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ABSTRACT 

This study explores the application of contemporary Natural Language Processing 

(NLP) methods to automate the matching of medical intake form fields to the Fast 

Healthcare Interoperability Resources (FHIR) data schema. We evaluated three text 

embedding models, three small parameter size large language models (LLMs), and three 

large parameter size LLMs on a set of ten manually coded medical intake forms. Results 

indicated that LLMs significantly outperformed vector embedding search, with smaller 

LLMs performing comparably to larger models. The highest F1 scores for FHIR resource 

and element matching ranged from 0.63 to 0.80. 

Anticipated challenges for achieving higher performance and operational 

feasibility include the complexity of intake forms and the deeply hierarchical structure of 

the FHIR schema with limited representations. Despite these limitations, semi-automated 

or human-in-the-loop implementations could prove viable. Future research directions 

include investigating different prompting techniques to enhance overall performance, 

exploring multimodal LLMs for visual form understanding, employing hierarchical 

matching methods for deeper schema matches, and auto-generating FHIR queries to 

assess retrieval capabilities. 

As healthcare continues its digital transformation, efficient, accurate, and 

adaptable matching tools are essential for interoperability. This study represents a step 

towards leveraging AI to tackle the challenge of healthcare data interoperability, with 

potential benefits not only for reducing patient data entry burden, but also for improving 

patient care through better data exchange, reducing administrative burden and facilitating 

health research
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INTRODUCTION 

 The complexity of matching one schema to another has long been a challenge in 

information systems, particularly in healthcare where data interoperability is crucial for 

patient care and research. Patients often express frustration at repeatedly filling out 

similar forms across different healthcare providers, highlighting a patient-centered 

motivation for improved data integration. This project aims to address this challenge by 

evaluating modern natural language processing (NLP) methods for the automated 

matching of medical intake form fields to the Fast Healthcare Interoperability Resources 

(FHIR) data schema.  

 The evolution of health data standards has been a journey spanning several 

decades, marked by efforts to standardize and improve the exchange of healthcare 

information. Early standards such as Health Level Seven (HL7) version 2, introduced in 

the 1980s, paved the way for more sophisticated approaches. The development of HL7 

version 3 and the Clinical Document Architecture (CDA) in the early 2000s represented 

significant advancements, but also revealed the need for a more flexible and 

implementable standard. This realization led to the creation of FHIR, which combines the 

best features of previous standards with modern web technologies. (1) 

 FHIR has emerged as a pivotal standard in healthcare interoperability, offering a 

flexible, extensible framework for exchanging healthcare data. Its importance is 

underscored by its rapid adoption across the healthcare industry. Barker et al. (2) 

conducted a survey in 2022 showing that at least 50% of digital health companies are 

making extensive use of FHIR in the EHR integrations, increasing to 89% for companies 

using only standards-based application programming interfaces (APIs). This widespread 
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adoption reflects the growing recognition of FHIR's potential to enhance data sharing and 

improve patient care. 

 Despite its promise, the implementation of FHIR continues to face persistent 

challenges. (3,4) These include the complexity of matching legacy systems to FHIR 

concepts, varying levels of FHIR adoption across healthcare organizations, and the need 

for ongoing maintenance and updates to keep pace with evolving healthcare needs. 

Additionally, the lack of standardized terminologies and value sets across different 

healthcare systems poses a significant barrier to seamless data exchange. 

 Medical intake forms represent a particularly challenging but poignant area of 

data interoperability. They are ubiquitous in new patient visits and are a critical juncture 

where patient data is collected and potentially integrated into electronic health records. 

These forms typically encompass registration processes and gather comprehensive 

history and physical data. A literature search found no descriptive statistics or 

terminologies or taxonomies to describe medical intake form data in a standardized way. 

Due to their usual use on physical paper and the lack of a standard, they represent 

unstructured healthcare data. The only related study I found used the Delphi technique to 

achieve consensus on integrated patient history intake questions, but I found no work on 

this topic since then. (5) 

 To address the challenge of integrating diverse data sources, several related 

concepts have been used in the field of data integration.  Schema matching refers to the 

process of identifying correspondences between elements of two data schemas. (6) 

Schema matching, on the other hand, focuses on the data transformations necessary for 

final data exchange after matching is complete. (6) Entity matching focuses on 



 3 
 

 

identifying records that refer to the same real-world entity across different data sources. 

(7) Ontology matching seeks to establish correspondences between concepts in different 

ontologies. (8) These and other interrelated concepts have been used in the literature to 

describe the general challenge of matching one dataset to another. Schema matching is 

the primary focus of this study. 

The history of automated schema matching methods reveals an evolution from 

simple string-matching techniques to sophisticated machine learning approaches.  Early 

methods relied on lexical similarity and structural matching, which proved effective for 

simple schemas but struggled with complex, heterogeneous data sources. (9,10) The 

advent of complex statistical techniques and machine learning techniques, including 

supervised and unsupervised learning algorithms, marked a significant advancement in 

the field. (11) These methods can be highly effective. (12) However, they often require 

extensive expert domain knowledge or training data, making them less capable at 

adapting to novel data schemas, or “schema-agnostic” matching. 

 Due to recent advances in natural language processing (NLP), particularly vector 

embedding representations of text and pre-trained large language models (LLMs), 

schema-agnostic and other related agnostic matching have become a possibility. (13) 

Recent research demonstrates the power of pre-trained language models (LMs) for 

automating schema and entity matching, even without task-specific training data. 

Caulfield et al. (14) introduced the Structured Prompt Interrogation and Recursive 

Extraction of Semantics (SPIRES) method uses LMs to populate knowledge bases by 

recursively extracting information according to user-defined schemas. Their F-scores 

ranged from the 30s to 40s using a GPT-3.5-turbo. Zhang et al. (15) proposed a Learned 
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Schema Mapper (LSM) using the BERT pre-trained language model for matching 

customer schemas to various industry standards. They showed top-1 prediction accuracies 

of 0.65 to 1.00 depending on the industry standard and significant improvements for top-

3 predictions. They further combined the method with a human feedback process and 

showed that, together, the approach could save up to 81% of labeling costs compared to 

manual labeling. Teong, Soon, and Su (7) also developed an approach based on BERT for 

entity matching. They achieved F1 scores ranging from .83 to 1.00 on a range of datasets. 

