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ABSTRACT

This work presents results pertinent to the study of
spatial diversity as a means for partially overcoming the
deleterious effects of the clear—air turbulent atmosphere
on direct detection and heterodyne optical communication
systems. For photon counting receilvers, an averaged thres-
hold receiver is presented, which is seen to be simpler to
implement and to provide consistantly lower bit error rates
than optimized memoryiess receivers. The heterodyne results
include the introduction of a partial tracking heterodyne
array; a discussion, both theoretical and experimental, of
IF signal magnitude probability distributions for static
heterodyne arrays; and a theoretical treatment of the prob-
ability distriltion for a single heterodyne element with

angle—-of~arrival tracking.
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1. INTRODUCTION

The concept of using optical beams for communications
through the atmosphere is not a new one. As early as 458
B.C.E., the Greek Playwrite Aeschylus described how news of
the defeat of Troy was returned to Argos by a relay system

of beacon fires.!

From this rather crude beginning, sophis-
ticated systems have been developed, with lasers being used

in place of bonfires and complex photoelectric devices in

place of the eyes of Greek slaves. This work is an investi-
gation into certain aspects of refinements in these detectors,
based on improved understanding of the effects of the clear-air
turbulent atmosphere on optical propagation.

In 1905, Einstein proposed that, while light behaves as
an electromagnetic wave 1n some respects, in other cases it
behaves like a particle.? 1In one view, the most fundamental
detection process involves counting the individual photons,
or particles of the received signal. 1In the other view, the
received wave can be amplified by heterodyning, or mixing it

with a strong optical wave generated in the receiver structure.

Both of these detection processes will be considered here.



The optical signal reaching a detector, however, can be
severely distorted by propagation through the atmosphere.3’“
Although fog, rain, snow, dust, atmospheric molecules, and
turbulence all can contribute to this distortion, the effects
of turbulence are probably the most pervasive, due to the
relatively minor contribution of molecular scattering and to
the intermittent nature of particulate scattering. Concen-
trating on the effects of turbulence, one finds that the
instantaneous distortion varies from point to point in the
detecticon plane. This leads to the concept of spatial diver-
sity. By judiciously combining the signals from several photon
counting or hetercdyne detectors, one can partially overcome
the deleterious effects of atmospheric turbulence.

The investigation of what is meant by "judiciously com-
bining the signals" is, in general, a four step process
consisting of the following stages of development:

1) evaluation of the probability distribution of the

signals to be combined,

2) evaluation of optimum ''memoryless' combining structure

and resulting bit error rate,

3) evaluation of simplified ''memoryless' structures and
associated bit erxror rates,

4) evaluation of systems with memory - structures and

bit error rates,



where a system with memory is one which uses information from
previous bits to evaluate the present one. It should be noted
that, in discussing bit error rates, the topic of interest has
been limited to digital communication systems.

For the case of photon counting elements, the theory of
the first three steps of this process has been developed by
Teich, et. al.?”8 The final stage is covered in Chapter 2 of
this work.

The heterodyne case is complicated by a number of possible
receivey configurations, which must be considered separately.
The first choice to be made is whether to combine the signals
after IF demodulation or before. For the former case, the
probability distribution of the IF signal magnitudes must be
evaluated in step 1. The latter requires knowledge of the
magnitude and phase statistics of the IF signals and will not
be considered in this work. The second choice is whether to
track angle-of-arrival fluctuations at each array element, to
track the average instantaneous angle-of-arrival over the
array, or to employ no tracking at all. The second configur-
ation is introduced in Chapter 3 of this work, and compared,
in terms of total array SNR, with the other two previously
presented receiver types.

In Chapters 4 through 6 of this work, the investigation
of signal combining structures for these six heterodyne receiver
configurations is begun. What has been accomplished is pre-

sented in Table I.



pre demodulation post demodulation
combining combining
[ i
non step 1
tracking
independent fading theory - Chap. 4
independent fading experimental — Chap. 5
correlated fading theory and
experiment - Chap. 6
partial
tracking
full step 1
tracking
independent fading theory - Chap. &

Table I. Status of diversity heterodyne investigation.



AVERAGED THRESHOLD RECEIVER FOR DIRECT DETECTION OF OPTICAL

COMMUNICATIONS THROUGH THE LOGNORMAL. ATMOSPHERIC CHANNEL

I. Introduction

Several authors’»? have looked at the problem of developing
efficient, practical, diversity receivers for direct detection of low
power optical communication signals. In this chapter, a different
receiver structure is developed that is simpler to implement than
either the optimum or the maxrimum a pesteriori (MAP) receivers
developed by Teich and Rosenberg; it is seen to result in a lower bit
error rate than these previous receivers under a wide range of con-
ditions.

A block diagram of the general system under consideration is
given in Figure 2.1. The signal toc the receiver will be assumed to
come from an array of high gain, photon counting detectors, so that
sliot noise and background radiation are the major sources of noise
introduced in the detection process.!0>!1 The optical field at each
detector consists of the signal after fading caused by the atmosphere
plus an independent additive compounent due to background radiation.10sE1

Several assumptions have been made in order to reduce the number
of parameters to a manageable level. These have been chosen, however,
so that the results will be applicable to most practical systems.
Independent fading at each detector in the array is assumed for the
most efficient use of low signal levels.® Under usual conditions,
the background radiation, due to band-limited Gaussian thermal sources,
can be considered to be a constant additive intensity at each detector,>»12

The transmitter is assumed to be of constant intensity; for most prac-

tical systems, the sampling rate imposed by modulation will be unable



MESSAGE MESSAGE

J, T

ENCODER DECODER

RECEIVER
TRANSMITTER

. CHANNEL _ DETECTOR
ARRAY
Fig. 2.1. Block diagram of general optical communication system. Specific receiver

structures will be examined for channels through the clear—air turbulent
atmosphere.
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to resolve source intensity fluctuations,® justifying this assumption.
For simplicity, only symmetric, binary, pulse-code modulation is con-—
sidered, with bit rates faster than atmospheric fluctuations (~ 500 Hz). "
In Section 2.II, those characteristics of the signal, the channel,

and the detection process pertinent to the receiver structure are de-
scribed in detail. Secticn 2.111 is a review of the approximate optimum
and MAP receivers, along with a derivation of the new averaged threshold
receiver and a limit to its applicability. Section 2.IV compares bit
error rates of these three receivers for various combinations of turbul-
ence strength, background radiation level, signal to noise ratio,

number of diversity channels, and number of bits used for threshold

averaging.

IT. General System Considerations
The effects of turbulence on the signal are described by the nor-
malized fading parameter, defined as Z = I%/IS;3 where Ig is the instant-

aneous optical signal intensity at a point in the receiver plane, and

IS is the intensity that would be present at that point in the absence

of turbulence. Based on both experimental and theoretical evidence,3» 13
Z is considered to be a lognormal random variable, with probability
density function:
2
1 (ln(z) * % 62)
p(Z) = —E— exp | - ; (1)
2oz 20
2

where 6- is the normalized log-intensity variance. Scattering and
absorption by the atmosphere are neglected except for a possible

uniform reduction of the signal strength reaching the receiver plane.



In addition to the received signal ZT a uniform (unresolved)

S)
background illumination of intensity IB may be present so that,

at a point in the receiver plane, the optical intensity is given

by:
I = ZIS + IB if 1 is sent (2a)
I=1, if 0 is sent (2b)
Note that, for simplicity, IS, IB’ and 0% are assumed to be the

same at all detectors in the array.

An array of D photon counting detectors is mounted in the
receiver plane. The relative performance of receivers using 1, 2,
and 4 channel spatial diversity detector arrays will be explored
in Section 2.IV. The detectors in the array are assumed to be
spaced so that the fading at each detector is independent of that
at any other. This is an easy condition to meet in practice.
Eliminating non-zero correlation between adjacent detectors im-

proves bit error rates,?®

and, by decoupling necessary calculations,
also results in simplified receiver structures.’

In order to easily find the integrated intensity over each
detector area and over the period of each bit, it is assumed that
1) the area of each detector is smaller than the coherence area of
the fading, and 2) the duration of each bit is shorter than the
coherence time. Actually, these conditions are not rigorously
required in practice. If Z is replaced by its average value over

the detector area and bit period, then this new random variable

retains much of the log-normal characteristic.?i™ This averaged



value of Z obviously satisfies the conditions of limited spatial

and temporal coherence just described. Note, however, that the log-
intensity variance, 62, pust then be calculated differently.3>13
The number of photoelectrons emitted during a time T from a

photocathode of area A is a Poisson random variablel!® described

by the conditional density function:
1 -W
pnfwy == W e (3)
In this expression W, the integrated rate parameter, is defined as:

_n > >
W o= mefA I(¥,t) dr dt (4)

where n is the quantum efficiency of the photocathode, h is Planck's
constant, v 1s the frequency of the signal, and I(;,t) is the irradi-
ance at ?, at time t. Using the assumptions of limited spatial and
temporal coherence of the fading, the integration reduces to multi-

plication by T and A so that W is given by:

]

W ZNS + NB if 1 is sent (5a)

W= Ny if 0 is sent (5b)

Here N_ is defined as (n/hv) AT I

B and is equal to the mean number

B
of photocounts due to background radiation, and similarly,

NS = (n/hv) AT IS is the mean photocount due to signal intensity.
It has been assumed that individual photoelectrons can be resolved
and counted.

If Hl is the hypothesis that a one was sent {signal is present)

and Ho is the hypothesis that a zero was sent {(no signal), then the



10

receiver, for an array of D independent detectors with independent
fading, must choose between HO and Hl. The decision is based on
.

n, which is a D-dimensional vector having components n. giving the

photocount from each detector and having the following conditional

density functions:

> D D 1 Py

p(n[Hy) = ;1 pn [R) = [ = () © exp (-Np) (6a)

i=1 i=1 1
or

p@[H) = 7 pln [H)
i=1 (65)
_D 7 2y
H H[‘ (z Ng + N ) Y exp(-Z L ) p(Z ) dZ

An approximation, for log-normal p(Zi), has been applied to this
integral by Diament and Teich® and by Teich and Rosenberg.7
Using the method of steepest descents, they find that:

p(ni/Hl) =

— + - -
ni! (ZiONS NB) exp ( ZioNS NB) exp o

. n, —(1n(zio) + %02)2 \

n,N 1/2
l+022 N 1 - i B 7
1 J
jo s <ZioNS + RB)

(7a)
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>
where the D-dimensional vector ZO is found from the condition that:

(7b)

n,Z, N ln(Zio) + % o2

———— - Z, N, - =0 for i=1, 2, ...D
+ i

ZioNS NB io S 52

IIT. Receiver Structures

The purpose of the recelver processor is to decide between HO
and Hl’ and, based on a simple Bayes criterion calculation, it can
be shown that this decision should be made according to the likeldi-
hood ratio test in order to minimize the total probability of error.i®
In this test, the function L is defined as:

N p(n|H))
L(n) = 1In ‘p—mﬂo) (8)

-5
and Hl (HO) is chosen for L(K) > (<) 0. In the event that L{(n) = 0,
either H1 or HO can be chosen at random without affecting the total

probability of error. This type of receiver results in a total pro-

bability of error given by:
P(E) = %{%(L < olHl) + P(L > OYHO)] (9)

A. Optimum Processor
Based on the exact photocount density functions (6a,b),
the lowest probability of error is seen to result from the like-

lihood function:

n

L= 2o

i=1

|

D @
ZN n,
+ 1 exp<;ZNS> p(Z) 4z (10)

= 0 B

i
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However, this implies a degree of signal processing that may
be difficult to achieve in many real-time situations. If the
steepest descents approximation to p(KJHl) is used instead of
the exact expression, the processor no longer needs to evaluate
the integrals in (10), and this results in a simplified likeli-

hood function given by:

D 1 2
Z. N <an + —-02>
_ io 'S io 2
L= E niln ( + l) ZioNS

N
B 2
i=1 20
(11)
n N
1 2 _ i B
5 In| 1 + ¢ ZioNS 1 7 N+ N\2
io S B

with the Zio points found from the set of equations (7b). A block
diagram of this receiver, given in Figure 2.2, shows that it is still
a falrly complicated structure, requiring independent measurement of
62 in addition to a priori knowledge of N_ and N_.

S B
B. MAP Processor

A simpler processor structure than the approximate optimum
described above would have several advantages. Speed and reliability
generally increase as complexity decreases and, at the same time, the
cost of the system tends to decrease. One obvious simplification is
to assume that an estimate of the fading can be used as if the fading
were known exactly; then the likelihocod function reduces to:

D ~
ZiNS
i

- -
p(niz,H) B

>
p(ng,Hl)
L=1In ——m =

+ 1 |-Z.N (12)
i

S
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~

where Zi is the receiver estimate of the fading at the i'th detector.
In the MAP receiver as described by Van Trees,!® the ii are given by
those values which maximize the o postertori probability of the fading
at each detector, given that n, photocounts were received at that
detector. 1In other words, the ii are found from the condition that:
3 ,
3.7:_.-(13(zi|ni)) . =0 4i=1, 2, ...D (13)
i Zi = Zi
which is easily seen to reduce to the condition that equation(7b) be
satisfied for Zio = ii' In this approximation, the receiver struc-
ture has been simplified, as shown in Figure 2.3, even though the
same inputs are still required.
C. Averaged Threshold Processor
The performance of the receivers described so far will
remain constant whether the message consists of long strings of data
or of a single bit. 1In practice, however, single bit messages are
rare and a large number of bits will be received, in many appli-
cations, while the fading remains essentially constant. Where this

holds, the signal can be averaged over several bits, and the Zi can

then be found from the extended MAP condition:

5%"(p(zi|ﬁi)) =0 i=1,2, ...D (14)
i z

N
ﬁ.=% Zn_. 1i=1, 2, ...D (15)
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Note that, once the data rate has been specified, the number of
averaging bits must be chosen carefully. It must be large enough

that, with high probability, the number tc 'ones' seen and the

1
number of ""zeros' seen are each very close of EN and, at the same

time, it must be small enough that the fading changes very little
during N bits. These factors will be explored in greater depth
below. Assuming, however, that N has been judiciously chosen,

equation (14) is easily reduced to the condition that:

. . L
Nn.Z N In(z.) + =02
-~ 2
315 1y - i 2 _y (16)
2 "“4%s )
+ 2NB o}

ZiNS

As N becomes large, the first two terms in equation (16) domi-

nate, and the expression approaches the asymptotic form:

— l ~
0, - ZiNS - NB =0 17)

Using thils approximation in the likelihood function of equation(12)
results in a simplified function given by:

2n

i P
= —_— - \
L ny 1n NB 1 Zni + 2hB (18)

It can be seen from the block diagram, Figure 2.4, that when com-

pared to 'single bit' receivers, this is a very simple processor,

2

since measurement of ¢“ has been replaced by the more direct measure-

ment of the Ei and knowledge of N_. is no longer necessary.

S
While the averaged threshold receilver, described by equation (18),

can be used in a great many practical applications, there certainly

exist situations in which it is not applicable, since it was assumed
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in the derivation that each Zi is constant during the time that N
bits are received. 1If "constant' is taken to mean that the fluc-
tuations in the fading should be much less than the uncertainty in
the receiver estimate of the fading, this assumption can be trans-
formed into an upper bound on the number of averaging bits. In
particular, 1t is shown in Appendix A that the condition:

N << 0.546 NB1/3 OL)s/1e 101/9 (FS*ETJMS(% Ng + Ny + e62N82>

(19)

must be satisfied, where YAL is the Fresnel zone size, lO is the
inner scale of turbulence, R is the data rate, and VL is the compo-
nent of wind velocity perpendicular to the path.
IV. Bit Error Rates

The total probability of error for these receivers has been
calculated for a variety of parameter values, and is presented as
a function of signal to noise ratio in Figures 2.5 through 2.15
where signal to noise ratio is defined by vy = NS/NB. In the
absence of turbulence (62 = 0), all of the receivers here reduce
to the same structure. Curves for this structure have been cal-
culated for comparison and are designated by 0.

The MAP and approximate optimum curves are denoted by 1 and 2
respectively. 1In Figures 2.5 through 2.9, they were obtained from

Reference 8 and, in Figures 2.10 through 2.15, they were calculated

. . -
using the steepest descents approximation to pl(n).
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The curves denoted by 3 are values for the averaged thres-
hold processor with infinite threshold averaging. In other words,
the value of P(E) reported in curve 3 for amny set of parameters is
found by taking the 1limit as N goes to infinity of P(E) for the
averaged threshold processor with N bit averaging. For the two
and four channel diversity cases, the Hermite approximation17 to
the integral over p(g) was used.

In case of finite averaging, the extended MAP receiver of
equations (14) and (15) turned out to result in a greater prob-
ability of error than the simpler averaged threshold receiver of
equation (18) and Figure 2.4; for this reason, the former was
ignored and the latter was included with 10 bit {curves 4) and 25
bit (curves 5) averaging. The Central Limit Theorem was used here
in assuming that the conditional density of Bi’ given Zi and the
number of 'ones' received, is approximately Gaussian. Numerical
calculations of these curves for the four channel diversity cases
turned out to be prohibitively complex. The manner in which
finite averaging receivers approach the limiting case with in-
creasing N appears, however, to be relatively dnsensitive to
whether D = 1 or D = 2, and one would not expect from this that
it would be greatly different for D = 4.

