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Abstract 
 

The perception of important, behaviorally salient sounds in a world cluttered with competing 

background noise requires the ability to segregate relevant from irrelevant sound sources. It remains 

unknown exactly how and at what level of auditory processing neural representations of complex and 

noisy auditory scenes are refined to allow for noise-robust perception. Much of the prior work 

investigating neural mechanisms of this contrast between behaviorally meaningful sounds and 

background noise has supported the theory that auditory cortex activity is largely invariant to noise. While 

these results are consistent with behavioral studies and phenomenological evidence that emphasize the 

perception of behaviorally salient sounds, it remains unclear what information about background noise is 

represented at the single-unit level. In this dissertation, I take a step towards a more complete 

understanding of how complex auditory scenes—both the important foregrounds and the noisy 

backgrounds—of natural sounds are represented at the single-unit level in early stages of auditory 

processing. I will present results that challenge intuitions about the ubiquitousness of robust noise-

invariant representation of behaviorally salient stimuli across the auditory hierarchy. Here, contrary to 

prevailing theories, I show the preferential reduction of single-unit responses to natural foreground sounds 

when paired with natural background noise and present potential mechanisms by which this unexpected 

finding arises. These results support alternate hypotheses to explain the emergence of background 

invariance, such as the computation of enhanced representation of foreground-like sounds at later 

processing stages.
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1. Introduction 
 

In a two-part introduction, I will orient the reader to the background necessary to understand the 

presentation of my main results and, more importantly, to gain context for the motivation behind the 

questions to which I’ve spent several years trying to answer. The study of systems—specifically of 

sensory systems—in neuroscience is particularly amenable to a birds-eye overview thanks to broad 

accessibility afforded by its connections to and descriptions of daily experiences that can resonate with 

both technical and non-technical audiences.  

 

With that in mind, the first section acknowledges the potential for diverse readership. Using non-

technical descriptions of basic auditory neuroscience principles and relevant auditory phenomena, I first 

lay a broad foundation to gain an intuitive appreciation of the work’s conceptual motivation. Once 

oriented, the second section more technically provides a context for where the more focused questions I 

ask reside within the existing literature, setting the stage for the subsequent descriptions and details of my 

contributions to science. 

 

 

1.1 How do you make sense of sound in a busy acoustic world? 
 

In everyday hearing, listeners are faced with a world cluttered with sound. Whether walking down a 

city street or a remote backcountry trail, silence is now more elusive than ever, as noise—be it agitated 

traffic congestion or chipper birdsong—vies for the listener’s attention. Despite these distractions, most 

listeners have a remarkable yet effortless ability, called auditory streaming, to separate even extremely 

busy soundscapes into their distinct sources (Bregman, 1990). Moreover, even within these noisy worlds, 

most listeners can easily direct their attention to an important sound or rapidly and precisely shift their 

focus between numerous sound sources. 

 

In psychology, the phenomenon of auditory streaming is classically described in the context of the 

cocktail-party effect, describing the ability of a partygoer to maintain a conversation with a partner in a 

room filled with countless other voices, music, and merriment (Cherry, 1953). To the more introverted 

reader, this is the same phenomenon as listening to a television show while the din of the air conditioning 

unit rattles on and the kid next door enthusiastically practices their new trumpet muffled only by the thin, 

shared apartment wall. While these situations of auditory streaming might seem so effortless as to be 

trivial, a look at the anatomy of sound and the auditory system will reveal the understated complexity of 

this ability.  
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A sound begins its life when an object vibrates, or repeatedly moves back and forth, causing 

movement in the surrounding air molecules which are displaced in alternating moments of pushing and 

pulling. This pattern of displacement creates repeating areas of higher and lower air pressure, called 

compression and rarefaction, which together form a sound wave (Figure 1.1).  

 

 

 
 

Figure 1.1: Schematic diagram of a sound wave. A speaker vibrates to produce fluctuating moments of 

high and low air pressure, compressions and rarefactions, graphically represented in the lower figure. 

Modified from (Deshpande et al., 2019). 

 

 

You may notice that the depiction of compressed and rarefied air particles shown radiating away from 

the speaker doesn’t look much like the classic wavy shape of a wave. This is because sound waves and 

what you’re seeing is a longitudinal wave, or one where the air particles are being displaced in the same 

direction they are moving: away from the speaker (Berg, 2024). Most commonly (and intuitively), sound 

waves are graphically represented as the squiggling, up-and-down sinusoidal wave shown in the lower 

section of the figure, summarizing the fluctuations in air pressure moving away from the source. A look at 

the vertical, connecting arrows shows the relationship between the vertical position of the wave, or its 

phase, to the longitudinal wave above—the moments of compression correspond to wave peaks while the 

moments of rarefaction correspond to the lower wave troughs, with smooth transitions in between.  