These approaches demonstrate the potential viability of language models for schema-

matching in rapidly evolving domains and data-scarce situations. 

 In the realm of healthcare, my literature review found that schema matching 

research has focused on ontology matching using syntactic and semantic similarity search 

using non-transformer-based embedding models. (8,16–18) One intriguing study by 

Kiourtis et al. (16) algorithmically created ontologies from structured healthcare data, 

mapped it with semantic relationships, and then matched it with a semantically mapped 

FHIR schema. They achieved a remarkable 0.93-0.95 F1 score for schema matching. 

However, these results were possible because they leveraged the meaningful coded 

relationships that already exist in structured healthcare data. This approach would be 

unsuccessful with unstructured healthcare data. 

Unstructured healthcare data would be more amenable to NLP methods with a 

wide breadth of general language understanding, such as recently developed transformer-

based text embedding models and LLMs. To the best of my knowledge, transformer-

based text embedding models or large language models (LLMs) have not yet been 

systematically evaluated for schema matching against standardized healthcare data 
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schemas in the existing scientific literature. This study aims to address this gap by 

evaluating the effectiveness of state-of-the-art NLP methods, including large language 

models, for matching paper medical intake forms to the FHIR data schema. 

 This research focuses on three distinct NLP methods: similarity search with 

transformer-based text embedding models, small LLMs with 7-8 billion parameters, and 

large LLMs with 70 billion or more parameters. By comparing their performance, we aim 

to identify the most effective approach for this specific use case and provide valuable 

insights for future developments in healthcare informatics. I also hope to contribute to the 

broader goal of reducing documentation burden in healthcare and improving the patient 

experience. The potential for automated schema matching to streamline data integration 

could significantly reduce the need for repetitive data entry, alleviate provider burnout, 

and enhance the overall efficiency of healthcare delivery. 

METHODS 

Medical Intake Form Coding 

The first step of the study was collecting medical intake forms from local clinics 

and expanding to forms available online from health clinic websites when local options 

were exhausted. Forms were manually coded onto spreadsheets with multiple columns 

partitioning the text for each field: form title, subject heading, instructions, field name, 

field sub-name, and input type/options. The last section included any multiple-choice 

options provided for that field on the form. 

Forms were labeled in multiple ways for analysis: 
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1. Form sections: Chief Concern, Registration, Medical History, Family History, 

Surgical History, Social History, OB/GYN History, Allergies, Medications, Health 

Maintenance, Review of Systems, Pharmacy, and Other. 

2. Importance: Fields were labeled as important if the information was consistent 

over time, typically captured during routine visits, and helpful for patient autofill. 

Some examples of unimportant fields are Review of Systems questions, as they 

only relate to the visit at hand, and some Social History questions such as number 

of alcohol drinks per week, as these may change quickly over time 

3. Match: Fields were labeled as a match or a mismatch to the FHIR schema. (19) 

Some fields did not have any reasonable FHIR matches, even accounting for 

LOINC code use via the Observation resource.  

4. Multiple representation: If the field was a match, then it would be further labeled 

as having multiple valid representations or not. This meant that the field matched 

multiple possible elements in FHIR or multiple codes in the terminology linked to 

by the FHIR element (e.g., LOINC), and that no one match was clearly preferred 

over another. 

5. FHIR schema match: Fields with a schema match were labeled with the most 

appropriate FHIR concept. FHIR concepts are structured primarily as resources 

that each contain multiple elements (e.g. the Patient resource has name and 

birthDate). Thus, fields were matched with a resource and the minimum 

elements necessary to represent the information requested by the field. For 

example, retrieving current medications requires retrieving of the 
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effectivePeriod element to ensure the medication is still active in addition 

to the medication element to obtain the name. This has been termed a complex 

match, whereas a 1:1 match may be called an elementary match. (13) 

 Several choices were made in choosing FHIR schema matches for the study. First, 

it is important to note that while schema matches were made for the two primary layers of 

the FHIR schema, deeper layers exist. Analysis of FHIR elements found almost all to be 

non-terminal (99%, see Results)––data types that contain multiple other nested elements 

in one or more hierarchies. Finer-grained schema matching, however, could essentially 

use multiple iterations of the approach in this study and should be a focus of future work. 

 For the Observation resource, certain choices had to be made in response to 

multiple valid representations. While many form fields have relevant LOINC codes, there 

may be multiple appropriate LOINC codes to match to, each with a potentially different 

nominal datatype. LOINC codes with Boolean values are also coded as a nominal 

datatype instead of a true Boolean, and there are multiple LOINC answer lists that 

operate as Boolean. Furthermore, official recommendations from FHIR documentation 

discourage using valueBoolean. Thus, any expected Boolean responses from a LOINC 

term referenced via the Observation resource were given an element label of 

valueCodeableConcept. 

 Decisions also had to be made when one form field needed information from 

another field to be properly referenced. For example, if a current medication list is 

requested with name and dosage, the dosage needs to be associated with the name for 

retrieval. However, the converse is equally valid: the name can be retrieved from the 
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dosage. In both cases, though, the effectivePeriod element should be checked to 

ensure only current medications or dosages are being retrieved. In these situations, I 

chose to match both fields to the common required element but did not match the 

mutually retrievable element. In contrast, a set of fields asking for the date of onset of 

specific health conditions is not retrieving all health conditions. Thus, matching to the 

condition under question is a prerequisite to matching to a valid onset date because there 

are onset dates for conditions not being asked about. 

