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1 Introduction

1.1 Summary

Cancer immunotherapies show great potential for treating patients with otherwise incurable disease. Over the past

decade, a type of immunotherapy known as immune checkpoint inhibition (ICI) has been approved to treat an

increasing number of cancer types, including melanoma, non-small cell lung cancer, renal cell carcinoma, and some

head and neck cancers [1]. However, these treatments are only effective in a subset of patients, which cannot be reliably

identified prior to treatment; the mechanisms by which some patients exhibit resistance to ICI are not fully understood

[2]. A better understanding of the gene expression and regulation patterns of heterogeneous malignant cell

subpopulations and various immune cell types in the tumor microenvironment contributing to ICI treatment failure is

critically needed. This will enable stratification of potential recipients into responders and non-responders and the

development of novel therapies or combinations that succeed where current options fail.

To this end, single-cell sequencing technologies have been used to interrogate the expression patterns of heterogeneous

cell subpopulations in tumors, and have shown success in their application to questions related to topics such as T cell

exhaustion and immunotherapy response [3, 4, 5, 6, 7]. Despite rapid development of methods and tools to analyze data

produced by these powerful new assays, new approaches are still needed. A systems-level approach that considers cell

type-specific changes in expression and regulation over time that contribute to T cell exhaustion and treatment failure

will facilitate new, clinically relevant insights. The consideration of tumor cell subpopulations and the differential

impact of key cell states is also critically needed. This type of analysis framework is necessary to enable more effective

therapeutic targeting of the tumor immune microenvironment with ICI treatment. Such additions to the computational

biology toolkit will enable progress on this important clinical question and, once developed, can be applied to other

important biological questions as well.

1.2 Cancer – The Clinical Problem

Cancer is a category of diseases characterized by an uncontrolled proliferation of cells within the patient’s body. Cancer

has a range of causes and occurs when normal biological processes become dysregulated, allowing a rogue population

of cells to multiply and spread throughout the body [8, 9]. Cancer causes significant morbidity and mortality

worldwide, leading to around six hundred thousand deaths annually in the United States alone [10, 11]. Various cancers

account for almost one in six deaths globally, killing 9.6 million people annually [12].

This pressing clinical need has driven massive investment of skill, time, and money into researching this group of

diseases. Billions of dollars are spent on cancer research every year [13]. Some progress has been made, and survival

rates for most cancers have improved over the past several decades [14]. However, the remaining disease burden

demands further research and new solutions. While there are many approved cancer treatments, including the classical

approaches of surgery, radiation therapy, and chemotherapy and more recent targeted therapies, these treatments often
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carry significant, burdensome side effects and often fail to elicit a durable response. Additionally, radiation and

chemotherapy can induce iatrogenic secondary cancers [15]. These shortcomings have spurred an urgent search for new

therapeutic approaches that address the limitations of existing treatment modalities.

1.3 Tumor Heterogeneity

Tumors are not homogeneous. Two types of heterogeneity must be considered when studying cancer. The first,

inter-tumor heterogeneity, refers to the significant variability between patients. Since tumors arise out of healthy cells in

each patient, and there are many routes to broadly similar states of molecular and cellular dysregulation that

characterize tumors, cancer cell populations from different patients tend to differ significantly in their mutation profiles

and histopathology characteristics even within the same cancer type [16]. The second, intra-tumor heterogeneity,

describes the way in which individual tumors comprise genetically and epigenetically diverse subpopulations of cells

[17]. This second type of heterogeneity is of primary interest when considering mechanisms of treatment resistance, as

drugs can act as Darwinian selective pressures that cull certain groups of malignant cells and leave resistant

subpopulations unharmed [18].

Intra-tumor heterogeneity has been understood for over four decades, since the “clonal” nature of cancer was first

characterized. In 1976, Peter Nowell described cases in which all cells in a primary tumor exhibited the same abnormal

karyotype, plasma cell clone (in the case of plasma cell cancers), or X chromosome (in women), suggesting they were

descended from a common progenitor cell. Additionally, he suggested sequential selection of mutant subpopulations as

a model for cancer evolution [19]. When a cell within a tumor sustains an additional genetic alteration, which can range

from the modification of a single nucleotide to a loss-of-heterozygosity event in which a large section of a chromosome

is lost, this change can be inherited by daughter cells that result when the cell divides. Importantly, genes and proteins

that are clinically relevant, sometimes to the mechanism of targeted therapies, are often only expressed by a subset of

cancer cells within a tumor [20]. This can lead to selection for and clonal expansion of resistant subpopulations in some

patients, leading to treatment failure (Figure 1) [18]. In addition to genetic alterations, epigenetic changes, such as the
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methylation of particular regions of the genome, can lead to functionally important changes in expression activity.

These epigenetic changes have been studied more in recent years as new assays have become available [17].

Another form of heterogeneity that appears in tumor sample data comes from the mixture of other cell types present

within and around a tumor. Cancer-associated fibroblasts (CAFs), immune cells (including tumor-infiltrating

lymphocytes), and other adjacent healthy cells are present in the tumor microenvironment. This is not tumor

heterogeneity in the same sense but will show up as heterogeneity in experimental data [21]. In addition to considering

many cell types present within a tumor, researchers must also analyze various cell states that may arise due to

differentiation trajectories or changing biological conditions. The relative abundances of various cell states within a cell

type can impact treatment efficacy. In the case of targeted therapies, the primary heterogeneity of interest has to do with

drug-resistant subclonal populations of cancer cells that may need to be targeted with novel therapies or combinations.

When it comes to cancer immunotherapies, this becomes more complicated, because the mechanism of treatment

response relies on an interaction between multiple cell types (immune cells and cancer cells).

This heterogeneity poses a major challenge to cancer researchers. When patients with a given disease mechanism or

treatment response profile vary in their expression of individual genes and proteins, it becomes difficult to achieve the

statistical power necessary to detect these mechanisms even if there is shared underlying biology. To address this,

researchers must take a systems-level view, discussed in greater detail below.

1.4 Single-Cell Assays

While the advent of high-throughput sequencing technologies has allowed for the generation of vast amounts of

genotype and expression data from a range of tissue types, bulk sequencing generates data in which the signal from all

cells in the sample is mixed together. While computational methods can be used to deconvolve this bulk signal to a

degree, they have some limitations, particularly in their ability to track cell type-specific expression changes in genes

expressed in multiple cell types within a tissue [22]. Bulk RNA-seq data, while useful for some research questions,

does not provide the resolution needed to perform detailed analysis of different cell subpopulations within a tissue

sample. This complicates the study of tumor samples that contain heterogeneity within tumor cell populations, mixtures

of cell types, and mixtures of cell states within each cell type, all of which may be relevant to tumorigenesis and

treatment response.

Over the past decade, new assays have been developed that can deliver information on cellular features at a single-cell

level of resolution. These single-cell assays, such as single-cell DNA-seq (genotype), single-cell RNA-seq (expression),

and others, allow researchers to interrogate tissues on a cell-by-cell basis [23, 24, 25, 26, 27]. Performing single-cell

RNA-seq (scRNA-seq) on a tissue sample yields information about which genes are being expressed in each cell in the

tissue, which can be used to determine the cell type composition of the tissue and examine the expression in each of

these cell types. This is particularly useful when studying clinical samples from heterogeneous tumors. Various cell

types and phenotypically distinct cancer cell subpopulations can be identified and analyzed.
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These assays have been used extensively for cancer research in recent years. Many papers have used single-cell assays,

including scRNA-seq, to study patient tumor samples with greater granularity than is possible with bulk data [6, 7, 3].

In addition to this, several, more comprehensive efforts are underway to develop large, public resources with many

samples and huge number of cells from a variety of cancer types [28, 29]. This proliferation of high-resolution cancer

datasets will facilitate new insights in tumor biology for years to come.

1.5 A Systems-Level View

1.5.1 Advantages of a Systems-Level View

Systems biology has been enabled by the collection of systematic biological data. For example, high-throughput

transcriptomics measures the expression of every protein-coding gene in a sample. With this type of data, researchers

can start to look at the interacting units within a system, their relationships, and how information passes through the

system under various circumstances [30]. An analysis that may not be sufficiently statistically powered to detect a gene

or protein that may vary between two conditions may be able to detect a difference at a pathway or gene-regulatory

network level by aggregating across a group of genes based on some pre-defined relationship. A subset of patients may

all exhibit alterations in the same pathway, even if the same genes are not affected. In this way, the heterogeneity

problem can be addressed [31].

This type of approach works because, when studying molecular processes within a cell, the information passed through

a network of interacting components can be more important than any of the individual components themselves. These

networks can involve protein-protein interactions (such as signal transduction cascades and ligand-receptor

interactions), gene-regulatory networks, metabolic reactions, and post-translational modifications of proteins and

protein complexes [31].

A comprehensive systems biology approach must take these relationships into account, moving beyond the individual

gene or protein level to identify gene sets related to a biological or clinical phenomenon of interest. We can overlay

these pathways and gene-regulatory network modules onto single-cell transcriptomics data and determine their activity

levels in cell populations of interest. The mechanistic insights gleaned from systems-level analysis of biological

systems can then inform treatment decisions that are more suited to an individual patient and the specifics of their tumor

biology [31].

1.5.2 Biological Pathways

Studying members of a pathway as a group instead of individually helps to address the heterogeneity problem.

Different patients with a shared disease mechanism or treatment response may exhibit modification of different

elements within the same pathway. These biological pathways hierarchically organize sets of genes based on shared

functionality, physical interactions, and regulatory relationships. These elements may be subunits of a protein complex.

Alternately, one might be upstream of another in a cascade of protein-protein interactions within a cell [30]. These
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pathways and their members are delineated in publicly available resources such as Reactome [32, 33, 34, 35]. To

augment their analyses, researchers can access information describing protein-protein interactions, protein complexes,

and metabolic reactions that have been curated from the biological literature.

1.5.3 Gene-Regulatory Networks

Genes do not act in isolation. Throughout development and under normal physiological conditions, the expression of

each gene is carefully regulated. Some genes code for transcription factors, proteins which bind to cis-acting DNA

elements such as promoters and enhancers to activate or repress the expression of target genes [36, 37]. These

transcription factor-target interactions can be characterized using assays such as chromatin immunoprecipitation

followed by sequencing (ChIP-seq) , and experimental evidence indicates that specific DNA sequence patterns that

interact with such proteins are found throughout much of the human genome [38, 36]. Transcription factors are coded

for by genes that themselves must be regulated; these regulatory relationships are organized into networks of regulatory

relationships known as gene-regulatory networks (GRNs) [39].

Researchers must take a system-level view of gene expression regulation, instead of studying individual genes or pairs

of interacting genes, to better understand the function of biological systems. The information encoded in GRNs allows

organisms to undergo development, perform necessary biological functions, and respond to changing environmental

conditions. Additionally, the function that results from the interactions of a group of genes is determined by the

topology of the gene-regulatory sub-network to which they belong. By mapping out the logic of these interactions and

the recurring motifs that appear, their behavior can be better understood [39].

GRNs are not static. Mutations in cis-regulatory element sequences, which allow or block interactions with

transcription factors, can change the behavior of a regulatory sub-network. In fact, this mechanism of GRN rewiring

appears throughout evolution as prevalent traits change in response to various selective pressures [40]. In addition,

GRNs can be rewired during cancer, driving changes in cellular behavior associated with tumorigenesis [41, 42].

Characterizing the rewiring of GRNs in cancer has the potential to shed light on mechanisms of treatment resistance.

There is also a convenient and beneficial side-effect of taking a GRN-level approach when analyzing scRNA-seq data

from human tumor samples. By studying co-regulated gene sets rather than individual genes, one can mitigate the

sparsity limitations inherent to single-cell assays while still leveraging their power to interrogate heterogeneous cancer

cell populations and other inter-mixed cell types [43].

A number of software tools for inferring GRN relationships from scRNA-seq data have emerged in recent years. These

methods may be used to identify potential transcription factor-target relationships and prioritize them for further study,

allowing bench researchers to focus on the most promising candidates for validation [44]. Given unlimited time and

resources, existing experimental methods such as ChIP-seq could be used to reconstruct networks of transcription

factor-target interactions under various biological conditions. However, practical constraints become prohibitive when

trying to do this in a high-throughput manner, making this slow, costly, and inefficient [38]. Instead, computational

methods can often be used to infer these relationships with some degree of confidence. Computationally predicted
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TF-target relationships can then be experimentally validated (as resources allow), using computational inference to

narrow the search space and more efficiently deploy resources to validate selected interactions. Several of these GRN

inference algorithms, which are based primarily on gene co-expression, have shown reasonably good performance in

independent benchmarking analyses [45, 46, 47, 48].

Some of these methods infer a so-called “regulon,” or set of genes, that is regulated by a given transcription factor in a

given biological context. Quantifying the expression levels of these regulons enables another advantage of the GRN

approach: the activity of this gene set can act as a proxy for the expression and activity of the TF protein, rather than

just its mRNA expression. Correlation between gene expression and protein expression is typically somewhat high, but

it varies significantly by gene and is not always a sufficient proxy [49].

1.6 The Immune System and Cancer

1.6.1 Overview

The primary function of the immune system is to perform self / non-self determinations as accurately as possible. One’s

own healthy cells must be recognized as such and left alone. Invading pathogens, as well as aberrant cells that may lead

to uncontrolled proliferation, must be identified and destroyed. Designations of non-self inevitably involve some degree

of Type I and Type II Error. False positives take the form of autoimmunity, where the immune system attacks its own

healthy cells, while false negatives occur as a failure to eliminate nascent cancer or infection.

The immune system is one of the first lines of defense against the dysregulated proliferation of a group of cells which

may become cancerous, and any tumor that progresses must find a way to escape this constant surveillance. The

avoidance of immune destruction has been added as one of the “hallmarks of cancer” [9, 50]. A well-functioning

immune system helps to prevent the development of tumors in several ways. Normal immune function protects the

individual against viral infections, some of which are implicated in tumorigenesis. It also resolves inflammation

throughout the body, a physiological condition that, if sustained, can promote the development of tumors [51]. Finally,

normal immune function, some of which is carried out by CD8 T cells, can find and destroy malignant cells before they

can progress into a more dangerous tumor (Figure 2). This process is known as immunosurveillance [52]. Malignant

cells often display non-self antigens resulting from the myriad mutations in cancer genomes, which leads to T cell

receptor (TCR) binding and cell destruction when these antigens are presented on MHC Class I [53] (Figure 3A).

Immunosurveillance plays a key role in the related process of immunoediting, in which some cancer cells are destroyed

and others evolve to evade this response, whereby the adaptive immune system selects for malignant cells with lower

immunogenicity. Immunoediting typically proceeds in three phases: elimination, equilibrium, and escape. In the

elimination phase, cancer cells are targeted and destroyed through routine immunosurveillance. In the equilibrium

phase, cancer cells are not eliminated completely but growth is limited as their proliferation is kept in check via

immune control. Finally, in the escape phase, the cancer cell population can no longer be controlled by the immune

system and will expand; to evade immunosurveillance, cancer cells may stop expressing MHC Class I, which presents
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antigens to the adaptive immune system, or they may start expressing various immune checkpoint proteins to deactivate

the immune response [51, 53].

In recent years, researchers have sought novel treatment modalities to influence the immune response to cancer, known

as cancer immunotherapies. These treatments attempt to modulate the immune system so that it targets cancer cells

more effectively. They include adoptive cell therapies such as chimeric antigen receptor T-cell (CAR-T) therapy, cancer

vaccines, and immune checkpoint inhibitor (ICI) therapy [54, 55, 56, 53]. ICI therapies are of particular interest, as a

range of these drugs have been approved for use in a variety of cancers over the past decade and have shown great

success in a subset of patients [56].

1.6.2 Immune Checkpoint Inhibitors

Immune checkpoints are inhibitory pathways that have evolved to maintain self-tolerance and prevent autoimmunity.

These inhibitory pathways act to limit the duration and amplitude of immune responses against pathogens to prevent

excess damage to surrounding healthy tissue [57, 58]. However, tumors can co-opt these immune checkpoints in order

to evade immunosurveillance and escape destruction by CD8+ T cells capable of recognizing tumor-specific antigens

[57, 59](Figure 3B). In the past two decades, researchers have developed techniques to interfere with these inhibitory
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pathways and re-initiate anti-tumor immune responses; these pathways can be targeted with antibodies that disrupt their

inhibitory signaling, known as immune checkpoint inhibitors (ICI) [57](Figure 3C).