 

Visualizing a sound wave in this way helps us learn a bit about the anatomy of a sound and the 

implications its physical structure has on how it sounds. Wavelength describes the distance between two 

identical phases along the wave (in this case the distance between two peaks), which defines the pitch of 

the sound—the smaller the wavelength, the higher pitched the sound. Put simply, think about plucking a 

rubber band held tautly between your fingers which would result in a relatively high-pitched twang. This 

is because the band vibrates rapidly, completing a single vibration more quickly, and thus has a smaller 
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wavelength with a shorter distance between peaks. The same rubber band held slackly between your 

fingers, meanwhile, sounds low-pitched when plucked because the band, loosely flopping about, 

completes a single vibration slowly leading to a greater distance between peaks and a greater wavelength. 

With this in mind, low-pitched sounds are said to be low frequency because a longer wavelength means 

fewer vibrations take place over the same time period as a relative higher-pitched, or high frequency, 

sound. 

 

Next, amplitude describes the wave vertically, in terms of its deviation from the average sound 

pressure—how peaky are the peaks. The variation in air pressure between peak and trough defines the 

amount of energy in a vibration which we perceive as the loudness of a sound: gently setting your coffee 

mug down on a coaster results in a quiet, low energy click, whereas dropping it results in a ruckus as the 

shattering parts vibrate with high energy as they tumble.  

 

We can now think of the wave’s movement through the air: it invisibly radiates from its source much 

like waves in water that radiate from where a pebble was dropped. When a sound wave moving through 

the air reaches the cartilaginous outer ear, called the pinna, of a listener it next enters the ear canal (Figure 

1.2). At the end of the ear canal is the eardrum, or tympanic membrane, a thin tissue separating the outer 

ear from the middle ear. The eardrum moves in response to being struck by air pressure fluctuations of 

sound waves like, unsurprisingly, the head of a drum. In turn, vibration of the eardrum moves the three 

small bones of the middle ear, the ossicles, which then transfer the vibration to the fluid within the inner 

ear’s cochlea, a snail-shaped cavity containing a membrane along its length. This membrane, the basilar 

membrane, is lined with sensory hair cells with bundles of slender tips that deflect—like seaweed in a 

gentle tide—as it and the surrounding fluid move in response to sound. The movement of these 

mechanically sensitive hair cell tips cause them to create electrical signals that are relayed by cells called 

neurons, the fundamental unit of the brain that communicate complex information using these small 

electrical signals. In this case, the brain will ultimately interpret this electrical activity of neurons as a 

sound. 
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Figure 1.2: Anatomy of the ear. Diagram showing structures of the ear that facilitate the conversion of 

sound waves from air movement to electrical signals that travel to the brain. Here, the three bones 

comprising the auditory ossicles of the middle ear are labeled individually. Reproduced from nidcd.nih.gov 

(Anon, 2022). 

 

 

All sounds enter the brain via this same route—electrical signals generated by the physical movement 

of hair cells along the basilar membrane—which may well seem like an information bottleneck throttling 

complexity. However, there is an immense breadth and depth of sounds we can experience, from the thin 

simplicity of a coin sliding across the diner counter to the lush fullness of a symphony orchestra. To 

simplify this complexity to a single dimension like the differences in pitch we experience, a plucked 

guitar string sounds a lot higher in pitch than a plucked bass guitar string. One of the main reasons we 

perceive pitch because the hair cells along the basilar membrane are arranged tonotopically, or in a 

configuration where cells that preferentially are excited by high- or low-pitched sounds are laid out in a 

gradient (Figure 1.3) (Fettiplace, 2020). The basilar membrane is not uniform along its length. Instead, it 

is initially stiff at the base, tapering and thinning as it proceeds deeper into the coils of the snail shell. The 

stiff base of the cochlea is most sensitive to being displaced by rapid, high frequency vibrations while the 

flexible apex is most sensitive to slow, low frequency vibrations, with a smooth gradient in between. As a 

result, a high-pitched guitar note will initiate electrical activity in a different region of the cochlea than 

will a relatively lower note played on bass guitar. The brain then interprets this spatially organized 

electrical activity as pitch. 
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Figure 1.3: Schematic of the tonotopic organization of the cochlear. Simplified schematic depicting 

spiral geometry of the cochlea and the relationship between location along the length of the basilar 

membrane and pitch sensitivity. The basal region on the outside of the spiral is closest to where the ossicles 

first vibrate the cochlea and is most sensitive to high-pitched sounds, while the deep apical region of the 

cochlea is sensitive to low-pitched sounds. Reproduced from (MED-EL, 2017). 

 

 

In a world where each individual sound waits its turn to vibrate the eardrum one at a time things 

would be very simple; each bout of electrical activity generated by the cochlea would be directly 

attributable to a single sound. Alas, here in reality any number of sound wave mixtures could strike the 

eardrum at any moment, necessitating auditory streaming. As a result, we arrive at the logistical challenge 

facing the brain that will also be at the heart of this dissertation: multiple sounds can simultaneously strike 

and vibrate the eardrum to generate infinitely complex patterns of electric signaling to the brain. So, how 

then do neurons of the brain tease apart and represent in their electrical activity the individual components 

of that noisy signal?  