 Finally, efforts were made to ensure consistent form coding between forms. 

Previous forms were repeatedly updated as new forms introduced uncertainty in labeling, 

such as in assigning sexual orientation under Social History or placing it in Other or a 

new category. Automated checks were written to ensure that all resource and element 

labels were exact matches to set of relevant FHIR data (see below). However, no 

additional reviewers were involved to help validate more subjective aspects of labeling. 

FHIR resource and element extraction 

 In line with the goal of validating my approach on a simpler classification 

problem than the complete task, I used only set of 15 FHIR resources that medical intake 

form fields matched to (see Results) as the scope of targets for matching. Descriptions of 

these FHIR resources and their elements were derived from official FHIR documentation 

for version 5.0.0. The official FHIR documentation offers multiple forms of 

representation of the FHIR data standard, such as the JSON schema and the Structure 

Definition. After some pre-testing on a subset of intake form data, the JSON schema was 

chosen due to its greater performance. 



 9 
 

 

Each resource and element was extracted alongside its narrative description 

provided in the JSON schema under the "description" property (Appendix B). 

Additionally, the following elements common to most resources were excluded for 

various reasons: id, meta, implicitRules, language, text, 

contained, extension, modifierExtension, resourceType. Most 

serve only administrative purposes unrelated to clinical workflows. Text is unstructured, 

and thus an inappropriate match. Extension is not a guaranteed match as extensions 

are not a requirement of the standard, so these were excluded as well. 

Vector text embedding process 

 After pre-testing a wide range of text embedding models, I chose three text 

embedding models due to their efficacy, popularity, and to capture both open-source and 

closed-source types: 

1. bert-large-cased: based on the original BERT (Bidirectional Encoder 

Representations from Transformers) architecture, this open-source model by 

Google uses a bidirectional transformer and is primarily trained for question-

answering and text classification, not specifically for text embeddings. (20) 

2. gte-large-en-v1.5: an open-source model by Alibaba with a bidirectional 

transformer-based architecture (based on BERT) optimized for general text 

embedding. (21) 

3. text-embedding-3-large: a commercial model by OpenAI with a unidirectional 

transformer-based architecture optimized for text embeddings. (22) 
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Open-source text embedding models were obtained from HuggingFace repositories. The 

commercial model was accessed via the OpenAI API. In addition, the common basic 

search algorithms BM25-Okapi and its BM25L variant were tested on a limited dataset 

for comparison but were not included in the final evaluation due to very poor 

performance. 

Each resource and resource along with their description was passed to the 

embedding model and the resulting vector embedding was stored into a vector database 

(ChromaDB). Form fields were converted to single strings. Different permutations of 

form field text were tested, and the most effective description excluded the form title and 

included the rest in concatenated form. This was then passed to the embedding model and 

stored as mentioned. Document and query prompts were trialed as recommended for 

better retrieval performance in many embedding model instructions, but using no prompt 

consistently outperformed using either recommended or custom prompts. Separate vector 

database collections were made for the resources, each set of elements 

corresponding to each resource, and the form fields. 

The resource collection was then queried with each form field embedding. The 

top 7 results were recorded based on cosine distance. A result count of 7 was chosen 

because by random chance out of a total of 15 resources in the embedding collection has 

a near-50% chance of containing the correct resource label (see Results for number of 

unique target resource matches). The element set collection corresponding to the top 

resource match (i.e., the resource with the lowest cosine distance) was then queried with 

the same form field embedding. No other similarity search metrics were tested. 

LLM-inferencing process 
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Preliminary testing as done on a wide range of models. This included very small, 

locally-hosted open-source models such as Qwen2-1.5B (1.5-billion-parameter), 

Gemma2-2B, and orca-mini-3B. However, these showed very poor performance and 

were often unable to provide consistent enough output to allow scripted analysis. Other 

models in the 7-12B, 70B, and large commercial (e.g. 400B+) range were tested on a 

limited dataset. The highest-performing open-source models and a representative 

commercial model were chosen for analysis. 

The three families of state-of-the-art instruction-tuned models were chosen: 

1. Alibaba's Qwen2 (7B and 72B) 

2. Meta's Llama-3.1 (8B and 70B) 

3. OpenAI's GPT4o (mini and standard versions) 

Qwen2 7-billion parameter (7B) and 72B models were run on a serverless endpoint 

hosted by Alibaba Cloud's AI platform. Llama-3.1-8B and -70B were run on a serverless 

endpoint hosted by Azure AI Studio. GPT-4o-mini (2024-07-18) and GPT-4o (2024-08-

06) were accessed via OpenAI's API. 

For the models accessed via commercial clouds, stable version endpoints were 

utilized where available, but only OpenAI offered this. All models' temperature parameter 

was set to 0 for the study to promote deterministic responses. Top P, if provided as a 

parameter, was not adjusted from default values. Specific seed values were not set. Safety 

filter levels, if available, were set as low as possible. 
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For inferencing, simple prompts were used (see Appendix B). A wide range of 

prompting strategies were considered, but the variability that complex prompts would 

introduce outweighed their benefits for evaluation and generalizability. The user prompt 

briefly gave a context for the task, provided the resources or elements and their 

descriptions to choose from, and provided a form field with basic instructions. For 

element predictions, the model was instructed to choose all the elements required for 

answering the form field. The system prompt provided directions for formatting the 

response in a JSON format and provided the JSON schema in the Qwen2 and Llama 3.1-

8B models. The Llama 3.1-70B and OpenAI APIs offered a parameter-based JSON 

schema output method. Certain model's outputs required post-processing to obtain valid 

JSON objects. No knowledge of FHIR schema matching was injected into the prompt––

other than the list of resources and elements provided––to allow for better evaluation of 

the model's underlying language skills and knowledge. 