The main conclusion to be drawn from the graphs is that the
infinite averaged threshold receiver results in lower bit error
rates than either the MAP or the approximate optimum in all cases

reported here. Moreover, these bit error rates can be very closely
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approximated by realizable finite averages. 1In cases where D NB
= 4, for example, it was found that N ® 25/02 gives P(E) values
within 20% of the limiting values at Y = 20. For lower Y, con-
vergence is even faster and, while increasing D NB to 40 decreases
the rate of convergence, the decrease is slight.

If the inequality of Appendix A is not rigorously satisfied,
the performance of the averaged threshold receiver will be degraded
somewhat. This effect is of great practical importance and deserves
further investigation; it is, however, beyond the scope of this work.

The following caption is an explanation of Figures 2.5 - 2.15:

Figs. 2.5-2.15: Total probability of error, P(E), vs. SNR, Y, for
various receiver structures. For each combination
of background radiation level, Ng, number of diver-
sity channels, D, and log-intensity standard devi-
ation, o, P(E) curves are denoted by:

0 for g =0

1 for MAP rvreceiver

2 for approximate optimum receiver

3 for infinite averaged threshold receiver
4 for 10 bit averaged threshold receiver

5 for 25 bit averaged threshold receiver
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P(E)

Fig. 2.7 N =4,D=1, c = 0.5
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PARTTAL TRACKING OPTICAL HETERODYNE ARRAYS
I. INTRODUCTION

The deleterious effects of atmospheric turbulence on optical
heterodyne detection systems have been studied extensively using
the average antenna gain, or SNR, as a measure of system perfor-

mance . 18720

In an attempt to improve the performance, a tracking
receiver has been proposed, in which the average tilt of the in-
coming wavefront 1s effectively cancelled by the action of a servo-

mechanism. 20723

Another technique to increase the gain 1s to use
an N-element array instead of a single collector aperture. This
chapter concerns a hybridization of these two techniques; a partial
tracking array, in which the average tilt across the entire array
is cancelled using a single tracking system.

In Section 3.1I, the gain is derived for a tracking heterodyne
receiver whose aperture is contained within that of the tracking
system. This will be called a partial tracking element to dis-
tinguish i1t from the case where the receiver aperture and the
tracking system aperture are identical, called a full tracking
element. Adding identical array elements then allows comparison
of partial tracking arrays with those consisting of nontracking
and of full tracking elements. It is shown that the most effective
method of increasing the array gain is by increasing the array size
in far field applications, and by adding either partial or full
tracking in near field applications. Although full tracking results

in a greater improvement, it may be difficult to implement for an
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array. Partial tracking, on the other hand, can be accomplished
by simply steering either the signal beam or the local oscillator.
Finally, the well-known similarities between optical heter-

2252% are vecalled and

odyne receiver gain and optical resolution
applied to the partial tracking results. This is shown to give
the explicit dependence of resolution and of the atmospheric modu-
lation transfer function (MTF) on exposure time.
1I. THEORETICAL BACKGROUND

The basic expression for the average antenna gain, <G>, of a

single circular receiver aperture can be obtained from Ref. 20,

and is given by
_ -2 - > - - -+ n =
<G> <a D fj‘dxl dx2 W(xl) W(X2> exp[Q(xl) z(xz)]

x cos{l6(x) -a - %] - [6(x) -a - %,1}> (1)

->
where D 1s the aperture diameter, x is a two-dimensional position

vector in the receiver plane, W is the transmittance function of

the receiver aperture (W =1 therefore, inside a circle of dia-
eter D and W = 0 elsewhere), 2 is the logarithm of the turbulence
induced singal amplitude perturbations (normalized by the mean

signal amplitude), ¢ is the magnitude of the turbulence induced

phase perturbations, and a is the corrective tilt introduced by

the tracking system. The quantity a is a constant of proportionality
that can be arbitrarily set in order to compare various receivers.

In the results of Sectiom 3.ITI, it will be set equal to (A/nro)z

where ro'is a measure of the tramnsverse coherence length of the
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received field. Details of the calculation of r, have been reported
for plane wave propagation,18 and these can be extended to spherical
wave propagation by multiplying by (8/3)3/5, (Ref. 23).

Since the distribution of [2(;1) + 2(;2)] is independent of the
distribution of {[¢(§l) - a . ;l] - [¢(§2) - ;2]} and since inter-

gration commutes with ensemble averaging, Eq. (1) becomes?0

_ > > > - N
<G> = a D 2.rJ.dxl dx, W(xl) W(xz) <exp[2(xl) + Q(Xz)]>

x <cos{lo(%,) -4 - X1 - [66GE) -4 - %)} (@)

N
The assumption of Gaussian 2(x) and some manipulation allows the

first ensemble average to be rewritten asl8
-> -
<exp{e(xy) + 2(x,)]> = exp[- 1/2 D (0)] (3)
where p = |§l - izl and the log-amplitude structure function DE(O)

is defined as <[£(§l) - 2(;2)]2>-

Evaluation of the second ensemble average depends on three Lemmas
first presented in Ref. 23, and on using the exponential represen-—
tation for the cosine function. Without duplicating this development,

we will note the result that

<cos floGx) -3+ %) - [8(x,) -a - x,1}>

2 (4)

= exp{~ 1/2 [D, () - 1/2 <3 - 3>p?]}
where D (p), the phase structure function is defined as

:
Lo - 6(x,)1%.
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The second of the three Lemmas used in Eq. (4), which states that
bd > — .\ , ,

the distribution of ¢(x) - a-x is independent of the distribution
of g, must be viewed as an approximation. While it is an excellent
approximation for the cases of spherical and plane wave propagation
considered in this work, it should be noted that significant errors
develop if it is applied to Gaussian beam wave propagation through
strong turbulence.?2®

It has been shown that??

(5)
1
G =8 [uau[2u - 803) (A - u)! 2 - 4 cos~lu] D, (0w

2
DT 0o

where DT is the diameter of the circular aperture over which the
tracking system matches the signal wavefront and is not necessarily
the same as the signal aperture diameter. The phase structure

function, a rather complicated function of D_u, reduces to manage-

T
able form in two limiting cases.3 In the extreme far field, DT’
and therefore DTU’ is much less than the Fresmel zone size VAL and
5/3
we have D¢(D u) ® 3.44 (DTu/ro) / . Where DT >> ¥AL, one can assume
T

that DTu is also much larger than vAL over most of the range of
integration so that D¢(DTu) ~ 6.88 (DTu/r0)5/3_ Eq. (5) can then be
evaluated for these two cases, resulting in

<a - a>» ¥ 6.88 10'5/3 DT_1/3 (far field) (62)

<a - a>~72%x6.88 ro_5/3 DT-1/3 (near field) (6b)
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Making use of the wave structure function D(p), which is equal

to Dg(p) + D¢(o) and is given by D(p) = 6.88 (p/r0)5/3 independent

18

of near field/far field considerations,'® we see that

. -
<G> = o072 [fax, dx, WE) WG {exp -3.44 (o/1 )%/

x [1 - cle/)/31} (7

where C = 1 4in the near field and C = 1/2 in the far field.

This can be simplified to20

<G> = %é-(D/ro)z.f: u du [cos_1 u - u(l —u2)1/2]
X exp [-3-44 (D/ro)s/3 uS/3 (1 - C(uD/DT)1/3)] (8)

which must be evaluated numerically.
The development of Eq. (8) is based on a circular tracking

aperture, so that <,aX,2> = <,ay]2> and

<|ax|2> px2 * <Iayl2> py2 - %'<Z - @ el (9)

which is used to arrive at Eq. (4). The result can be modified to

include a rectangular tracking aperture of dimensions £ by h by

expanding the phase front across the aperture and finding the rms

fluctuations of the coefficients in the same manner as for circular

22

apertures. This results in

<la_|2> = -72 (6.88 c r "5/3)£-1/3
x o

1/2
x JIIT dxydxydyidy,xyx, [(x) - %02 + 7 (y, - v,) 7578
-1/2

~O

(10a)
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<fay|?> = -72 (6.88 ¢ x_T5/3)(¢>/3/ 1)

1/2 - 2
x SIS dxjaxgpdyidysyyye [0 = x3)2 +h~2 (yy - yp)2]5/6  (10a)
-1/2 4

Numerical integration results in

- h
<la |?> ~ 6.88 c ¢ 75/3 £71/3 [1 + .107 (1 -7 )] (11a)

2. ~ ~5/3 £-1/3 [ h
<lag|?> ~ 688 C /3 |1+ 205 1 'Z)] (11b)

where it has been assumed that £ 2 h. The errors in Eq. (11) are on
the order of 5% or less.

Comparison of Eq. (11) with Eq. (6) implies that <Z - Z> is the
same whether the tilt is averaged over an £ by h square or over a
cirecle inscribed inside that square. This is not true however. A
more precise analysis shows that one should multiply the right hand
side of Eq. (6) by 1.026 and of Eq. (11) by .97 so that, as one would
expect, a larger averaging area results in a smaller amount of fluctu-
ations. Since the amount of smoothing added by the corners of the
square 1is so small, however, both of these numerical coefficients were
set equal to one for simplicity.

Note that for a square tracking aperture of dimension L =h=0D,
identical to the signal aperture, <|ax'2> = <|ay]2>, and the wave-
front tllt is tracked exactly in both dimensions. For £ > h = D,

Eq. (11) shows that both <,ax|2 and <‘ay|2> are reduced and the wave-
front tilt over the signal aperture is not tracked exactly in either
axls. Although the y compounent of tilt is tracked better than the x

component, the difference is relatively small, and the effectiveness



38

of tracking along both axes is primarily determined by the longest
dimension, %, which determines the amount of decorrelation in both
tilt axes.

Using Egs. (9) and (11) in the simplification of Eq. (2) re-

sults 1in
<G> = %? (D/ro)%jglu du [}os"l u-u (1l - uz)l/%
* exp {j 3.44 (D/r0)5/3 u5/3|:1 ~ c(uD/&)y/3 (1 + .2 (1 -%)ﬂ
a
x I [.32 C (D/ro)5/3 (D/ia)l/3 u? ( _Z)J (12)

where IO is the modified Bessel function of order zero.

It should be mentioned at this point that the development above
is based on a Kolmogorov spectrum of index-~of-refraction fluctu-
ations and 1gnores inner scale and outer scale effects. The results,
therefore, should be suspect for both very short and very long prop-
agation path lengths. The specific range of validity and the magni-

tude of the corresponding errors in D, have been investigated by

¢
Lutomirski and Yura.Z2®
I1I. RESULTS

The value of <G> from Eq. (8) has been plotted against the
normalized aperture diameter D/r0 with the dependence on the ratio
DT/D shown parametrically. These curves are presented in Figs. 3.1
and 3.2 for near and far field conditions, respectively. Tracking

over an infinite aperture is, as one might expect, equivalent to no

tracking at all and this curve agrees with previously reported values. 820
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©) 6-

Fig. 3.1.

D/r,

Graph of average antenna gain <G> vs. normalized
aperture D/ro for near field applications. Dependence
on normalized tracking diameter DT/D is shown para-
metrically and the dashed line gives the free space

value for reference.
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Fig. 3.2.

Same as Fig. 3.l_for_far_field applications.
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It is easily seen from these results, and in fact from Eq. (8) directly,
that moving from the mnear field to the far field is equivalent to a
factor of eight increase in the ratio of DT to D. Partial tracking,
therefore, more nearly approximates full tracking performance in the
far field, even though tracking results in a greater improvement
over non tracking in the near fileld.

Fig. 3.3 is a graph of <G> vs. number of diversity channels
for an array consisting of N identical apertures, each with D = 3.4 r -
Using the well-known properties of the expected value operator, it is

easy to see that

N N (13)

<G> =< £ G>= ¥ <G,>
i=2 i1 7t

It should be noted that G is proportional to signal power so that

Eq. (13) assumes that the IF currents are square-law demodulated and
then added. 1In the partial tracking case, DT was taken to be the
diameter of the smallest circle that encloses N packed circles of
diameter D. In the near field, the addition of partial tracking is
roughly equivalent to doubling the array size, with full tracking
equal to about a factor of four increase, and it is probably most
reasonable to use small tracking arrays. In the far field, however,
full tracking results in only about 2 dB improvement over non tracking
and 1/2 dB or less over partial tracking. One would expect, then, to
find larger arrays with non tracking elements. Even where tracking is
desirable for some other reason (where one or both terminals of a

communications link are in motion, for example), a full tracking

antenna array can hardly be justified.
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©)

Fig. 3.3.

42

Graph of average antemnna gain <G> vs. number of
array elements N for full (F), partial (P), and
non (N) tracking antenna arrays. Solid lines

give near field and dashed lines far field results.

D/rO = 3,4,
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It 1s tempting to reinterpret Eq.(8) in terms of parameters
pertinent to optical resolutlon studies. By comparison with the
results of Ref. 23, it is seen that the resolution R, defined as
the integral over all spatial frequencies of the system's ensemble-
average MTF divided by the limit of this integral as D » «, is
given by Eg. (8) if DT or Eq. (12) if £ and 7 can be interpreted
in terms of the exposure time. Using Taylor's frozen turbulence

hypothesis,“

one can argue that an aperture of diameter D, exposed
for a time v, 1is sampling the tilt over an effective aperture of
dimensions D by D + VLT, where Vi is the wind velocity component
perpendicular to the path. Fig. 3.4, therefore, is a plot of Eq.(12)

with h = D and £ = D + Vit for several values of VLT in the near

field. The two limiting cases are identical to previously reported
results.?3

By analogy with Refs. 23 and 24, the exposure time dependent

form of the atmospheric MTF is given by

MTF(£) = exp <~3.44 (ARf/ro)5/3 (14)

_ 1/3 /3 fy o o
1 - C(ARf) (D+VLT) / L+ .2 e

X
<
s
'_
\_/

X

10[32 C (ARF)2 ro‘5/3 (D + vlT)—u/a VN:I

where A is the optical wavelength, R is the focal length of the
imaging lens, and f is the spatial frequency of interest. Multi-
plying this equation by the MTF of the imaging optics results in

the total system MTF.23 TFor this reason, Eq.(14) was called the
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Fig. 3.4. Graph of resolution R vs. D/r0 for near field applications.
Dependence on effective exposure time VLT is shown

parametrically.



atmospheric MTF despite its dependence on the imaging lens para-

meters R and D.
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SIGNAL CURRENT PROBABILITY DISTRIBUTION FOR OPTICAL HETERODYNE

RECEIVERS IN THE TURBULENT ATMOSPHERE. 1: THEORY

I. INTRODUCTION

The performance of an optical heterodyne detection system can
be severely degraded by the presence of atmospherie turbulence, which
results in random fluctuations in the phase and amplitude of a co-
herent optical signal. For each optical wavelength and set of propa-
gation conditions, these fluctuations limit the achievable average
antenna gain (i.e., signal-to-noise ratio) to a value equal to the
free space gain at some effective aperture diameter, ro.ls’Lg’ll
If the actual aperture diameter is less than ro, the average antenna
gain is only slightly less than the free space value for that aperture
while, for diameters larger than LR the gain asymptotically approaches
the limiting value.

Depending on the ratic of the actual aperture diameter to ro, a
significant fraction of the phase front distortion that causes reduct-
ion of the signal can be represented by an average tilt of the incoming

22

wavefront across the aperture. For this reason, a tracking heter-

odyne receiver has been proposed?!,22 in which the random tilts of the
signal are eliminated by the action of a servomechanism. TIn extreme

near-field applications (i.e., D >> the Fresnel zone size, YAL), this

results in an average antenna gain that is greater than that of the
non-tracking (static) receiver at all diameters, and that increases

with aperture size until the diameter reaches about 3.4 r0,20321
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where the gain is about 4.3 times that of the static case.23 1In
far-field applications, the increase in antenna gain with the addition
of tracking is less dramatic, although it is still noticeable.
Because of this limitation on the total useful signal power
that can be collected by a signal aperture, spatial diversity re-
ception becomes an important technique for overcoming the deleter-
ious effects of turbulence. A diversity receiver could either
combine the IF signals from several collecting apertures directly,
or combine the signals after demodulation. 1In order to find
optimum combining procedures to most effectively utilize this
technique, however, the pertinent density functions of the signal
need to be known (as has been demonstrated in diversity reception
by photon counting elements).’ To optimize combination after de-
modulation, the density function of the magnitude of the IF signal
is necessary and will be explored here. The statistics of the phase
of the IF signal are important if combination is done before demod-
ulation. This case will not be treated in this work.