 

To complicate matters further, even individual sounds are typically far from simple. The simplest 

sound is the pure tone, a synthetic sound that cannot be generated by natural means. These tones result 

from a vibration at a single frequency and intensity (a pure sinusoidal waveform as in Figure 1.1) which 

we perceive as a drawn-out beep at a constant pitch akin to a dial tone. Everyday hearing is nowhere near 

this simple, however. With few exceptions, the sounds we routinely experience are natural sounds: the 

shrieking scrub jay in the tree outside, the urgent whistle of the passing freight train as it blocks your 

route to work again, or even the jackhammer breaking ground on Portland’s next opulent apartment 

complex. Natural sounds contain limitless variety imparted to them by the unique physical properties of 

the objects that generate them (Theunissen and Elie, 2014). 
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Each sound, whether a simple pure tone or a complex natural sound, can then be described by two 

dimensions. The first is temporal, simply describing how sound unfolds over time. The second is spectral, 

describing the high- or low-pitched content of a sound in terms of frequency. Remember, a sound starts its 

life as a vibrating object displacing the surrounding air in alternating moments of high and low air 

pressure. The speed or frequency at which the object vibrates determines how rapidly these alternating 

moments of pressure will occur and strike the ear drum, which in turn dictates where on the cochlea will 

the tonotopically arranged hair cells be deflected and therefore what we perceive as the pitch of a sound.  

 

A useful way of visualizing these components of sound is using the spectrogram, a tool that illustrates 

which frequencies are present at a particular time in a sound, depicted in darker colors (Figure 1.4) (Lyon 

et al., 2010). In the upper row of the figure, spectrograms representing two-second-long excerpts of two 

different pure tones, low- and high-pitched, are shown. Remembering that pure tones have the persistent 

flatness of a dial tone, notice the connection between a sound and how it is visually reflected in a 

spectrogram: the horizontal black bands show that each tone’s respective pitch is a consistent drone as 

you read from left to right across time. Compare this now to the lower row of spectrograms, showing a 

sentence spoken by a woman with a Southern twang and a waterfall, both natural sounds. You can use 

your knowledge of what these might sound like to gain an intuition of how to “read” a spectrogram and to 

appreciate the complexity of natural sounds: unlike pure tones they constantly vary in time and frequency, 

with numerous frequencies occurring at any given moment in complex relationships to one another. 

 

 

 
 

Figure 1.4: Example spectrograms of pure tones and natural sounds. Spectrograms are tools for 

visualizing a sound, showing how that sound unfolds from left to right across time as well as the lowness or 

highness of the pitch frequencies present in the sound (log-spaced bottom to top). Darker coloring indicates 

increased sound power at that frequency. The synthetic pure tones represented above are constant over time 

at a single pitch frequency. Natural sounds, by comparison, have much greater temporal dynamics and 

much more diverse frequency components. Imagine how the low, constant rumble of a waterfall produces 
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the spectrogram on the lower right, while the dynamic voice of a woman with a Southern drawl speaking 

has gaps in time that allow each word can be visually resolved. 

 

 

To reframe this discussion around auditory streaming, look at the composite spectrogram of the same 

waterfall and woman talking simultaneously (Figure 1.5, left) and notice how the distinctive, clean 

features of each word of the sentence shown in Figure 1.4 are now less distinct, muddled by the roar of 

the waterfall. Now, a jaunty fiddle tune also begins in the background (center), further obscuring the 

speech spectrogram. Finally, add a jackhammer for good measure (right). At this point, it might only be 

possible to visually pick out words in the sentence because you remember what the clean speech 

spectrogram looked like previously, yet your brain might easily accomplish this feat with sound when 

performing auditory streaming. A recurring principle throughout this dissertation will be the exploration 

of how the components of these complex mixtures are reflected in the electrical activity of neurons in the 

brain. Put another way, can we find evidence in neural activity that the brain has managed to separate the 

woman’s voice from the waterfall, or will it just be a jumble of signals created by the mixture of the two? 

 

 

 
 

Figure 1.5: Spectrograms of an increasing number of overlapping natural sounds. At left, the 

spectrogram depicts the sounds of the waterfall and woman speaking from Figure 1.4 when occurring at the 

same time. Moving right, additional natural sounds of a fiddle and jackhammer and added into this mixture 

of natural sounds, visually illustrating the challenge of isolating a single sound source in auditory 

streaming. 