As in the vector embedding search process, the model was first asked to match the 

form field to a resource. Then, depending on the answer, a separate prompt gave it a set 

of that resource's elements to match to. If the resource prediction was incorrect, the 

element prediction prompt for that form field was skipped. Although providing the model 

with the true resource label's elements in those cases would have provided additional 

element matching data for analysis, the practical implications of those data are uncertain 

if the model cannot first identify the appropriate resource. This strategy also cut down on 

inferencing costs and time. 

Analysis 
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 Form field data and labels were combined with prediction data and cleaned. I paid 

particular attention to a few variables that would have significantly influence statistical 

analysis. Except for form descriptive statistics, all form fields labeled as a schema 

mismatch were excluded from analysis. 

The element prediction lists were cleaned in two specific ways. To remove 

extraneous but not incorrect labeling, label formats were modified. For example, some 

models often included the resource name as a prediction (e.g., "condition" for the 

Condition resource), the full element name reference (e.g., "Condition.code" for the 

code element), or subcomponents of elements (e.g. "reaction.substance" for the 

reaction element in the AllergyIntolerance resource). These labeling issues 

were corrected, leaving just the intended element. This decision was made in part because 

the issues don't disqualify the predictions as potentially usable labels and because they 

were simple to programmatically correct, as might be done in an operational deployment. 

The other cleaning step was to remove any status elements (active, status, 

clinicalStatus, verificationStatus) from element predictions unless they 

were included in the true label. Almost all fields require querying a status element for 

proper retrieval, but this part of a query would be the same for almost all queries and thus 

could be set up programmatically (e.g., retrieve Patient.[x] if Patient.active 

is True). 

Descriptive statistics for forms were calculated. Due to the small number of forms 

in the study, median and interquartile range is reported for central tendency and spread, 

respectively. For each model, I calculated recall, precision, and F1 for resources and 

elements separately. To calculate element metrics for embedding models, their element 
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predictions were truncated to the number of element labels in the true set for each form 

field. 

For resources, multi-class weighted averages of these metrics were used due to 

the significance of certain labels and due to class imbalances. Weighted averages were 

calculated by taking the metrics (e.g. recall) calculated for each class of labels, weighting 

them by their relative frequency compared to other classes. Because element 

classification problem could involve multiple labels and because each set of labels was 

insignificant without their resource classification, multi-label micro-averaged metrics 

were used. Micro-averaging treats each instance of a label as an individual binary 

classification problem without regards to the label’s name. The calculation then proceeds 

as usual; for example, for recall, the sum of true positives divided by the sum of true 

positives and false negatives. Recall, precision, and F1 were further stratified by true 

resource label, form section, field match / mismatch, and multiple representation.  

For certain chart depictions, a combined F1 score was used. For this metric, the 

unweighted mean of the resource and element F1 scores were calculated. The unweighted 

mean was used because both resource and element classification are equally important 

and differences in weighting would be artificially related to the experimental setup––

excluding element prediction if the resource was misclassified. 

Due to the propensity of LLMs to provide answers out of context of the provided 

options and to hallucinate, error metrics were calculated. Resource, element, and total 

error rates were calculated. These included any reason for an error, including legitimate 

FHIR label predictions outside of the given options, syntax differences, and 
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hallucinations. True hallucination rates were also calculated, excluding the other sources 

of error. 

Embedding model results underwent further analysis. Prediction cosine distances 

were converted to cosine similarities and used to calculate the receiver-operating-

characteristic (ROC) curve and its area under the curve (AUC). Youden's index was used 

to identify the optimal threshold. This allowed assessment of the potential strength of 

cosine similarity as a classifier for a successful label prediction. Additionally, to evaluate 

how many predictions are required to capture the true label, I calculated resource and all-

element recall by number of top-k predictions. Notably, however, using all-element recall, 

will make this metric appear worse than the multi-class element F1 scores. 

Finally, primary metrics were recalculated using only form fields labeled as 

important. This allowed interpretation of performance specifically for auto-filling 

medical intake forms. However, the importance label does not represent fields that would 

be useful for exporting completed form field information into a FHIR data structure.  

With regards to software tools used, all processing and analysis was done in 

Python (version 3.9.6)  using the following open-source packages: NumPy (23), pandas 

(24), matplotlib (25), seaborn (26), scikit-learn (27), Rank-BM25 (28), transformers (29), 

and chroma (30). Some visualization was done using Microsoft Excel for Mac. ChatGPT-

4o and -4o-mini were used to provide guidance on form coding and writing python code. 

No recommendations were used without further referencing FHIR or python package 

documentation and performing manual testing of code. Claude-3.5-Sonnet was used to 

help revise text for writing this paper. No generated text was used without manual review 

and editing. 



 16 
 

 

RESULTS 

Characteristics of Medical Intake Forms and FHIR Schema Matches 

 The dataset consisted of 10 medical intake forms 

with a median of 138 fields per form (IQR: 83-178) (Table 

1). Of these fields, only 3% (median) were mismatches to 

FHIR resources. A majority (59%, median) of the fields 

were classified as important for patient autofill purposes. 

Notably, 44% (median) of the fields had multiple representations, mostly due to LOINC 

code use in the Observation resource (97%). The dataset exhibited a high rate of 

complex element matches (69%, median) and non-terminal element matches (99%, 

median), indicating the complexity of the schema matching task. The bulk of form fields 

Table 1. Form section distribution Table 2. FHIR resource match distribution 

Table 3. Intake form characteristics 
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in the intake forms were from Review of Systems and Social History questions with 

median proportions of 33% and 23%, respectively (Table 2). There was notable 

variability in the sizes of the Registration and Family History sections, ranging from 

about 5 to 18%. 

 Unsurprisingly, the FHIR resource matches had a similar distribution (Table 3). 

The Review of Systems and Social History sections matched almost exclusively to the 

Observ ation resource, making it the most predominant at a median of 44%. 