As a first step toward the consideration of optimum diversity
reception, approximate expressions are derived for the probability
density functions of the IF signal magnitudes from both static and
tracking optical heterocdyne receivers operating in the far-field
of the receiver. Following Ref. 22, the phase front is expanded
in a finite series of orthonormal polynomials over the aperture

area, and the mean signal currents are found as functions of the
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instantaneocus fading parameters. Then, in Sections 4.II1 and 4.1V
the approximate density functions, considering shot noise, log-
amplitude fluctuations, and phase front distortion, are developed
using a steepest descents integration. In Section 4.V, numerical
results are given for several combinations of log-amplitude vari-
ance and the ratio D/ro. In the next chapter, experimental results
are presented showing that, for the static receiver, the approxi-
mation is a reasonable one.
IT. SIENAL CURRENTS

The lensless optical heterodyne receiver diagrammed in Fig. 4.1
will be considered here since, from photocurrent considerations,
this configuration is equivalent to the more practical one utilizing
a converging lens and a smaller detector area.!® The two-dimensional
vector x denotes a position in the detector plane, where the orgin of
the coordinate system is the center of the aperture, imaged on the
photodetector surface. The aperture itself is assumed to be a circle
of diameter D, so that its transmission function is given by

N 1, if x| < 1/2 D
() = N &b
0, if |x| > 1/2 D
The local oscillator wave will be assumed to be a uniform

amplitude, plane wave, described by
—
Eo(x) = EO = Ao exp [l(Zﬂth + ¢O)] (2)
where AO, fo» and ¢o are the oscillator amplitude, frequency, and

phase. Similarly, the signal will be assumed to be an initially
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Fig. 4.1. Block diagram of a gemneralized optical heterodyne

receiver.
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uniform plane wave which is distorted by propagation through atmos-
pheric turbulence resulting in a wave at the receiver that may be
described by

E(X) = A_(X) exp [i(ZﬂfSt + ¢S<§€))J (3)
where AS(;), fS, and ¢S(§) are the amplitude, frequency, and phase
of the received signal wavefront. Both As(z) and ¢s(;) are time
varying statistical quantities. In the following development, the
appropriate statistical description of relevant quantities related
to As(z) and ¢S(;) are introduced as required.

For a photodetector with quantum efficiency n, the total photo-

current is given by

i = %fd;? W n [ESG?) + EO}* [ES(Z) + EO] (4)

In a well designed optical heterodyune system, the probability
that A will be much larger than A_ will be high so that the A7

term can be dropped, and Eq. (4) reduces to

i = n(r/8)D?A 2 +nA_ f& W(x) AS&) cos [ZwAft + ¢S(§) ‘%J
(5)
Here, the second term, oscillating at the beat frequency,
Af = fs - fo, is the instantaneous signal current is.
In extreme far-field applications the normalized covariance
function of the log-amplitude bX(D) is very nearly equal to one."
Therefore, AS(;) can be considered to be constant over the aperture

area and can be replaced by Z Xs’ where X; is the signal that would

be present in the absence of turbulence and the normalized fading
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parameter Z is defined by this substitution. The instantaneous

signal current can then be represented by

is = nAOXSz deZ w(?z) cos [znAfc - ¢O + ¢s(§')] (6)

Since most interesting applications will be in the far-field, this
condition is not overly restrictive.

For large Ao’ the first term in Eq. (5) is the average photo-
current, and the shot noise associated with this current 1s the

only source of detector nolse that needs to be considered. 0,11t

The rms noise current, therefore, is given by
1
{ = (2ieB)M/? = (neB)}/2 Spa_ 7
n
where e is the electronic charge and B is the system bandwidth.

The development below will deal with the normalized signal,

iS’E is/in, rather than the absolute value of is' This is given by

. /2yZ
-

i [ ax u cos[2naft - 6+ ¢5(§>] ' (8)

1
where R = 3 D and y, the rms current signal-to-noise ratio that

would be present in the absence of turbulence,lg

is given by
(7111/8eB)1/2 D K;.
Following Reference 22, the distorted wavefront of the sig-

nal will be represented by a finite serles of orthonormal poly-

nomials over the aperture area, so that
6
> >
o ()~ 2 a F (% (9)
s k "k
k=1
with the polynomials Fk(;) defined below:

Fi(x) = (sR2)71/2 (10a)
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is a change in the average phase over the aperture.

(ﬂR"/A)_l/z X

Fjp ()

Fy(x) = (nR%/4)71/2 y

113

are the average horizontal and vertical tilcs.

Fy (%) = (rR6/12)71/2 (xz +y2 - % R2>

is the spherical deformation, and finally,

Fo(x) = (xR6/6)71/2 (x2 - y?)

it

111

Fe(x) = (nR®/24)71/2 xy

represcent a hyperbolic deformation.

(10b)

(10c)

(104)

(10e)

(10£)

These six polynomials are orthonormal over the apcrture area

and the coefficients are found, in the usual manner, by

a, - j-d; W) ¢S(§) Fk(;)

(11)

In order to justify truncating the series expansion of ¢S(§) after

six terms, it is noted that, for D < ro, the mean square error intro-

22

duced by this truncation 1s less than or equal to about 0.06 rad?.

The signal current then becomes

6
1, =V2yZ/vR f dx W(x) Cos<27rAft 9, kgl a,

=vY2y27/nR2 cos(ZﬁAft - ¢O + alF1> j.d; w(?)
6

_ Sin<2ﬁAft - ¢o + alfj> j‘d; w(?) sin(}Z

k=2

Fk(x9

6
cos<§: aka(;s

k=2
F. (%)
3, Fy ()

(12)
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A. Static Case

In order to facilitate evaluation of the integrals in Eq. (12},
the assumption will be made that, in the static case, the second
order terms in ¢S(§) can be neglected. This limits the usefulness
of the results here to aperture diameters on the order of r  or

smaller,22

a limitation which applies to practical static receivers
anyway. 10 The substitution is made that
A% = (4/1R?) (a2 + aj?) (13)

and the integrals in Eq. (12) can easily be evaluated, resulting in

S dx W(x) cos(aze(;) + a3F3(;))

il

27R? 3y(8)/A (14a)

and

Cfa% W) sin(aFa () + azFi(X) (14b)

0
o

wheré J{(A) is the first order Bessel function.

Putting Eq. (14) back into Eq.(12) and taking the time average
of the beat frequency oscillations, the rms value of the normalized
signal current is found to be

I = 2yZ|J;(A)/A] (15)
where the vertical bars denote the absolute value. Under usual
conditions, A will seldom exceed 3.83, and the absolute value of
J] can be replaced by J;. This assumption will be made in Section
4.11T so that the integral over A can be evaluated by the method of

steepest descents, and the resulting error will be discussed in

Section 4.V,



54

B. Tracking Case

With angle-of-arrival tracking added, a; and as are assumed
to be held at zero by the action of a servo loop and the second
order terms become important. The substitutions are made that

a2

(12/7R?) a,? (16a)

B2 = (6/7R%) (ag? + ag?) (16b)

and the angular integration becomes straightforward. For the radial
integration, however, the following functions must be defined for

numerical evaluation

l

C(a,B8) = S cos(at) J (8t) dt (17a)
o
1

S(a,8) = f sin(at) JO(Bt) dt (17b)
o

where JO (Bt) is the zero order Bessel functionm.

With these definitions

{18a)
R 6
dx W(s o= 2 1 At
J dx W(x) cos (ZQAaka(X9 TR [%os(z ) C(a,B) + 51n65cat
s<a,e)]
6 (185)
-+ > ) - l
dx W(x) F = 1R2 oL . 1
J‘ X X) sin (2;43k k<x9 R [gln(z q)c(g,g) cos<2 )
S (e, )]

so that the rms value of the normalized signal current is given by
I=vy2 [C2(a,B) + 5%(a,6)] 1/2 (19)
I11. PROBABILITY DENSITY FUNCTION - STATIC RECEIVER
The probability density function of the normalized rms signal

current in the static optical heterodyne receiver 1s given by

p(I) = ff dX da p(Il X,4) p(X) p(A) (20)
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where X, the normalized log-amplitude, is equal to ln(Z), and the
independence of X and A has been assumed.

In a well designed system, shot noise associated with the local
oscillator intensity will completely mask all other sources of detector
noise. While shot noise is a Poisson process, the local oscillator
photocurrent will generally be large enough to be considered Gaussian, !0
If X and A are known, therefore, and after filtering, the IF signal con-
sists of the signal current is plus a zero mean Gaussian noise current
with standard deviation in. The normalized rms signal current, then, is

a Gaussian random variable with standard deviation of one and mean

given by Eq. (15) so that

p(I[X,8) = exp [- %(1 - 2vZ JI(A)/A){I (21)

27

The normalized log-amplitude X will be considered to be a Gaussian

b 2 It should be mentioned at this

random variable3)¥ with variance o

point cthat under conditions of very high path integrated turbulence,
the actual distribution of amplitude fluctuations deviates from the

assumed log-normal form.27 Tt can easily be seen from conservation of

energy considerations that the mean of X must be equal to —0X2,18 so
that
1 T °x2)2
p(X) = H exp - oo 2 (22)
X X

The quantities (2/VaR) a, and (2//7R) a3y are proportional to the
x and y components of the angle of arrival of the signal, respectively.

They are, therefore, like the angle of arrival components, independent,
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zero mean, Gaussian random variables, each with the same variance,

2

A From this it follows that the para-

which will be denoted by o©

meter A wmust have the Rayleigh density function

p(8) = L aypdo B2 (23)
c 2 25,2

An approximation, using the method of steepest descents, was used

to evaluate the integral in Eq. (20). This method has also been used

to evaluate analogous expressions in cases of direct detection®>28 and
is found to give excellent agreement to numerical evaluations in both

cases. First, Eq.(20) is rewritten as

p(1) = —+— fd)( b expl[£(X,4)] (242)
21 0. %2 o
A X
xivhere (24]3)
2 A2
£(X,a) = - %"(I - 2yJ(a)/8)2 - 3 (X +0 2% - + 1na
20 X 26 2
X A

The stationary point (XO,AO) is found from the pair of coupled

equations
(if) = (I - 2yZ 3, (8 )/8 ) 2 L 2y =
X XO,AO Y451 o> o) YZoJl(Ao)_/Ao + ;_E'CXO + 0x ) =0
X
(25a)
(—a-f—)[ = (I ~ 2yz /
A XO,AO_ - Y OJ]'(AO) AO) 2YZOJ1<AO)/AQ
2 A0 1
(JD(AO)/AO - 2J1(A0)/A0 ) - — =0 (25b)
9 e

where ZO = In Xo' The determinant B is defined by
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o2f %%
B = 3X2 3Xdh (26)
a%f 32%¢
IXBA 42 (XO,AO)
with
32f 1
= (I - 4y2J3)(8)/8) 2yZ2J,(8)/n - —— (272)
ax? o ?
X
32f
axan - (T = 4vzI (8)/8) 2¥Z(J_(8)/8 ~ 23,(8)/42) (27b)
3%f
;Z; = (I ~ 2yZJ\ (8)/a) 2vz (63y(n)/83 - Jy(a)/8 - 37_(8)/2%)
1
- 4Y227(J_(8)/8 -~ 23)(8)/8%)? - — - L (27¢)
OA A2

The signal current density function, then, is given by

- 0 _ 1 _ 2
p(I) o2, exp > (1 ZyzoJI(AO)/AO)
A Ty
A 2
l . 2 2 ls]
_ - (xo to, ) - ; (28)
20 ZGA

IV. PROBABILITY DENSITY FUNCTION - TRACKING RECEIVER
The probability density function of the normalized rms signal
current in the tracking optical heterodyne receiver is given by

p(I) = ff/dX do dB p(L|X, o, 8) p(X) p(a) p(B) (29)
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As in the static case, the normalized yms signal current is a Gaussian

random variable with standard deviation of one and mean given by Eg.(19),

so that

p(I]X, «, 8) = —= expi- = [T - vz(c2 + s2y1/2 2{
= wp% ; ¥2( y1/2] (30)

Note that the functional dependence of C and S on @ and B has been sup-
pressed for convenience, rather than stated explicitly.

The density function of the log-amplitude fluctuations is the same
as for the static case, but the phase terms are a little more complex.
Assuming, from symmetry considerations, that <¢2 (§)> has a constant
value at any point around the edge of the aperture (i.e., (% 1= R), it
can easily be shown that a,, az, and ag are independent random variables,
and <a42> = <a52> = <a52>. This last statement is consistent with the
statement in Ref. 4 that <a,?> = 1/3[<aq2> + <ay’®> + <a52>]. It is also
obvious from symmetry that <a,> = <ag> = <ag> = 0.

That a,, asg, and ag are Gaussian random variables follows directly
from the fact that each 1s obtained from the Gaussian variable ¢(;) by
the action of a linear operator. The variables o and R, then, have

Gaussian and Rayleigh statistics, respectively, with density functions

glven by
1 a2

pla) = ———— exp -

. 2 2 (31a)
o1 a :

_ 28 g2
p(B) . exp - (31D)

g o 2

a a

12 aqz

where g 2 = < S
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The signal current density function, therefore, is given by

/]
p(l) = ——m— dX da dB exp[f(X, o, B)]) (322)
6 o3
X a
where
5\ 2
£(X, o, B) = - l(I - yz/c? v s2) - 2 <¥ 4o z)
2 5 X
26
X
o2 2
- - + 1In B (32b)
20 2 c 2
a a

Applying the method of steepest descents once more, the stationary

point is now found from the three coupled equations

®
3X

1

(1 - YZ, JC2 + 52 ) YZ_ /2 + 52

(Xo’ %2 Bo>

- X +02) =0 (332)
s2 © X
X
3C 35S
Jf C“‘+S—— a
(3;) = (1 - YZO /c? + s2) YZO f%%:::::ég“ = “2; =0
X 2 2
(X% o0 8)) /c2 + s o,
(33b)
3C 3s
C—=+5 2= 28
af »
- e s Lk
’ Yo ° ° Jc2 + g2 9,
1
4+ — =
3 0 (33¢)
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I[ -
It turned out in all cases that ¢ = 0 so that (éi) =0
o) sa (XO, 0, BO)

and Xo and 80 can be found from the simplified equations

1 2\ -
(I - YZQC(O’ Bo)) YZOC(O’ Bo) - 5 2 <XO - Ox ) =0 (342)
. 2
8
3C o 1 :
I -yZC(0, B)) vZ (+F -——+-=0 (34b)
( o ( o ) 0<86>(0, Bo> Gaz 80

The determinant B is here given by

32f 0 32f
%2 3X38
2
B=1|0 32 0 (35)
3a
3%f 0 92f
3X3R 382
(X.» 0, B)
(o] (o]
where
2
<§—£> = (1 -2vy2C) yz C - —2 (362)
3x?2 o 2
32f 3C
Y = (I - 2yZ C) vy2 oy (36b)
2
3s
32f 32C (§Z> 1
<*——> = (I - YyZ C) y2 + - - ; (36¢)
aa2 aa2 g

<3ZC)
2 2 2
<3 f> = (1-y20 vz <a c> -y (36

332 382
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and the probability density function of the signal is given by

28 2 2
p(1) = — exp | - %‘E - YZ C(O, 8 i] - (X + 0\2>
g o 3 /-B o o 20 2 o
X @ X

(37)

V. DISCUSSION

The final probability density functions for the static and tracking
cases have been plotted as functions of the normalized rms signal current
and are presented in Figs. 4.2 through 4.5 for several parameter values.
In each graph, the density function in the absence of turbulence
(OX =0, 0,7 0) is present for comparison, and is denoted by 0. The
curves labeled by S and T are for the static and tracking receivers respect-
ively, in the presence of turbulence.

In all cases presented, the mean current SNR, Y, has a value of ten.
Values shown for the log-amplitude standard deviation are 0.3, corres-
ponding to relatively low turbulence levels, and 0.8, which is the maximum
valve under saturated conditions.

The phase fluctuations in the static case are described by OAZ’ which
has been defined as <(4/7R2) 322>. It can easily be seen geometrically
that this must be equal to <k? %362> where k is the wavenumber of the
optical signal, © is the angle between the receiver aperture plane and
the average phase front along the x axis, and the assumption has been

made that tan p = 9.
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It can be seen that

: 2 D (D)
- 5/3
G 2 = <i2 DZ" 62> = 54 = 0.73 ¥2¢_%U pS/3 = 1.72 (/r )5/

A (38)

wheré DS(D) is the structure function of phase, Cn2 is the refractive
index structure constant, and L is the path length. Implicit in Eq. (38)
is the assumption that the phase structure function is very nearly equal
to the total wave structure function, which is a very good approximation
in the near field3 or under conditions of saturated amplitude fluctu-

ations.29

Even where these conditions are not satisfied, the phase
fluctvations are overestimated by mo more than a factor of two. The
coefficient of (D/r0)5/3 is calculated in Ref. 18 by a different method

and found to be 1.77, which is in excellent agreement with the results

here. Accepting the results of Ref. 18, then

o 2 = <(2/1R?) 842> = 0.253 (d/r )°/3 (39)

1
Both density functions were calculated for (D/ro) = 1 and (D/ro) =5
In Section 4.II1, it was assumed that the absolute value bars
around J1(A) could be dropped. To find the effects of this assumption,

it is seen that, to first order

p(I) :f f d‘\ ]- X - l R 2
) 3 { da ;;: exp [ 5([ - 2{Z[J1(A)I/A){] p(X) p(a)
1 1
~ d % - = -
fo f_m X dA = exp [ 5 (I - 2yz JI(A)/A){‘p(X) p(A)

7.02 %
_f 3.83] dX da p(X) p(a)

1
- exp [— 7 (I + 2yZJ) (8)/n) ZH (40)

1
;exp [— > (I - 2YZJ1(A)/A>%]

2
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since the first negative portion of J;(A) lies in the region where

3.83 < A< 7.02. 1In Figs. 4.3 and 4.4, the curves for the static re-

ceiver are double valued for very small signal currents. The dashed

line in each case is the uncorrected value, while the solid curve takes

into consideration the first order correction term, which was negligible

in all cases for which D/rO = %u
The curves in the tracking case are essentially the same for D/ro =

1 or D/r0 = % and, in fact, change very little in the limit as D/ro goes

to zero. Where D/rO is on the order of one or less, therefore, amplitude

fluctuations are the major effect of turbulence on signal current, so

that the density function can be approximated by

2
1 1 N Xo + oxz!
— exp [— = (I - v2 :, exp | -
N o 2 < O) 20X

p(I) = — X o

1 _ L/2 (41a)
<O - (I 2Yz0) Yz())
X
where
_ _L 2\ .