While there exist a variety of proteins playing critical roles in immune checkpoint signaling that could be targeted to

modulate immune response, antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte

antigen 4 (CTLA-4) have been the first ICI therapies to show promise for cancer treatment and have led to durable

treatment response in a subset of patients [57, 58, 60]. These two proteins are surface receptors, expressed primarily on

the cell membranes of some T cells [51]. The function of these two immune checkpoint proteins, and thus the

mechanism of action of treatments that inhibit them, are slightly different. CTLA-4 affects T cells during their initial

activation upon exposure to their cognate antigen (often in lymph nodes), whereas PD-1 inhibits effector function of T

cells in the tumor or infected tissue itself [60]. CTLA-4 is mainly expressed on CD4+ T cells, so the effect of

anti-CTLA-4 therapy on CD8+ T cell function is likely to be indirect, via its effect on the activity of CD4+ helper and

regulatory T cells [58]. Ipilimumab, an antibody against CTLA-4, was approved by the United States Food and Drug

Administration (FDA) in 2011 for the treatment of advanced melanoma when Phase III clinical trials demonstrated that

this treatment extended overall survival of patients when compared to standard of care [58]. Approvals for antibodies

targeting PD-1 were soon to follow, with the FDA approvals of pembrolizumab and nivolumab in 2014 [61].

In spite of the profound success of these treatments in a subset of patients, most patients do not exhibit durable response

following ICI therapy [51]. For this reason, attempts to develop new ICI treatments are underway. While anti-CTLA-4

and anti-PD-1 drugs have shown the most early success and regulatory approval, there are ongoing clinical trials testing

the efficacy of similar monoclonal antibody blocking of the immune checkpoint signaling of TIM-3, LAG-3, and

TIGIT, often in combination with anti-PD-1 drugs [62, 63, 64, 65, 66, 67, 68]. Importantly, some of these immune

checkpoint proteins are co-regulated. For example, it was recently discovered that the immune checkpoints PD-1 and

TIGIT are both regulated by the gene Blimp1 [69]. For this reason, a systems-level understanding of the gene

regulatory relationships during ICI therapy is critical to achieve progress in this research area.

Researchers seek a better understanding of why ICI therapy succeeds in some patients and fails in others for two key

reasons: patient stratification and therapy development. Mechanisms of resistance to ICI therapy may arise from the

tumor immune microenvironment or may be intrinsic to the malignant cells themselves. While these mechanisms of

resistance are not yet well-understood, some evidence suggests that the mutational landscape, interferon signaling, or

other immune-related signaling pathways active in malignant cells may be involved [2]. Elevated neoantigen load,

particularly when common across subclones, is also associated with successful ICI treatment outcomes [51]. The

presence of certain immune cell types within the tumor immune microenvironment seems to contribute to ICI treatment

outcome as well; for example, patients with tumors exhibiting larger numbers of CD8+ T cells, CD4+ helper T cells,

and natural killer cells tend to fare better while those with tumors infiltrated by CD4+ T regulatory cells and

macrophages often have worse outcomes [70]. Additionally, recent research has highlighted the importance of various

cell states exhibited by T cells and revealed the importance of a phenomenon known as T cell exhaustion in ICI therapy

[71]. Notwithstanding these initial prognostic markers, an urgent need remains for more and concrete biomarkers to
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effectively stratify patients into those likely to respond to ICI therapies and those who are not [59]. Additionally,

understanding mechanisms of treatment response and failure is a critical step to the development of new treatments or

combinations that overcome the limitations of those that are currently available. ICI therapy is also extremely expensive

and can come with serious side effects, such as cytokine release syndrome, so the failure to control or eliminate a

patient’s disease is not the only potential downside to this therapeutic approach; these treatments must be administered

only when a patient has a reasonable likelihood of benefit [72, 73, 74].

1.6.3 T cell exhaustion

Since immune checkpoint inhibitors act on the inhibitory receptors that are often expressed by exhausted T cells, many

researchers argue that understanding the process of T cell exhaustion is central to understanding the mechanisms of ICI

response and resistance [71]. T cell exhaustion is a stable cell state characterized by reduced effector function, the

expression of various inhibitory receptors, including immune checkpoints like PD-1, LAG3, TIM3, TIGIT, and CD160,

and various metabolic changes and epigenetic alterations [75, 76, 77, 78, 79]. The extent of the epigenetic changes may

determine whether a given T cell’s state of exhaustion is reversible or not [78]. These cells also exhibit gene expression

profiles that differ from healthy T cells in their various stages of differentiation [75]. T cell exhaustion was first studied

in mice chronically infected with lymphocytic choriomeningitis virus (LCMV), but researchers have since discovered

that a similar process can be observed in tumor-infiltrating lymphocytes (TILs) found in human cancers [80, 75]. T cell

“exhaustion” is somewhat of a misnomer, since exhausted T cells still exert some control over an infection or tumor

[71]. Since exhausted T cells exhibit some effector function, and an evolved mechanism against autoimmunity could

have developed to simply delete these cells, some authors suggest that this phenotype with reduced, but not absent,

effector activity and expression of these inhibitory receptors may have evolved to keep a chronic infection somewhat in

check without the cost of significant tissue damage [81].

The exhaustion process is a disruption of the normal trajectory undergone by CD8+ T cells in response to pathogens.

Under the conditions of a typical acute infection, naïve CD8+ T cells interact with their cognate non-self antigens in an

inflammatory environment. These cell populations then expand and differentiate into effector cells, which target cells

infected with the pathogen. When the pathogen is cleared, most of these cells apoptose and a fraction of them

differentiate into long-lived central memory and effector memory T cells, which can then be re-activated, proliferate,

and regain effector function upon second exposure to the same antigen [82, 75, 79]. If T cell receptors (TCRs) specific

to a particular antigen are chronically stimulated, however, they can undergo this exhaustion process instead. This may

be due to an infection or a developing tumor that cannot be fully eliminated and thus provides ongoing exposure of an

antigen to the immune system. This, plus chronic interferon signaling, drives CD8 T cells into an exhausted state

[71, 79]. T cell exhaustion is of significant interest to those grappling with the clinical problem of ICI therapy failure. T

cell exhaustion is associated with worse patient outcomes in multiple cancer types, and exhausted CD8 T cells are the

main intended target of ICI therapy, as well as a number of other immunotherapies [79].
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Research in mice has identified two major cell states that fall into the category of T cell exhaustion: progenitor

exhausted T cells and terminally exhausted T cells [71]. Progenitor exhausted T cells are somewhat similar to memory

T cells in that they are long-lived and exhibit the capacity for self-renewal. Terminally differentiated exhausted T cells

exhibit effector genes, while progenitor exhausted T cells do not. [71]. While terminally exhausted T cell subsets

exhibit cytotoxic effects, they become non-functional over time and therefore have a limited capacity to drive sustained

tumor control and elimination [79].

Whether the degree of T cell exhaustion found in human cancers is a progressive series of cell states that runs parallel to

the degree of differentiation of these cells is not yet clear. Some suggest that exhaustion is initially reversible but

becomes fixed with further epigenetic changes [71]. These two cell states are not always evenly distributed; progenitor

exhausted CD8 T cells are primarily found in stroma, lymph nodes and peripheral blood, while terminally exhausted

CD8 T cells are more likely to be found within the tumor [79]. Further research is needed to differentiate between the

ICI therapy-induced migration of new CD8 T cell populations into the tumor microenvironment vs. the induction of

cell state change in cells already residing within the tumor.

Most of the work done to characterize the process of T cell exhaustion has been done in mice with chronic LCMV

infection [75, 82]. While this early work has been useful, there is a pressing need to characterize the cell states,

epigenetics, and expression patterns associated with T cell exhaustion with data from human tumors rather than

assuming that findings from the mouse LCMV research will generalize well to this new biological context [71].

1.6.4 Using scRNA-seq to Study Immune Checkpoint Inhibitor Response and T Cell Exhaustion

In the past several years, numerous experiments have used scRNA-seq to characterize the cell types present within a

tumor and their relationships to ICI response and T cell exhaustion. Much of this work has been performed on samples

from human melanoma tumors [83, 4, 5, 84]. There appears to be significant transcriptional heterogeneity in both

malignant and immune cell populations, with some but not all cells exhibiting any particular inhibitory receptor or

exhaustion signature of interest [83].

One analysis identified a resistance program related to CDK4/6 signaling in malignant cells within a melanoma tumor

that was associated with less infiltration of T cells in the tumor immune microenvironment, which is known to be

associated with worse response to ICI treatment. This resistance program was found to be up-regulated following

treatment in patients with resistance to ICI therapy. By inhibiting this CDK4/6 signaling, researchers were able to

improve anti-PD-1 treatment response in mice [4].

Another analysis using scRNA-seq identified TOX, a transcription factor, as a regulator of the expression of several

immune checkpoints (PD-1, TIM-3, TIGIT, CTLA-4) in melanoma and non-small cell lung cancer (NSCLC). More

recent research has confirmed that TOX drives the transition of progenitor exhausted CD8 T cells into a terminally

exhausted state [79]. Expression of this transcription factor was also negatively associated with ICI treatment response;

as a result, experimenters concluded that TOX inhibition may improve ICI efficacy and that considering its expression
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may be useful for patient stratification efforts [85]. Yet another treatment approach attempts to use interleukin-10

signaling to promote self-renewal in terminally exhausted CD8 T cell populations [79].

Another analysis of scRNA-seq data from pre- and post-ICI melanoma tumors, focusing solely on immune cells,

showed that some exhausted CD8+ T cells express TCF7 and share the self-renewal and stem-like cell state associated

with memory T cells. This result is consistent with what has been discovered in mice, and the abundance of these

TCF7+ CD8+ T cells was shown to be predictive of ICI response. The authors identified exhausted-like and

memory-like T cell states but were not able to clearly identify the order and transitions between these cell states [5].

Pre-clinical research is ongoing to determine the efficacy of ectopic TCF-1 (the protein encoded by the TCF7 gene)

expression and TOX knockout [79].

Yet another analysis used flow cytometry, RNA-seq, and assay for transposase-accessible chromatin by sequencing

(ATAC-seq) to identify four transcriptionally and epigenetically distinct states of exhaustion in T cells. However, these

data came from mice with chronic LCMV infections [86]. As has been mentioned, these findings may not generalize

well to T cell exhaustion in human tumors, and further work is needed using human data to ascertain the relevance of

these findings to ICI response [71]. That being said, while the delineation between progenitor exhausted and terminally

exhausted CD8+ T cells has mostly been done in mice, an analysis of immune cells from human renal cell carcinoma

tumors was able to identify these two immune cell populations [87, 88].

One analysis of particular interest obtained paired pre- and post-ICI skin tumor (basal cell and squamous cell

carcinoma) samples from treatment responders and non-responders. The authors then performed scRNA-seq and also

used T cell receptor sequencing (TCR-seq) to track distinct TCR clonotypes longitudinally throughout treatment. With

this approach, they discovered large populations of CD8+ T cells present after treatment from clonotypes not found in

the tumor beforehand, suggesting that ICI may recruit new T cells from outside the tumor immune microenvironment

[3].

Finally, an investigation into T cell exhaustion was published in November 2022 that challenges and updates the current

model of a linear cell state progression from progenitor exhausted to terminally exhausted CD8 T cells, at least in the

murine viral infection context. In this work, authors developed a single-cell multi-omic atlas of T cell exhaustion in

LCMV-infected mice, which included single-cell chromatin accessibility, transcriptome and T cell receptor (TCR)

sequencing of LCMV antigen-specific CD8+ T cells. A bifurcating cell fate trajectory was observed, in which

progenitor and intermediate exhausted CD8 T cells could go on to enter one of two downstream cell states. The classic

terminally exhausted (TexTerm) CD8 T cell population was observed. They also found a killer cell lectin-like receptor

(KLR)- expressing cytotoxic CD8 T cell (TexKLR) population. The TexKLR cells had greater cytotoxic function and

proliferative capacity than their TexTerm counterparts. They also observed that TCR signaling strength may determine

CD8 T cell differentiation trajectory, with high-avidity TCR clones (relative to viral epitopes) more likely to follow the

terminal exhaustion path and low-avidity TCR clones more likely to end up in the KLR-expressing exhaustion state.
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They suggest that cytokine and inhibitory receptor signaling may be involved in determining this cell fate decision as

well [89].

To check for generalization beyond the mouse context, the TexKLR gene signature was applied to scRNA-seq data of

CD8 T cells from human tumors. They found a subpopulation of cells in the human data that showed up-regulation of

the TexKLR signature and down-regulation of the TexTerm signature from the mouse analysis, and another cell population

that exhibited the opposite [89]. These findings suggest a need to refine the current understanding of the CD8 T cell

exhaustion process and its relevance to immunotherapy.

These single-cell analyses have expanded our understanding of ICI response, resistance, and T cell exhaustion.

Nevertheless, there are several key issues that have yet to be addressed. It is still unclear how cell-extrinsic factors, such

as the gene expression of other immune cell types, contribute to T cell exhaustion. It is also unclear how gene

expression in malignant cell subpopulations associated with ICI resistance changes in response to treatment. Past

approaches have been overly gene-centric; a systems-level view that characterizes the pathway and gene regulatory

network patterns related to ICI treatment outcome is therefore critically needed to advance understanding of this

biological phenomenon.

Importantly, clinical interference in a highly complex system for determining self vs. non-self always comes with risks.

The modification or removal of critical safeguards in the immune system can lead to autoimmunity which can pose a

threat to patients already dealing with serious medical problems. Keeping this in mind, researchers must seek to

maintain this delicate balance and proceed with caution.

1.7 Limitations and Open Questions

There is a need to examine the impact of other cell types within the tumor immune microenvironment on the CD8 T cell

exhaustion process. This is not straightforward with existing scRNA-seq analysis methods. Pseudotime analyses allow

for the analysis of changes in molecular activity along a trajectory of changing cell states, but the consideration of how

other, proximal cell types may be impacting this cell state change requires new methods and frameworks. Additionally,

the ways in which various tumor subpopulations relate to T cell exhaustion and immunotherapy response must be

considered. These heterogeneous cell populations may differentially relate to these processes in multiple ways; some

tumor populations may show different antigen-presenting activity, which may affect the ability of

tumor-antigen-specific CD8 T cells to identify and destroy these cells. Alternately, tumor subpopulations may release

signals that affect the CD8 T cells directly and modify their ability to target all tumor cells, beyond that specific

subpopulation. New approaches are needed to fully elucidate the ways in which CD8 T cells of different states, other

immune cell types, and tumor cell subpopulations interact and determine ICI therapy response and resistance.
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2 T cell exhaustion in the tumor immune microenvironment

ABSTRACT

While immune checkpoint inhibitors show success in treating a subset of patients with certain

late-stage cancers, these treatments fail in many other patients as a result of mechanisms that have yet

to be fully characterized. The process of CD8 T cell exhaustion, by which T cells become

dysfunctional in response to prolonged antigen exposure, has been implicated in immunotherapy

resistance. Single-cell RNA sequencing (scRNA-seq) produces an abundance of data to analyze this

process; however, due to the complexity of the process, contributions of other cell types to a process

within a single cell type cannot be simply inferred. We constructed an analysis framework to first

rank human skin tumor samples by degree of exhaustion in tumor-infiltrating CD8 T cells and then

identify immune cell type-specific gene-regulatory network patterns significantly associated with T

cell exhaustion. Using this framework, we further analyzed scRNA-seq data from human tumor and

chronic viral infection samples to compare the T cell exhaustion process between these two contexts.

In doing so, we identified transcription factor activity in the macrophages of both tissue types

associated with this process. Our framework can be applied beyond the tumor immune

microenvironment to any system involving cell-cell communication, facilitating insights into key

biological processes that underpin the effective treatment of cancer and other complicated diseases.

2.1 Introduction

Cancer immunotherapies show great potential for treating patients with otherwise incurable disease. Over the past

decade, a type of immunotherapy known as immune checkpoint inhibition (ICI) has been approved to treat an

increasing number of cancer types. However, in spite of the profound success of these treatments in a subset of patients,

most patients do not exhibit durable response following ICI therapy [51, 90]. Furthermore, the subset of patients for

which these therapies are effective cannot be reliably identified prior to treatment, and the mechanisms by which some

patients exhibit resistance to ICI have yet to be fully characterized [2]. An urgent need remains for biomarkers to

effectively stratify patients into those likely to respond to ICI therapies and those who are not [59]. Moreover, obtaining

a better understanding of mechanisms of treatment response and failure is a critical step in the development of new

treatments or combinations that overcome the limitations of those currently available.

