diagonal elements of C~ and C~ are zero, however,x y
+

the trivial result is obtained that GN(~) 1 for independent ~. and also,1
+

therefore, that Gl(~) = 1. The probability density function then reduces

to the product of N Rayleigh density functions.

+

Another case that can be evaluated is G2(~). First we make the

observations that C~x12 = C~x2l from symmetry considerations, and that

without loss of generality, we can align the detectors so that they lie

along the line y = x. This last condition allows us to consider the case

where C.6.x C~ so thaty

21T

G2 (it) =~ (
41T2Jo

21T

~de, de2 exp [- C~x12 ~l ~2 COS(e1-e2~

(F5)

where I is the modified Bessel function of order zero.o

For three or more detectors the form of the covariance matrices

depends on the geometry of the receivers and the integration becomes more

complex .

+

In all probability numerical evaluation of GN(~) and of its

derivatives would be necessary in these cases.
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Appendix G

In Eq.(ll) of Chapter 6 it was stated that

(Gl)

which implied that the phase parameter variance and correlation coefficient

are given by

aD,?

(G2)

since, from symmetry considerations, < f'.xl )= < f'.x2 > = o.

Let 0(a) be the phase angle of the signal at the point labeled "a"

in Fig. Gl. The average x-direction component of the tilt across detector

1 can be approximated, in this notation, by

(G3)

so that

(G4)

where D is the detector aperture diameter and D , the structure functions

of phase, is defined by Eq.(G4). In a similar manner,

(G5)

Some algebraic manipulation yields

ab,2 rb, = t{< [0(a)-0(bt)]2) + < [0(at)-0(b)]2 >

< [0(a)-0(b)]2> - < [0(at)-0(bt)]2 >}

(G6)

which, considering the geometry of Fig. Gl, results in
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(G7)

a"2 r" = -Ir vs [(p '+D2+12 p D) 1} -Irvs [cp2+D2_12 p D)t
- t v (p)s

It is helpful at this point to define the characteristic coherence

diameter of the atmosphere by

[ ]
-5/3

ro = 3.31 z V(z)
(G8)

where V(z) is the total wave structure function. For the cases of plane

and spherical wave propagation, this is given by

-6/5 -3/5 -6/5
r =1.73 k L Cn
o -6/5 -3/5 -6/5

= 3.11 k . L Cn

(plane wave) (G9)

(spherical wave)

where k is the wavenumber of the signal, L is the propagation distance,

and C 2 is the structure constant of refractive index fluctuations.
n

The assumption that V (z) ~ V(z) is a very good approximation fors

near field applications3 (D» 12~L/k) and also under conditions of

saturated amplitude fluctuations.29 Since, even when these conditions

are not met, this approximation overestimates phase fluctuations by no

more than a factor of two, it will be used here. This leads to

for spherical or plane wave propagation.
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