 

 

Fortunately for us, despite this complexity the brain is particularly adept at making sense of sounds by 

relying on statistical regularities in the spectral and temporal dimensions that are unique to each sound 

(Moore and Gockel, 2012). Whether listening to a jazz trio or a symphony orchestra, you could easily 

follow a melody played by the flute because over time a flute always sounds like a flute due to its unique 

tone properties—its timbre—that sets it apart from other instruments. Our brains can track this spectral 

signature over time to group similar sounds as originating from the same source. Timbre is the one of the 

properties that helps you distinguish the voice of your conversation partner from all the other voices in a 

crowded room, revealing the importance of statistical regularities in the frequency domain for successful 

streaming.  
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Regularities in time also underlie successful streaming, where sounds that begin at the same time are 

more likely to originate from the same source. In a basic sense, a choir is impactful because many voices 

singing in unison creates the illusion of merging into a single vocal instrument where the individual 

voices cannot be segregated. As it relates to auditory streaming, the individual voices are unable to be 

perceptually separated due to strong cohesion in time, among other reasons. However, if the soprano 

voice errantly began singing half a beat off cue, the illusion of a unified vocal instrument is broken as she 

skews the timing to perceptually pop out of the stream. This shows us that our brains also use temporal 

cues to accomplish auditory streaming. These statistical regularities in the time and frequency domains 

that enable successful streaming are called grouping cues and interact in complex ways that will be 

discussed in much greater detail in forthcoming sections.  

 

Now knowing some of the grouping cues your brain relies on when streaming, think back to the 

example in Figure 1.5, when the woman’s voice was increasingly obscured by noise. It became quite 

challenging to isolate her voice even visually, yet your brain typically can identify even subtle spectral 

and temporal signatures of her voice effortlessly. Unfortunately, though auditory streaming is automatic 

for most listeners, hearing-impaired listeners often experience a greater challenge when it comes to 

hearing in noisy situations. In some forms of hearing impairment and even with certain hearing 

prosthetics, the electrical signal produced by the cochlea lacks the precise resolution necessary to preserve 

the subtleties of the grouping cues our brains rely on for accurate streaming. 

 

For this reason, research that seeks to better understand how complex mixtures of natural sounds are 

represented in the electrical activity of neurons in the brain could give a clue as to the most important 

aspects of sounds that allow for effortless streaming. This knowledge could in turn guide the development 

of future hearing prosthetics to better preserve these essential features to improve auditory streaming in 

hearing impaired listeners (Bondy et al., 2004). The research to be presented in this dissertation aims to 

take early steps towards this long-term goal. 

 

Hopefully the above introduction has provided a bird’s-eye yet intuitive background of the peripheral 

auditory structures that allow us to interface with sound and how this leads to the immense challenge our 

brains face when making sense of complex natural sounds. Further, my hope is that this broad overview 

makes clear the motivation behind attempting to understand my central question of how neurons in the 

brain use electrical activity to represent complex mixtures of natural sounds in a way that allows us to 

make sense of our noisy world.  
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1.2 How does your brain make sense of sound in a busy acoustic world? 
 

In the previous section, we discussed that sound waves are the alternating compression and 

rarefaction of air resulting from the vibration of an object, movement that is translated by the machinery 

of the peripheral auditory system into an electrical signal ultimately routed to the brain. Even at the level 

of the periphery, it was possible to appreciate the complexity of auditory streaming particularly given the 

immense heterogeneity of natural sounds, where an entire soundscape must be reduced to electrical 

activity resulting from a complex pattern of cochlear activation. Throughout this next section, we will 

look in more detail at the journey sound takes once transduced to electrical activity by the cochlea as it 

travels through the brain.  

 

To successfully stream and produce meaningful behavior, neurons need not only relay the received 

electrical signals, but they also need to disentangle mixes of sound and prune the signal by emphasizing 

features of relevant sounds to generate meaningful, noise-robust perception. Prior work has frequently 

investigated auditory streaming at the level of the computations performed by larger populations of 

neurons in the brain and at the level of perception using psychoacoustic studies. Here, we will explore the 

advantages and limitations of past approaches as part of a larger conversation contextualizing prior 

studies of auditory streaming as they relate to the work to be presented in this dissertation. 

 

 

1.2.1 Anatomy and physiology of the central auditory system: from cochlea to 

cortex 

Before discussing the cortical processing of sound that gives rise to perception, it is important to first 

lay out the roadmap over which the sound-evoked electrical signals generated in the cochlea must travel. 

To fully appreciate this pathway and the computational challenges at the steps along the way, we will 

begin a more complete discussion of the auditory system at the cochlea and proceed through the central 

auditory system to the cortex (Figure 1.6). 
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Figure 1.6: The ascending auditory pathway. Schematic of the ascending auditory pathway from cochlea 

to cortex. Reproduced from (Butler and Lomber, 2013). 

 

 

Cochlea 

As the tonotopically arranged hair cells along the basilar membrane of the cochlea (Figure 1.3) are 

deflected in response to vibrations, a sound is decomposed into its frequency constituents and transduced 

into a complex pattern of electrical signals (Fettiplace, 2020). This signal travels to the brain via the 

corresponding auditory nerve (AN) fibers, which preserve the tonotopy of the cochlea by encoding 

information from different sound frequency channels.  