Recent research has highlighted the importance of various cell states exhibited by CD8 T cells and revealed the

importance of a phenomenon known as T cell exhaustion in ICI therapy [71]. The process of CD8 T cell exhaustion, by

which CD8 T cells become dysfunctional in response to prolonged antigen exposure, can be observed in the tumor

immune microenvironment and in chronic viral infection and has been implicated in immunotherapy resistance [71, 91].

Since immune checkpoint inhibitors act on the inhibitory receptors that are often expressed by exhausted T cells, and
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Figure 4: Relationship between immune cell activity and the degree of CD8 T cell exhaustion in the tumor
immune microenvironment

successful ICI response relies on the effector function of these cells, understanding the process of T cell exhaustion is

central to understanding the mechanisms of ICI response and resistance [71].

Research in mice has identified two major cell states that fall into the category of T cell exhaustion: progenitor

exhausted T cells and terminally exhausted T cells [71]. Progenitor exhausted T cells are somewhat similar to memory

T cells in that they are long-lived and exhibit the capacity for self-renewal. They express high levels of the protein

TCF7 and low levels of the protein TOX. Terminally exhausted T cells, on the other hand, express low levels of TCF7

and high levels of TOX [71, 91]. Most of the early work to characterize the process of T cell exhaustion has been

performed in mouse models, using chronic lymphocytic choriomeningitis (LCMV) infection [75, 82]. While this early

work has been useful, there is a pressing need to characterize the cell states, epigenetics, and expression patterns

associated with T cell exhaustion with data from human tumors rather than assuming that findings from the mouse

LCMV research will generalize well to this new biological context [71]. Newer research has explored this process

further in human tissue, but deeper knowledge of this process is integral to overcoming ICI therapy resistance.

Cell state changes like T cell exhaustion occur within a complex molecular context involving changes within and

external to the cell. Gene-regulatory networks (GRNs) consisting of transcription factors that regulate the expression of

other genes control the states and activities of cells. These, in turn, are influenced by signal transduction involving

molecular cascades that may originate in other cell types. Looking at these GRNs and cell-cell signaling patterns can

allow us to take a system-level view of the cell state change, rather than considering each gene in isolation.

While a standard single-cell RNA sequencing (scRNA-seq) analysis pipelines allows for the analysis of cell-intrinsic

gene expression and regulation changes associated with a given cell state change, contributions of other cell types to a

process within a single cell type, such as the CD8 T cell exhaustion, are challenging to infer. To address this, we

developed a novel computational framework. In brief, we first inferred a pseudotemporal ordering of CD8 T cells that
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Dataset GEO ID Disease Total cells CD8 T cells

Li et al., 2019 GSE123814 melanoma 37561 19741
Yost et al., 2019 GSE123139 basal cell carcinoma 20954 8136
Wang et al., 2020 GSE157829 HIV 21941 15202

Table 1: scRNA-seq datasets. Three publicly available scRNA-seq datasets used – two from tumor immune microenvi-
ronment (melanoma, basal cell carcinoma) and one from chronic viral infection (HIV).

started with the progenitor exhausted CD8 T cells (TCF7 high, TOX low) and progressed gradually to the terminally

exhausted CD8 T cells (TCF7 low, TOX high). We then calculated a sample-level CD8 T cell “exhaustion score,” based

on the distribution of a sample’s CD8 T cells along this pseudotime trajectory. Subsequently, we used this score to rank

samples from least to most exhausted. Cells from samples placed at the two extremes of this ranking were compared,

one cell type at a time, to identify TFs that are significantly associated with the T cell exhaustion process (Figure 4). We

applied our computational framework to scRNA-seq data generated from human melanoma samples [84]. To validate

the results and identify common patterns, we also applied this framework to a basal cell carcinoma (BCC) dataset and a

chronic HIV infection dataset [3, 92]. Overlap analysis between these datasets revealed common transcription factor

(TF) patterns in multiple cell types in the tumor immune microenvironment associated with CD8 T cell exhaustion.

2.2 Results

2.2.1 Tumor immune microenvironment and chronic viral infection datasets

In order to investigate the relationship between CD8 T cell exhaustion and molecular activity in neighboring cell types

in the tumor immune microenvironment and chronic viral infection, three publicly available single-cell RNA-seq

(scRNA-seq) datasets were obtained (Tables 1, 10). The first dataset contains human melanoma tumor samples from

sixteen patients [84]. The second dataset contains human BCC tumors from fourteen patients [3]. The third dataset

contains peripheral blood mononuclear cell (PBMC) samples from six patients with chronic HIV infections [92]. These

data were pre-processed using a standard scRNA-seq analysis pipeline (see Methods) and then analyzed with our novel

pipeline, described below.

2.2.2 A novel computational framework to identify TFs that are significantly correlated with the T cell

exhaustion process

To identify molecular mechanisms underlying the CD8 T cell exhaustion process in the tumor immune

microenvironment, we have developed a novel analysis framework (Figure 5) to analyze scRNA-seq datasets. This

framework consists of the following steps, applied after standard scRNA-seq pre-processing: subset to CD8+ cells,

infer exhaustion pseudotime, calculate sample level exhaustion scores, infer TF activities for individual cells, conduct

differential activity analysis for samples at the two extremes of the inferred T cell exhaustion trajectory, construct GRN,

and then compare the patterns between different datasets. Some of the major steps in the pipeline are detailed below.
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Figure 5: Analysis overview A) input – scRNA-seq data from skin tumor microenvironment; B) select CD8 T cells
using marker genes; C) infer pseudotime trajectory from progenitor (TCF7 high, TOX low) exhausted to terminally
(TCF7 low, TOX high) exhausted CD8 T cells using Monocle3; D) calculate sample-level exhaustion score, quantifying
the distribution of cells along the exhaustion trajectory by sample; E) select highest- and lowest-scoring sample groups;
compare transcription factor activity in these samples for individual cell types; F) perform gene-regulatory network
analysis of exhaustion-associated transcription factors.

2.2.2.1 Inference of CD8 T cell exhaustion pseudotime trajectory After pre-processing and preliminary analysis,

the datasets were subsetted to just CD8 T cells (Figure 5B). Monocle3 trajectory inference was then used to find a

pseudotemporal ordering of cells starting from the progenitor exhausted population, which exhibited high expression of

TCF7 and low expression of TOX, and proceeding to a terminally differentiated exhausted population, which exhibited

low expression of TCF7 and high expression of TOX, as well as increased expression of immune checkpoint genes

PDCD1, LAG3, and TIGIT (Figure 5C) [93].

2.2.2.2 Ranking samples by sample-level CD8 T cell exhaustion score With a cell-level CD8 T cell exhaustion

trajectory, differentially expressed genes and differentially active TFs in CD8 T cells across this trajectory can be

determined. However, we sought to identify molecular activity in other cell types in the tumor immune

microenvironment that is significantly related to CD8 T cell exhaustion as well. To achieve this, we developed a new

approach analogous to Gene Set Enrichment Analysis [94], calculating the degree of CD8 T cell exhaustion for

individual patient samples according to the distribution of each sample’s CD8 T cells along this exhaustion trajectory

(Figure 5D). Afterward, samples were clustered by their exhaustion score and the highest- and lowest-scoring sample
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groups, with CD8 T cell distributions skewed most heavily toward either the progenitor exhausted or terminally

exhausted populations, were selected for downstream comparison (Figure 5E).

2.2.2.3 Differential TF activity analysis for high- and low-exhaustion sample groups in immune cell types

Once the samples on the far ends of the CD8 T cell exhaustion spectrum were identified, TF activity in other immune

cell populations was then compared between these two groups. For the melanoma dataset, TF activity in CD8 T cells,

macrophages, natural killer (NK) cells, B cells, and plasma cells was considered. For the BCC dataset, TF activity in

CD8 T cells, macrophages, and NK cells was considered. For the HIV dataset, we looked at CD8 T cells, macrophages,

B cells, and plasma cells.

2.2.3 Application of the computational framework to scRNA-seq datasets from human skin cancer and HIV

infection

We first applied this novel computational framework to a human melanoma scRNA-seq dataset (Figure 6) [84]. Once

the CD8 T cells were identified, a pseudotime trajectory was inferred (Figure 6C, 20-22). The CD8 T cells in this

dataset have a TCF7-high state (Figure 6A), where pseudotime starts, and transition gradually to a TOX-high state

(Figure 6B). This transition also shows a progressive increase in expression of immune checkpoint genes PDCD1,

LAG3, and TIGIT (Figures 6D-F, 20). The sample-level T cell exhaustion score analysis showed that samples p23, p25,

and p27 have the highest T cell exhaustion scores and samples p1 and p24 have the lowest exhaustion scores (Figure

6G). The differential TF activity between these two sample groups (as quantified by pyscenic regulons and AUCell) was

then compared.

We also applied this computational framework to a BCC dataset to investigate the generality of this pattern in the skin

tumor microenvironment (Figure 19). Furthermore, we applied the framework to a chronic HIV infection dataset

(Figure 7). Chronic viral infection data from human patients was included to enable the comparison of the T cell

exhaustion process between the human tumor and viral infection contexts. The similarities and differences in the

etiology and regulation of this cell state change between these two biological contexts is not yet fully clear. To address

this, we compare and contrast the molecular profiles between the two.

A similar trajectory of CD8 T cell state change was observed in these two datasets (Figures 19C, 7C, 23-28). We

observed a similar trajectory of key markers of stemness, differentiation, and immune checkpoints (Figures 24, 27). For

the BCC data, fourteen patient samples were scored and ranked, the high exhaustion group (samples su008, su013,

su014) was compared against the low exhaustion group (002, 007) and differential TF activity between these groups

was considered in each cell type (Figure 19G). For the chronic HIV data, six patient samples were scored and ranked

and the high (samples 4 and 5) and low (samples 2 and 3) exhaustion groups were similarly compared (Figure 7G).
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Figure 6: CD8 T cell exhaustion in human skin tumor samples. A, B, D-F) imputed gene expression of progenitor
exhausted marker TCF7, terminal exhaustion marker TOX, and immune checkpoints LAG3, TIGIT, and PDCD1;
C) Monocle3 pseudotime, characterizing progression from progenitor exhausted to terminally exhausted CD8 T cells;
G) exhaustion pseudotime of CD8 T cells, ordered by sample-level exhaustion score.

2.2.4 Identification of gene regulatory patterns shared across skin tumor datasets that are related to T cell

exhaustion

To uncover the cell type-specific transcription factor (TF) activity associated with the CD8 T cell exhaustion process

that is consistently found in the skin tumor microenvironment, overlap analysis was performed via Fisher’s exact test

for results obtained from two skin cancer datasets (Methods). Cell types shared across both skin cancer datasets,

including CD8 T cells, macrophages, and NK cells, were considered in the overlap analysis. We found significant

overlap in TFs up-regulated (44 shared, adjusted p-value = 1.24x10-11) and down-regulated (68 shared, adjusted p-value

= 5.42x10-13) in the CD8 T cells of the most exhausted samples, suggesting a shared mechanism in the T cell

exhaustion process across skin tumor microenvironments (Figure 8A, B). Additionally, there was significant overlap in
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Figure 7: CD8 T cell exhaustion in human HIV samples A, B, D-F) imputed gene expression of progenitor exhausted
marker TCF7, terminal exhaustion marker TOX, and immune checkpoints LAG3, TIGIT, and PDCD1 C) Monocle3
pseudotime, characterizing progression from progenitor exhausted to terminally exhausted CD8 T cells G) exhaustion
pseudotime of CD8 T cells, ordered by sample-level exhaustion score.
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Figure 8: Overlap in exhaustion-associated transcription factor activity between melanoma and basal cell carcinoma
(BCC) datasets Overlap analysis was performed between melanoma and basal cell carcinoma datasets to identify the
proportion of significantly exhaustion-associated TFs that were shared vs. non-shared and whether this overlap was
significant. A-C, E-F) The two tumor datasets exhibit significant overlap in up- and down-regulation of CD8 T cell
activity, up-regulation of macrophage activity, and up- and down-regulation of NK cell activity associated with CD8 T
cell exhaustion. D) The overlap of TFs down-regulated in the most exhausted samples was not significant.
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TFs up-regulated (25 shared, adjusted p-value = 1.69x10-6) in the macrophages of the most exhausted samples, as well

as up- (23 shared, adjusted p-value = 8.59x10-12) and down-regulated (27 shared, adjusted p-value = 5.10x10-5) TFs in

the NK cells (Figure 8C-F). However, we failed to observe a significant overlap of TFs down-regulated in macrophages

from the most exhausted skin tumor microenvironments, which may suggest that the exhaustion-associated activity in

macrophages mostly involves signaling pushing CD8 T cells toward the terminally exhausted state rather than holding

them in the progenitor state (Figure 8D).

2.2.4.1 Transcription factors up-regulated in terminally exhausted tumor-infiltrating CD8 T cells We observed

the up-regulation of certain CD8 T cell-specific transcription factor activity in the most exhausted samples in both

tumor datasets, including IRF2, CTCF, E2F1, E2F2, E2F8, ETV7, and EOMES. Some of these have been found to be

related to the CD8 T cell exhaustion process in previous experiments. IRF2 expression in tumor-infiltrating CD8 T cells

has been shown to drive T cell exhaustion [95]. It pushes CD8 T cells toward the terminal exhaustion state by acting on

TOX [79]. CTCF works with TCF1 as a cofactor to promote proliferative homeostasis in CD8 T cells [96]. It has been

found to control the relative abundance of terminally exhausted CD8 T cells [97].

Members of the E2F transcription factor family are known cell cycle regulators. E2F1 is a regulator of cell cycle and

proliferation; however, it may not be necessary for progression to the exhausted CD8 T cell state, based on viral

experiments in mice [98]. E2F2 and E2F8 expression has been found in exhausted T cells in COVID-19 infection [99].

Additionally, E2F2 is most active in PD1+/CD39+ CD8 T cells [100].

ETV7 drives cell proliferation in some cell types [101, 102]. Some previous findings indicate that chronically

stimulated CD8 T cells show ETV7 activity that down-regulates inflammation, potentially via ETS1 and TBX21, which

we also found to be significantly up-regulated in the CD8 T cells of the most exhausted tumor samples in both datasets

[103]. EOMES, which we found to be up-regulated in the most exhausted tumor samples, is a key regulator of CD8 T

cell exhaustion as well, and binds competitively to the same sites as T-Bet (TBX21); however, the exact roles and

functions of these factors is not yet clear [104, 105, 106, 107]. ETS1 is known to be important in regulating T cell state

[108, 109]. Additionally, ETS1 knockdown leads to increased anti-tumor cytotoxic activity of CD8 T cells [110].

2.2.4.2 Transcription factors down-regulated in terminally exhausted tumor-infiltrating CD8 T cells We also

observed the down-regulation of certain CD8 T cell-specific transcription factor activity in the most exhausted samples

in both tumor datasets, including LYL1, BCL11A, PLAG1, and BCL-6. Several of these are known to be responsible

for maintaining the stem-like state of the progenitor exhausted CD8 T cells. LYL1 is responsible for stem / progenitor

state and self-renewal in thymocytes and T cells [111, 112, 113]. BCL11A slows differentiation of T cells to maintain

self-renewal [114]. It is required for normal lineage development of lymphocytes [115, 116]. PLAG1 helps to maintain

self-renewal in hematopoietic stem cells [117]. BCL-6, acting in opposition to PRDM1 (encodes BLIMP-1), maintains

the relative proportion of progenitor (as opposed to terminally differentiated) exhausted CD8 T cell populations; TCF1,

which drives self-renewal in progenitor exhausted CD8 T cells, activates BCL-6 and suppresses PRDM1 [118, 119].
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2.2.4.3 Down-regulation of Kruppel-like factor (KLF) signaling in terminally exhausted tumor-infiltrating CD8

T cells We observed down-regulation of KLF2, KLF3, and KLF4 signaling in the CD8 T cells of the most exhausted

melanoma samples, with KLF3 and KLF4 down-regulated in the BCC samples as well. This activity concords with the

findings of previous mouse LCMV research [120]. The most exhausted HIV samples also exhibited down-regulation of

KLF3 and KLF4; however, they showed up-regulation of KLF2, as did the BCC data.