(1 Yzo) vz, + s (xo + 7 ) = 0 (41b)

X

This fact also confirms that second order phase terms can be neglected
in the static receiver.

In the limit as D/r0 goes to zero, the static receiver is identical
to the tracking. As D/ro takes on larger values, however, the peak
probability shifts to lower signal currents and the curves broaden.

The general shape (i.e., skewness) of the curves, however, still depends

to a large degree on the log-amplitude variance.
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SIGNAL CURRENT PROBABILITY DISTRIBUTION FOR OPTICAL HETERODYNE

RECEIVERS IN THE TURBULENT ATMOSPHERE. 2: EXPERIMENT

I. INTRODUCTION

In the previous chapter approximate expressions were developed
for the probability density functions describing the magnitudes of the
IF signals from optical heterodyne receivers operating in the presence
of clear air turbulence, both with and without active tilt-tracking
systems. In this chapter the theoretical predictions for the non-
tracking, or static, receiver are compared with measurements of the
signal distribution from a static receiver that was used to detect a
632.8 nm signzl propagating through 1.6 km of the open atmosphere.

In the derivation of the predicted density, given in Egs. (25)
through (28) of the last chapter, several assumptions and idealizations
have been made. For example, both the transmitter and the local oscil-
lator were considered to be perfectly monochromatic and to have constant
amplitude and frequency. In designing the experimental apparatus, the
emphasis wag not on duplicating these idealizations but rather on re-
producing, insofar as possible, condltions under which optical heterodyme
detection might be practically used. This chapter is, therefore, not a
rigorous test of the theoretical model but is instead an investigation
into the accuracy with which that model can be used to predict the per-
formance of a typical system. As an example, instead of trying to
amplitude~ and frequency-stabilize the transmitter, every attempf was
made to keep the transmitter package small, lightweight, and simple.

It consists, therefore, of an inexpensive two milliwatt Hellum-Neon
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laser, two converging lenses comprising a two power transmitting
telescope, and a hand operated steering mirror. The intensity that
would be present at the receiver under diffraction limited conditions
is estimated to be on the order of 0.5 uW/cm?, which is divided be-
tween two major longitudinal modes so that only about one-half of
this contribhutes to the IF signal.

From the transmitter, the signal propagates across 1.6 km of
fFlat, featureless farmland at a height of about two meters. Because
of the uniformity of the range, the measurement of temperature, atmos-—
pheric pressure, and temperature structure constant C,I2 is made at one
point and assumed to be constant along the path. From these measurements,
along with the mean signal and the mean and variance of the local oscil-
laror signal alone, estimates were made of the parameters mnecessary to
calculate the predicted curve for each data run. 1In parameter estimation,
as in hardware design, the emphasis was on the simple, practical appli-
cation of the theory, rather than on trying to optimize agreement between
theory and experiment through complex curve fitting. The next section is
a description of the receiver that was used, and this is followed by a
discussion of the method used to f£it the theoretical parameters to oper-
ating conditions. The results presented in Section 5.IV show that the
results of Chapter 4, at least in the static case, comprise a good
approximation to the operation of an actual receiver, even for cases
where the normalized aperture diameter, D/ro, is larger than one.
II. RECEIVER DESCRIPTION

An optical heterodyne receiver, which is diagrammed in Fig. 5.1

and described in detail in Appendix E, has been built and installed
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Fig. 5.1. Block diagram of static optical heterodyne receiver

with frequency tracking.
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at the end of the 1.6 km propagation range. The receiver optics collect
the signal, mix it with the local oscillator beam, and deliver it to an
optical detector. The IF signal from this detector is fed into an
amplitude demodulator. In addition, the mixed optical signal also goes
to a separate optical detector, from which the IF signal is frequency
demodulated and used as the error signal in a frequency lock loop. Any
frequency changes in the received signal are then tracked by the local
oscillator.

The receiver antenna consists of a 200 wn Tinsley-Cassegrain tele-
scope which is focused at infinity to collimate the signal and project
it onto the surface of a ten percent reflecting beamsplitter, where it
is mixed with the beam from the local oscillator. Following the beam-
splitter there are two optical paths. In one path, the reflected loczal
oscillator beam and the transmitted signal are projected onto a vari-
able aperture directly in front of the photomultiplier tube that drives
the loop. In the other path, the transmitted local oscillator beam,
combined with the reflected signal, is reflected from a front surface
steering mirror and projected onto another variable aperture. The
optical reduction between the front of the collecting telescope and this,
the signal aperture, is a factor of 5.3 and the effective telescope
aperture is variable from .21 cm to 5.1 cm. Immediately behind the sig-
nal aperture is a collecting lens to focus the signal onto the photo-
multiplier tube from which the signal is demodulated.

The IF signal from the loop photomultiplier tube goes into an
amplifier-limiter and from there into a discriminator with center

frequency at the desired IF. For this receiver the center frequency
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is 29.5 MHz. The output of the discriminatoxr goes into a high voltage
amplifier which drives the frequency control of a Spectra-Physics 119
He-Ne laser. The rear mirror of the 119 is mounted on a piezoelectric
element so that the cavity length of the laser is a function of the voltage
across the element, and the laser functions as a voltage controlled oscil-
lator, closing the loop. The bandwidth of the loop response is about cne
kilohertz, which is sufficient to track thermally induced frequency shifcts.
To minimize the effects of higher frequency acoustic vibrations, thexefore,
the entire receiver is rigidly mounted on a concrete slab.
The IF signal from the receiver signal photomultiplier tube is

filtered, mixed down to one megahertz electronically, and fed into a
full wave rectifying envelope detector. In the theoretical work, an
idealized demodulator was assumed which allows the magnitude of the
IF signal to be found with no distortion of signal or noise character-
istics. Envelope demodulation, although a very good approximation to
this ideal whenever the signal is much larger than the noise envelope,
introduces distortion when the magnitude of the signal is small.
Synchronous demodulation introduces less distortion, and in all prob-
ability would have provided better agreement. However, it was not
used in this experiment due to the added complexity.
IITI. PARAMETER ESTIMATTION

In each data run, the output signal from the above receiver was
directly recordad on an F.M. tape recorder both with the optical signal
present and with it blocked to obtain reference levels for normalization.
In addition, instantaneous point measurements were made of the temper-

ature, T, atmospheric pressure, P, and temperature structure constant,
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CT2, the last being measured with a pair of balanced microthermal probes

at ten cm. separation and employing 100 second time averaging. The tape
recorded data was converted to digital format and processed on a digital
computer. Knowledge of the meteorological conditions allowed estimates
to be made of the theoretical parameters.

The refractive index structure constant is found from the relationship3

_ 2
c? = (77.6 x 1076 p/T2) Cy2 (1)

and is used, along with physical dimensions of the system, for parameter
estimation. From the optical carrier wavelength in microns, Ap, the path
length, L, and the structure comnstant of turbulence strength, Cn2, the
characteristic coherence length rO for each turbulence level can be found

from the equationl® (2)

= 1.2 x 1078 x 6/5 173/5 ¢ ~8/S = g.22 x 107}1 ¢ "8/S
o U n : n

Prom this, the' tilt fading parameter OAZ can be found from the relation-
ship given in the last chapter
2 = 5/3
o, 1.72 (/x ) (3)

Here D is the effective aperture diameter at the front end of the col-
lecting telescope and 1s equal to 5.3 times the diameter of the variable
aperture in front of the signal photomultiplier tube.

The derivation of Eq.(2), however, is based on the propagation of an
infinite plane wave while the experiment was made with a finite beam wave.
The mutual coherence function of a finite beam, and hence the second oxrder
manents of the received field, is essentially the same as that for a point

source provided that 30
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L >>-% K wo!}/poz 4 1/u02]‘1/2 (4)
where v is the diameter of the beam at the transmitter, k is its
wavenumber, and 040 the 1/e diameter of the spherical wave MCF, is
equal to 0.83 times the plane wave r given by Eq.(2). Since W, was
about 2.5 mm, this inequality holds at all turbulence levels. Also,
the largest effective aperture diameter used, 3.5 mm, is significantly
less than the Fresnel zone size, and the second order moments of the
received field can be found from the spherical wave theory in the far-
field regime. Thus, the structure function of phase differs from the

L

plane wave case by a constant factor,  so that

- 1. - 1.4 -10 o =6/5 5
To (sph) 1.8 1 (plane) 1.48 x 10 c, (5)

This value was used in Eq. (3) to find oAZ.
Since the inner scale of turbulence, generally on the order of a
few millimeters,* is also much less than the Fresnel zone size, the

spherical wave theory predicts that the log-amplitude variance will

be given by?3

o2 =0.124 k7/6 L11/8 ¢ 2 = 1.38 x 103 C 2 (6)
X _ n n

as long as this is small encugh that saturation of the scintillation
does not occur. TIn this experiment, however, where predicted values

of ¢ 2

.~ range from 0.6 to 7.0, the phenomenon of saturation must be

considered. A number of experimental investigations of saturation in
spherical wave propagation have been made®>31:32 showing that OX gen—
erally follows the value predicted by Eq.(6) until it reaches a value

of about 0.8. It then remains fairly constant at this level with
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increasing turbulence. This simple formulation agrees well with experi-
mental evidence over the range of interest here, and will be used to
estimate the log-amplitude standard deviation.

The third and final parameter needed to calculate the theoretical
curves 1is Yy, the current signal-to-noise ratio that would be present in
the absence of turbulence. Since it is not possible to turn off the
turbulent atmosphere in order to make this measurement, an estimate based
on the expected value of the normalized signal, <I> , has been used.

From Eq. (24) of the last chapter, it 1s easy to find an expression for
the mean signal predicted by the theory, which can then be solved for

Y, resulting in

2 2 2 o 2
v = <I> 02 exp (i%“ + S§_> sinh —2-‘ (7)
which was calculated for each data run.
Normalization of the signal was accomplished by letting
I=(S+N-<®) o (8)
where S + N is the recorded signal value, Oy is the standard deviation
of the shot noise, and <N>, the mean value of the shot noise, is not
zero due to rectification. With signal present, however, Iﬁ will be

less than that given by Eq.(8), falling in fact, within the range

(S + N - <wp)/o < I < (s+ N) /oy (9)

For I'Qery swall, it will be very close to the left hand side of the
possible range while, for large values, it will approach the right hand
side. Since the total width of the allowed region, <N>/0N, becomes less

significant as S + N becomes large, the estimate given by Eq.(8) is more
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reasonable than the other obvious possibility. It was also seen to
provide consistently better agreement with experimental results.
V. RESULTS

For each data run the value of the signal plus noise was recorded,
generally for a period of one or two minutes. The transmitted beam was
then blocked and the local oscillator shot noise alone was recorded for
a similar period of time. At the same time the meteorological weasure-
ments were made. After normalization, the probability density function
of the recorded signal, p(I), was plotted against the normalized signal,
I. The results are given for several typical data runs in Figs. 5.2
through 5.5. Theoretical curves (solid lines), including the first
order correction (dashed lines) in cases where it is significant, were
calculated for comparison with the experimental points (X's). In each
case the calculated value of the quiescent atmosphere signal-to-noise
ratio, vy, is indicated.

The agreement is generally very good, although there are two major
factors that introduce consistent inaccuracies. The first of these is
the assumption that the absolute value bars im Eq. (15) of the last
chapter may be dropped, which is an increasingly bad assumption with
increasing values of D/ro. The second major source of disagreement
seems to result from making a single point measurement of CT2 and
using this to infer all three of the theoretical parameters.

The magnitude of the first effect is clearly seen in Figs. 5.2
through 5.4. The first of these is a case where D/r0 is less than one
and the correction term is negligible. 1In the next case, where D/rO

equals omne, dropping the absolute value bars introduces a noticeable
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error at very swall signal levels. For signals greater than zero,
however, the distribution is still very well approximated by the un-
corrected theory. In Fig. 5.4, D/ro is greater than one and, although
this violates a condition of the theoretical derivation, excellent
agreement is obtained. The correction term in this case has a greater
influence and also must be applied at larger signal levels.

In Figs. 5.2 and 5.3, the theoretical curve drops off more rapidly
than experimental points with increasing signal levels. This feature,
in varying degrees, is common to a large number of data runs and can
probably best be explained by considering the measurement of an that
was used in parameter estimation. Several comparisons have been made

of optically and thermally measured C11 values. 333"

These experiments
have shown the thermally measured values tec be consistently lower and to
exhibit large fluctuations. With this in mind, a number of the worst
cases were plotted and an was increased until good qualitative agree-
ment was obtained. Figure 5.5 is a tvpical result. The solid line is
based on the thermally measured value of Cn’ and the dashed line gives
the corrected theory with Cn higher by a factor of 1.8. This differ-
ence is within the spread between optically and thermally measured
values of Cn as reported by Pearson and by Dowling and Livingston.

The better fit to a theoretical curve using an increased value of Cn’
as seen in Fig.-S.S, suggests that use of a point thermal measurement
of Cn to determine the value of the theoretical paramenters for com-
parison with the experimental data may account for a major portion of

the small discrepancy between theory and experiment. The increase in

Cn required to account for this difference agrees both in magnitude and
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direction with the discrepancies between optically and thermally measured
Cn found previously.33’3“

The development of Chapter 4 for the case of the static optical
heterodyne receiver, therefore, is felt to be an excellent approximation
to the performance of practical systems. With the addition of the first
order correction term, agreement is seen to extend to D/rO values larger
than one and seems to be limited primarily by inaccuracies inherent in
thermal an measurements. Additional data, presented in Figs. 5.6 through
5.19, supports these conclusions, although it should be mentioned that
only conditions of saturated log-amplitude fluctuations were available.

In the last chapter it was noted that the general shape of the den-
sity functions depends strongly on amplitude fluctuations. Since these

fluctuations are log-normal, this effect can be seen in a comparison of

the data with a log-normal probability density function. A fit of the

data to a distribution of the form

1 2 2
p(I) = ——= exp E’(ln I-u )</ 20 ‘] (10)
In I inlI
/Egdln 1 1
is easily accomplished by setting
2 = 2,2
O1n T2 = ln(oI /uI + 1) (11a)
= _ 1 2
uln I In Ul ;cln I (llb)

2

I are the measured mean and variance of the data.

Where My and o
Typical results of this investigation are presented in Figs. 5.20

through 5.24. 1In all cases the discrepancies between the curve and the

data are larger than statistical fluctuations of the data, which implies
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that the data does not have a pure log-normal distribution. In addi-
tion, 012 is always larger than the saturation value of 0.64 that one
would expect for amplitude fading only. One can conclude, therefore,
that log-normal amplitude fading is not the only source of signal
fluctuations.,

At the same time one finds that the log-normal approximation is
instructive qualitatively. TFor small v and large D/ro, as in Fig. 5.20,
the data is obviously not log-normal. 1In the other cases, however, and
especially in Figs. 5.21 and 5.22 where D/rO is small, the fit is much
better. This suggests that, at least in saturation, amplitude fluctu-
ations are the major source of total signal fluctuations. Care should
be exercised in drawing this conclusion, however, since the angle-of-

arrival fluctuations are Rayleigh distributed and, qualitatively at least,

the Rayleigh and log-normal distributions can be very similar.
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N-FOLD PROBABILITY DISTRIBUTION OF AN OPTICAL HETERODYNE RECEIVER
ARRAY IN THE TURBULENT ATMOSPHERE
I. INTRODUCTION

In Chapter 4 an approximate expression was derived for the prob-
ability density function of the IF signal magnitude from an optical
heterodyne detector operating in the clear air turbulent atmosphere.
The effects of local oscillator intensity induced shot noise, log-
normal amplitude fluctuations, and Gaussian phase front perturbations
were conslidered. 1Using a steepest descents approximation to the con-
volution integral containing these three processes, expressions were
derived for heterodyne receivers incorporating active tracking systems
to negate the effects of random tilting of the incoming signal wavefront

and also for receivers without this feature.