 

Brainstem 

The complex electrical signal pattern carried by AN fibers form their first synapse in the ipsilateral 

(on the same side of the body as the referenced ear) cochlear nucleus (CN) of the brainstem. The ventral 

cochlear nucleus (VCN) projects both to the ipsilateral and contralateral superior olive. Here, our ability 

to localize sound in the horizontal plane of space emerges via the integration of binaural cues as the 

medial and lateral superior olive (MSO, LSO) receive and compare electrical signals from both ears.  

 

By representing sound with high temporal precision, differences in the arrival time of sound at each 

ear, called the interaural time difference (ITD) can be computed by neurons of the superior olive (Stecker 

and Gallun, 2012). Because our ears are located on opposite sides of our head, a sound that occurs on our 

right side will arrive at the right ear slightly before it travels the width of the head to arrive at the left ear. 

The very slight (just a few 100 µs) earlier arrival time in the MSO from the right ear cues the listener that 
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the sound is on their right. Similarly, a sound source directly in front of the listener is equidistant to both 

ears, and thus the ITD would be approximately 0 µs.  

 

Sound intensity, or loudness, is also a binaural cue arising in the superior olive. A sound coming from 

the right side of the listener not only arrives at the left ear later, but the head also casts a sound shadow 

that causes the intensity of the sound reaching the left ear to be slightly less than that of the right ear, a 

difference referred to as the interaural level difference (ILD) (Tollin, 2003). Classically, the ‘duplex 

theory’ has suggested that ITDs are facilitated by low-frequency sound localization in the medial superior 

olive, while ILDs calculated in the lateral superior olive (LSO) are used for high-frequency sound 

localization when frequency becomes too rapid to accurately detect slight phase shifts (Bernstein and 

Trahiotis, 1985). More recent evidence has suggested a role of the LSO in ITDs (Franken et al., 2021). 

Together, the superior olive of the brainstem is critical for the processing of binaural cues that aid in 

horizontal-plane sound localization. 

 

Midbrain/subcortical 

Activity from the ipsilateral dorsal cochlear nucleus (DCN) and contralateral superior olive next 

synapse in the midbrain at the inferior colliculus (IC). In addition to playing a role in the ascending and 

descending auditory pathway, the IC is notable due to its prominent role in multisensory integration and 

context-related connections, with IC cells having been reported to be sensitive to visual, oculomotor, 

somatosensory, behavior, and reward signals (Gruters and Groh, 2012).  

Neurons in IC also have firing properties that allow for rapid, low latency synaptic transmission that 

can lock to the onsets of sound, creating a spike timing code (Trussell, 1999). This code is found at earlier 

stages in the auditory pathway and allows for the encoding of precise neural timing of stimuli through 

onset first spike latency which can aid in computations such as sound source localization from binaural 

cues (Furukawa et al., 2000). As temporal integration windows increase across the auditory hierarchy 

limiting the ability to lock timing as precisely, the spike timing code is largely supplanted by a rate code 

to adjust firing rate to reflect amplitude modulation and change in the stimulus (Lu et al., 2001; Niwa et 

al., 2012). 

Auditory information with precise timing from the IC continues its ascent of the auditory pathway to 

synapse in the final subcortical region, the medial geniculate body (MGB) of the thalamus. While the role 

of the MGB has traditionally been thought of as a relay center that simply projects to the auditory cortex 

(AC), the MGB is now recognized to have a more nuanced role whereby it filters incoming inputs to 

modify the representation of acoustic features to be used by the AC. MGB neurons have been implicated 

in rapid feedforward inhibition, facilitation of excitatory inputs, feature extraction, feature integration, 

feature learning, and integration of sensory information (Bartlett, 2013). 
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Cortex 

The MGB projects extensively to the auditory cortex (AC), the primary destination of auditory 

information in the ascending pathway. The AC is subdivided into the primary AC (A1) and peripheral, or 

belt, areas (Purves et al., 2001). A1 is located on the superior temporal gyrus of the temporal lobe and 

receives extensive projections from the ventral thalamus. The tonotopy of the cochlea is preserved in the 

thalamus and thalamocortical projections to A1, which similarly is organized tonotopically (Figure 1.7) 

(Zhang et al., 2001). Meanwhile, belt areas of AC lack the point-to-point inputs from the thalamus that 

preserve tonotopy, leading to looser tonotopic organization. 

 

The cortex is divided into laminar layers based on properties such as cell types, outputs, and inputs. 

The primary inputs from the ventral thalamus terminate mainly in cortical layer 3/4 (Lee, 2013). Inputs to 

A1 can either be transmitted to the belt regions or connect back to different layers of A1 (Hackett, 2011). 