It is worth noting that KLF4 has been linked to increased effector function in these terminally exhausted CD8 T cell

subsets [121]. This concords with the finding that the most exhausted samples exhibited down-regulation of KLF4 in

their CD8 T cells and also had poorer response to immunotherapy. We also observed down-regulation of AP-1

signaling factors such as FOS, FOSB, JUN, JUNB in CD8 T cells across multiple datasets, the activity of which has

been linked to KLF4 signaling in other work [121].

2.2.5 Transcription factors up-regulated in macrophages of highly exhausted tumor samples

In addition to identifying TF activity in CD8 T cells associated with T cell exhaustion, some of which was in

concordance with previous findings, we also identified TF activity in macrophages associated with the degree of CD8 T

cell exhaustion in a sample. In both tumor datasets, significant up-regulation of TBX21 (T-Bet), PRDM1, RUNX3,

CREM, IRF1, FOXP3, STAT2, NFKB1 and NFKB2 was observed. Some of these transcription factors, including

TBX21 and PRDM1, also exhibit up-regulation in the most exhausted CD8 T cells themselves, suggesting that these

two cell types may be responding to some of the same signals in the exhausted tumor immune microenvironment.

Significant up-regulation of NFKB subunits NFKB1 and NFKB2 was observed in the macrophages of the most

exhausted samples across all three datasets. Additionally, NFKB subunit RELB was up-regulated in the most exhausted

BCC and HIV samples, with RELA up-regulated in the melanoma macrophages. These results suggest the

up-regulation of NF Kappa-B signaling in macrophages of both highly exhausted tumor and HIV patients.

2.2.6 Gene-regulatory network modules associated with CD8 T cell exhaustion

2.2.6.1 Exhaustion-associated CD8 T cell GRNs To better understand the regulatory relationships among TFs

associated with CD8 T cell exhaustion, we reconstructed gene-regulatory network modules using a subset of the highly

exhaustion-associated TFs whose activity in CD8 T cells was up-regulated in the most exhausted samples (Figure 9A).

Regulatory relationships between these significant TFs were inferred using pyscenic gene regulatory network inference,

which is based on co-expression between a transcription factor and its potential target followed by search for a TF’s

binding motif in the promoter region of a potential target (Methods). Edge widths represent the strength of the inferred

relationship. We identified a larger module consisting primarily of tumor-specific exhaustion-associated TF regulation,

which include TBX21 and EOMES. We also identified two up-regulated GRN modules comprising viral-specific

exhaustion-associated TFs. In one, EGR1 activates JUN (forms AP-1 complex with FOS), which then activates ATF5,

BPTF, and KLF6. The other includes BCL11A, PAX5, POU2F2, and SOX5.
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Figure 9: Exhaustion-related transcription factor activity in CD8 T cells Exhaustion-associated transcription factors
(graph nodes) and their regulatory relationships, inferred with pyscenic (graph edges) A) transcription factors up-
regulated in the CD8 T cells of the most CD8 T cell-exhausted immune microenvironments B) transcription factors
down-regulated in the CD8 T cells of the most CD8 T cell-exhausted immune microenvironments.

The same GRN module reconstruction was performed for TFs whose activity was found to be down-regulated in the

CD8 T cells of the most exhausted samples (Figure 9B). This module included some TF down-regulation shared across

the tumor and viral contexts, including KLF3 and KLF4, as well as tumor- and viral-specific activity. Interestingly,

KLF6 was up-regulated in the most exhausted viral samples (adjusted p-value: 0.0401) but down-regulated in the most

exhausted tumor samples (adjusted p-values for melanoma, BCC: 7.34x10-7, 6.51x10-54), suggesting a potential

difference in mechanism behind these cell state trajectories.

2.2.6.2 Exhaustion-associated macrophage GRNs GRN module reconstruction was also performed for

exhaustion-associated TF activity in macrophages (Figure 10). We identified a large GRN module of up-regulated TF

activity in viral patients, including TFs related to FOS/JUN/AP-1 signaling, which was connected to an NFKB module

via IRF1. This NFKB / IRF1 activity was found to be up-regulated in the most exhausted samples across both tumor

datasets and the viral dataset, indicating that NFKB activity in macrophages may be associated with CD8 T cell

exhaustion in both disease contexts. We also observed tumor-specific up-regulation of TBX21 and RUNX3, whose

activity is associated with exhaustion in the CD8 T cells themselves as well. A number of transcription factors and

complexes were found to be significantly up-regulated in the macrophages of the most exhausted samples across all 3

datasets, including NFKB, IRF1, BHLHE40, FOSL2, NFIL3, and CREM. Previous research indicates that NFKB

regulates IRF1 [122, 123]. Additionally, there is cross-regulation among NFKB, AP-1, and IRF1 signaling [123]. We

also identified two viral-specific GRN modules of TFs down-regulated in the macrophages of the most exhausted
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Figure 10: Exhaustion-related transcription factor activity in macrophages Exhaustion-associated transcription factor
activity in macrophages (graph nodes) and their regulatory relationships, inferred with pyscenic (graph edges)
A) transcription factors up-regulated in the macrophages of the most CD8 T cell-exhausted immune microenvironments
B) transcription factors down-regulated in the macrophages of the most CD8 T cell-exhausted immune microenviron-
ments.

samples, which included members of the interferon regulatory factor (IRF2, IRF5, IRF9) and STAT (STAT1, STAT2)

families.

2.2.7 Identification of pathways significantly related to T cell exhaustion in macrophages

In order to identify biological pathway activity in macrophages that may play a significant role in the exhaustion

process, we performed pathway enrichment analysis on differentially expressed genes in the macrophages of high- and

low-exhaustion samples using Reactome (Figure 11, Methods) [33, 35, 34, 32]. We observed some tumor-specific

exhaustion-associated pathways in macrophages, including a number of immune pathways. We saw an increase in

TNFR2 non-canonical NF-kB signaling in the tumor context and an increase in p75NTR signals via NF-kB in the viral

context, which aligns with our observation of an up-regulation of NFKB1 and NFKB2 in the most exhausted samples

across the tumor and viral contexts, but indicates that the mechanism here may be slightly different.

In both tumor and viral infection, we observed up-regulation of the interleukin 10 signaling pathway (Figure 11C).

Importantly, we see up-regulation of NFIL3 in the macrophages of high-exhaustion samples (see above). Published

results show that NFIL3 drives IL-10 activity, further supporting the possible causal relationship between NFIL3 and

the IL-10 pathway [124, 125]. While the role of IL-10 on CD8 T cell state and activity appears to be multifaceted, this

anti-inflammatory cytokine may drive exhaustion of CD8 T cells via signaling by PRDM1, which was identified as an

up-regulated TF in the high-exhaustion macrophages [126, 127, 128]. We also observed some MAPK-related signaling

pathways up-regulated in exhaustion-associated macrophages, such as MAPK family signaling cascades, RAF/MAP

kinase cascades, MAPK1/MAPK3 signaling, and RAF-independent MAPK1/3 activation. In addition to this, we also
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Figure 11: Pathway analysis results of exhaustion-associated DEGs in macrophages. Pathways enriched in genes
over-expressed in macrophages of high-exhaustion samples relative to low-exhaustion samples; red line = adjusted
p-value cutoff of 0.05 A) tumor-specific exhaustion-associated pathway activity B) viral-specific exhaustion-associated
pathway activity C) exhaustion-associated pathway activity shared between tumor and viral contexts.

observed up- and down-regulation of a number of immune, cell cycle-related, and other pathways in the CD8 T cells

themselves (Figures 32-37).

2.3 Discussion

The promising yet incomplete success of immune checkpoint inhibitors has led to significant interest in and scrutiny of

the CD8 T cell exhaustion process due to its association with treatment outcome. Progress in this research area can

change the way cancer and chronic infection are treated. This process has garnered much attention in recent years as

many attempts to find ways to modulate this process, with the hope of improving immunotherapy outcomes and

expanding the population of potential responders to this class of treatments through the development of drugs that

modulate the tumor immune microenvironment to improve the likelihood of response to ICI therapy.

To better understand the molecular mechanisms of the CD8 T cell exhaustion process, we have developed a new

computational approach to analyze scRNA-seq datasets collected from tumor immune microenvironments. The

advantage of this framework lies in its ability to consider the potential contribution of gene or TF activity in multiple

cell types to a change in cell state in a cell type of interest, rather than only considering activity within that single cell

type. Existing tools allow us to determine which genes and transcription factors are differentially active across the

exhaustion pseudotime trajectory; our approach produces a sample-level exhaustion score, therefore allowing the

differential activity analysis of transcription factors in other cell types along with CD8 T cells. By applying our novel

computational framework to single-cell transcriptomics data from human tumor and viral infection samples, we

identified the potential contribution of various immune cell types to this process. This work contributes to ongoing
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efforts that seek to understand how, when, and why ICI therapy succeeds and fails and, ultimately, to improve clinical

outcomes in patients with late-stage cancers.

Our novel computational approach successfully identified TFs in CD8 T cells associated with CD8 T cell exhaustion,

implying their potential involvement in immune checkpoint inhibitor response. Many of these TFs recapitulate

published results from previous investigations of this process. By examining the literature, we verified the importance

of transcription factors such as TBX21 (T-bet), BLIMP1, the E2F family, and the KLF family. More importantly, this

approach also identified TFs in other cell types, including macrophages, which sheds light on the state of the

surrounding tumor immune microenvironment and how it may contribute to CD8 T cell exhaustion. In the macrophages

of samples with the greatest degree of CD8 T cell exhaustion, across both tumor datasets and the HIV data, we found

up-regulation of NFKB signaling, as well as IRF1, BHLHE40, FOSL2, NFIL3, and CREM. Some of these TFs form a

gene-regulatory network module (Figure 10A). Additionally, NFIL3 has the potential to regulate the activity of a key

cytokine, IL-10, which has been linked to the CD8 T cell exhaustion process by previous research [126, 127, 128]. The

activity of cytokines like IL-10 may partially explain the association between the abundance of macrophages in the

tumor immune microenvironment and ICI response [129]. In addition to the up-regulation of IL-10 regulator NFIL3

itself in exhaustion-associated macrophages, we also observed up-regulation of genes in the IL-10 signaling pathway in

exhaustion-associated macrophages. This provides further support for the association between IL-10 signaling in the

tumor immune microenvironment and CD8 T cell exhaustion. The activity of this anti-inflammatory cytokine as it

relates to CD8 T cell exhaustion is worthy of further investigation. By identifying cell type-specific TF activity in the

tumor immune microenvironment associated with the degree of CD8 T cell exhaustion in a patient sample, and by

organizing these relevant TFs into a gene-regulatory network that can be studied at the system level, we contribute to a

clearer understanding of this critical biological process.

This work fulfills the need to compare and contrast the CD8 T cell exhaustion process between the tumor immune

microenvironment and the chronic viral infection context in human tissue as well. We found some

exhaustion-associated GRN modules in CD8 T cells and macrophages that were viral-specific, while others were a

combination of tumor-specific and shared. As these results come from human data, they are more relevant to the human

disease context than earlier findings from LCMV in mice, which they may confirm or contradict. In CD8 T cells, we

observed up-regulation of two viral-specific GRN modules, with one related to AP-1 signaling. We also observed

viral-specific up-regulation of AP-1-related TF activity in exhaustion-associated macrophages, as well as

down-regulation of an IRF9-regulated GRN module. One caveat to bear in mind when comparing these tumor and viral

samples is that the difference in tissue context (peripheral blood vs. skin tumor microenvironment) likely drives some

of the observed differences in expression patterns.

In addition to providing insights into the CD8 T cell exhaustion process, this computational pipeline can also be applied

to other biological questions. This approach allows researchers to consider the potential contribution of other cell types

to a cell state change of interest, whether in cancer, development, or another biological context. While we used this

functionality to identify potential drivers of CD8 T cell exhaustion throughout the tumor immune microenvironment, it
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can be applied to any process wherein a continuous trajectory of cell states can be identified in scRNA-seq data and

mapped in pseudotime. By moving to the sample level and ranking samples based on the distribution of their cells

across a trajectory, we build on currently available methods to add this important perspective.

To summarize, this work illuminates some key differences between T cell exhaustion in human tumors and chronic

infections and reveals gene-regulatory networks in immune cell populations within a tumor that may mediate response

to immune checkpoint inhibition therapy. The novel framework we developed also allows researchers to consider the

potential contribution of other cell types to a cell state change of interest, giving it wider applicability in the field of

single-cell transcriptomics research.

2.4 Data Availability

The three scRNA-seq datasets used in this paper have been previously published, and are available via Gene Expression

Omnibus: GSE123814 [3], GSE123139 [84], GSE157829 [92] – https://www.ncbi.nlm.nih.gov/geo/

2.5 Code Availability

Code used in this paper can be located in the following GitHub repository:

https://github.com/christopher-klocke/exhaustion-microenvironment

DOI: https://doi.org/10.5281/zenodo.13786867

2.6 Results Availability

Hosted at zenodo with DOI: https://doi.org/10.5281/zenodo.10088918
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2.8 Methods

2.8.1 Datasets

Publicly available datasets were downloaded from Gene Expression Omnibus using the following identifiers:

GSE123814 [84], GSE123139 [3], GSE157829 [92]. The Li et al. dataset contains human melanoma samples from 16

patients. The Yost et al. dataset contains human basal cell and squamous cell carcinoma samples from 15 patients. The

Wang et al. dataset contains human peripheral blood mononuclear cell (PBMC) samples from six HIV-infected patients.

For the Yost et al. dataset, only pre-treatment (with immune checkpoint inhibition) samples were used.
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2.8.2 Pre-processing, dimensionality reduction, batch correction, and clustering

Data files were unzipped and converted to the AnnData format [130] using in-house Python and Bash scripts and stored

as .h5ad files. Datasets were subsetted to just protein-coding genes per UniProt [131]. Pre-processing was performed

using the standard scanpy (1.9.1) [130] pipeline for scRNA-seq data, including quality filtering, normalization, and

log-transformation steps. Doublets were identified and removed using DoubletDetection (4.2) [132]. Dimensionality

reduction was performed with PCA. In order to account for potential batch effects between samples, batch correction

was performed with Batchelor (1.14.1) [133]. Clustering was performed using the Leiden algorithm (leidenalg 0.8.10)

[134]. The dimensionality was further reduced to two dimensions for visualization using UMAP (umap-learn 0.5.3)

[135, 136].

2.8.3 Cell cluster annotation

MAGIC (magic-impute 3.0.0) [137] was used to impute expression for marker genes collected from databases and the

literature. Cell types were manually assigned to clusters based on the following marker genes for the Li et al. and Wang

et al. data sets: CD8 T cells: CD3, CD8; CD4 T cells: CD3, CD4; regulatory T cells: CD3, CD4, FOXP3; macrophages:

CD68, CD163, CD14; natural killer cells: CD56, CD16, CD3, KLRB1, NKG7, NKG2A, GZMB, NCAM1; B cells:

CD19, CD27, CD38; plasma cells: SDC1, CD20. We used the previous cell type annotation for Yost et al. dataset.

2.8.4 Inference of CD8 T cell exhaustion trajectory with Monocle3

Datasets were subsetted to just CD8 T cell clusters for trajectory inference. A pseudotemporal ordering of cells from

progenitor exhausted to terminally exhausted was inferred for CD8 T cells using Monocle3 (1.3.1) [93]. Root cells

were chosen from the principal graph based on expression of key exhaustion-associated genes, including TCF7 (high),

TOX (low), AND LAG3 (low).

2.8.5 Calculation of sample-level exhaustion scores with the cell enrichment approach

To assess the distribution of a sample’s CD8 T cells along the exhaustion pseudotime path relative to the overall

distribution (across all samples), a cell enrichment approach was used. To do this, the Gene Set Enrichment Analysis

(GSEA) method was repurposed (gseapy 0.9.5) [94]. In GSEA, an enrichment score is calculated by quantifying the

over-representation of a pre-defined set of genes in the most highly differentially expressed genes between two

conditions. This is often a comparison in expression levels between two treatment conditions in bulk gene expression

data.

To calculate the cell enrichment score, the same mathematical framework is used as in GSEA, but cell sets and a cell

ranking are substituted for gene sets and a gene ranking. Whereas GSEA focuses on gene sets, the cell enrichment

approach considers cell sets, where a set of cells comprises all cells of a given type derived from one patient sample.