Although the Coverage resource was relatively high compared to the others, this was 

reflective of a select couple of forms that included many questions on insurance 

coverage. Form fields matched to a total of 15 unique resources. Although a count of 10 

forms still left some variability, the content represented in each form was largely 

saturated. Schema matches from the first 2 forms captured almost all the resources 

matched to in the rest of the forms. Coverage was added in the 4th form, and 

ServiceRequest in the 10th. 

Overall Performance Trends 

 Across all models, the weighted-average F1 scores for resource prediction ranged 

from 0.10 to 0.80 (Figure 1). Embedding models were highly variable in performance, 

with gte-large-en-v1.5 having a relatively high resource F1 of 0.57, but a low element F1 

at 0.10; in contrast, text-embedding-3-large had only a resource F1 of 0.21, but a higher 

element F1 at 0.39. Small LLMs easily outperformed embedding models, particularly in 

element matching. Except for Qwen2-7b-Instruct, which performed on par with much 

larger LLMs, large LLMs generally outperformed small LLMs in both resource and 
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element prediction. Meta-Llama-3.1-70B achieved the highest resource F1 score of 0.80, 

while Qwen2-72b-Instruct achieved the highest element F1 score at 0.69, although Llama 

was not far behind at 0.67.  

Embedding model cosine similarity metrics 

 The text-embedding-3-large model scored the highest on using cosine similarity 

as a classification predictor. Figure 2 shows the model’s receiver operating characteristic 

(ROC) curve for resource prediction using cosine similarity. The area under the curve 

(AUC) of 0.82 suggests that cosine similarity could be a usable predictor of a correct 

resource match. The optimal threshold for classification, as determined by Youden's 
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index, is 0.34. The gte-large-en-v1.5 and bert-large-cased had poor AUCs of 0.51 and 

0.44.  

 Figures 3 and 4 illustrate the recall performance for increasing numbers of top-k 

similarity search classifications for 

the text-embedding-3-large model. 

Resource recall starts higher than 

random chance and improves at a 

faster rate than random  chance as 

more top predictions are considered, 

reaching 0.93 for the top 7 out of a 

total of 15 possible resource 

Figure 3. ROC curve for resource classification using embedding cosine similarity 

Figure 2. Top-k similarity search resource match prediction 
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predictions. However, element 

recall remains very low (0.08) 

even when considering the top 7 

predictions despite this model’s 

relatively higher element F1 

score. This is in part due to the 

way recall was calculated for top-

k, requiring recall of all elements f 

or successful classification. In comparison, gte-large-en-v1.5 sc ored similarly for both 

resources and elements, but bert-large-ca sed did poorly on both, only achieving 0.42 

resource recall at top 7. 

Performance Across Different Resources 

 The four most frequent FHIR resources in the aggregated dataset were 

Observation (652, 50.4%), FamilyMemberHistory (134, 10.4%), Condition 

(122, 9.4%) and Patient (111, 8.6%) with a sharp drop-off thereafter for Immunization 

(45, 3.5%). Performance varied significantly across the top 4 resources (Figure 5). For 

Observation, F1 scores ranged from 0.01 to 0.82, with large LLMs performing best. 

FamilyMemberHistory had consistently higher F1 scores (0.27 to 0.96) across all 

model categories, with large LLMs achieving near-perfect performance. Condition 

showed variable performance (F1 scores 0.0 to 0.74), with large LLMs showing the most 

consistent results. The Patient resource had moderate to high performance (F1 scores 

0.26 to 0.72), with large LLMs again demonstrating superiority. 

Figure 4. Top-k similarity search element match prediction 
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Performance by Field Characteristics 

 When considering only important fields, the F1 scores improved for most models, 

more for embedding models and small LLMs (Figure 6). Further restricting the analysis 

to important and single-representation fields resulted in slight performance gains across 

all model categories.  

 

 

 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

be
rt-

la
rg

e-
ca

se
d

gt
e-

la
rg

e-
en

-v
1.

5

te
xt

-e
m

be
dd

in
g-

3-
la

rg
e

M
et

a-
Ll

am
a-

3.
1-

8B
-In

st
ru

ct

qw
en

2-
7b

-in
st

ru
ct

gp
t-

4o
-m

in
i-2

02
4-

07
-1

8

M
et

a-
Ll

am
a-

3.
1-

70
B-

In
st

ru
ct

qw
en

2-
72

b-
in

st
ru

ct

gp
t-

4o
-2

02
4-

08
-0

6

Embedding model Small LLM Large LLM

F1
 s

co
re

Observation FamilyMemberHistory Condition Patient

Figure 5. Combined F1 scores for top 4 most frequent resources by model 
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Error Analysis and Other Statistics 

 Using Qwen2-72B-Instruct as a representative 

large LLM, the very low error rates were observed 

(Table 4). Other models had similarly low error rates. 

Llama had significant variability in label naming 

convention, but most were caught by element label 

cleaning. 

Figure 6. Combined F1 scores for all fields versus only ‘important’ versus both ‘important’ and single 
representation 
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 Running the 10 forms and all their fields with the prompts amounted to about 2.5 

to 2.9 million input tokens depending on the model. Qwen2-72B had a status element 

miss rate of 0.68, and the other models were all within the 0.60 to 0.70 range as well. 

Llama-3.1-70B-Instruct highest perfect match rate at 0.55. 

Confusion Matrix Analysis 

 Confusion matrices for resource classification provide insight into the failure 

modes of various classification errors. Embedding models frequently misclassified 

Observation as other resources, particularly Patient and Condition (Appendix 

A, Figure 7). They also used FamilyMemberHistory, Patient, and 

MedicationStatement classifications erroneously. At the level of form fields, 

medical history and social history questions were often confused with 

FamilyMemberHistory by these models. 

 Small LLMs showed markedly improved discrimination but still exhibited some 

confusion between similar resources, particularly Condition versus Observation 

and Patient versus Observation (Appendix A, Figure 8). Large LLMs 

demonstrated the clearest diagonal pattern, although only slightly better than small LLMs 

(Appendix A, Figure 9). 