In Chapter 5 experimental results were presented for the case of
the non-tracking, or static, receiver. The amplitude demodulated signal
was recorded from a receiver that was used to detect a .633 u signal
after propagation through 1.6 km of the open atmosphere. Simultaneous
measurement of wmeteorological parameters allowed comparison of theory
and experiment.

In this chapter the results of the last two chapters are extended
to include the joint probability density function of the IF signal mag-
nitudes from an array of N detectors with arbitrarily correlated ampli-
tude fading and phase front perturbations. Both theoretical and experi-
mental results are presented for the static receiver case. The tracking

receiver is not treated in this work. The channel model and experimental



104

configuration are essentially extensions of those used in the previous
work, and the necessary modifications are presented as needed.

The general N-fold probability density function is presented in
Section 6.1I and one finds that for arrays of morvre than a few elements
the result is a rather complex expression. Section 5.I1II1 treats the
specific case of a two element array iIn some detail. It is seen here
that the distribution of large signals is influenced primarily by the
amount of amplitude correlation, while small signal levels are morte
sensitive to the amount of correlation between the phase front tilts.
Experimental results, discussed in Section 6.IV demonstrate the appli-
cability of the theoretical approximation to actual system performance

for N equal to two.

II. GENERAL THEORY

The first effect to consider is atmospheric fading of the received
signal amplitude. Let Zi’ the normalized fading parameter for the i'th
detector, be defined as the instantaneous signal amplitude at that de-
tector divided by the amplitude that would be present in the absence of
turbulence. This can thenr be used to define Xi as in Zi + Cxii’ where
CXii is the 1'th diagonal element of the log-amplitude covariance matrix
CX, and is, therefore, the log-amplitude variance at the i'th detector.
The N-dimensional column vector f, then, is a jointly Gaussian random
vector3s 6535 yirp probability density function.

N _ -+
p(X) = (27) N/2 !cXI

exp(—%—iﬁcx_l i) (1)
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The second atmospheric effect is a random perturbation of the
incoming signal wavefront. If the aperture diameter D is on the order
of T ot less, where ro is a measure of the coherence diameter of the
received signal, this perturbation is well approximated by considering
the average tilt of the incoming wavefront across D.3 A random vector
I8 is, therefore, defined with Ai proportional to the magnitude of the
tile at the i'th detector. Because of this relationship to the angle-
of-arrival of the signal, resolving each A, Into its x—- and y-direction

i

components in the detector plane yields two jointly Gaussian random

vectors3:" with density functions

]— — -,
P = a2, 177 exp(-3 T ie, ') (20)
Ay = lc, | - t
() = (2m) Ca,) ™ exp(-T £ty £) (2b)

> >
where the column vectors AX and Ay have covariance matrices CAX and CAy’

regpectively. Since Aiz = Axi2 + Ayi2 and since, assuming an isotropic
-1 -1 .
atmosphere, CAxii = CAyii , this leads to
3
\ 1y (3>
- -2 2 . -1, 2 7z
p(K) ICAXI lCAyl izl[;i exp ( %_CAxii Ai {’GN(A)

where the effects of non-zero correlation coefficients are contained in
the function GN(Z). The derivation and properties of thils function are
left to Appendix F.

The final source of signal current fluctuations is in the detection
process itself. 1In a well designed system the local oscillator intensity
will be large enough that the shot ncise associated with it is the pre-

dominate source of detector noisel®:11>18 znd is, moreover, approximately
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Gaussian. For simplicity, the variance of the shot moise will be assumed
to be one; all signal currents are scaled accordingly. To the shot noise
at each detector is added the rms current due to the optical signal at

that detector. At the i'th detector, this is given by ZYi Zi |J1(Ai)/Aii;
where Yi is the rms sigpal current that would be present in the absence

of turbulence and Jl is the first order Bessel function. In the develop-
ment that follows, however, the absolute value bars around Jl(Ai) will

be dropped. The range of validity of this approximation and an estimate

of the magnitude of the resulting error outside of that range have been

discussed in Chapters 4 and 5. The signal current vector f, then has

the conditional density function approximately given by

. R
> I 7 ‘N/2 )
p(1]X, A) = (2m) eXP[-%'géi (Ii -2y 2 (Ai)/Ai)]

(4)
Using the independence of i and K, p(f) can be expressed as the
following 2N-fold integral:
p(D = [at [l pdED p ) p () (5)
which can be approximated using the method of steepest descents.

First the function f(i,z) is defined by

FQXLEY = -} EN: 1, - 2y, 2z 2 13t %
JA) = -1 - 7. A -1
& Yg 4 T8/ = XC X

(6)

N
+ 2: (Ina, - %C A i 2 >
=1 i xii  A; ) 4+ 1n GN(A)
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Y
The stationary points XO and Ko are then found from the 2N coupled

equations

(ig._)[ N

BXi

A
3N,
1

w

and the matrix B 1s defined hy

32f 32f 32f ...  3%f
4 _87f
axl 3X| X X84, DX180
32f ... 3¢ 32f .. 3%f
2
3X) BX TN ST 3X 30
32f 32f 32f ... 3%¢
3X 1941 83X, 36 BAYZ 3b130,
32f ... 2a2f 32f ... 3%f
2
D1 8hy DX BAy 3130y 3

These definitions lead directly to the resulc3® that

T

p<1>~(cxl

ey s, 18l

by

=

expl£(X .2 )]

(7)
(8)
X
O
i
o
(9
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IIT. N = 2

In the special case of a two detector array, an analytical expres-
sion can be found for p(Z). Since, in addition, this case lends itself
to graphical presentation, 1t is worth considering in some detail.

Note first that the log-amplitude covariance matrix matrix can be

expressed as

C =0 2 X (10)

Details of the calculation of the normalized log-amplitude variance,

oxz, and correlation coefficient, rX, have been presented els<ev.rher:¢::,3’L”32
and will not be repeated here. 1In a similar manner the assumptions

leading to Eq. (F5) allow the substitution
CAX = CAy = 0,2 (11)

where expressions for the phase parameter variance, GAZ, and correlation

coefficient, r,, are presented in Appendix G.
Using these substitutions and Eq. (G5), the function f becomes
(&0 = -k (- 2y 2 0,0/t @

2
o T vy 2y 31 (8,078,)

1 2 2 1 2 2
207 (1-r, 9 (7 = 20 XXy + X0 - oy (Bt 8y
T, A A2
+ In [Al by 1o 7 (12, 2y 5] (12)
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> >
The stationary points (XO,AO) are found from the four coupled equations

&2 ~\ony

R S0 O O ) %
3X,y (XO,AO) Xy (XO,KO)
(13)
= of > =0
3A, (XO,ZO)
where
o @ -2y zo 3 (/) 2y, 2. I (8]
X, i T et MR T Tt
1 X, - r X.)

- — 1 X ]

o, (1 r )
3fF 7 -
SZ;" (T - 2vy 2, 3, (87000 2y, 2y (3 (8.0 = 23,0 /8518,

Ai . 1 | Th Aj . T Ai A / IO Tp Ai A,
T A2 (1 2V el 2 (1-+ 2V 2 (1
oA (1-t, %) Ai oh® (1-xp“) 1| A= (1-x,<) gd (1-t,°)

(i,3) = (1,2), (2.1) (14)
where JO and Il are the zero order Bessel function and first order modified
Bessel function, respectively. With the solutions of Eq. (13), it is
straightforward to find

>

p(Il’IZ) = exp [f(XO,KO)] / OA“ (1—;A2) OXZ (l—rxz) |—B[
(15)

The results of Eq. (15) are presented graphically in Figures 6.1
through 6.4. In order to show the effects of varying the correlation
coefficients, all other parameters are constant from figure to figure; in
particular, Yl = y2 = 10,6X = 0.8, and D/rO = 1. Another feature of the
graphs that should be mentioned is that any calculated value that turned

out to be less than 10~ was arbitrarily set equal to 10-%. This was
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>
Plot of probability distributiom p(I) vs. signal

= = e} = .
current vector (11,12) for Yl Y2 10, . 0.8,
D/r =1, and rx = rpn = 0. Curve is truncated at

~ -5 X
p(I) = 107> for clarity.
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I

Fig. 6.1b: Contour plot of la.



Fig. 6.2a: Same as Fig. 6.1 except that rX =1, = 0.5,



I

Fig. 6.2b: Contour plot of 2a.
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Fig. 6.3a: Same as Fig. 6.1 except that rX = 1 and xr, = O.
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Fig. 6.3b: Contour plot of 3a.
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Fig. 6.4b: Contour plot of 4a.
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done in order to obtain a clearer graphical representation of the
function over the remaining probability range.

First, Figure 6.1 1s a plot of the above case with independent
fading at the two detectors (rX = ry = 0). As one would expect from
Chapter 4, this function exhibits ridges along the lines Il =~ 2 and
12 =~ 2, falling off sharply from the peak along the line Il = 12.
Figure 6.2 displays partial correlation with rX =1, = % causing the
peak probability to be shifted to a slightly lower value, and the dis-
tribution to be more tightly grouped along the line Il = 12.

In Figures 6.3 and 6.4, the relative effects of correlated ampli-
tude and phase fluctuations are demonstrated. The first case is for
" 1l and r, = 0, in which the distribution has a fairly sharp ridge

along 1. = 12, especially where 1. and I, are greater than about

1 1 2

two. The second case is for rX = 0 and 1, = 0.711 which corresponds
to a separation p equal to D and is, therefore, the maximum value
allowable. While this looks at first glance very much like the case
of independent fading, it actuwally introduces more distortion than the
previous case over the range where Il and 12 are less than about two.
Correlated phase and amplitude fluctuations, therefore, influence the
distribution of currents primarily at small and large current levels,
respectively.
IV. EXPERIMENTAL RESULTS

The experimental configuration for this work is the same as that
described in Chapter 5 with two basic modifications. First, three
additional signal detectors were added, allowing simultaneous recording

of four identical channels. The aperture centers form a square approxi-

mately 10 cm. on a side. As in Chapter 5, this is not the separation of
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the physical apertures, but of their images at the front of the collect-
ing telescope. The second modification was the addition of a chopping
wheel at the transmitter and of a radio link to allow recording of the
transmitter state along with the data. This was done in anticipation of
bit error rate measurements and has no effect on the results presented
here.

Typical experimental results are presented in Figures 6.5 and 6.7.
The correspondipg theoretical curves are given 1in Figures 6.6 and 6.8,
where the parameters necessary to the theory were inferred from meteo-
rological measurements using the same relationships as in Chapter 5.

Of the two additional parameters, r, was found from the results of
Appendix G and rX was taken from the results of Clifford, et. al..>32
For the fixed detector spacing used here, rX was found to be esentially
zero in all cases.

Agreement betweemn theory and experiment was found to be generally
very good, as demonstrated by the figures. The predicted probability
peaks, however, tend to be lower, broader, and to occur at slightly
higher current levels than the measured peaks. These same qualitative
features are also observed for single detector cases where they are
thought to arise from inaccuracies inherent in single point, thermal
measurements of turbulence strength. Because of this, the major source
of discrepancies between the two-dimensional theory and experiment is

probably due to a consistant underestimation of turbulence strength.
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Plot of experimental probability distribution p(f)
vs. signal current vector (11,12) for case with
estimated paramcters Y, < 17, 72 = 16, o = 0.8,
p/r_ = 0.75, x_ =0, and r, = 0.24. Graph is

o X,
truncated at p(I) = 10~% for clarity.
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Fig. 6.5b: Contour plot of data used for 5a.
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Fig. 6.7b: Contour plot of 7a.
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Fig. 6.8a: Plot of theorctical p(?) vs. (Il’I2) for
case of Fig. 6.7.
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SUMMARY

The focus of thilis work has been on optical communications through
the clear-air turbulent atmosphere. Both single detector and detector
array systems have been considered for photon counting receivers and
also for optical heterodyne receivers. In this chapter the major con-
clusions that have resulted will be summarized.

In the direct detection case an averaged threshold receiver has
been developed for symmetric binary, pulse-code modulated communications.
In addition, a condition was derived for the number of bits that may be
used in establishing the threshold. Bit error rates for this receiver
were compared with those for previously developed optimum and suboptimum
fixed threshold receivers for various combinations of turbulence strength,
background radiation level, signal-to-noise ratio, number of diversity
channels, and, in the newly developed processor, number of bits used for
threshold averaging. This new receiver was seen to be a much simpler
structure to implement. Tn addition, it was seen to result in a signif-
icantly lower bit error rate under most reasonable operating conditions.

Also introduced in this work is the concept of a partilal tracking
optical heterodyne array receiver. Using the average antemnna gain as a
measure of receiver performance, the relative effects of partial amnd
full tilt tracking and of increased diversity ou the performance of a
heterodyne receiver were investigated. It was shown that the most
effective method of increasing the arrav gain is by increasing the array
size in far field applications, and by adding either partial or full

tracking in near field applications. In the latter case, full tracking
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results in a greater improvement, but is more difficult (and costly)
to implement.

It was also noted that the expressions developed for the partial
tracking heterodyne receiver could be applied directly to a problem in
atmospheric imaging systems. This relationship was used to state
explicity the dependence of image resolution and of the atmospheric
modulation transfer function on exposure time.

The final area of investigation of this work was into the probability
density function of the IF signal magnitude from an optical heterodyne
receiver. Expanding the atmospherically distorted phase front in a
series of othonormal polynomials across the detector aperture allowed
the signal current to be found for arbitrary amplitude fading and phase
front distortion. An integral expression for the probability density
function including these two atmospheric effects and local oscillator
shot noise was approximated using the method of steepest descents.

This general approach was applied to one, two, and N detector arrays

of non tracking receivers and also to single detectors with tilt tracking.
Actual probability density functions were also measured on a system
consisting of a HeNe laser transmitter operating at 632.8 om, a 1.6 km
propagation path through the open atmosphere, and a one or two detector,
non tracking optical heterodyne receiver. The goal of this investigation
was to develop a theoretical expression that is simple to evaluate, and

at the same tiwme, fairly accurately models the performance of a practical
receiver configuration. Chapters 4 through 6 of this work demonstrate

the realization of this goal, at least under the experimental conditions

that were available.
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Appendix A

In the averaged threshold receiver structure of Eq.(18) of Chapter
2, the fading was assumed to be constant during a period of time given
by T = N/R which will be true, for all practical purposes, if we can
expect 27, the Ffluctuation 1n Z during T, to be much less than the error
in 2, the receiver estimate of the fading. In other words, we will re-
quire that:

<(AZ)2> << <(A£)2> (A1)

If AZ is small we can let AZ = (dZ/dt) T. Then, using Taylor's
frozen turbulence hypothesis and assuming a homogeneous, locally iso-
tropic atmosphere with stationarity of the log-ampliitude variance, it

can easily be shown that:

24.6 vl2 o2N?

dz )2 NG
—_ > =

AZ)2s> = A2
<( )e> <<d.t Rj‘ ()\L>5/6 L 1/9 R2 ( )
(o]

For the right side of the inequality we look at the variance of n

and transform this to the variance of Z with the result that:

~ _ - 2
<(az2)2> = 4 (;— N+ N +e° N 2> (A3)
N N2 S B S
S

Solving for the number of averaging bits, we have the requirement that:

2/2
N << 0.546 (xp)S/18 1 /9 <———R~—> (l NN+ e 2)
o B S
S

v, © N 2 S
(A%)
In order to show this graphically, we make the assumptions that 1)
2 2
101/9 ~ (me)l/9 and 2) %‘NS + NB s No , so that the right side of

this inequality reduces to:

2/3 , g2\ 1/3
N~ 0.274 (OL)S/18 (R—> € ) (45)

max VJ. . 0_2
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This 1s shown in Fig. A.1 for a wide range of parameter values where
rationalized MKS units have been used exclusively. Note that Nmax is

a minimum for o = 1.0 and that the values at ¢ = 0.5 and 1.5 are virtually
identical. Logarithmic interpolation and extrapolation of VAL values

are valid.
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Fig. A.1. Upper bound on number of averaging bits, N , vs. ratio

of data rate to perpendicular wind velocity, R/v, with® dependence

on log-intensity standard deviation, o and Fresnel zone size,

/X_; shown parametrically. Lower curve in each doublet corresponds
to o = 1.0 and the upper one to g = 0.5 or 1.5, where the doublets

are labeled by 1) for YAL = 1.0, 2) for VAL = 0.1, and 3) for
/AL = 0.01.
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Appendix B

Three separate FORTRAN computer codes were used in Chapter 2
to generate the bit error rate curves in the one detector case. This
appendix presents listings of these codes, each followed by a partial
glossary of variable names. The extention of each to multiple detectors
was straightforward in all cases and the multiple detector codes are,
therefore, not included.

The first listing was used to find the probability of error for

the approximate optimum and MAP receivers from the relationship

nT . nT-
P =L el + 31 - T pial) | (B1)
n=0 n=0

where o is the largest integer for which L is less than zero in the
case of each receiver. The steepest descents approximation to p(anl)
given by Eq. (7) was used.