That sample’s cells are compared to the trajectory as a whole, constructed from many samples. In this way, the degree

to which a subset of cells (derived from a given sample) is enriched at one end of a ranking of cells (e.g. exhaustion
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pseudotime across all samples) is quantified. The resulting score captures the degree to which a sample’s CD8 T cells

are biased toward the progenitor exhausted or terminally exhausted state.

2.8.6 Sample clustering and selection of extremes

We used the Jenks natural breaks algorithm (jenkspy 0.3.2) to divide the samples into clusters based on similar

exhaustion scores [138]. Sensitivity analyses were performed to ensure reasonable robustness to the choice of cluster

number. The sample clusters with the highest and lowest scores were chosen for further analysis. By comparing the

extreme samples from the ends of the distribution, we increased power to detect changes in other cell types associated

with these different immune microenvironments. Additionally, by using multiple samples from each end, we minimized

the effect of individual patient background and increased the number of cells used to calculate the results. For every

dataset, at least two samples were used at each end of the sample ranking.

2.8.7 Quantifying transcription factor regulon activity with SCENIC

We used the SCENIC gene-regulatory network inference algorithm, implemented in the pyscenic (0.11.2) Python

library. Briefly, GRNBoost was used to infer correlation modules, which were then pruned by CisTarget to obtain

regulons, each consisting of a transcription factor and its inferred, directly regulated targets (arboreto 0.1.6). The

activity of each regulon was then quantified for each cell using AUCell [47, 139, 140].

2.8.8 Comparison of transcription factor activity between exhaustion-low and exhaustion-high samples in each

cell type

AUCell scores for a given regulon were used as a proxy for the activity of the corresponding transcription factor. To

determine whether a given transcription factor was significantly up- or down-regulated in a given cell type in one

sample group relative to the other, the following comparison was made: using a Mann-Whitney U test (scipy 1.9.0), the

distributions of TF activity scores were compared between the two sample groups. Moving to the sample level for this

comparison allows for the assessment of potentially exhaustion-associated activity in other cell types within the tumor

immune microenvironment. P-values were then corrected using the Benjamini-Hochberg method.

2.8.9 Overlap analysis

Once exhaustion-associated cell-type specific TF activity was identified for each dataset, the results were compared

across datasets. We used a Fisher’s exact test to perform an overlap analysis, determining whether a given cell type had

shared significant up- or down-regulated TFs between two datasets. The resulting p-values were corrected using the

Bonferroni method.
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2.8.10 Analysis of exhaustion-associated gene-regulatory sub-networks

TF-target relationships inferred using pyscenic were used to connect significant TFs into gene-regulatory sub-networks.

Two thresholds were then used to generate the GRN figures. Importance scores were exported from the GRNBoost

results for each TF-target relationship. If both tumor datasets had an inferred GRN graph edge for a TF-target

relationship at a score above 1 but the viral dataset did not, the edge was labeled as tumor-specific. If the viral score

was above one but neither of the tumor scores were above 1, it was listed as viral-specific. If all 3 had a score above 1,

the edge was considered to be shared across these biological contexts. The GRN was then pruned using the higher

threshold; if the maximum score for a potential TF-target edge exceeded the higher threshold, the edge and its

associated nodes were included in the final network visualization. This threshold varied from 25 to 30 for different

GRN figures. All GRN visualizations were created using Cytoscape (v3.9.1) [141]. A subset of the top-scoring TFs

were displayed in the GRN figures; a full list of exhaustion-associated TFs and their p-values can be found in the

Supplemental Results files.

2.8.11 Pathway enrichment analysis with Reactome

Using Reactome (v85) pathway gene sets and pathway hierarchy, we performed a pathway enrichment analysis on

genes differentially expressed (per two-sided Mann-Whitney U test, scipy) in CD8 T cells and macrophages between

the high- and low-exhaustion samples [33, 35, 34, 32]. A Fisher’s exact test was used to quantify overrepresentation of

a pathway’s genes in these differentially expressed genes. Out of 20376 total protein-coding genes (per UniProt

v2022_01), any gene with an adjusted p-value less than 0.05 was considered to be differentially expressed. These were

then tested for overrepresentation in each pathway’s gene set.

2.8.12 Other package versions:

matplotlib=3.5.1; matplotlib-base=3.5.1; networkx=2.8.5; numpy=1.22.3; numpy-base=1.22.3; pandas=1.4.2;

python=3.10.4; scikit-learn=1.1.2; seaborn=0.11.2
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3 T cell exhaustion and immunotherapy response

ABSTRACT

The process of CD8 T cell exhaustion has been studied in the context of immune checkpoint inhibitor

therapy. However, its role in immunotherapy response is not fully clear. To better address these

questions, we developed an analysis framework that combines our previously developed sample

score framework with another tool called Scissor, which enables the use of clinically labeled bulk

RNA-seq data to select subpopulations of tumor cells associated with clinical outcome. By

combining these two tools, cellular processes like T cell exhaustion can be related to subpopulations

of tumor cells and their relationships with a clinical phenotype such as immunotherapy response.

This framework was successfully applied to human lung cancer data and was able to identify some

unexpected relationships between the tumor immune microenvironment and immunotherapy

response. This analysis framework may be applied to any biological question where single-cell

expression data and clinically labeled bulk expression data are available, and in which

subpopulations of a heterogeneous cell type need to be compared to a cell state change in another cell

type as well as a clinical phenotype.

3.1 Introduction

Immune checkpoint inhibitor (ICI) therapy is a class of cancer immunotherapy that has shown success in treating

patients with some late-stage cancers, including non-small cell lung cancer (NSCLC) and melanoma. Despite some

success, these therapies fail in a significant proportion of patients; only 20-30% of patients responded in the first

applications of ICI treatment to cancer [142, 143]. One biological process that has been studied in connection with

responsiveness to ICI therapy is CD8 T cell exhaustion. This process occurs when CD8 T cells in the tumor immune

microenvironment are chronically exposed to tumor antigen over a prolonged period and develop a decrease in

anti-tumor cytotoxic activity.

Exhausted CD8 T cells, which typically express immune checkpoints proteins, exist in several states: progenitor

exhausted CD8 T cells exhibit high TCF7, low TOX, and exhibit self-renewal and a stem-like cell state [71]. The

abundance of these TCF7+ CD8+ T cells has been shown to be predictive of ICI response [5]. Terminally exhausted T

cells are more differentiated than the upstream progenitor exhausted population, exhibit low TCF7, high TOX, and have

reduced (but still present) anti-tumor cytotoxic activity[71].

There are two main ways in which tumor subpopulations may have a differential effect on ICI response (Figure 12). A

group of tumor cells may exhibit behavior by which just that subpopulation is made more or less susceptible to immune

recognition and destruction. A down-regulation MHC expression leading to decreased tumor antigen presentation that

facilitates greater immune evasion is one such example. Alternately, a group of tumor cells may signal to immune cells
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Figure 12: Heterogeneity in tumor subpopulation modulation of and response to anti-tumor immune activity

such as CD8 T cells, either directly or via a modulation of other activity within the tumor immune microenvironment,

and thus have an impact on the degree to which all cells within the tumor are targeted.

Studying the relationship between CD8 T cell exhaustion and immunotherapy response is challenging for several

reasons. The tumor microenvironment is heterogeneous, both within and across cell types. Single-cell RNA sequencing

(scRNA-seq) can help to break down this heterogeneity by allowing for the identification of different cell types and even

multiple cell states within a given cell type. However, the number of patients represented in a given scRNA-seq dataset

is typically small. Additionally, these datasets often do not contain the clinical annotations needed to link cell states and

processes to the phenotype of interest. Bulk RNA-seq datasets often have larger sample sizes and clinical labels of

interest. By making use of clinically labeled bulk RNA-seq data to identify tumor sub-populations in single-cell data

related to a phenotype of interest, the complementary strengths of these two sources of data may be harnessed.

This leaves a final challenge. The consideration of how one target cell type is related to cell state change in another

reference cell type is not straightforward using standard scRNA-seq analysis frameworks. We previously developed an

approach to address this challenge, which quantifies cell state change at the sample level and then makes comparisons

between groups of samples with very different sample-level scores (see Chapter 2), within each cell type of interest.

This enables comparisons within these other cell types (e.g. tumor cells) that relate to the distribution of cell states

within the reference cell type (e.g. CD8 T cells).
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To better investigate the link between CD8 T cell exhaustion and ICI treatment response, a novel analysis framework

was developed. It makes use of this previously developed approach for quantifying a balance of cell states at the sample

level (for consideration of associated molecular activity in other cell types). It also utilizes a tool called Scissor,

leveraging clinically labeled bulk RNA-seq data to select subsets of phenotypically-associated single cells [144]. By

pairing these two methods, we can answer questions that cannot be addressed by either approach individually, or by any

other existing approach. This framework was then applied to data from lung and skin tumor patients in order to better

understand how CD8 T cell exhaustion in the human tumor context relates to ICI response. This framework is capable

of indicating which molecular activity within the target cell type (e.g. tumor cells) is related to the clinical phenotype

(e.g. immunotherapy response) via its relationship with the cell state change of interest in the reference cell type (e.g.

exhaustion trajectory in CD8 T cells), versus through some other biological process or relationship.

This framework can also be applied to biological and clinical questions beyond cancer immunotherapy. It can be used

for any analysis in which the association of a target cell type to a cell state change of interest in a different cell type is

considered in the context of a particular clinical outcome. This is done by considering the relationships between the cell

state change-associated subpopulations and the phenotype-associated subpopulations.

3.2 Results

3.2.1 A novel computational framework to identify cell subpopulation activity related to cell state transition

and clinical phenotypes

In order to investigate the relationship between lung tumor subpopulations, T cell exhaustion, and ICI response, a novel

analysis framework was developed (Figure 13). While the use case of interest here involved T cell exhaustion and

immunotherapy response, the framework can be applied to any biological question in which there is a cell state

trajectory of interest and another cell type that may relate to this cell state change and a clinical phenotype of interest.

The following is a brief overview of the steps used to accomplish this.

3.2.1.1 Identification of suitable data for application of the framework To make use of this framework, several

types of input data must be identified. scRNA-seq data from enough patients to set up a sample-level ordering is needed.

The necessary sample size depends in part on how well the relevant cell types are distributed across samples, as well as

on how significantly the distribution of cells across the relevant cell state trajectory varies by sample. Additionally, bulk

RNA-seq data from the correct tissue context, labeled with the clinical outcome of interest, are required. Ideally, at least

two bulk RNA-seq datasets will be used; the first to select phenotype-associated single-cells and the second (or more)

to provide additional support for the validity of this selection.

3.2.1.2 Pre-processing of single-cell data Standard scRNA-seq and bulk RNA-seq pre-processing steps are used. If

multiple single-cell datasets are used, they are merged, and batch correction is performed to integrate across samples.

Following clustering and cell type annotation, the data are subsetted down to the cell types of interest: one in which the
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cell state change is occurring, and the other in which cell state-associated cell subsets (associated with state change in

the other cell type, e.g. CD8 T cells) and phenotype-associated cells will be selected.

3.2.1.3 Inference of cell state trajectory In the data subset containing the cell type that is changing state, the

beginning cell state is identified using marker gene visualization and domain knowledge. This beginning state is used as

a root to initialize a trajectory inference algorithm, such as Monocle3, which finds a path from the beginning cell state

to the final cell state.

3.2.1.4 Evaluating the cell state trajectory and providing additional support Once a cell state change trajectory

has been inferred, it should first be evaluated by considering the change in expression of key marker genes associated

with each cell state relative to pseudotime. In general, a monotonic decrease of marker genes associated with the

beginning state and a monotonic increase of marker genes associated with the end state should be observed. There may

be cases where more complex patterns are observed if certain genes are associated with an intermediate state between

the two states of interest, or are transiently expressed to drive the change. Existing domain knowledge should be

leveraged here. The simple case is a linear cell state change trajectory, but modifications can be made to accommodate

branching and other trajectory patterns.

Ideally, if the data are available, differential gene expression activity between the two cell states of interest should be

compared with other datasets where these cell states have been compared previously. Significant overlap provides

further support for the claim that the same biological process is driving the trajectory of expression states.

3.2.1.5 Calculation of sample-level cell state scores and selection of extremes The cell state trajectory comprises

cells from a number of samples. Each sample will not have cells distributed along the trajectory in the same way. Some

samples will have a distribution of cells that is biased toward the early part of the trajectory, while others will be biased

toward the later end. In order to quantify each sample’s distribution of cells along the trajectory, a sample-level cell

state score is calculated using a previously established method (see Methods). These sample-level scores are then split

into groups and the two groups containing the lowest and highest scores are chosen for further comparison.

3.2.1.6 Encoding of clinical phenotype The bulk RNA-seq data used to select phenotype-associated subpopulations

in the single-cell data must be labeled with a clinical phenotype of interest, which can be encoded as a binary or

continuous variable.

3.2.1.7 Identification of phenotype-associated cell subpopulations with Scissor The Scissor algorithm is then

used to select phenotype-associated single cells based on expression similarity with the labeled bulk RNA-seq data.
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3.2.1.8 Additional support for phenotype association of selected cell subpopulations In order to ensure that the

selected cells are truly associated with the clinical phenotype of interest, additional data should be leveraged where

possible. If additional clinically labeled bulk RNA-seq data from the same tissue type are available, these data can be

used as a primary validation. The differentially expressed genes (DEGs) between the two phenotype-associated

single-cell populations (in the case of a binary clinical phenotype) should overlap significantly with genes differentially

expressed between the clinical categories in the bulk data. Additionally, if any of the single-cell samples are annotated

with the same clinical phenotype of interest, these samples should be checked to ensure they are enriched for cells

associated with the matching clinical category. Finally, any other data available to support this selection should be

considered. For example, if the clinical phenotype of interest is response to a particular cancer treatment, then

response-associated single-cells should be over-represented in the pre-treatment relative to post-treatment samples.

3.2.1.9 Comparison of cell state-associated and phenotype-associated cell subpopulations Once cell

state-associated and clinical phenotype-associated cell subpopulations were identified, the resulting target cell subsets

were then compared. First, two sets of differentially expressed genes were calculated. Expression differences between

the early trajectory-biased and late trajectory-biased target cell subpopulations, based on the distribution of reference

cell states from the corresponding samples along the trajectory, were quantified. Differential expression between the

two phenotype-associated cell subsets was also calculated. An overlap analysis was then performed to determine how

many genes are associated with one or several of these four categories (early trajectory, late trajectory, phenotype 1,

phenotype 2). Next, the relationship between sample-level trajectory scores and the relative proportions of each class of

phenotype-associated cells within each sample was considered.

3.2.1.10 Pathway analysis After differential gene activity between the cell state scores and the phenotype

association groups was identified, the Reactome pathway knowledgebase was used to identify pathways enriched for

these differentially expressed genes. Pathways associated with cell state distributions and clinical outcomes were

identified.

3.2.2 Application of framework to NSCLC tumor immune microenvironment data

In order to evaluate the efficacy of this framework and obtain a clearer understanding of the relationship between CD8

T cell exhaustion and ICI response, the framework was applied to publicly available lung cancer data. To do this,

multiple bulk and single-cell RNA-seq datasets from patients with NSCLC tumors were identified (see Methods). The

bulk samples were collected prior to treatment with immunotherapy and are labeled with ICI response phenotypes.

3.2.3 Data integration, pre-processing, annotation, and subsetting

First, the three single-cell NSCLC datasets were integrated, batch-corrected, and pre-processed (Figure 14a, Table 2,

Methods). CD8 T cell and tumor cell clusters were identified in the resulting combined lung single-cell dataset (Figure
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Figure 14: Lung tumor data – merged datasets A) three NSCLC datasets integrated for analysis B) CD8 T cell and
tumor cell populations were identified C) eight samples in the merged dataset contain tumor cells in addition to CD8 T
cells and other immune cell types; cells labeled “background” are from 33 tumors from the Liu et al., 2022 dataset,
which does not contain sufficient tumor cells for analysis – these T cells are included as a reference to help delineate the
CD8 T cell exhaustion trajectory D) Leiden clustering of merged dataset

Dataset GEO ID Tumor Type Total cells CD8 T cells Tumor cells

Lambrechts et al., 2018 see Methods NSCLC 51232 10445 7218
Hu et al., 2023 GSE207422 NSCLC 13457 1145 2157
Liu et al., 2022 GSE179994 NSCLC 137660 56781 –
All datasets – NSCLC 202349 68371 9375

Table 2: scRNA-seq datasets Three publicly available scRNA-seq datasets from human NSCLC tumors were used
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14b-d, Methods). The data were then subsetted to a CD8 T cell-specific dataset and a tumor cell-specific dataset. The

resulting CD8 T cell and tumor datasets were then re-clustered (Figures 15 and 16).