 Importantly, the confusion matrices also show that the LLMs make resource 

classifications that were outside of the prompted set of label options. For example, 

Organization was labeled instead of CareTeam for capturing a patient’s preferred 

pharmacy. This indicates that they were relying too heavily on their training data for 
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some classifications. Although hallucination was rare, one OB/GYN history question was 

labeled to a Pregnancy resource, a resource that does not exist in the FHIR standard. 

DISCUSSION 

 The results of this study provide valuable insights into the potential of modern 

natural language processing (NLP) methods for automating the matching of medical 

intake form fields to the FHIR data schema. This discussion will explore the implications 

of these findings, their context within the broader field of healthcare informatics, and the 

challenges and opportunities they present for future research and implementation. 

Performance of LLMs 

 One of the more striking findings of this study is the comparable performance of 

relatively small LLMs such as Alibaba's Qwen2-7B and Meta's Llama-3.1-8B to their 

larger counterparts, and their notably superior performance compared to embedding 

models. This is particularly promising for the future practical feasibility of deploying 

these models in a privacy-compliant manner on locally-hosted hardware for healthcare 

data schema matching. The ability to achieve high-quality results with smaller models 

could significantly reduce the computational resources required, making implementation 

more accessible to a wider range of healthcare organizations. 

 However, it's important to note that while the performance scores obtained in this 

study are encouraging, they do not yet appear high enough for immediate operational use 

without further refinement. The best-performing models achieved F1 scores of 0.80 for 

resource prediction and 0.69 for element prediction, which, while impressive, still leave 

room for improvement in a field where accuracy is paramount. This suggests that 
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additional strategies may be necessary to bridge the gap between current performance and 

operational requirements. 

 One potential avenue for improvement lies in prompt engineering strategies with 

FHIR-specific knowledge injection. By incorporating domain-specific knowledge into 

the prompts used to query the models, it may be possible to significantly enhance their 

performance. This approach could involve providing more context about FHIR resources 

and their relationships or including examples of correct matches for similar fields. While 

this would reduce the generalizability of the approach to some extent, it could still 

provide meaningful levels of partial automation, potentially offering a balance between 

performance and flexibility. 

 Moreover, the rapid pace of progress in artificial intelligence suggests that model 

performance is likely to improve in the near future. As new architectures and training 

techniques are developed, we can expect to see even more capable models. 

Comparison of LLM Models 

 The study's comparison of different LLM models revealed interesting nuances in 

their behavior. For instance, the Llama models, while performing well overall, did not 

follow instructions as reliably as some other models, often providing resource names and 

element subcomponents in element predictions. This highlights the importance of model-

specific considerations in deployment scenarios. 

 Interestingly, the issue with Llama's output format was addressable through a 

simple algorithmic post-processing step. This demonstrates the potential for combining 

LLM outputs with rule-based systems to enhance overall performance and reliability. It 
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also suggests that model-specific prompt engineering could potentially preclude such 

issues altogether, further improving the efficiency of the matching process. 

 The variability in model behavior underscores the need for careful evaluation and 

selection when choosing an LLM for a specific task. While overall performance metrics 

are important, factors such as instruction adherence, output consistency, and the ease of 

post-processing can significantly impact the practical utility of a model in real-world 

applications. 

Challenges and Limitations of LLM Approaches 

 While LLMs showed promising results in this study, several challenges and 

limitations were identified that warrant further consideration: 

1. Overreliance on Training Knowledge: LLMs may sometimes rely too heavily on 

their training data, which can be problematic when dealing with rapidly evolving 

standards like FHIR. If a model's training data doesn't include the most up-to-date 

FHIR specification, it may make outdated or incorrect matches. This highlights 

the need for regular model updates or fine-tuning to keep pace with changes in 

healthcare data standards. 

2. Hallucinations: Although rare in this study, LLMs can sometimes generate 

plausible-sounding but incorrect information, a phenomenon known as 

hallucination. Since the set of valid labels is limited and mostly unchanging, 

simple validation mechanisms could catch these errors. However, this requires 

creating custom algorithms that would in turn incur upkeep costs. 
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3. Instruction Adherence: Some models, particularly the Llama variants, had 

difficulty consistently following instructions regarding the format of their outputs. 

This necessitated additional post-processing steps to clean up the results. While 

this issue was manageable in the context of this study, it underscores the 

importance of clear, model-specific prompting and potentially the need for output 

validation and correction mechanisms in real-world applications. 

4. Inappropriate Use of Extensions: Models often suggested the use of FHIR 

extensions for matching certain fields. While extensions are a valid part of the 

FHIR standard, their overuse can lead to interoperability issues. Ideally, matches 

should prioritize standard resources and elements where possible, reserving 

extensions for truly unique or organization-specific data points. Prompt 

engineering can help steer models away from extension elements. In this study, I 

removed extension elements from the list of elements to choose from, and this 

precluded most of them. More direct prompting, however, may work better. 

5. Lack of Quantifiable Confidence: Unlike embedding models, which provide a 

similarity score that can be used as a proxy for confidence, most LLMs do not 

inherently provide a quantifiable measure of confidence in their predictions. This 

lack of a built-in confidence metric can make it challenging to implement partial 

automation strategies that rely on human review for low-confidence matches. 

6. Performance Trade-offs: While LLMs generally outperformed embedding models 

in terms of accuracy, they are typically slower and more computationally 

expensive to run. This trade-off between performance and efficiency needs to be 

carefully considered in the context of specific use cases and available resources. 
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Embedding Model Performance and Potential 

 While embedding models generally underperformed compared to LLMs in this 

study, they still offer certain advantages that warrant further exploration. The study found 

that embedding models struggled with longer text inputs and repetitive text (such as form 

titles), suggesting that careful preprocessing and feature selection could potentially 

improve their performance. 