1f, in the averaged threshoid receiver, an infinite number of
averaging bits can be used, the instantaneous fading can be known

exactly. The second listing is of a program to calculate, for this

case,

(B2)

o n o0 oo
T
P(E) = 4 Jg dz p(z) Y, p(n]Hl,Z) + %—j; dz p(z2) Q. p(n|HO,Z)
n=0 n=nT+l

using the trapezoidal rule for numerical integration. In the multiple
detector cases the Hermite approximation to the integral over p(%) was
used due to run time limitations.

For a finite number of averaging bits the result is a more complex

expression:
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&0 % n'I‘
P(E) = %—fo dz E p(n|H1,Z) [1 - 2 p(;|k,z)]
n=0 k:o
) ET (B3)
+3 fodz ¥ opalu 2) T op) 2 p@lk,2)
n=0 0" k=0 =0

where k, the number of "1'" bits during the average time, is a Bino-
mially distribueted random variable. The threshold HT is the largest
integer value of n for which L is less than zero in Eq. (18). The third
program performs the operations indicated in Eq. (B3) after making the
simplifying assumption that n is large enough to approximate its actual

conditional distribution, which is Poisson, by a Gaussian so that the

sum over n can be replaced by the error function.
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P{ERROR> FOR AFPROKIMATE OPTIMUM AND MAP RECEIVYERS
WITH D = 1

DOUBLE PRECISION PHS., RHF
CALL SEARCH (1., IRPUT”.1.8)
CAaLL SEARLCH (2,'00TPUT’.2.8)
1B FORMAT (3EL1RB.4)
REASD (5.1B) 5D, RNS5, RHEB
28 FORMAT (> 5D = *, F5.2 . * H3 = *, F4.B , ’ HNB
WRITE <6.2B SD, RHNS5., RHB
YAR = SD=»SD
RHF = 1.8

7, F4 B

FHAP = -1.8B
FOPT = -1.8

catbL FZ0 (5D, RHNS5, RHB., 8.8, 20)
P8 = (EXP(-ZO#RNS-RHB - B .5*%(ALOG{(ZO0)+B. S5*VAR)*(ALOG(Z0X+B . F*YAR)D
1 SYARDY Y /7 SEBRT(1 . B+YAR*Z0%RNS)D
PHS EXP(-RHB)
ENE PRS
DO S8BR I = 1,288
RH = 1
RHF = RNF % RN
CALL FZDB (SD, RMNS, RNB, RH, Z0)
HPS = (ZO*RHS+RENBI#*RN % EXP(-ZO0%*RNS~-RNB-B.5% (ALOGLZO0)
1 +B . 5#VARY® {ALOGCZ0+B . S*YARD/VARY / ({RNF % S58RT(1.8
2 ~YAR®ZO0XRNAE* (RN*RNBACCZO0%RNS+RHBIX{Z0#RHS+RNE23-1 HI))
HPHS = {((RHB*%RHN)/RNF )%EHNB
RL = RN * ALOG(Z20*RHS/RNB+1.8B) - Z20%RNS - B.3#(ALOGC(Z0O>
1 +B.5xYARDI*(ALOG(Z0)+B . S*VARI/VAR - B .S%/LOGC1.8B -
2 YAR*ZO*RHE+*( RH#RNB/((Z0+«RHS+RHBI*{ Z0*RNS+RNBI>-1.HB))
IF (RL.GT.B.B) GO TG 488
288 CALL MAP <RNS., RNB. RH. 20, R
IF ¢(R.LT.B.B) GO 70 4538
IF (FMaP.GT .B.B)> GO T0 248
258 FORMAY ¢’ MarF . kY = 7, Fi2.2¢sdt PL(E)Y = ',
1 E12.5.,° PC(HS) = *,E12.5,° P(E> = *,E12.5)
PHSI = 1.B -~ PHNS
ERE = B.5 # (PS+PNS5S!)
WRITE (6.238) RN, PS5, PHS1., ERR
FHAP = FMAP + 2.8
2eB IF (FOPT) 45B., 458, oBH
4BB IF (FOPT.GT.B.B> GO TO 448
418 FORMAT ¢ oPT ', KT = ‘,F12.2/4°7 P(S)Y = 7',
1 E12.5," P(HSY = ',E12.5,° P(E) = *,E12.5)
PNE1 = 1.B - PHS
ERR = B.5 # (PS+PHS1)
WRITE (6,418 RH, P5, PNS1, ERR
FOFT = FOFT + 2.8
448 IF (FMAF) 2BB., 2BB. &HB
428 PS5 = PS5 + HPS
FNS5 = PHS + HPNS
SBB CONTIHUE
6BH CONTIHUE
CaLL SEARCH (4.,B.1.,83
CALL SERARCH (4.B.,2.8>
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CALL EXRIT
END

CALCULATES STATICGHARY POINT 20 USING HEWTON'S METHOD

SUBROUTINE FZ0 {(5D. RNS. RHB. RH. ¥2)

X2 = ABS(RH - RHB + B_HBBl)> / RHNS

%1 na

F = RH*X1%RHS / (KI#RHS+ENB) -W1*RHS - aLOG{(41> / (S5D#5D)Y -§.3
Fi RH*RNB#RHE/ ({(X1*«RNS+RNBI* {KI*RNS+RNBII-RHS-1 . /(RB1%5D*5D)
a2 #1 - F/F1

IF (X232 25, 25, 2¢

2 = Ki/z2.8

GO TO 24

CONTIHUE

IF <aBSC(¥2-¥1) /K2) -~ 1. BE-B3> 28, 28, 24

CONTINUE

RETURH

END

"

CALCULATES MAP RECEIVER LIKELIHOOD FUNCTION R

SUBROUTINE MAP (RNS, RHNB. BRHN. 20. R?

R = RH % ALOG(ZO*RNS/RNEB + 1.8) - Z0 * RNS
RETURH

END



ERR

FMAP

FOPT

HPNS

PNS1

PS

RL

SD

Z0

P(E)

MAP threshold flag

approximate optimum threshold flag

p(n]Ho)

p(n[Hl)

P(False Alarm)

P (Miss)

MAP L (Eq. 12)

approximate optimum L (Egq.11)
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(ERRORY FOR AYERAGED THRESHOLD RECEIVER
WITH D = 1 AHD IHFINITE THRESHQLD AYERARGIHNG

DOUBLE PRECISION PNB(28B>, FACT(2BB). DHB., DHS., PHE.
PHi., PEB., PE1, DSD. YarR., 2

call SEARCH (1, INPUT',1,B)

CALL SEARCH <2.°00TPUT?.2.82

18 FORMAT (3E1B.4)

READ (5,18 SD, RHS, RHB

2B FORMAT ¢/’ D =1*%,” 5D =’,F3.3,7 HS§ = *,F3.8.

188

458

468

1

‘' NB = 'L,F5.8)
WRITE (6.,2B) SD. RHS., RHB

DHB = RHNB

DNS = RNS

Dsb = §D

YAR = DSD % DSD
PEl = B.H

PER = B.H

P (N 7/ NO SIGHAL?

FRCT(12> = 1.8

PNB(13 = DEXP(-DHNB)
b0 18BB K = 2,288
RN = K - 1

FACTCK Y = FRCT{K=-1) * RN
PHBC(K)> = (DHNB##RHN / FACT{K 2> * PNHE{1)
CONTINUE

Z INTEGRATION

Z = B.S5D-BZ

DO eBB I = 1,58B8

PHI DEXP(-Z2%DNS - DHE)
PHB B.B

DO 5B J = 1,198

EN = J

RL = RN*DLOG(Z*DNE/DHB+1.8) -Z*DNS

IF (RL) 458, 468. 47H
PHI=PHI+({Z*DNS+DBNBI**RN/FACT{J+1 )% DEKP(-2%DHNE-DHE)

GO TO SEBEH

PH1=PH1+B.  5«((Z2Z*%DNS+DNBI**RN/FACTC(J+1>)4DEXP(-Z#DNS-DHB)>
PHB = PHB + B8 S*PHB(J+1)

GO 70 5@H

478 PHB = PHE + PHB{J+1>
IF (PHB(J+1)3/PHB.LT.! . BD-B5> GO TO 518
SEH COHTIHUE
Si8 PHI = PHI*DEXP{-B.S5#(DLOG(2>+8 . 5*%VAR)*(DLOG(2)+B.5+VAR)I/VARD/
1 (2. .5Be63%D5D*Z)
PHE = PHB*DEHP(-B.S5%{DLOG(Z)>+8.5%YARI*(DLOG(Z)+B .3*VYAR)I/YARD/
1 (2 .58663x05D%Z)
PEB = FEB + PHB
PELI = PEL + PHI1
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IF (PE! ER.B.HB> GO TO 598
IF (PHi/PEL1 .GT.1.BD-B5> GO TO 5%8
IF (PHR/PEB.LT.1.8AD-B5)> GO TO 618
9%B 2 = Z + 1.BD-82
680 CONTINUE

618 PEl = PE1x1 BD-83
PEE = PEB=*1 BD-B3
PEE = B.5 # {(PEB+PE1>
628 FORMAT </’ APPROXIMATE MAP RECEIVYER . KT = 7,
i 15/ P(MIZS) = ’*.D015.5.,° P{FALSE ALaARM> = ’,D15.5.
2 * PL{EXY = *,EL15.5)

WRITE (6,628 I. PE1., PEB. PEE
CaLL SEARCH (4.8.1.8)

CaLL SEARCH (4.8.2.8)

CaLll EXIT

EHD



FACT (n+1)
PEO
PE1
PEE

PHO

PH1

PNO (n+1)

RL

n!
P(False Alarm)
P Miss)

P(E)

p(2) 3 p(n|H,,2)

=n, -+
1 Ny 1

Ay

p(z) 3 p(n|H;,2)
n=0

p(n]HO)

L (Eq.18)
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P{ERERORY FOR AVERAGED THRESHOLD RECEIVER
WITH D = 1 AND FINITE THRESHOLD AVERAGIHNG

DIMENSION FACT(1HBR). POIS{1RABA>, RNT(188A8)>, P{(1HERA)
CaLL SEARCH (1, INPUTILI'.1,HB)
CALL SEARCH (2.,'0UTPUT’.3.8)>

FORMAT (3E1B.4,118)

RERD (5,48) RNE.RHNB, 5D, NAVE
HDESUM = RHS + RHNB

YAR = SD=%SD

RNaY = NAVYE

NaYl = HAVE + 1
PMIS = 8.8

PFa = B.8

FACT(1> = B.4@
POIS(1L> = ERPC(-RHB)
RHTC(1) = RHB

GEHERATES FACTORIAL AND THRESHOLDS

Do i1ig N = 2, HDSUM

RN = N - 1

FACT(NY = FACT(N-1)> + ALOGC(RN)
POIS(H) = POIS(N-13 * RHB / RN
IF {EH-RNE)> 38. 5H., o8

RH2 = RHB

GO 70 118

RNl = RH + RHNB / RHNS

De i1BB I = 1, 54

F = RN = ALOG(RNI/RNB)Y - RH1 + RHNB

F1 = RHARNL - 1.8

RN2 = RH! - F/F1

IF (ABS(RN1-RH2)> .LT. 1.BE-4*RN2)> GO 70 118
RN1 = RHZ2

RNT(HY = RHN2

GEHERATES BIHOMIAL DISTRIBUTION

P{1) = B.3 *%x RNAY

00 158 K = 2, HAY1

RK = K - 1

P{K) = P(K-1)> ®* (RNAY-RK+1.B) / RK

INTEGRAL OYER 2

DO 788 12 = 1, 1@48
Z I2
Z B.81 » Z

suM OF DISTRIBUTION OVER N

FiH1I = B.8
FiH2 = 8.8
FEHLI = 8. B8
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FEH2 = B.8
DO 688 N = 1, HDSUN
RN = H - 1
Sul OVER K
PHI = B.8
PH2 = B.H
DO 5B K = 1, HaV!
RK = kK - 1
RKT = SB.B * RNAY *» (RNT{H) -2.B*RK*Z*RNS/RHAY -RNB)
i / S@RT(RK*Z*RNS +RHAV*RHB)

ERF IS ERRCOR FUMCTION SUBROUTINE
PNLT = ERF(RKTD
PHI = PH1 + P(K) * PHLTY
RKT = SBE.B » RNAY * (RNT{N) -2 B*RK*#RNS/CZ#RHAY) -RNB)
1 / SQRTCRK=*RNS/Z +RNAV#=RNE)
PHLT = ERF(RKT?
588 PH2 = PH2 + P(K) % PHNLT

P1H1 = P1H1 + EXP{ RN*BLOGIZ*RNS+RHB) - Z*RNS-RNB
1 - FACTC(H> » * (1 _B-PH1D
A = RN*ALOGC(RNS/Z+RHB) - RNS/Z-RNB - FACT(H)
IF ¢4 .LT. -1HA.A) GO TO 558
P1H2 = P1HZ + E#P(AY = {1 H-PHZ)
538 CONTINUE
PHH1 = PHEHI + POISC(N) % PHI
PEH2 = PHHZ2 + POISC(HN) #* PH2
6AB COHMTIMNUE

PZ = ERP(-B.5% (ALOG(Z>+A .5%¥ARY * (ALOG(Z)+8.5%%AR)
i / YARY / (2.5B663 % SD % Z)
PZINY = ERP(-B.5#% (ALOG(Z)-B .3*¥AR>» * (ALOGG(Z)>-B.3%VAR)
i /A ¥AR)Y / (2.3B663 % 5D % 2O
PMIS = PMIS + PZ*xP1H1 + PZINY*P1iHZ
PFA = PFA + PZ*PHH! + PZINY*PHH2
7HE CONTIMNUE

PMIS = (PBIS - B8.5*PZ«P1iH1 - B.5#PZINY*P1HZ) / 188.8
PF& = (PFA - B.5*PZ*«PBHI - B.S5*#PZ2INY4PBHZ2) / 1H8B.3
FE = B.5 * {(PMIS + PFa>
88H FORMAT(3ELS .5)

WRITE (7.8HB)> PWIS, PFA. PE

Z2HE8E CONTIMNUE
CALL SEARCH (4.8.,1.,8)
CALL SEARCH (4.8.,3.8)
CaLL EXIT
END



FACT (n+1)
NAVE

P (k+1)

PE

PFA

PMIS
POIS(n+1)
PZ

PZINV

In(n!)

N

p (k)

P (E)

P (False Alarm)
P (Miss)
p(n|Hy)

p(Z)

p(1/2)
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Appendix C

What follows is a listing of the FORTRAN computer code that was
used to evaluate the integral in Eq.(8) of Chapter 3. For each value
of D/rO (DRO), the corresponding value for <G> (SNR) is printed, along
with their respective logarithms (ALD and ALP) to simplify plotting.
The program to evaluate Eq.(12) is identical except for statement number

100 and was, therefore, not presented.



g I o R B o

A I

SNR FOR HETERODYHE RECEIYER WITH PARARTIAL

18

188 S5HE

ANGLE-OF-ARRIYAL TRRACKING.

1

INTEGRATIGN OF E@0.8.

CALL SEARCH (2,°0QUTRUT’,
FORMAT (E15.3)

READ (1,18) €

5T /4 D

=Zoounonon

SHR . B
DO 18R NU
u
U

.B@1
u * f

a
+
# EWP(-1.29 %

* 0 1 n

&
SHR S.HE%2Z2B8E-3 * DRO%D
ALP ALOGLIBCSHNR)
FORMAT (4E15.52
WRITE (e.2HE)> DRO.
CGHTIHUE
CALL SEARCH
CrRLL EXIT
END

nnu

aLD,

{4,8.2.8)

ATANCSGRT(L . B-UxUD/U)

TRAPEZBIDAL RULE

2,8

{HEaR FIELD)
(FAR FIELD)

{U*DROD*%1. 6666667

(1. B-{U/C)H*%B_.33333333)

RO * SHR

ALP. SHER

150

SARTC(L.8-U=U>
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Appendix D

This appendix contains listings of the FORTRAN computer codes
that were used to generate the figures of Chapter 4, each followed
by a partial glossary of variable names. The first two of these
calculate p(I) values for the static and tracking receilvers, respect—
ively. 1In each case Newton's method is used in order to obtain the
stationary points.