3.2.3.1 Cell counts checks In the combined single-cell NSCLC dataset, the two cell types of interest, CD8 T cells

and tumor cells, are well-distributed across samples, with a number of samples containing hundreds or thousands of

each cell type (Table 3). This indicates that these data are suitable for downstream analysis.

3.2.4 CD8 T cell exhaustion trajectory and sample-level exhaustion scores

3.2.4.1 CD8 T cell exhaustion trajectory Next, a trajectory of CD8 T cells was inferred, progressing from a

TCF7-high, progenitor exhausted state to a TOX-high, terminally exhausted state (Figure 15a-f, Methods).

3.2.4.2 Sample-level exhaustion scores In order to determine the relative degree of CD8 T cell exhaustion at a

sample level, the distribution of cells along this exhaustion pseudotime trajectory was quantified with sample-level

exhaustion scores. Samples were then ranked by exhaustion score and the most extreme samples (least exhausted and

most exhausted by CD8 T cell distribution) were identified (Methods). Samples 2 and 5 were designated as

“exhaustion-low,” with CD8 T cell distributions relatively biased toward the progenitor exhausted cell state. Sample

immune05 was designated as “exhaustion-high,” with a CD8 T cell distribution biased toward the terminally exhausted

cell state (Figure 15g, Methods).

3.2.4.3 Support for the exhaustion trajectory – part 1 To support the validity of the exhaustion trajectory of CD8

T cells, the change in expression level of several exhaustion-related genes relative to pseudotime was considered.

Average expression of TCF7 in CD8 T cells decreased monotonically along the trajectory, while average expression of

cell type

sample dataset CD8 T cells tumor cells

1 Lambrechts et al., 2018 408 286
2 Lambrechts et al., 2018 368 162
3 Lambrechts et al., 2018 2247 1446
4 Lambrechts et al., 2018 4757 2459
5 Lambrechts et al., 2018 2665 2865
immune01 Hu et al., 2023 206 669
immune05 Hu et al., 2023 215 1478
immune08 Hu et al., 2023 724 10
background (36 samples) Liu et al., 2022 56781 –
total – 68371 9375

Table 3: Cell counts by sample
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Figure 15: CD8 T cell exhaustion in human skin tumor samples A, B, D-F) imputed gene expression of progenitor
exhausted marker TCF7, terminal exhaustion marker TOX, and immune checkpoints PDCD1, LAG3, and TIGIT; C)
Monocle3 pseudotime, characterizing progression from progenitor exhausted to terminally exhausted CD8 T cells; G)
exhaustion pseudotime of CD8 T cells, ordered by sample-level exhaustion score.
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TOX, PDCD1, LAG3, and TIGIT generally increased along the trajectory (Figure 51). These expression trends are in

concordance with previous study of these cell states [71].

3.2.4.4 Support for the exhaustion trajectory – part 2 To provide further support to the validity of the exhaustion

trajectory and sample-level exhaustion scores, we compared the overlap of differentially expressed genes in the CD8 T

cells of exhaustion-high and exhaustion-low samples across several datasets (Methods, Tables 4-7) (see Chapter 2 for

skin tumor dataset details).

DEGs – melanoma data

up-regulated not significant

DEGs – NSCLC data
up-regulated 922 2034

not significant 2446 9538

Table 4: Li et al. dataset, exhaustion high group, CD8 T cells – test statistic = 1.77, p-value = 1.77× 10−34

DEGs – melanoma data

up-regulated not significant

DEGs – NSCLC data
up-regulated 128 575

not significant 1404 12833

Table 5: Li et al. dataset, exhaustion low group, CD8 T cells – test statistic = 2.03, p-value = 4.24× 10−11

DEGs – BCC data

up-regulated not significant

DEGs – NSCLC data
up-regulated 979 1489

not significant 2389 10083

Table 6: Yost et al. dataset, exhaustion high group, CD8 T cells – test statistic = 2.77, p-value = 1.91× 10−99

DEGs – BCC data

up-regulated not significant

DEGs – NSCLC data
up-regulated 97 279

not significant 1435 13129

Table 7: Yost et al. dataset, exhaustion low group, CD8 T cells – test statistic = 3.18, p-value = 2.92× 10−18
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Significant overlap in genes up-regulated in the CD8 T cells of exhaustion-high and exhaustion-low sample groups was

observed between the lung data and two independent lung tumor datasets, as indicated by p-values that were all equal to

or smaller than 4.24 x 10-11. This indicates a successful identification of samples with strongly contrasting distributions

of these two cell states, which can be observed in a range of tumor tissue contexts.

3.2.4.5 Selection of exhaustion-high and exhaustion-low tumor cell subpopulations Once the sample-level

exhaustion scores have been calculated, they can be used to identify subpopulations of other cell types associated with

various degrees of CD8 T cell exhaustion. In this way, the tumor cells from samples 2 and 5 were determined to come

from “exhaustion-low” tumor immune microenvironments, while the tumor cells from sample immune05 came from an

“exhaustion-high” microenvironment (Figure 16b, c). Comparisons can then be performed between the tumor cell

populations from these exhaustion-low and exhaustion-high immune microenvironments.

3.2.5 Identification of phenotype-associated lung tumor subpopulations with Scissor

3.2.5.1 Scissor overview The Scissor algorithm is a powerful computational tool that can be used to leverage the

clinical labels and higher sample size of bulk RNA-seq data to identify subpopulations of scRNA-seq data associated

with a phenotype of interest [144]. It takes as input single-cell RNA seq data and bulk RNA-seq data from the same

tissue type, where the bulk data samples are labeled with a clinical phenotype of interest. The correlation between

single-cell and bulk gene expression profiles is determined. The Scissor algorithm then selects phenotype-associated

cells based on their predictive ability in correctly assigning clinical labels to bulk RNA-seq samples with the labels held

out. These cells have expression profiles with a high degree of correlation with the expression profiles of bulk RNA-seq

samples from one phenotypic category relative to the other. In this way, cells with the strongest association with a

particular clinical outcome of interest are identified. When used in the binary, logistic regression mode, it chooses

subsets of single cells that are associated with one of two clinical outcomes, and leaves the rest as background. By

comparing these extremes, the analysis can become better powered to detect signal that differentiates these cell

subgroups by ignoring intermediate expression profiles that are not as strongly correlated with one phenotype or the

other. DEGs can be identified with greater sensitivity and phenotypically associated cells can be considered in other

ways, as described with the sample score approach described below.

3.2.5.2 Inputs scRNA-seq data from the combined lung tumor dataset, described above, were used. This dataset

contains 9375 tumor cells from eight different patients. Bulk RNA-seq data from NSCLC patient samples collected

prior to ICI therapy, and labeled with ICI response (in the RECIST format, quantifying Best Overall Response – see

Methods), were also used. There are 152 NSCLC samples in the Ravi et al., 2023 bulk RNA-seq dataset [145]. 136 of

these samples passed quality filtering, and of those, 123 were labeled with one of the 4 major RECIST categories

(Complete Response, Partial Response, Stable Disease, Progressive Disease). 11 were not labeled and 2 were labeled

“Not Evaluated” (NE). These, along with the 35 samples classified as “Stable Disease,” were removed (see Methods).
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A B

C D

Figure 16: lung tumor cell subpopulations A) Scissor-positive (ICI response- associated) and Scissor-negative (ICI
resistance-associated) tumor cell subpopulations, superimposed on reference cells B) lung tumor cells with the lowest
(microenvironment biased toward progenitor exhausted CD8 T cells) and highest (biased toward terminal exhaustion)
exhaustion scores in their tumor immune microenvironments C) lung tumor cells from eight patients D) ICI response
labels (RECIST) where available

This left samples from 88 patients, with 8 classified as “Complete Response” (CR), 40 as “Partial Response” (PR), and

40 as “Progressive Disease” (PD). These there then binarized into 48 Responders (CR, PR) and 40 Non-Responders

(PD). These binary phenotype labels were then used as input into the Scissor algorithm for selection of

phenotype-associated lung tumor cells.

3.2.5.3 Selection of lung tumor cells related to immunotherapy response and resistance Using these inputs, the

Scissor algorithm was run to identify subpopulations of lung tumor cells associated with ICI response and resistance.

Steps were taken to optimize the algorithm’s alpha parameter, and the reliability test was successfully run, indicating

sufficient similarity between the expression profiles of the bulk and single-cell data for effective selection of

phenotype-associated cells (see Methods). 612 Scissor-positive (ICI response-associated) and 615 Scissor-negative (ICI

resistance-associated) lung tumor cells were identified (Figure 16a). This represents 15.201% of all tumor cells in the

dataset, which meets the Scissor package’s guideline for choosing less than 20% of all cells as phenotype-associated. In

order to provide further support for the phenotype associations of these tumor cells, three different strategies were used,

described below.
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3.2.5.4 Additional support for phenotype-associated tumor cells – part 1 After ensuring that the single-cell and

bulk lung tumor data were sufficiently similar for the use of the Scissor algorithm, we supported this selection of tumor

cell subsets using three strategies. The first and primary strategy to support the Scissor results was performed by

comparing the differentially expressed genes (DEGs) derived by comparing the Scissor-positive (ICI

response-associated) and Scissor-negative (ICI resistance-associated) lung tumor cells with DEGs from an independent

bulk RNA-seq dataset comprising human NSCLC tumors sampled prior to immunotherapy treatment (see Methods).

The degree of overlap between genes up-regulated in Scissor-positive (compared to Scissor-negative) cells and genes

up-regulated in bulk samples from responders (relative to non-responders) was determined. The likelihood of the

observed degree of overlap between Scissor DEGs from the NSCLC single-cell data and phenotype-associated DEGs

from the NSCLC bulk data occurring by chance was quantified via Fisher’s exact test. This yielded a test statistic of

4.34 and a p-value of 4.26 x 10-18. This indicates strong overlap between the two sets of DEGs and supports the validity

of the association between the chosen cells and immunotherapy treatment outcome.

3.2.5.5 Additional support for phenotype-associated tumor cells – part 2 In order to provide further support for

the association of subsets of tumor cells with ICI response, we took advantage of the fact that three out of the eight

tumor samples were labeled with immunotherapy outcome. Samples immune01 and immune08 are marked as SD and

sample immune05 is marked as PR. Since it is a partial responder to ICI treatment, we expect this sample’s tumor cells

to be enriched for Scissor-positive cells, relative to Scissor-negative cells. We do not need to adjust for a base rate since

an approximately equal number of cells was chosen for each category (612 Scissor-positive vs. 615 Scissor-negative

cells). This PR sample contained 3.7 times as many Scissor-positive cells as Scissor-negative cells, relative to an

expected baseline ratio of around 1 (Figures 16d, 17). This provides additional support for the validity of the

phenotype-association designations of the lung tumor cells.

3.2.5.6 Additional support for phenotype-associated tumor cells – part 3 In order to further support the

association of selected subsets of tumor cells with ICI response, the three pre-treatment samples from the Hu et al.,

2023 NSCLC scRNA-seq dataset were analyzed together with 12 post-treatment samples from the same dataset

(Figures 38-41). Working from the assumption that tumor subpopulations that are more responsive to the therapy in

question should be enriched for pre-treatment cells and tumor subpopulations more resistant to ICI treatment should be

enriched for post-treatment cells, the following comparisons were made. Two groups of Leiden clusters were observed,

where group A is made up of 8% pre-treatment cells (and 92% post-treatment cells), and group B comprises 43%

pre-treatment cells (Figure 42). Given a baseline level of 20% pre-treatment cells overall, pre-treatment cells are 41%

as common in group A and 2.16 times as common in group B as expected by chance.

Given this, we would expect the group with a higher percentage of pre-treatment cells (group B) to be associated with

treatment response and contain a higher proportion of scissor positive cells and a lower proportion of scissor negative

cells. We would also expect the group with a lower percentage of pre-treatment cells (group A) to be associated with
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treatment resistance and contain a lower proportion of scissor positive cells and a higher proportion of scissor negative

cells. These expected differences in proportion were, in fact, observed (Figure 43, Methods).

Group A is made up of 2.5% scissor positive cells, as compared to 3.9% scissor positive cells in group B. Group A also

contains 1.4% scissor negative cells, relative to 1.0% scissor negative cells in group B. While these are not large

differences, they are directionally correct, providing further support for the phenotypic associations of these cell subsets.

3.2.6 Comparison of immunotherapy outcome-associated and T cell exhaustion-associated lung tumor

subpopulations

Using the framework described above, lung tumor cell populations associated with ICI response and resistance have

been selected (Figure 16a). Additionally, samples in the single-cell data determined to be from exhaustion-low and

exhaustion-high tumor immune microenvironments have been identified (Figure 16b, c). These cell populations can

now be compared to each other to further explore the relationship between CD8 T cell exhaustion and patient response

to ICI therapy.

3.2.6.1 Sample-level comparison These processes can be compared by looking at the relative proportions of

response- and resistance-associated cells in each patient sample and determining whether this varies by sample-level

exhaustion score. An approximately equal number of each category of phenotype-associated cells was selected, so in

absence of a biological effect we expect the proportions to be equal. We observe that patients with the lowest

sample-level exhaustion scores have a much greater proportion of resistance-associated cells than response-associated

cells (Figures 16b-c, 17). The opposite is observed in samples with intermediate and higher exhaustion scores: an

overrepresentation of response-associated cells relative to resistance-associated cells. This means that patients with a

greater proportion of progenitor exhausted relative to terminally exhausted CD8 T cell populations contain more cells

that match the bulk data of non-responding patients, and patients with a greater proportion of CD8 T cells in the

terminally exhausted state contain a greater number of cells that match the responders.

Bearing in mind that in general, the selected phenotype-associated cell subsets make up a minority of the cells within a

sample, and tumor cell populations are often heterogeneous, this is somewhat unexpected. Based on previous findings,

progenitor exhausted CD8 T cells seem to be associated with more positive outcomes to ICI treatment. In order to

quantify this relationship, Spearman rank-based correlation was performed to compare the ranking of exhaustion

sample scores with the ratio of the proportion of ICI-response- vs. ICI-resistance-associated cells within each sample.

A correlation value (rho) of 0.71 (p-value=0.047) was calculated. In these data, samples with a higher proportion of

terminally exhausted CD8 T cells (relative to progenitor exhausted CD8s) tend to have cells with expression

phenotypes that match samples from patients who respond positively to ICI treatment.

3.2.6.2 DEG comparison These two processes of T cell exhaustion and immunotherapy response can also be

compared by considering differential gene expression in each. DEG analyses were performed between lung tumor cells
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Figure 17: proportion of cells in each sample that are scissor-positive (ICI response-associated) and scissor-
negative (ICI resistance-associated), respectively Note: samples are ranked from lowest to highest exhaustion score
(left to right)

from exhaustion-high and exhaustion-low samples and between ICI-response- and ICI-resistance-associated lung tumor

cell populations (from Scissor). These DEGs were then examined for overlap (Table 8, Figures 44-46). The most

overlap was seen between exhaustion-high and ICI response-associated DEGs and between exhaustion-low and

ICI-resistance-associated DEGs. This trends in the opposite direction from what one may expect from previous work

that links a more progenitor exhausted tumor immune microenvironment with better clinical outcomes.