While primary and belt regions of the AC can be defined hierarchically based on this projection 

architecture, they can also be defined by their response properties, where belt regions show increased 

response latency and broader frequency tuning (Bizley et al., 2005; Atiani et al., 2014; Norman-Haignere 

and McDermott, 2018). Further, neurons in the AC can be tuned to respond to increasingly complex and 

abstract statistical spectrotemporal relationships (Rauschecker et al., 1995; Kikuchi et al., 2014), a topic 

which will be extensively discussed in Section 1.2.5. 

 

 

 
 

Figure 1.7: The human auditory cortex (AC). A, Diagram of the location of the primary (A1, blue) and 

belt (red) areas of AC on the superior temporal gyrus. B, Details of the preserved tonotopic organization of 

A1, which is preserved and inherited from the cochlea. Reproduced from (Purves et al., 2001). 

 

 

1.2.2 Types of sound stimuli 

Having outlined the extensive steps over which auditory information travels en route to the AC, it 

becomes possible to appreciate the distance and extent of the transformations these signals must undergo 
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before the cortex interprets the signal. Further, in the context of auditory streaming, information on both 

relevant and irrelevant sounds will largely be preserved throughout the ascending auditory pathway. 

Before discussing how the AC represents the incoming information and permits behavior in the context of 

streaming, it is helpful to review some properties of synthetic and natural stimuli, the two flavors of sound 

stimuli used throughout the auditory streaming literature. 

 

As discussed in Section 1.1, heterogeneity is characteristic of natural sounds, allowing listeners to 

distinguish a limitless number of unique sound sources whether they vary subtly or hugely in spectral and 

temporal properties (Figure 1.4). More precisely, natural sounds possess a power law relationship that 

confers spectro-temporal correlations over multiple timescales. This relationship distinguishes them from 

synthetic sounds, which can range from being completely uncorrelated as in white-noise signals, or singly 

correlated as in pure tones generated by a sinusoidal wave (Theunissen and Elie, 2014). Compared to 

synthetic sounds, natural sounds are information-rich and perceptually sophisticated, permitting complex 

behavioral responses and neural coding. 

 

As a result of the immense spectral and temporal variety in natural sounds, streaming cannot be 

accomplished simply by differentiation based on the tonotopic channels inherited from the cochlea. 

Instead, streaming of natural sounds requires distinguishing stimuli according to grouping cues, statistical 

regularities in the time and frequency domains (Bregman, 1990).  

 

While synthetic sounds can be as simplistic as the pure tone or other uncorrelated noise signals, more 

recent sound synthesis methods allow artificial sounds to be synthesized to possess statistical properties 

that mimic naturalistic cochlear activation patterns and response properties (Popham et al., 2018; Shearer 

et al., 2018). The extent to which synthetic sounds can be curated to contain natural properties can extend 

anywhere from engaging similar tonotopic activation on the cochlea to modeling natural spectrotemporal 

relationships (Norman-Haignere and McDermott, 2018). Throughout the literature as well as in the 

forthcoming discussion of results in Chapter 2, synthetic sounds have an incredible breadth of 

applications afforded to them by this large flexibility of properties. Still, we will also see that no matter 

how closely and to what extent the complexity of synthetic sounds approximate a natural sound, they will 

always lack the fully natural statistics that give natural sounds that je ne seis quoi our auditory systems are 

particularly well-equipped to discriminate (Młynarski and McDermott, 2019). 
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1.2.3 Population level and psychoacoustic studies of auditory stream 

formation in humans 

Auditory streaming is a phenomenon particularly amenable to psychoacoustic studies, which bring 

together the physiology and the psychology of sound to systematically probe principles of auditory stream 

formation with the direct readout of human perception and behavior. Classically, a reductionist approach 

has allowed probing of the fundamental properties of auditory streaming by favoring simple, synthetic 

sound stimuli with tractable properties that can be isolated, controlled, and replicated (Bregman et al., 

2000; Shearer et al., 2018). Using these stimuli, psychoacoustic experiments have highlighted the 

importance of and sought the perceptual boundaries of spectral (Cusack and Roberts, 2000; Popham et al., 

2018; McPherson et al., 2022), temporal (Andreou et al., 2011; Shamma et al., 2011; Sollini et al., 2022), 

and spatial (Akeroyd et al., 2005; Middlebrooks and Onsan, 2012; Bizley and Cohen, 2013) sound 

statistics to successful streaming.  Alternatively, more ethologically oriented approaches have favored 

using natural sounds to examine the behavioral outputs of streaming while the auditory system is faced 

with more natural acoustic contexts (Norman-Haignere and McDermott, 2018; Młynarski and 

McDermott, 2019).  

 

In the following review-style section, we will explore how psychoacoustic and population-level 

studies in humans have informed descriptions of auditory stream formation, with the goal of highlighting 

foundational grouping principles that will be relevant throughout the dissertation. I will also weigh the 

relative benefits and limitations of synthetic and natural sound stimuli. By gaining a background of how 

auditory streaming has been studied in humans and the kinds of questions that can be answered with these 

approaches, I will contextualize the motivation behind my own experimental choices, as they relate to the 

questions posed in this dissertation. 