 The receiver operating characteristic (ROC) curve analysis for the text-

embedding-3-large model, which achieved an area under the curve (AUC) of 0.82 for 

resource prediction, suggests that cosine similarity could be a usable predictor of correct 

resource match. This finding is particularly interesting as it points to the potential for 

using embedding models as a fast, initial filtering step in a multi-stage matching process. 

 The poor performance of embedding models on element matching was poor by 

comparison. The text-embedding-3-large model had a noticeably higher element F1 score 

than the others. Some of this may have been due to precision for certain elements. The 

top-k element classification results were also very poor. However, this metric was harsher 

because it did not consider partial element classification. Overall, the poor performance 

on elements could be due to the more nuanced distinctions required for element-level 

matching, which may not be well-captured by embedding models trained on standard 

corpora. 

 Future research could explore ways to leverage embedding model strengths while 

mitigating the weaknesses: 
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1. Two-stage Matching: Embedding models could be used for rapid initial resource 

prediction, followed by LLM-based element matching for the top-k resource 

candidates. This approach could reduce the computational load on the more 

expensive LLM component. 

2. Confidence Thresholding for Human Review: The cosine similarity scores from 

embedding models could be used to implement a confidence threshold, above 

which matches are automatically accepted, and below which they are flagged for 

human review or passed to a more sophisticated model. 

Challenges Inherent to Medical Intake Forms 

 The study also highlighted several challenges that are inherent to the specific use 

case of medical intake forms. These forms, while generally consistent in content, exhibit 

wide variation in format and structure. This variability introduces complexities that any 

automated matching system must navigate: 

1. Format Diversity: Medical intake forms often employ nested selections, unusual 

table layouts, and sparsely marked spaces for information entry. This diversity can 

make interpretation difficult for both humans and machines, requiring a flexible 

approach to form field identification and categorization. 

2. Granularity Variations: The same information may be requested at different levels 

of detail across forms. For example, one form might ask broadly about "any major 

health problems in your family," while another might request detailed information 

about "the name, age, and all conditions for each of your first-degree relatives." 
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This variation in granularity poses challenges for consistent matches to FHIR 

resources and elements. 

3. Multi-atomic Fields: Many fields on intake forms ask for more than one atomic 

piece of information. For instance, a field might request a medication name, its 

dosage, and its frequency. In FHIR, these would typically be represented as 

separate elements. Splitting such fields for matching purposes often requires 

referencing another field's entry for a correct match, adding complexity to the 

matching process. 

4. Contextual Interpretation: The meaning of certain fields may depend on their 

context within the form. For example, a field labeled "Name" under an 

"Emergency Contact" section has a different semantic meaning than a similar 

field under a "Patient Information" section. Accurate matching requires 

understanding this context. 

 These inherent ambiguities in medical intake forms provide a compelling 

argument for the use of LLMs in the matching process. Multi-modal LLMs, which can 

process both text and visual information, may be particularly well-suited to understanding 

form fields at different levels of abstraction. Their ability to consider context and draw on 

broad knowledge bases could help them navigate these ambiguities more effectively than 

traditional rule-based matching engines. 

FHIR-Specific Challenges 

The study also revealed several challenges specific to matching to the FHIR data schema, 

which contribute to the complexity of the task: 
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1. Schema flexibility versus specificity: Almost all (97%) of the matches with 

multiple valid representations were in the Observation resource due multiple 

representations in the LOINC code set. While the flexibility provided by the 

Observation resource is beneficial for accommodating diverse use cases, it 

introduces ambiguity in the matching process and makes automation more 

challenging. 

2. Boolean Value Representation: Despite the existence of a valueBoolean 

element in FHIR, official guidance discourages its use in favor of coded concepts. 

This is because many Boolean values are derived from coded lists (e.g., in 

LOINC) and many yes/no questions include additional options like "don't know" 

or "unknown". This nuance requires a deeper understanding of FHIR best 

practices beyond simple structural matching. 

3. Complex matches: Many form fields require information from multiple FHIR 

elements for a complete representation. For instance, retrieving a patient's current 

medications requires not only the medication name but also checking the 

effectivePeriod to ensure the medication is still active. This one-to-many 

type of relationship between form fields and FHIR elements adds complexity to 

the matching process. 

4. Non-Terminal Elements: The study noted that 99% (median) of matches were to 

non-terminal elements, meaning they are complex data types containing multiple 

sub-elements. This multi-level structure of FHIR resources adds depth to the 

matching task, requiring decisions not just about which resource and top-level 
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element to match with, but also which specific sub-elements are relevant. 

Techniques like the recursive SPIRES method may help to address this. (14) 

5. Terminology Binding: Many FHIR elements are bound to specific terminology 

systems like LOINC or SNOMED CT. Accurate matching often requires not just 

identifying the correct FHIR element but also selecting the appropriate code from 

the bound terminology. This adds another layer of complexity to the matching 

process. 

6. Dynamic Standards: FHIR is an evolving standard, with new versions introducing 

changes to resources and elements. This dynamism, while necessary for the 

standard's improvement, poses challenges for maintaining accurate and up-to-date 

matching over time. 

7. Use of Extensions: While FHIR extensions provide flexibility for representing 

non-standard data, their use can lead to interoperability issues if not carefully 

managed. Deciding when to use standard elements versus when to employ 

extensions is not always straightforward and can impact the broader utility of the 

matched data. 

 These FHIR-specific challenges highlight the need for sophisticated matching 

approaches that go beyond simple string matching or structural alignment. Effective 

FHIR schema matching appears to require a deep understanding of the standard's 

intricacies, best practices, and the clinical context of the data being matched. 

Limitations of the Study 
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While this study provides valuable insights into the potential of NLP methods for FHIR 

schema matching, it's important to acknowledge its limitations: 

1. Limited Sample Size: The study analyzed only 10 medical intake forms. Although 

the content and FHIR matches appeared saturated, a larger sample size would 

provide more robust evidence of the generalizability of the findings across diverse 

form types and healthcare settings. 