3.2.6.3 Pathway analysis After identifying differential gene expression activity shared between T cell exhaustion

and ICI responsiveness, these overlapping sets of DEGs were subjected to a pathway enrichment analysis, using

Reactome. First, DEGs up-regulated in tumor cells from exhaustion-high samples and also in the ICI-responsive tumor

subpopulations were considered (Figure 18a, Figure 47). These genes showed significant shared enrichment in a

number of pathways, including transcription and cell-cycle associated pathways. Next, DEGs up-regulated in tumor

cells from exhaustion-low samples and in ICI responsive tumor subpopulations were analyzed (Figure 18b). These

genes showed significant enrichment in pathways related to development and metabolism.
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Figure 18: Pathway analysis of DEGs in lung tumor cells Pathways enriched in genes up-regulated in exhaustion
and ICI response groups; red line = adjusted p-value cutoff of 0.05 A) pathways up-regulated in exhaustion-high
samples and ICI-responsive subpopulations B) pathways up-regulated in exhaustion-low samples and ICI- responsive
subpopulations

3.2.7 Application of the framework to melanoma data

Initially, use of this framework to analyze NSCLC data and melanoma data was planned. The successful application of

the framework to NSCLC is described in this chapter. When searching for datasets, a number of publicly available

single-cell RNA-seq datasets from human melanoma tumors were identified. However, none of these datasets included

a sufficient number of CD8 T cells and tumor cells from a sufficient number of patients in order to proceed. At this

point, the pairing of ICI response phenotype-labeled bulk RNA-seq data from human melanoma tumors with single-cell

RNA-seq data from BCC was attempted. Although these are two different cancer types, previous observation of

biological similarities in their immune microenvironments indicated that there may be enough similarity in expression

DEGs – exhaustion score
not significant exhaustion-high exhaustion-low

DEGs – Scissor cells
not significant 2852 1919 1731
ICI-responsive 1602 4508 1221
ICI-resistant 128 190 789

Table 8: Overlapping DEGs in lung tumor cells – T cell exhaustion vs. immunotherapy outcome
Genes are categorized based on their expression levels in subsets of tumor cells. Genes are categorized as

“exhaustion-high” if their expression in the subset of tumor cells from samples with high CD8 T cell exhaustion scores
is significantly up-regulated compared to the subset from low-exhaustion samples. Similarly, genes are categorized as

“ICI-responsive” if their expression in the subset of tumor cells associated with ICI response is significantly
up-regulated compared to the subset associated with ICI resistance. The inverses are true for “exhaustion-low” and

“ICI-resistant.”
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profiles for a comparison to be attempted. Scissor’s reliability test was used to evaluate this. The reliability test failed,

indicating too low of a concordance between the expression profiles of the bulk and single-cell data to successfully

identify phenotype-associated cells.

3.2.7.1 Application of ICI outcome-related gene signatures to bulk melanoma data To consider potential

biological similarities between NSCLC and melanoma in the context of immunotherapy response, we compared a gene

signature derived from DEGs between ICI response and resistance-associated NSCLC tumor cell populations to the ICI

response-labeled bulk RNA-seq data from melanoma tumors. A strongly significant overlap was observed here, as

quantified by the up-regulation of around six thousand shared genes across the two tissue contexts and a p-value of

2.83× 10−187 from the overlap analysis (Table 9). This suggests that signatures for ICI response from one tumor type

can generalize to other tumor types and that there is likely some shared biology in the process of immunotherapy

response between these two types of disease.

3.3 Discussion

By developing a framework that combines the capabilities of multiple analysis approaches, we were able to perform

comparisons in the tumor immune microenvironment not straightforwardly available with currently existing approaches.

The sample score framework (from Chapter 2) enabled the quantification of the degree of CD8 T cell exhaustion in a

patient’s tumor immune microenvironment and the subsequent comparison of tumor cells from patients with very

different immune microenvironments. By leveraging the Scissor tool and the availability of ICI outcome-labeled bulk

expression data, ICI outcome-related tumor subpopulations could be identified. By comparing these subsets of tumor

cells, the process of CD8 T cell exhaustion and the clinical course of patients treated with ICI therapy can be more

directly compared.

The relationship between the prevalence of more terminally differentiated CD8 T cells and response-associated tumor

cell populations was somewhat surprising. There are several explanations for this. First, the biology of T cell

exhaustion as it relates to cancer and immunotherapy is not clearly understood. Second, the exhaustion trajectory may

be capturing other behavior than purely dysfunction, such as antigen reactivity and normal effector function. Third, this

approach relies on clinical phenotype labels that are a snapshot in time and may not capture all of the intricacies of a

patient’s disease course.

DEGs – melanoma data
up-regulated not significant

DEGs – NSCLC data up-regulated 5999 1332
not significant 4593 3016

Table 9: Generalization of ICI outcome DEGs from lung tumor cells to melanoma data –
test statistic = 2.96, p-value = 2.83× 10−187
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Another possible explanation arose in another group’s work on CD8 T cell exhaustion. A November 2022 paper

suggested the possibility that the well-studied transition from progenitor exhausted CD8 T cells to terminally exhausted

CD8 T cells may actually be a bifurcating, rather than linear, trajectory [89]. This work identified two endpoints, with

one matching the well-known terminally exhausted, TOX-high cell state and another taking the form of a

KLR-expressing state with higher anti-tumor effector activity. However, when we applied a gene signature derived

from this paper to the NSCLC T cell exhaustion trajectory described above, a bifurcation was not observed. Further

investigation is needed, in a tumor-type-specific manner, to better understand this process implicated in the treatment

outcomes of so many patients. That said, the generalization of the ICI response expression signature from NSCLC to

melanoma lends support to the idea that research findings about ICI treatment in one tumor type may be quite relevant

to other tumor types.

This framework facilitated new insights into cancer immunology, but is not restricted to this biological domain. It may

be fruitfully applied to other biological processes and disease contexts as well. Any question in which there is a cell

state change of interest, interactions with other cell types, and a clearly defined clinical phenotype has the potential to

be studied with this computational framework. Such computational investigations have the potential to generate

hypotheses and inform bench-top experiments that may confirm new biological relationships related to human health

and disease.

3.4 Methods

3.4.0.1 Datasets

3.4.0.2 NSCLC data – single-cell Three scRNA-seq datasets were used for the lung cancer analysis (Table 1). The

Lambrechts et al., 2018 dataset contains human NSCLC samples from five patients[7]. The Hu et al., 2023 dataset

contains human NSCLC samples from three patients [6]. The Liu et al., 2022 dataset contains human NSCLC samples

from 36 patients[146]. All samples used for the primary analysis are immunotherapy-naïve. Additional post-ICI

treatment samples from the Hu et al., 2023 dataset were used in the section: “Additional support for

phenotype-associated tumor cells – part 3.” All datasets were previously published by other groups and are publicly

available. Two datasets were downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) using

the following identifiers: GSE207422 (Hu et al., 2023), GSE179994 (Liu et al., 2022). The third dataset (Lambrechts et

al., 2018) was downloaded from ArrayExpress using accession numbers E-MTAB-6149 and E-MTAB-6653.

3.4.0.3 NSCLC data – bulk with ICI response annotation Additionally, two bulk RNA-seq datasets were used for

the lung cancer analysis. The Ravi et al. 2023 dataset contains human NSCLC samples from 152 patients (88 were

used)[145]. The data were obtained from supplemental tables provided with the paper. The Cho et al., 2020 dataset

contains human NSCLC samples from 16 patients. This dataset was downloaded from Gene Expression Omnibus using
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the following identifier: GSE126044 [147]. For both of these bulk RNA-seq datasets, samples were collected prior to

treatment with ICI therapy and are labeled with immunotherapy response information, scored using RECIST [148].

3.4.0.4 Melanoma data – bulk with ICI response annotation A bulk RNA-seq melanoma dataset was used to look

for similarity in gene expression between melanoma and NSCLC in terms of immunotherapy response. Human

melanoma tumor samples from 18 patients in this dataset were used [149]. The dataset can be downloaded from Gene

Expression Omnibus using the following identifier: GSE91061.

3.4.1 Pre-processing, merging, cell type annotation, and subsetting of scRNA-seq data

3.4.1.1 Merging, batch correction, and pre-processing Data files were downloaded and converted to the AnnData

(v0.10.1) format using in-house Python and Bash scripts and stored as .h5ad files [130]. They were then merged in

scanpy (1.9.5)[130]. Doublets were identified and removed using DoubletDetection [132]. Pre-processing was

performed using the standard scanpy pipeline for scRNA-seq data, including quality filtering, normalization, and

log-transformation steps. Principal Component Analysis was run to reduce dimensionality. In order to account for

potential batch effects between samples (and datasets), batch correction was performed using Harmony [150]. A

neighbor graph was constructed and clustering was performed using the Leiden algorithm (leidenalg 0.10.1) [134]. The

dimensionality was further reduced to two dimensions for visualization using UMAP (umap-learn 0.5.4) [136, 135].

3.4.1.2 Cell cluster annotation and subsetting Cell types were manually assigned to clusters based on the

following marker genes: CD8 T cells: CD3, CD8, CD4 (absence); NSCLC tumor cells: [151]. For this analysis, only

CD8 T cells and tumor cells were of interest. The CD8 T cell clusters and the tumor cell clusters were then subsetted

into separate AnnData objects for further analysis.

3.4.2 Inference of CD8 T cell exhaustion trajectory with Monocle3

The Monocle3 R package was used to infer a pseudotime trajectory from progenitor exhausted to terminally exhausted

CD8 T cell states [93]. The top five principal components were used (Figure 48). Root locations were chosen by

finding graph principal points with high TCF7 expression and low TOX expression (Figures 49, 50). Pseudotime values

were then exported from R to use in sample score calculations. For further detail, see Chapter 2 methods.

3.4.3 Calculation of sample-level exhaustion scores

Sample-level CD8 T cell exhaustion scores, quantifying the distribution of a cell’s CD8 T cells along the exhaustion

trajectory, were calculated using a previously developed procedure (see Chapter 2). This procedure is analogous to

Gene Set Enrichment Analysis (GSEA), which quantifies the over-representation of a pre-defined set of genes in the

top-ranked DEGs between two treatment conditions [94]. The procedure here is the same, except cells are substituted

for genes, patient samples are substituted for gene sets, and cell ranking comes from the exhaustion pseudotime
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trajectory described in the previous step. In this way, samples with a distribution of CD8 T cells biased strongly toward

the early end of the exhaustion trajectory will receive a lower score. Samples with CD8 T cells distributed later in the

trajectory will receive a higher score. For further detail, see Chapter 2 methods.

3.4.4 Sample clustering and selection of extremes

Once sample-level exhaustion scores have been calculated, samples are ranked by these scores. The Jenks natural

breaks algorithm for clustering in one dimension is used to break the samples into groups. The two extreme groups,

representing the “exhaustion-low” and “exhaustion-high” sample groups, are selected for further analysis. For further

detail, see Chapter 2 methods.

3.4.5 Support for the exhaustion trajectory – part 1

In order to evaluate the validity of the exhaustion trajectory, expression of key exhaustion-state-associated genes

relative to pseudotime were visualized and their expected trend with increasing pseudotime was confirmed (Figure 51).

3.4.6 Support for the exhaustion trajectory – part 2

In order to provide further support for the validity of the CD8 T cell exhaustion trajectory inferred with Monocle3,

DEGs between the high and low exhaustion sample groups were compared with two datasets. Significance was

determined by FDR-corrected p-values and a threshold of 0.05. An overlap analysis between the NSCLC CD8 T cell

DEGs and the exhaustion-high and exhaustion-low groups from CD8 T cell trajectories from the melanoma and BCC

datasets discussed in Chapter 2 was performed using Fisher’s exact test.

3.4.7 Bulk RNA-seq data – pre-processing and DEG analysis

Processing and DEG analysis of bulk RNA-seq data were performed with edgeR (3.36.0) and limma

(3.50.0)[152, 153, 154, 155].

3.4.8 Derivation of a binary response phenotype from RECIST scores

In all of the NSCLC and melanoma datasets used, clinical response to immunotherapy is scored using the RECIST

standard [148]. Briefly, the RECIST standard divides patients into one of four categories based on the following criteria.

Before and after treatment, all observable tumor lesions are measured, and the sum of the longest diameter of all of

these lesions is calculated. If all lesions disappear, the patient is classified as having Complete Response (CR). If the

dimensions sum decreases by at least 30% but some lesions remain, the patient falls into the Partial Response (PR)

category. If the dimension sum increases by at least 20% or new lesions appear, the patient is said to have Progressive

Disease (PD). Patients falling between the criteria for Partial Response and Progressive Disease are said to have Stable

Disease (SD).
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In order to enrich for the most clear Responder and Non-Responder phenotypes, and thereby select subsets of tumor

cells most clearly associated with immunotherapy response or resistance, samples in the Stable Disease category were

excluded from the analysis. These phenotypes were then binarized: patients with Complete Response or Partial

Response were considered Responders and patients with Progressive Disease were considered Non-Responders. This

binary clinical phenotype was then used for selection of phenotype-associated tumor cells and DEG analysis.

3.4.9 Selection of ICI response- and resistance-associated tumor cells using Scissor

The Scissor R package (2.0.0) was used to select subpopulations of lung tumor cells associated with ICI response or

resistance [144]. The Scissor algorithm uses clinically labeled bulk RNA-seq data to select subsets of cells in

scRNA-seq data associated with those clinical labels. When run in binary classification mode, Scissor is based on

logistic regression. The degree of correlation between the expression profiles of each bulk sample and each single cell

are determined. Then, single cells whose expression profiles are most useful in predicting whether an unlabeled bulk

sample falls into one phenotypic category or the other are selected as the most phenotype-associated. They are labeled

as “Scissor-positive” or “Scissor-negative”, corresponding to the two phenotypic categories (in this case, ICI response

or resistance), and the rest of the cells are left as background. Once identified, the Scissor-positive and Scissor-negative

cell populations can be compared to each other, often giving DEG results that are more sensitive than those derived

from bulk RNA-seq. This is particularly useful in our use case of tumor samples, as we can restrict the analysis to just

tumor cells and get differential expression results from this one cell type without noise from the expression profiles of

other cell types. See the original Scissor paper, as well as the corresponding GitHub repository and tutorial, for further

details. The Seurat (4.3.0) R package was used for pre-processing [156, 157, 158, 159, 160].

3.4.10 Optimization of alpha parameter

The Scissor algorithm contains a parameter, alpha, which imposes a sparsity constraint. Larger values of alpha will lead

the algorithm to select a smaller number of phenotype-associated cells. There is a tradeoff here, since we want a clearly

defined subset of the tumor cells, the noise from which will start to be diluted if too many tumor cells are chosen. That

being said, a sufficiently high cell count is also desirable for downstream analysis. In order to balance these two

priorities, Scissor was run on the NSCLC data with a number of different alpha values. The resulting number of

phenotype-associated cells was determined for each alpha value. Additionally, the mean (and median) pairwise distance

across all chosen Scissor-positive and Scissor-negative cells were calculated. These values were plotted and a value of

alpha that best optimized these two metrics was selected. For the lung analysis, an alpha value of 0.275 was chosen

(Figures 52, 53).

3.4.11 Scissor reliability test

In order to ensure the validity of our selection of ICI response- and resistance-associated cells using Scissor, we first ran

the built-in reliability test. This reliability test runs permutations of the Scissor algorithm with shuffled phenotype
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labels in order to determine how much more often than chance the selected phenotype-associated cells correctly predict

phenotype labels.

When the reliability test was run on the combined NSCLC tumor single-cell data and the NSCLC bulk RNA-seq

training dataset, a p-value of 0.000 was obtained. The Scissor package rounds down to zero after three decimal points.

This indicates a successful reliability test and that the bulk and single-cell NSCLC data are sufficiently similar to be

used together to identify phenotype-associated single cells.

3.4.12 Additional support for phenotype-associated tumor cells – part 1

In order to provide more support for the association of subsets of tumor cells with ICI response, an additional bulk

RNA-seq dataset not used in the selection of Scissor cells was utilized for comparison. The top 500 most significant

differentially expressed genes (DEGs) between Scissor-positive and Scissor-negative cells were identified. The top 500

most significant DEGs between Responders (CR, PR) and Non-Responders (PD) in the independent bulk RNA-seq

dataset were also identified. A Fisher’s exact test was then used to determine whether the top 500 DEGs from the bulk

and single-cell data contained more overlapping genes than expected by chance. As above, response categories for the

bulk data were defined by RECIST scores, with patients designated as CR or PR labeled as responders and patients

marked PD labeled as non-responders. Patients determined to have Stable Disease were omitted.

3.4.13 Additional support for phenotype-associated tumor cells – part 2

In order to provide further support for the selection of ICI outcome-related lung tumor cells, clinical labels for the

scRNA-seq samples from the Hu et al., 2023 NSCLC dataset were used. Relative proportions of response- versus

resistance-associated cells were considered in the context of what would be expected for each sample.