The third program calculates the function
(1)

7.02 4
g (1) =f f X dA p(X) p(A) ——  exp [% (1 - 2yZJ1(A)/A)2]
3.83.J Yam

using a steepest descents approximation to the integral over X and
trapezolidal rule integration over A. The correction term for a par-

ticular T is then found to be, from Eq. (40) of Chapter 4, g(-I) - g(I).
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(I) FOR HETERODYHNE RECEIVYER WITHOUT ANGLE-OF-ARRIYAL
TRACKIHG (FROM EB. 28D

CALL SEARCH ¢1.*'INPUT’.1.,8)
CALL SEARCH (2,°'0UTPUT?.2.8)

FORMAT (4E1EB.4>
READ (5,58 5K, 5D, DI. GA
®#1 = — SK%=§K
DELL = 5D
RIHD = 2. B = 68 * EXP(¥1i)y % AJICDELL)Y / DI
IHD = RIHD
RIHD = IHD * DI
pOo S88 I = 1, 36064
RI =1 -1
RI = RIHD + RI == DI
CALL XO0DO (®i.,DEL1.RI.GA,SX.SD.,XO0,DELD.B,Z0,RIBAR)
P1 = EXP(-B.5 % (RI-RIBAR)Y * (RI-RIBAR)
i - B.5 x (XO0/58+S5¥) * (X0/5K+8K>
2 - B.5 % DELO = DELO / (SDxSD>)
2 * DELO / (SQRT(B) * SX % SD*5D)
FORMAT (F15.2, E15.5)
WRITE (6.4BH) RI, P1
IF (RI .LT. GA4> GO TO 588
IF ¢P1 .LT. 1.BE-5) GO TD eB8
CONTIMNUE
PAUSE 4
CONTIMNUE
X1 = — S¥*S¥
DEL1 = §D
RIHD = 2. B * GA * EXP(X1) * AJICDELL) / DI
IHD = RIHD

RIHD = IHD * DI
DO 13BE I = 1, 3EBH
RI =1
RI = RIHD - RI #* DI
CaLL X0DO (X1,DEL1.RI,GA.,5%,58D,%0.DELO0.B,20,RIBARD
F1 = EXP(-B.5 * (RI-RIBAR) % (RI-RIBAR?
I -~ B.9 * (XHO/5X+S5K) * (KO/SK+5X)
2 - B.5 % DELO * DELO / (S5D%5D))
3 * DELO /7 {(SGRT(B) % S5¥ x SD*5D)
WRITE (6.4B8Y RI. Pl
IF ¢(P1 _LT. 1.BE-5> GO TO 16HB
CONTINUE
PAUSE 4
CONTINUE
CaLL SEARCH (4.B.,1.8)
CALL SEARCH (4.8.2.,8)
CALL EXIT
END

CALCULATES STATIONARY POINTS XG AND DELO
FROM EQS. 25 USING MEWTON’S METHOD

SUBROGUTINE XODCG (K1,.DEL1.RI.,GA,S8KXK,8D.¥0,.DELD.B.Z20,RIBARD
DO 188 L = 1, 188



o

188

153

a0 Hi
20 EXP{RO)
DELO = DEL1
RIBAR = 2.8 * GA * Z0 * QJIC(DELO)
Adl IS FIRST ORDER BESSEL FUMCTION DIVIDED BY
ARGUMENT
RIBO = 2.8 » G& * 20 * AJBC(DELO)
AJB IS ZERD ORDER BESSEL FUNCTION
FX® (RI-RIBAR)Y * RIBAR - XO/(S8KXK*8¥)> - 1.8
FD (RI-RIBAR> # (RIBO-Z H*RIBAR) / DELD
1 - DELOA{SD*S8D) + | HB/DELO

n n

nou

F2¥¥ = (RI-2 B#RIBAR) * RIBAR - { B/7CEK*#5K)
F2KD = (RI-2.8B%RIBAR) # (RIBO-2.8%«RIBAR> / DELCOC
F20D = (RI-RIBAR) % (&6 HB*RIBAR-DELO*DELO*RIBAR-3.8%RIBO)

1 J (DELO*DELOY - 1 .BACSD*5D)> - 1.B/(DELO*DELOD
2 - (RIBO-2 .B*RIBAR) * (RIBO-2.8*RIBAR) / (DELO*DELO)
B F2DDx*F2KR - F2RD*F2KD
1 = KO + (FD*sF2XD-FX=F20D) / B
DELT = DELO + (FR*F2XD-FD*F2¥E)> / B
IF (ABS((A1-K0>/KX0) .GT. 1.BE-4) GO 7O 18E
IF (ARS(C(DELL-DELOD/DELOY .GT. 1.HE-4) GO TO 18R
RETURH
CONTIMUE
PAUSE 3
FRETURN
END

I



DELO

DI

F2DD

F2XD

F2XX

FD

FX

GA

P1

RI

SD

8X

X0

Z0

determinant B (Eq.26)
A0

resolution of results
32£/3A% (Eq.27c)
32£/3X34(Eq.27b)
32£/3%X2 (Eq.27a)
3f/8a (Eq.25b)
3f/oX (Eq.25a)

¥

p(1) (Eq.28)

I

CA
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P(I1> FOR HETERODYNE RECEIYER WITH ANGLE-OF-ARRIVAL
TRACKIRG (FROWN ER. 37

COMMON CCOS<21>, CSIN(21), CJBC21)
CabL SEARCH <1i,*INPUT*.1.B)
CALL SEARCH (2.,’0UTPUT’.2.H)D
FORMAT (4E1H.4>
READ (5.5> 85X, 5A, Ga, DI
CCo5{1> = 1.8
CSINCLY = 1. B
cJdocisy =
DO 1BE K
RK =

CCOSCK)
CEINCK)D
CdOLK) = - C
CONTIHUE

K1 = -5Sk#5¥

A4l 8.4

A1 5h

RBB = GA * EXP(X1)> = C{A41,AR1) / DI

IREB = REBB
RBB = IRBB =*= DI

i.8
= 2

# CCOS¢CK-1) ¢/ ©2. B¥RK*RK-RK)>
# CSIHCK-13 / (2, B*RKxRK+RK)
-13 ¢/ {(RK*RE)

K -

DO PBEE I = 1, Z2HBB

RI = 1

RI = RBB - RI = DI
DO 588 KNT = 1, 1BH
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LOOP CALCULATES STATIOHNARY POIHTS X8. A48, AND AGD

FROM E@5. 33 USIHG NEWTON’S METHGD

XD = ¥l

Z0 = EXP{KO)

A40 = A41i

Agd = Al

CO = C{A40.,Aa80)

50 = BC(A40,AaG0)

C41 = DC4{Ad40.ARD)

541 = D544440,A/802

C@i = DCALA40,A4R07

S@1 = DE&{A40,AR07

C42 = DZC4(A40.AR0D

5§42 = D2S4(R40.A0Q3D

CR2 = D2CA(A40.AGD0)

@2 = D25QCA40.A80)

C22 = D2CA4¢A40,480)

522 = D2504¢p40,A480)
RIE = SGRT(CO*CD + SO0x50>

RIBAR = LA *x 20 * RIB
H4 = GA * 20 » {(COx#C41 + S0*x541) / RIB
W8 = GA * 20 x« (CO*C@1 + SO0%S@iy / RIB

FX = {RI-RIBAR) # RIBAR - KO/(SK#S5X> - 1.H

F4 = (RI-RIBARY * W4 - 440/C5A*54)

FR = (RI-RIBAR) * W@ - 2 B*AQ0/(5A*5A) + 1. B/AQ0
F2X® = (RI-2 B*RIBAR) #* RIBAR - 1 .8B/(S5X*S5K)
F244 = -Wd*xlW4 + (RI-RIBAR)D % GA*Z0/RIB
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1 % {-¥4xB4/CCA*GA*Z0xZ0> + CO*C42 + 50%x542 + C41ixC41 + 541%541)
2 - 1. BSCSA*5A)

F200 = -WexW@ + (RI-RIBAR) * GAxZO0/RIB

1 % (-WE*4Q/{Cax6a%*20%20) + CO=CA2 + 50502 + CRi*CA1 + S@1%3@1)
2 - 2.B2{(5a%5A) - 1 . B/CABD*AR0

F2X4 = (RI-2.B+*RIBARY * 44

F2E@ = (RI-2.B*RIBARY * 4@

F204 = ~-W4xW8 + (RI-RIBAR) * {-W4xNA/RIZ4R

1+ CA=xZ0/7°RIB = (C0%C22 + S50#%322 + C41#T81 + S541%3a1)2

B = DET{F2KH. F2X4, F2RQ, F2K4, F244, F204, F2¥Q., F204, Fz288>

#1 = B0 - DET(FH¥., F4, FQ, F2K4., F244., Fz04,

1 F2Ka., Fz2Q4, F288) / B

A41 = A40 - DET(F2KE, F284., F2KXQ. FX., F4, FQ.

i F2k@, Fza4. F2803 /7 B

AB1 = AB0 - DETKFE2XZ, F2K4, F2KB, F2X4., F244, F204,
1 FX¥, F4, FQ) /7 B

IF (aBS<{¥1{-80>/X0) .GT. | .BE-5) GO TO 5BA
IF (ABS{{AQ1-AB0X>/AR0) .LT. 1.BE-5» GD TO 688
588 COHTIHNUE
PAUSE |
BB CONTINUE
Pl = 2. B * AB0 % EXP{ -B.S5S*{RI-RIBAR*(RI-RIBAR?>
1 - 8. 5%{R0+S5R*5K)#{ {0+38*x5K I/ {5K*5K)
2 - B.5%(A40%A40+2 BxAG0+4880)/{5a%38) )
3 / (S¥ * SA*SA%5SA % SORT(-BY)
65H FORMAT (F15.3, E15.53
WRITE <6.,658» RI, Pl
IF ¢P1 LT. { BE-?) GO TG 388
7BHE CONTIHUE
888 CONTIMUE

¥l = -5¥=%8H

a4l = 4.8

4681 = 58

RBB = GA *x EXP(H1) * C{Ad41,AQ1) ¢/ DI
IREBR = RBB

FBE = IRBB =#* DI

DO {¥BEB I = 1, 2HAB

RI =1 - 2

RI = RBB + RI =* DI
DO 15HE KT = {, 1HSE

20 = Ki

Z0 = EXFCROD
A40 = A4l
884 = 4[4t

CO = C{A40,A4Q0)

50 5(A40.A0)

€41 = DLC4<A40.A80)
541 = DS4(A40,A80)>
CAl = DCBC(A40:480)
5Q1 = D3E{A40,A002
C42 = DzC4{A40.A80)
542 = D254(A40,/800
C8zZ = DzCA(Aa40.a80)
S@2 = D2S5QadA40.A80)
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C2z = DZCA40A40, 80
522 = D2584<(n40.A80)
RIB = SORT{CO%CO + 50%502
RIBAR = GA # 20 =* RIB
W4 = 6/ * Z0 = (CD=xC41 + S0%G41) / RIB
g = GA * 20 =% (CO0%*C@1 + 50+*3&1) / RIB
F¥ = (RI-RIBAR) % RIBAR - XO/(S5K#5K) - 1.8
F4 = (RI-RIBAR)Y * W4 - A40/(S5A%3R)
FG@ = (RI-RIBAR) #* K@ - 2 .B+AQ0/C(5a8%8a) + 1.8/AQ0
F2h¥ = (RI-2.B+#RIBARY % RIBAR - 1 . B/AC(SH#EX)
F244 = -bW4=*M¥4 + (RI-RIBAR)Y * GA%ZO0/RIB

1 % (~W4*W4/{GA+CA+20%20> + CO#*C42 + 50%542 + C41ixC41 + 541%341)

2 - 1.87C5A%SA)
Fz2a0 = -HE*WQ + (RI-RIBAR) * GCA#*Z0/RIB
I % (-HB*WR/CGA*GA%ZO0*Z20> + CO*CQ2 + 50#5682 + CR1+CAY + S@1#3Q1)
Z - 2.B/CS5A%5A4) - | . B/CAGD*AR0)
F2K4 = (RI-2.B*RIBAR)Y * 4
F2h2 = (RI-2. B*RIBAR) % WA
F284 = -W4xlWB + (RI-RIBAR) # (-W4*¥O/RIBAR
1 + GAx*ZO0/RIB * (CO%C22 + 50%522 + C41xCA1 + S541%5@1)1)
B = DET(F2EX, F2X4, F2X@., F2K4, F244, F2a4, F2KE, F284., F20Q°D
K1 = ¥0 - DET(F¥. F4. FR, F2KE4, F244, F204,
1 F2X8., Fztd4, F268> / B
A41 = A40 - DET(F2K®., F2K4, F2ZK@., FX., F4, F@.
1 F2¥8@., FzG4. F288) / B
AB1 = AQ0 - DET{F2EX, F2K4, F2X0Q., F2X4, F244, F20Q4.
1 F®, F4, F@> /7 B

IF (ABS(C(K1-K0>/K0> .GT. 5.BE-S5) GO 70 15HB
IF (ABS{(AQ1-ARQ0)I/A80) .LT. 1.8E-5)> GO TO 1688
1588 CONTINUE
PAUSE 1
1688 CONTIHNUE

i
2
3

1788
1388

€{a

5 B g bl o

P1 = 2.8 % A80 % EXP{ -B.5#(RI-RIBARI*{RI-RIBAR)
- B.3*x{R0+S¥*SKI*{ KO+5K*BK I/ { SR*5K
- B.5*(A40%Aa40+2 B*xAQ0*AQ0)/(5A*SA>
A (85X % SA*SA%5A * SART(-B>)
WRITE (6,858 RI, Pl

IF ¢(P1 .LT. i{.BE-¥)> GO TO 13EB

CONTIMUE

CONTIHUE

CALL SEARCH (4,8.1.8)

CaLL SEARCH (4,8.2.8)

CALL EXIT

END

»B> = IHTEGRAL B T8 {1 OF COS(ATY % JBIBTI DT

FUNCTIOGN C(R.B>
COMMON CCOS(213,
A A * A
iy .29 = B = B
C = B.8B
IF ¢A4.ER.B.8> GO TO 1R
D8 5 K = 1, 21
BK = K - 1

CSIRC21)>, CJ0<21)

n



Lo B

Lo I o BN o

L UK o B0

PG 5 L = 1., 21
BL = L - 1
5 C = [ + CCOS5(K> % CJO4L) % X#%«RK # Y=»%RL / (RL+RK+8.5)
C = 8.9 = C
RETURH
1B DO 158 L = 1., 21
RL = L - 1
15 © = € + CJd0O{L)y # Y=%RL / (RL+B.5)
€ = 8B.5 % (C
RETURN
END
S{A,B> = IHTEGRAL B T4 1 0F SIH<AT)Y #* JACBT)Y DT

FUNCTION SCa,B>

COMMON CCOS{21). CSINC213, CJOC212
IF (#.EQ.B. B> GO TO 1B

A % A

BE.25 * B *= B

B.B

-
nm o n

=

|

A
o =
nr- n=

ig §

BC4 = DC/DA

FUNCTION DC4<n.B)
COMMOHN CCOS<21), CSIHNZ21), C40C21)
IF (A . ER.B.B> GO TO 18

¥ = A % A
Y = B.253 * B % B
C = 8.8
DG 5 ¥ = 1. 21
Rk = £ - 1
pg 5 L =1, 21
RL = L - 1
S C=2¢C + CCOBCKY % CJO(LY #% X#%xRK # Y¥#xRL * RK / (RL+RK+B.5)
bC4 = C 7/ A
RETURN
18 DC4 = B. B
RETURH
END

0S4 = DS/DA

FUNCTION D54(A.8)

COMMON CCO5{(21), CSIHL21Y, CJOB{21)
% A ® A
Y B.25 = B * B

" on

158



Do I o B

Lo

1d

15

D

18

159

5 = B.H
IF ¢a.E&.8.B) GO TO 18
po 5 K = 1, 21
REK = K - 1
DG 5 L = 1, 2§
RL =L - 1
S5 = 5 4+ CSIKCKY # CJOCL)Y * K**RK # Y#*RL * {(RK+B.5) / (RL+RX+1 HD
34 = 3
RETURH
0o 15 L = 1, 2%
RL =L - 1
5 = 5 + CJOCL)> # Y#%RL « @8.5 / <RL+1.8B)
D54 = 5
RETURN
END .
c@ = DC/DB

FUHCTION DCG{A.B)
COMMON CCOS<21), CS5INCZ1), CdOl21)

¥ o= A % 8

Y = B.25 %« B = B

C = 8.8
IF (A.EG.B.B> GO TO 18
b0 5 K = 1., 21

RE = K - 1
b0 5 L = 1., 21

RL = L - 1

C = C + CCOS(KY # CJOCLD # H*kxRK * Y#%RL % RL / (RL+RK+B.3)
pce = C /2 B

RETURHN
b0 i3 L = 1., 21
RL = L - 1
L =L + CJOLL) % Y#+«RL # RL / (RL+B.5)
pce = C ¢4 B
RETURHN
EHD

3@ = DS/DB

FUHCTION DS@G{A.B)
COMMON CCOS<2{>, CS8IN{213s CJO(21)

IF <A . E&§.8. B 60 T0 1B
¥ = /8 = B8
Y = B 25 = g % B
S = BE.B
0O 5 K = 1, 21
Bk = K - 1
bd 5 L = 1, 21
RL = L - 1
5 = 5 + CSINCK? » CJOCL)Y * K*xRK * Y+*xRL = RL / (RL+RK+1.8)
bE& = a4 = & /7 B
RETURN
bDsSg = B.8
RETURH