 

Synthetic sound stimuli 

No discussion of auditory streaming would be complete without the classic synthetic stimulus 

configuration for auditory stream formation, the ABA– paradigm (Bregman, 1994). This stimulus 

structure explores relative sound properties in the spectral and temporal domains that lead to a sequence 

of pure tone stimuli to be heard as a single, coherent sound stream or multiple segregated streams. Here, 

both A and B are brief pure tones followed by a silent period (‘–’) of equal duration. As the frequency 

interval separating A and B (ΔF) diminishes or as the time rate at which the notes are presented (ΔT) 

grows, the fusion of streams A and B into a single, galloping rhythm is perceived. Alternatively, 

expanding ΔF or shrinking ΔT results in the percept of two separate streams, with stream A proceeding at 

twice the rate of stream B (Figure 1.7). This finding uses the most simplistic pure tone stimuli to establish 
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spectro-temporal relationships (ΔF, ΔT) that underlie the percept of stream fusion and segregation in a 

descriptive manner.  

 

 

 
 

Figure 1.7: Schematic of the ABA– paradigm. The top row illustrates the relationship of increasing 

frequency separation between A and B (ΔF) in fusion (here called “coherence”) and segregation while the 

bottom row shows the relationship of decreasing the temporal separation between A and B (ΔT). Dotted 

lines connecting tones on the spectrograms indicate the perception of one auditory stream (coherence) or of 

two streams (segregation). Reproduced from (Bee and Klump, 2004). 

 

 

Illusions can also be a useful tool in sensory neuroscience, allowing guided curation and presentation 

of synthetic sound relationships to force a perspective by leveraging known principles. The ‘octave 

illusion,’ first described by Diana Deutsch, refers to sound stimuli consisting of two pure tones, separated 

by an octave, presented alternatingly but in opposite phase between the ears. Typically, this yields the 

percept of all the low tones lateralized in one ear alternating with higher tones in the opposite ear, both at 

half the presentation rate (Figure 1.8a) (Deutsch, 1974). While a mechanism separating pitch 

determination and sound localization was proposed at that time, a more recent study aimed to refine and 

challenge this understanding of the illusion, framing it instead as an auditory streaming problem (Mehta et 

al., 2017). Noting that the octave illusion shares features such as a minimum ΔF (as in the ABA– 

paradigm) and having attention- or instruction-based effects, the goal was to empirically resolve 

understandings of the illusion. 

 
A psychoacoustic study was used to probe the neural correlates of the octave illusion, adding a brief 

series of monaural precursor cues prior to the classic stimulus as well as amplitude modulation or fading 

to the uncued tone in the contralateral or ipsilateral stream relative to the cue (Figure 1.8b,c). Placing 

these modulations synchronously (contralateral and concurrent) to the cued tone revealed the illusion was 

perceived with these modifications. These results implicated a mechanism whereby the illusion is formed 

due to a misattribution of the timing of synchronous tones, rather than the prior assumption that the 
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temporally alternating tones were being spatially misattributed, thus revealing a role of temporal 

synchrony in auditory stream formation.  

 

 
 

Figure 1.8: The octave illusion. (A) Schematic of the original octave illusion as described by Diana 

Deutsch in 1974, showing both the stimulus presented and the most common perception. ‘Lo’ refers to the 

low-frequency tone and ‘Hi’ to the high-frequency tone. (B-C) Schematics of the variations of the octave 

illusion described in the main text. Reproduced from (Mehta et al., 2017). 

 

 

So far, we’ve discussed stimuli composed of pure tones arranged in a variety of clever spectral, 

spatial, and temporal configurations, allowing basic principles of auditory stream formation to be 

leveraged with this simple, flexible tool. Still, a major limitation of synthetic sound stimuli is limited 

ethological relevance. In particular, pure tones differ from more spectrally complex natural sounds, or 

even synthetic noise stimuli, in that they activate a discrete, narrow region of the cochlea, removing any 

contextual response interactions when more broad or correlated regions of the cochlea are sampled. As 

such, we will shift our focus to more statistically complex synthetic sounds that retain the benefits of a 

curated, consistently replicable synthetic stimuli.  

 

Iterated ripple noises (IRNs) were used to explore spectral correlations as they relate to auditory 

stream formation in normal-hearing and hearing-impaired listeners, a group particularly challenged in 

acoustically cluttered environments (Shearer et al., 2018). In brief, an IRN is a noisy signal that is given 

perceived spectral content through the addition of a signal filtered at different frequencies. This results in 
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a signal that contains both noise and repetitions of spectral information in different time delays, hence 

“ripples,” which can be perceived as a frequency based on the relative periodicity of the temporal 

waveform. The extent of the ripple delay confers the perception of pitch and the number of iterations of 

added filtered noise correlates with increased perception of pitch strength. The spectral content of IRNs is 

like harmonic complexes – a synthetic, periodic sound stimuli composed of spectral stacks of pure tones 

at harmonic intervals that also contain perceived pitch identity.  