2. Lack of Secondary Coding: The absence of a secondary coder to validate the form 

coding and FHIR matches introduces the potential for bias or inconsistencies in 

the ground truth data. Future studies would benefit from employing multiple 

coders and assessing inter-rater reliability to ensure the validity of the manual 

matches. 

3. Model Currency: The rapid pace of development in the field of AI means that the 

specific models evaluated in this study may be outdated within 6-12 months. 

While the general trends and comparative performance are likely to remain 

relevant, absolute performance metrics may improve with newer models. 

4. ROC Curve Calculation: The receiver operating characteristic (ROC) curve was 

not optimally calculated for multi-class classification problems. A one-vs-rest 

calculation method would have been more appropriate and might have provided 

more accurate insights into the discriminative power of the cosine similarity 

metric. 
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5. LLM Consistency: I did not collect data on the consistency of LLM outputs 

across multiple runs. Given the potential for variation in LLM outputs even with 

temperature set to zero, information on output stability would be valuable. 

6. Limited Exploration of Prompt Engineering: While I intentionally used simple 

prompts to evaluate the base capabilities of the models, model performance might 

have significantly benefitted from more sophisticated prompt engineering 

techniques. 

7. Focus on English-language Forms: The study focused on English-language intake 

forms. The performance of these NLP methods on forms in other languages or 

multilingual settings remains an open question. 

Addressing these limitations in future research will provide a more comprehensive and 

robust understanding of the potential for modern NLP methods in automating FHIR 

matching for medical intake forms. 

Future Directions 

The findings of this study, along with its identified limitations and challenges, point to 

several promising directions for future research and development in the field of 

automated FHIR matching: 

1. Augmented Prompts: Developing more sophisticated prompts that incorporate 

FHIR-specific knowledge could potentially address some of the observed issues, 

such as the inappropriate use of certain elements, such as valueBoolean in the 

Observation resource. 
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2. Multimodal LLM Evaluation: Given the visual nature of many medical intake 

forms, evaluating the performance of multimodal LLMs that can process both text 

and images could yield interesting results. These models might be better equipped 

to interpret the structure and context of form fields, potentially improving 

matching accuracy. 

3. Query Generation: Generating FHIR queries based on the matched elements could 

bridge the gap between schema matching and mapping (i.e., practical data 

retrieval). This would involve translating the matched FHIR resources and 

elements into executable queries and understanding the logical relations between 

them in order retrieve the right data from a FHIR server. 

4. End-to-End Testing: Conducting end-to-end testing with a test FHIR server would 

provide a litmus test for practical viability of these methods. 

5. Hierarchical Matching: Testing an iterative process, such as the SPIRES method, 

(14) for deeper matching into sub-elements until a primitive type is reached could 

provide more complete FHIR representations. This would address the challenge 

of non-terminal element matching identified in the study. 

SUMMARY AND CONCLUSION 

 This study provides valuable insights into the potential of modern NLP methods, 

particularly large language models, for automating the matching of medical intake form 

fields to the FHIR data schema. The results demonstrate that even relatively small LLMs 

can perform comparably to larger models and significantly outperform vector embedding 

approaches in this complex task. 
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 The challenges identified, both in terms of the inherent complexities of medical 

intake forms and the intricacies of the FHIR standard, underscore the need for more 

sophisticated and recursive matching solutions. While the current performance of these 

models may not yet be sufficient for fully automated operational use, the results are 

promising and suggest that with further refinement, NLP-based approaches could play a 

significant role in streamlining healthcare data integration. 

The limitations of the study provide clear directions for future research, including 

expanding the dataset, exploring more sophisticated prompt engineering techniques, and 

evaluating the consistency and reliability of model outputs. Additionally, the identified 

future directions, such as multimodal LLM evaluation, query generation and end-to-end 

testing, and recursive hierarchical matching approaches offer exciting possibilities for 

advancing the field. 

 As healthcare continues to digitize and the need for interoperable data grows, the 

development of efficient, accurate, and adaptable matching tools becomes increasingly 

crucial. This study represents an important step towards leveraging the power of artificial 

intelligence to address the long-standing challenge of healthcare data interoperability. By 

continuing to explore and refine these NLP-based approaches, we can work towards a 

future where healthcare data flows seamlessly between systems, ultimately improving 

patient care, reducing administrative burden, and facilitating more effective health 

research. 
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APPENDIX A  

Figure 7. Confusion matrix for resource classification by embedding models 
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Figure 8. Confusion matrix for resource classification by small LLMs 



 42 
 

 

 

 

  

Figure 9. Confusion matrix for resource classification by large LLMs 
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Appendix B 

Resource classification prompt 

"These are select FHIR resources and their descriptions from the HL7 FHIR data 
exchange standard: 

{FHIR resources and their descriptions} 

Match the following medical intake form field with the FHIR resource that would most 
likely contain the information requested by the field." 

Element classification prompt 

"These are the FHIR element names and descriptions contained within the 
{Resource_match} FHIR resource: 

{FHIR elements and their descriptions} 

Match the following medical intake form field with the minimum necessary FHIR 
element(s) that would be required to complete the form field." 

System prompts 

"Provide an answer only in the specified JSON schema below. Resource_match should 
have the name of the FHIR resource matched to the field. 

{JSON schema}" 

"Provide an answer only in the specified JSON schema below. Element_matches should 
be a list names of one or more FHIR elements from within the matched resource that 
match to the field. 

{JSON schema}" 

JSON schemas 

{ 

"type": "object", 

            "properties": {"Resource_match": {"type": "string"}}, 

            "additionalProperties": False, 

            "required": ["Resource_match"], 

 } 
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{ 

            "type": "object", 

            "properties": { 

                 "Element_matches": {"type": "array", "items": {"type": "string"}} 

            }, 

            "additionalProperties": False, 

            "required": ["Element_matches"], 

} 

 