END
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C D2C4 = Dz2C/DR2

FUNCTIOHN D2C4CA.B)D
COMMON CCO5<¢218>, CSIHL215, CJ40C21D
a A % A
Y B.253 « B * B
C g.8
IF {A.EQ.B.B> GO 7O 18
bt 5 = 2, 21
RK K -1
D0 5 1. 2%
RL -1
5 C =€ + CCOB{K) # CJOCL) % X*«x(RK~1_ B) * Y*#*3L
1 # RK # (RE-8.5) ¢/ (RL+RK+B.5)
b2C4 = 2.8 # C
RETURH
ig pg 15 L = 1, 2l
RL = L - 1
15 €C = C + CJOCL)Y * Y**RL % B.3 ¢ (RL+1
pzc4 = -¢C
RETURH
END

nrmn=
| B |

D254 = D2E8/DAZ

Lo I o v |

FUHCTION D254(A,B)
CeMMON CCOB{21), CSIHCZ1), Cd0C21)
IF <n.EQ.B.B> GO 7O 18
a R ¥ A
Y B.23 = B » B
5 B H
DO S i,
RE =
pd 35 1. 21
RL -1
3 5 = 85 + CEINCKDY * CJO{L) * K**%RK # Y#%RL
1 * R %= (RK+B.5) / (RL+RK+1.8)
D254 = 2. B #= § / A
RETURN
18 D254 = B .8
RETURH
ERD

nounon

el
1

nr-n X
= un=u

bzta = pa2cr/pB2

Lo 2 o I ]

FUNCTION D2C&CA.B)
COMMON CCO5(21>, CSINL21), Cd0C(21)

A = A * A

Y = B.25 * B = B

C = B.H
IF <A.ER.B.B> GD TO iR
DO 5 K = 1., 21

REK = K - 1
bo 5 L =1, 21

RL =L - 1



Lo B B

Lo I ]

Doe T o B e |

5

ig

15

i

D

I —

*
pzca
RETU
g 1

RL
cC =
D2Cca
RETU
END

258

FUNC
COMM
IF ¢

¥
¥
3
DO 3

RE

Dg s
RL

38 =

18

1

*
D25a
RETU
D258
RETU
END

bzca4d

FUNC
COMHM
IF ¢

- >

[

Do §
RK
ba 3
RL

g € =

18

1

LA

e
D2Ca
RETU
pa2ca
RETU
END

25484

FUNC

COoMH
Y

o

C + CCOSCKY # CJOCL) * X*%*RK * Y#*%xRL
RL # {RL-8.5) / (RL+RK+H.3)
= 2.8 = € 7 (BxB)
RN
s L =1, 21
= L -1
€ + CJO<L)Y = ¥**RL % RL * (RL-8.5)> 7 (RL+B .53
= 2.B = € / (B*8>
RH

= D28/DB2

TIOH D25@<Aa.B)

GH CCOS5{21», CSIN{2Z1), Cd0{21)
8. E@R.B.EY GO TO 18

= R * A

B.25 * B % B

BE.B

21
i
» 21
1
S + CSINCKY # CJOCL) % X#%RK * Tx%RL
RL = (RL-8.52 ¢/ (RL+RK+1.8>
= 2.B = 4 % & /7 (B*B)
BN
= B.48
RH

nrn=
| | B ]
| T o R

= DP2C/DADB

TION D2CB4{A.B

ON CCO8{21). CSIHN{(21), Cd0{21)
p.E@G.B5.8> GO TO 18

A * A

B.25 = B = B

B.8

2 21
i

s 21

-1

C + CCOSCK? & CJOCL)Y * X#%RK * Ya%RL
RK # RL / {RL+RK+8.35)

nra=x
= un = 1
— ] =

4 = 2.8 % £ / (a%B}
2H

4 = B.8

RN

b25/DaADB

TION D25B4(A.B)
OH CCO58{21), CSIH(Z1>., CdJdGc¢212
= A * A

161
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¥ = B.253 * B * B

C = HB.8
IF {p.ER.B.B> GD 70 18
po 5 R = 1, 21

RE = K - 1
pa 3L =1, 21

RL = L - 1

5 8 = 8§ + CESIMCKY> = CJOCL)Y % X##%RK * Y#*%RL
1 # RL # (RK+H.5) /7 (RL+RK+1.82
pD2s@4 = 2.8 * § / B
RETURH
i8 90 15 L = 1. 21
RL = L - 1
15 8 = 8 + CJOLL) % Y#**%RL % RL * B.3 / (RL+1.8B)
2504 = 2.8 * § / B
RETURN
EHND

DET ¢+ 3 X 3 DETERMIHANT

FUNCTIOHN DET{Al.A2.,83,81,B2.B3.,C1.,£2.,C3)
DET = Al = (B2%C3 ~- B3#xL2)
i - #2 % (Bi%C3 - B3I*C1)
2 + A3 * (B1%xC2 - B2%xC1)
RETURH
END



A4O
AQO
C22
C4l
C42
CCoS

CJo

cqQl
cQ2
CSIN
DI
F244
F2Q4
F2QQ
F2X4
F2XQ

F2XX

a
(e}

Bo

52C/3aaR

3C/du

32C/3a?

coefficients of Taylor's expansion of cosine function
coefficients of Taylor's expansion of zero order
Bessel function

3C/3B

32C/aR?

coefficients of Taylor's expansion of sine function

resolution of results

3%2£/3a? (Eq.36¢)
32f /2038
32f/3R2 (Eq.36d)
32£/3X3a
3%f/3X3B (Eq.36b)

32£/5%2 (Eq.36a)
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¥4
FQ
FX
GA
Pl
RI
522
S41
S42
SA
sQl
sQ2
Sx
X0

0

3f/3a (Eq-33b)
3f/38 (Eq.33¢c)

3f/3X (Eq.33a)

p(I) (Eq.37)

325/3u38

3S/%a

328/3a2
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Lo i

CORRECTION

TERM FOR HON-TRACKIHNG PCID (ER. 483

CALL SEARCH (1, IHPUT*.,1.,8)
CalLL SEARCH (2,°0U0TRPUT*,2.8)

1B FORMAT (4E18.45
READ (5.18B> S¥, &b, D1. GA
TGa = 2.8 = GA
Y¥ = 85X # 5¥
¥Dp = 5D = 5D
IEHD = 1B. B / DI
DD 388 I = 1., ILEND
RI = 1
RI = -5.B + RI * DI
0 = - ¥§
P = 3.83171 % ERP{(-B.35 #* {(RI=RI + 14.682 /¥D))
P =P + 7.8155% % ESP{(-B.3 * (RI*RI + 4% 21853/¥D3>
F = B.9 % S » P
DO iB@ K = 1, 99
D = K
b = 3.83171 + 3.18388E-2 #» D
CaLL FXO {X0, TGa., D, RI., %¥¥., ¥D, RIBAR, FX¥>
P =82 + D % EXP({-B.5% ((RI-RIBAR)*{RI-RIBAR)

1 + (RO+Y R I+ (HO+YRIAYE ¢ D#*D/YDDI)Y / SART(-FKH)

188 CONTIHUE
p =
FORMAT (F1
HWRITE
CONTIHNUE

g

3Bd

B.398942 * 3 .18388E-2 * P / (G5X=*4D)

B.2, EI15.3)

{(6.,2BH8> RI. P

CALL SEARCH (4.8.1.8)
CALL SEARCH (4,B.2.8)

CALL EXIT
END

CALCULATION OF STATIDHARY POIHNT FOR STEEPEST DESCENTS

INTEGRA

SUBROUTIHNE
DO 1BEB L
1 = KO
RIBAR =
Hd1
Fi = (RI-R
FR¥ = (RI-

20 = K1 -
IF (ABS((Y
RETURN

1888 CONTINUE
PRUSE 1

RETURN

EHD

TION OYER ¥
FXo(®0, TGaA, D, RI, ¥H, ¥D, RIBAR., FRX>
= 1, 1BH

TGA * EWXPCXL1) * A41LDD
I8 FIRST ORDER BESSEL FUNCTION DIYIDED
BY ARGUMENT

IBARY * RIBAR - (XI+YRI/VY

2.BxRIBARY =#» RIBAR - 1.8B7YX
F¥ / F¥A
1-%0>X7%1) .GT. 1.BE-S53 GO 7O 1QBE"
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DI

SD

SX

X0

resolution of results
9f /3X

32£/3%2

Y

g (1) (Eq.D1)

stationary point
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Appendix E

In the final two chapters of this work, experimental results
have been presented for the signal distribution from an optical heter-
odyne receiver which was described briefly in the text of these chapters.
In this appendix the actual receiver that was used is described in more
detail, including design schematics. These are given in Figs. El
through E13 with a few words of explanation below.

Fig. El. Receiver Block Diagram.

In this figure the main functional blocks of the frequency lock
loop, the four silgnal channels, the photomultiplier tube power dis-
tribution, and the current monitoring circuitry are outlined showing
their interrelationships. The following figures detail the design of
each of these blocks.

Fig. E2. Optics.

The signal is collected by the telescope and mixed with the local
oscillator laser at the surface of a ten per cent reflecting beamsplitter-
Separation of the signal into four channels is begun by the four inde-
pendent steering mirrors and the process is completed by the four
aperture slide plate located in front of the detector boxes. The optics
form an image of the front of the telescope at this slide plate that is
reduced by a factor of 5.3. The virtual apertures at the telescope form
a square 10 cm. on a side with each having a diameter that can be varied
from 0.21 cm. to 5.1 cn.

Fig. E3. Loop Photomultiplier Tube.

The photomulitiplier tube anode feeds a tuned circuit centered at

29.5 MHz and with -3dB points at 28.8 MHz and 30.3 MHz. The IF signal.
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taken from a 50 ohm tap on the inductor, is fed into the frequency
discriminator block while the D.C. component of the current is low
pass filtered and fed into the current monitoring circuit.

Fig. E4. Discriminator.

The signal is next fed into an RGH Electronlcs IF package which
amplifies and then envelope demodulates it. The amplified IF signal
is put through an RCH discriminator package with center frequency at
29.5 MHz and the frequency demodulated signal is sent to the sample
and hold circuitry. The amplitude demodulated signal from the IF
strip is fed into the sample and hold control circuit.

Fig. E5. Sample and Hold Control.

A sample and hold circuit was designed into the system so that
the loop would lock onte its last known value during periods when the
optical signal was blocked by the chopping wheel. The discriminator
output is sampled whenever either 1) the switch in the control circuit
is in the "continuous' mode, or 2) the amplitude demodulated signal
from the IF strip is greater than the cowmparator threshold with the
switch in the '"chopped" mode. 1In attempting to adjust the comparator
threshold, however, it was discovered that the frequency demodulation
of the IF signal was more sensitlive than the amplitude demodulation.
In addition, the tuned circuit at the photomultiplier anode insured
that the peak frequency of the noise spectrum was the same as the lock-on
frequency so that the loop did not drift rapidly during periods of no
signal. The result was that the best performance was obtained by run-

ning the loop in the "continuous" mode.

Fig. E6. Sample and Hold.
The sample and hold circuitry, always sampling in the "continuous"

mode, feeds into a gain of one amplifier which operates in either an
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"inverting' or a "non-inverting' mode. The local oscillator frequency
will be higher or lower than that of the signal depending on the position
of this switch. This makes no practical difference in the operation of
the loop or in the signal channels, however.

Fig. E7. Loop Gain Control.

A two stage amplifier controls the loop gain. The first stage is a
low voltage amplifier with gain continuously variable from 0 to 2.5.
The second stage 1s capable of 0 to 300 V outputs and has a switchable
gain control. Optimum loop performance occurs with this switch in a
gain 100 position which results in an overall loop response of about
one kHz. The loop is locked by manually sweeping the adjustable offset
voltage of the high voltage amplifier stage. The gain control output
is fed into the control electronics of a Spectra Physics' 119 laser
which acts as a voltage controlled oscillator, completing the loop.

Fig. E8. Oscillator.

This circuit generates a 28.5 MHz electrical signal and feeds it
to each of the four signal channels.

Fig. E9. Signal Photomultipliexr Tube Box.

In each of the four signal channels the photomultiplier anode
current feeds into a tuned circuit identical to that in the loop
detector. The D.C. component is fed to the monitoring circuit while
the IF component is mixed with the oscillator output. The resultant
IMHz signal is passed to the rectifier through a line driver and trans-

mission cable.
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Fig. E10. Rectifier.

This is one of the four identical full wave rectifiers that
begin envelope demodulation of the signals.

Fig. E11. Low Pass Filter.

The final stage of envelope demodulation is accomplished with
an eight pole Bessel filter. The -3dB point of the filter is at 200
kHz.

The final two figures give details of the photomultiplier tube
power distribution and of the metering circuit that was used to monitor

the D.C. anode current through the tubes.
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Appendix F
Since Zx and Zy are independent random vectors, we have, from
Eq.(2) of Chapter 6
. (F1)
P(ZX, Ky) = (2ﬂ)‘N ]QAXI-Q_:CAy!-%-exp< -%—ZXTCAX'l Z%z)

-1 7% te. -5
2y Ay Ty

Changing to polar corrdinates

]
i}

(A 2+ 4 2)% (F2)
xi yi

8,
i

N

-1
tan (Ayi/AXi)

and integrating over the N angular variables yields

27
: (F3)
p(d) = O |ch|'% ]cAy Zf“'fAldel <o e Bgdly
0

W N
-1 -1 .
X exp |- E: z: A. A, (Co .. cosb, cosB. + C, .. sinb. sinG.)J
P [ 4 i e i 3 TAyid i i

-1

-1
f i ' L= _ this can
If we assume an isotropic atmosphere, so that Cagit CAyli s

be rearranged to give

D = ey Jeay P TT [ay et F oy 0,
p(d) = |Cx | ICAy| 1 8y @XPm 7 Cayyy B0
27 N N
X (211)_Nf... d0,...doy exp[-} > 2 A b, (F&)
0 i=1 j=1 ]
i#]

X (CAxijﬂcosBi cosej + CAyij_ISinei sinej)}

Comparison of F4 with Eq.(3), therefore, implies that GN(K) is defined

by the expression contained within the curly brackets.
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Evaluation of GN(K) for the general case is seen to be rather
complex. TIf all off-diagonal elements of QAX and QAy are zero, however,
the trivial result is obtained that GN(Z) = 1 for independent Ai and also,
therefore, that Gl(K) = 1. The probability density function then reduces
to the product of N Rayleigh density functions.

Another case that can be evaluated is GQ(K). First we make the

observations that C, = CAle from symmetry considerations, and that

x12
without loss of generality, we can align the detectors so that they lie

along the line y = x. This last condition allows us to consider the case

where CAX = CAy so that

2T 2T
Gy () = = 46, de C AL A (8,-8,)
T e Jo o1 2 TP Ag12 1 B2 COSTRITR2
= I (Caypy by 8,) (F5)

where IO is the modified Bessel function of order zero.

For three or more detectsrs the form of the covariance matrices
depends on the geometry of the receivers and the integration becomes more
complex. 1Imn all probability numerical evaluation of GN(Z) and of its

derivatives would be necessary in these cases.
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Appendix G

In Eq. (11) of Chapter 6 it was stated that

- 2 (G1)

which implied that the phase parameter variance and correlation coefficient

are given by

2 = = { 2)
O = Caxy1 T Ay
(G2)
1
= = )
s = Lagyo / Coax11 g2 (Axl A2
since, from symmetry considerations, (Axl ) = <Ax2 Y = 0.

Let #(a) be the phase angle of the signal at the point labeled "a
in Fig. Gl. The average x-directilon component of the tilt across detector

1 can be approximated, in this notation, by

b =% [8(a) - d(a")] (63)
so that
op? =4 ([8(a)-8(a")1? > =4 D_(D) (G4)

where D is the detector aperture diameter and Ds’ the structure function
of phase, is defined by Eq.(G4). In a similar manner,

4 0,2 1, = ([B(2)-0")HI[BB)-P(B")] ) (G5)
Some algebraic manipulation yields

02 1 = {18812 + ([BGa)-p(1)]12 )

(G6)
- ([8(2)-F(1)1D - {[8(a*)-H(b")]? >}

which, considering the geometry of Fig. Gl, results in
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(67)
0p% Ty =& D, l:(pZ+D2+1/2— P D)%}f— ¥ D [(p2+1)2—/5 o D)%
- % D_(p)

It is helpful at this point to define the characteristic coherence

diameter of the atmosphere by

r = 3.31 2 [D(z)] ms/3 (G8)

where U(z) is the total wave structure function. For the cases of plane

and spherical wave propagation, this is given by

-6/5 -3/5 -6/5
1.73 k L C, (plane wave) (G9)
° -6/5 -3/5 "-6/5
3.11 k L C

-
U

(scherical wave)

n

where k is the wavenumber of the signal, L is the propagation distance,
and an is the structure constant of refractive index fluctuations.

The assumption that Ds(z) ~ D(z) is a very good approximation for
near field applications? (D>> Y27L/k) and also under conditions of
saturated amplitude fluctuations.?23 Since, even when these conditions
are not met, this approximation overestimates phase fluctuations by no

more than a factor of two, it will be used here. This leads to

op2 = 1.72(D/r0)5/3 (G10)
Ty =% 1 22 4R 5/6+% 14+ 22 A\ e o/
a 2 >

D D D D D

for spherical or plane wave propagation.
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