3.4.14 Additional support for phenotype-associated tumor cells – part 3

The third piece of support for the phenotype associations of subsets of lung tumor cells was performed by making use

of the fact that the Hu et al., 2023 NSCLC scRNA-seq dataset also contained a number of post-ICI treatment samples.

Relative proportions of pre- and post-treatment cells were compared to response- versus resistance-associated cells,

working from the assumption that cells from pre-treatment samples should be overrepresented in cell populations

associated with treatment response and post-treatment cells should be overrepresented in cell populations associated

with treatment resistance (as they are expected to remain following treatment). Note that the Scissor selection of

phenotype-associated cells was run only on tumor cells from pre-treatment samples, so post-treatment cells could not

be labeled as Scissor-positive or Scissor-negative. Accordingly, the denominator used to calculate the percentage of

phenotype-associated cells in a group is the number of pre-treatment cells in that group, rather than the total cell count.
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3.4.15 Differential gene expression analysis – exhaustion scores vs. ICI outcome

Once exhaustion-associated and clinical phenotype-associated lung tumor subpopulations were identified, the resulting

cell subsets were then compared. First, two sets of differentially expressed genes were calculated. Expression

differences between exhaustion-high and exhaustion-low tumor cell populations, based on the distribution of CD8 T

cells from the corresponding samples along the exhaustion trajectory, were quantified. Differential expression between

ICI response- and resistance-associated lung tumor cells was also calculated. For each, DEG calculations were

performed with the ‘sc.tl.rank_genes_groups()’ function in scanpy, with “method=t-test”. P-values were then corrected

using the Benjamini-Hochberg method, and significance was determined based on an adjusted p-value threshold of 0.05.

An overlap analysis was then performed via Fisher’s exact test to determine how many genes are associated with one or

several of these four categories (exhaustion-low, exhaustion high, ICI resistance, and ICI response).

3.4.16 Sample representation analysis – exhaustion scores vs. ICI outcome

Next, the relationship between sample-level exhaustion scores and the relative proportions of ICI response- and

resistance-associated cells within each sample was considered. First, this was examined visually via a barplot. Next,

Spearman correlation was used to determine the strength of association between the CD8 T cell exhaustion score and

the ratio of the proportion of Scissor-positive (response-associated) to Scissor-negative (resistance-associated) cells in

each sample, across samples. This was performed using spearmanr from scipy.stats.

3.4.17 Pathway enrichment analysis with Reactome

Using Reactome (v85) pathway gene sets and pathway hierarchy, we performed a pathway enrichment analysis on

DEGs from the exhaustion score comparison and the phenotype association comparison [32, 33, 34, 35]. Each

Reactome pathway’s enrichment for DEGs was quantified via Fisher’s exact test (stats.fisher_exact()). The resulting

p-values were then corrected using the Benjamini Hochberg procedure (statsmodels.stats.multitest, mode=‘fdr_bh’).

3.4.18 Generalization of NSCLC gene signature to other tumor types

In order to determine whether response- and resistance-associated gene expression activity signatures derived from

NSCLC tumor cell populations generalized to other cancer types in their relatedness to immunotherapy response, these

gene sets were compared to DEGs calculated for bulk RNA-seq data from human melanoma tumors. In this melanoma

data, immunotherapy response was scored with RECIST for each patient; two patients showed Complete Response,

four showed Partial Response, and 12 had Progressive Disease. These patients were split into responders and

non-responders as described above. The edgeR and limma R packages were used for processing of bulk RNA-seq data

and calculation of DEGs. An overlap analysis was conducted via Fisher’s exact test to quantify the similarity between

the DEGs from the lung tumor single-cell data and the melanoma bulk data as they each relate to ICI response.
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3.4.19 Other package versions:

matplotlib=3.5.1; matplotlib-base=3.5.1; networkx=2.8.5; numpy=1.22.3; numpy-base=1.22.3; pandas=1.4.2;

python=3.10.4; scikit-learn=1.1.2; seaborn=0.11
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4 Conclusion

By developing novel analysis frameworks, new questions can be asked of publicly available bulk and single-cell

transcriptomics data. We have developed a sample-level exhaustion scoring framework and integrated it with an

existing algorithm in a new workflow to identify ICI outcome-related tumor subpopulations. This work was motivated

by a need to consider gene expression changes within certain cell types as they relate to cell state change in a different

cell type, and further, to investigate the links between these expression changes and clinical phenotypes of interest, such

as treatment response. This approach yielded new findings that better elucidate the relationship between T cell

exhaustion and immunotherapy response.

The development of this framework and its application to data from human tumor samples enabled the identification of

immune cell activity in the tumor immune microenvironment associated with T cell exhaustion. Notably, strong

associations between macrophage activity and CD8 T cell exhaustion were found. Additionally, some

exhaustion-associated immune cell activity was determined to be shared across the tumor and chronic viral infection

contexts, while some was either tumor- or viral-specific. Surprising relationships between exhaustion-associated and

immunotherapy response-associated gene expression activity in tumor cell subpopulations were also identified.

Going beyond this, this framework adds to the general scRNA-seq analysis toolkit, allowing researchers to pursue

answers to a broader range of questions in their analyses. At this point, pseudotemporal ordering is commonly used in

the analysis of scRNA-seq data. Any time other cell types of interest are present within a dataset with an inferred cell

state change trajectory, this approach can also be applied. In addition, bulk expression data labeled with phenotypes of

interest can be used to consider clinical phenotypes in relation to that cell state change. In light of the prevalence of

publicly available, phenotype-labeled bulk RNA-seq data, this opens up new lines of analysis for researchers studying a

wide range of biological and clinical topics.

This analytical approach has several limitations. First, as with any computational biology research, any results must be

experimentally validated before they can be regarded as sound. Computational research can be highly effective in

reducing the number of possible relationships of interest by orders of magnitude, prioritizing a subset of molecular

interactions when the total number could not feasibly be evaluated experimentally in an exhaustive manner. Extensions

of this research direction would include working with experimental biologists to validate the relationships that were

identified, starting with signaling from macrophages to CD8 T cells in the tumor immune microenvironment.

Additionally, this framework is set up to identify statistical correlations, rather than mechanistic relationships. Possible

extensions to this work include an approach to track from gene expression of a cytokine, to cytokine activity in the

extracellular space from the sending cell type, through to receptor signaling and down to gene regulation in the

receiving cell type. This extension, which has already been partially developed, would allow for hypothesis generation

regarding potential molecular mechanisms that drive the strong associations that were observed.
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The application of this framework is also limited by the datasets used and the characteristics of the patients from whom

the tumor samples were derived. Patients may exhibit different disease progression and respond differently to a given

treatment based on clinical features such as age, sex, medical history, or haplogroup. In the ideal case, when clinical

metadata are available for all samples used, researchers may be able to appropriately caveat the results; they can

indicate where results may not generalize to a particular group of patients (and actively seek out more representative

datasets in future investigations). However, particularly when publicly available datasets are used, complete clinical

metadata are often not available for all samples. In these cases, the degree to which results may generalize to a specific

patient cohort remains unclear. The lack of complete clinical annotation of the samples used in this research present

this challenge, and more data with more complete clinical labeling will be required to better interpret the

generalizability of these results in the context of heterogeneous patient populations. This is a limitation of the datasets

used, but is not intrinsic to the framework itself.

In the coming years, the field of computational biology will continue to evolve rapidly. With the proliferation of

multi-omics assays, spatial transcriptomics, and other new data types, new computational techniques will be required to

push the limits of gene expression analyses. Greater integration will likely be possible between datasets quantifying

gene expression, gene regulation, chromatin accessibility, DNA methylation, proteomics, metabolomics, and other

aspects of molecular activity that determine the character of cellular behavior. Computational frameworks like this one

will need to be extended, modified, and eventually replaced in order to continue to deepen our understanding of

biological systems and to drive translational impact for a wider range of patients.
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5 Appendix
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Figure 19: CD8 T cell exhaustion in human skin tumor (basal cell and squamous cell carcinoma) samples
a, b, d-f) imputed gene expression of progenitor exhausted marker TCF7, terminal exhaustion marker TOX, and immune
checkpoints LAG3, TIGIT, and PDCD1 c) Monocle3 pseudotime, characterizing progression from progenitor exhausted
to terminally exhausted CD8 T cells g) exhaustion pseudotime of CD8 T cells, ordered by sample-level exhaustion score
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Figure 20: gene expression vs. pseudotime in melanoma dataset
Expression of TCF7, the primary marker of the progenitor exhausted CD8 T cell state, starts high and is monotonically
decreasing across pseudotime. TOX, the primary marker of the terminally exhausted CD8 T cell state, shows the
opposite relationship. Immune checkpoint genes LAG3, PDCD1, and TIGIT show broadly similar expression patterns
to TOX relative to pseudotime, although they decrease slightly for the highest pseudotime values.
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Figure 21: CD8 T cell UMAP plot – expression of key genes in melanoma dataset
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Figure 22: CD8 T cell UMAP plot – leiden clusters for melanoma dataset
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Figure 22: CD8 T cell UMAP plot – Monocle3 principal graph and clusters for melanoma dataset
top: clusters; bottom: principal graph and root cells
Parameters used: Number of principal components: 18; Clustering: k=20, resolution=0.0001
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Figure 23: gene expression vs. pseudotime in basal cell carcinoma dataset
Expression of TCF7, the primary marker of the progenitor exhausted CD8 T cell state, starts high, increases very
slightly and then decreases relative to pseudotime. TOX, the primary marker of the terminally exhausted CD8 T cell
state, is monotonically increasing across pseudotime. Immune checkpoint genes LAG3, PDCD1, and TIGIT increase
across pseudotime (with a slight decrease in LAG3 at the beginning).
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Figure 24: CD8 T cell UMAP plot – expression of key genes – BCC dataset
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Figure 25: CD8 T cell UMAP plot – Leiden clusters – BCC dataset
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Figure 25: CD8 T cell UMAP plot – Monocle3 principal graph and clusters – BCC dataset
top: clusters; bottom: principal graph and root cells
Parameters used: Number of principal components: 15; Clustering: k=20, resolution=0.0001
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Figure 26: gene expression vs. pseudotime in chronic HIV dataset
Expression of TCF7, the primary marker of the progenitor exhausted CD8 T cell state, starts high before increasing
slightly and then decreasing across pseudotime. TOX, the primary marker of the terminally exhausted CD8 T cell
state, is monotonically increasing across pseudotime. Immune checkpoint genes LAG3, PDCD1, and TIGIT are also
monotonically increasing across pseudotime.
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Figure 27: CD8 T cell UMAP plot – expression of key genes – HIV dataset
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Figure 28: CD8 T cell UMAP plot – Leiden clusters – HIV dataset
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Figure 28: CD8 T cell UMAP plot – Monocle3 graph and clusters – HIV dataset
top: clusters; bottom: principal graph and root cells
Parameters used: Number of principal components: 10; Clustering: k=20, resolution=0.0001; ‘learn_graph()’:
use_partition=FALSE
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PATHWAY FIGURES – KEYS:

Pathway Categories:

Immune System
Signal Transduction
Cell-Cell 
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Other  
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Figure 29: Pathway enrichment of genes up-regulated in the most exhausted macrophage samples – unabridged,
tumor-specific
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Figure 30: Pathway enrichment of genes up-regulated in the most exhausted macrophage samples – unabridged,
viral-specific
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Figure 31: Pathway enrichment of genes up-regulated in the most exhausted macrophage samples – unabridged,
shared
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Figure 32: Pathway enrichment of genes up-regulated in the most exhausted CD8 T cell samples – unabridged,
tumor-specific
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Figure 33: Pathway enrichment of genes up-regulated in the most exhausted CD8 T cell samples – unabridged,
viral-specific

90



Figure 34: Pathway enrichment of genes up-regulated in the most exhausted CD8 T cell samples – unabridged,
shared
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Figure 35: Pathway enrichment of genes down-regulated in the most exhausted CD8 T cell samples – unabridged,
tumor-specific
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Figure 36: Pathway enrichment of genes down-regulated in the most exhausted CD8 T cell samples – unabridged,
viral-specific
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Figure 36: Pathway enrichment of genes down-regulated in the most exhausted CD8 T cell samples – unabridged,
viral-specific
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Figure 37: Pathway enrichment of genes down-regulated in the most exhausted CD8 T cell samples – unabridged,
shared
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Dataset
cell type Li et al., 2019 Yost et al., 2019 Wang et al., 2020
CD8 T cells 19741 8136 15202
macrophages 5298 1144 1895
natural killer cells 5523 196 -
B cells 3999 111 4440
plasma cells 1283 1710 404
CD4 T cells - 3619 -
T regulatory cells - 2039 -
tumor cells - 2492 -
cancer-associated fibroblasts - 626 -
dendritic cells - 396 -
endothelial cells - 235 -
melanocytes - 88 -
myofibroblasts - 162 -
unknown 1717 - -
total 37561 20954 21941

Table 10: Cell counts by cell type for each of three datasets
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Figure 38: Leiden clusters
Hu et al., 2023 dataset (pre- and post-treatment tumor cells)
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Figure 39: Patients
Hu et al., 2023 dataset (pre- and post-treatment tumor cells)
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Figure 40: Pre- vs. post-treatment
Hu et al., 2023 dataset (pre- and post-treatment tumor cells)
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Figure 41: Treatment outcome (RECIST)
Hu et al., 2023 dataset (pre- and post-treatment tumor cells); PR: Partial Response; SD: Stable Disease
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Figure 42: Group
Hu et al., 2023 dataset (pre- and post-treatment tumor cells)
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Figure 43: Scissor status
Hu et al., 2023 dataset (pre- and post-treatment tumor cells); phenotype-associated cells selected by Scissor; Note: any
Scissor-positive or Scissor-negative cells not from the Hu dataset not pictured here. Additionally, only pre-treatment
cells were used for phenotype association analysis
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Figure 44: Significant DEG overlap – Scissor-positive and exhaustion-high
x-axis: genes whose expression is up-regulated in immunotherapy response-related tumor cells relative to immunother-
apy resistance-related tumor cells; y-axis: genes whose expression is up-regulated in high CD8 T cell exhaustion-
associated tumor cells relative to low exhaustion-associated tumor cells; significance quantified by -log(adjusted p-value
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Figure 45: Significant DEG overlap – Scissor-positive and exhaustion-low
x-axis: genes whose expression is up-regulated in immunotherapy response-related tumor cells relative to immunother-
apy resistance-related tumor cells; y-axis: genes whose expression is up-regulated in low CD8 T cell exhaustion-
associated tumor cells relative to high exhaustion-associated tumor cells; significance quantified by -log(adjusted
p-value
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Figure 46: Significant DEG overlap – Scissor-negative and exhaustion-low
x-axis: genes whose expression is up-regulated in immunotherapy resistance-related tumor cells relative to immunother-
apy response-related tumor cells; y-axis: genes whose expression is up-regulated in low CD8 T cell exhaustion-
associated tumor cells relative to high exhaustion-associated tumor cells; significance quantified by -log(adjusted
p-value
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Figure 47: Significant pathway overlap – Scissor-positive and exhaustion-high
x-axis: pathways whose expression is up-regulated in immunotherapy response-related tumor cells relative to im-
munotherapy resistance-related tumor cells; y-axis: pathways whose expression is up-regulated in high CD8 T cell
exhaustion-associated tumor cells relative to low exhaustion-associated tumor cells
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Figure 48: Percentage of variance explained by principal components – NSCLC CD8 T cells
five principal components were used for CD8 T cell trajectory
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Figure 49: Marker genes for setup of CD8 T cell exhaustion trajectory – CD8 T cells from NSCLC tumors
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Figure 50: Leiden clusters and Monocle 3 principal graph – CD8 T cells from NSCLC tumors
principal point Y_83 used as root for initialization of Monocle 3 trajectory inference
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Figure 51: Expression of key genes vs. pseudotime – CD8 T cells from NSCLC tumors
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Figure 52: Optimization of Scissor’s alpha parameter, part 1
An optimal value of Scissor’s alpha parameter was chosen for the lung tumor cells by considering the tradeoff between
a higher value, which selects fewer phenotype-associated cells for downstream analysis, and a lower value, which may
select more heterogeneous cells with a wider range of expression profiles. In order to choose a clearly defined subset of
the tumor cells, in sufficient quantity, a value of 0.275 was determined to be optimal.
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Figure 53: Optimization of Scissor’s alpha parameter, part 2
See description of previous figure.
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