 

Here, the ABA– paradigm was replicated using IRNs with the expectation that stimuli with greater 

pitch strength (more iterations, less high-pass filtering to conserve spectral information) will be 

increasingly likely to segregate into two streams by both groups, with hearing-impaired listeners 

segregating the alternated IRNs less readily as a result due to deficits in the processing of temporal and 

spectral cues that confer pitch to IRNs. Indeed, results were consistent with this hypothesis and show that 

auditory stream segregation is contributed to by factors such as pitch difference (ΔF), spectral resolution 

(stimulus filter), temporal pitch (delay), and tone strength (number of iterations), the perception of which 

are all diminished in hearing-impaired listeners. A key aspect of the ethological relevance of IRN stimuli 

is they pair a tone with the kind of broadband cochlear activation one would expect in a more naturalistic 

sound. The brain must perform more complex computations to extract and isolate salient pitch 

information than simply relying on discrete tonotopic channel activation, thus more closely replicating a 

naturalistic auditory streaming representation. 

 

The adaptation of the ABA– paradigm to further illuminate principles of auditory streaming can serve 

as an illustration of two points: 1) synthetic stimuli are capable of producing a diverse range of stimuli 

which psychoacoustic studies can use to probe different aspects of stream segregation and 2) by 

increasing the naturalistic quality of synthetic stimuli through the introduction of more complex statistical 

relationships, an increasingly nuanced view of auditory streaming can be obtained. Together, these 

highlight both a major advantage and limitation of using synthetic stimuli to study auditory streaming. 

 

Natural sound stimuli 

In comparison to synthetic sounds, natural sound stimuli carry the benefits of greater ethological 

relevance and complex spectral relationships varying constantly in time, resulting in naturalistic 

excitation along the auditory pathway. Speech is a dynamic sound loaded with behaviorally relevant 

information and is therefore an excellent place to begin a discussion about natural sounds and auditory 

streaming. Citing a dearth of studies that explicitly demonstrate the transfer of streaming grouping cues to 

ethological applications, speech is used to probe the acoustic grouping cue harmonicity (Popham et al., 

2018). Harmonicity refers to the quality of sound when frequencies are integer multiples (harmonics) of a 
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common fundamental frequency (F0) and is also a crucial component of pitch perception, sound identity 

(timbre), and musical harmony (Theunissen and Elie, 2014). 

 
Here, single-talker speech was used to study, within a single voice, spectral components that enable a 

statistically complex signal to fuse and be tracked over time. To do this, the third harmonic (F3) of a 

natural speech utterance was mistuned (Fig. 1.9a, b) and listeners were instructed to report how many 

sound sources they heard. The threshold for the mistuned harmonic segregating from the percept of the 

speech stimuli was just above a 2% mistuning of F3 (Figure 1.9c). Having determined harmonicity’s 

contribution to grouping in individual speech utterances, this paradigm was adapted to a classic multi-

talker psychoacoustic study to determine how inharmonic speech affects intelligibility in a multi-talker 

scenario. Intelligibility, measured by sentence comprehension, was decreased with progressive 

inharmonicity, demonstrating a role for classic acoustic grouping cues in an ethologically relevant 

scenario. 

 

 
 

Figure 1.9: Mistuned harmonics reveal the role of harmonicity in auditory stream formation. (a-b) 

Example spectrograms showing a harmonic tone complex and natural speech with an upwardly mistuned 

third harmonic by 6%. (c) Sensitivity to mistuned harmonics in tones and speech. Very slightly mistuned 

harmonics continue to yield the perception of a unified tone or speech bout, while increasing the mistuning 

above 2% begins to increase the likelihood of a listener reporting the mistuned harmonic as segregating 

from the tone or speech. Reproduced from (Popham et al., 2018). 

 

 

The previous study used natural sound stimuli to explore principles gleaned from psychoacoustic 

studies by generating precisely curated, synthetic versions of natural stimuli. Natural stimuli also have 

relevance because of the limitless range of statistical diversity the brain must generalize to invariantly 

select behaviorally relevant stimuli. To this end, pairing psychoacoustics and in vivo electrocorticography 

allows mechanisms of speech streaming in the presence of changing background noise to be explored 

(Khalighinejad et al., 2019). Here, patients undergoing chronic intracranial encephalography (iEEG) 

listened to continuous speech while competing natural background noises periodically changed was 

played to. Three background sounds with unique spectro-temporal properties were chosen. The result was 

electrophysiological responses that led to reconstructed spectrograms resembling the background 
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immediately following a noise transition, with a quick adaptation to return to a noise-invariant 

representation of the concurrent speech utterances. To leverage this result into a psychoacoustic task, 

listeners were to discern isolated phonemes as background sounds changed, showing decreased phonetic 

identification during the adaptation period relative to the period after adaptation (Figure 1.10). These 

consistent neural and perceptual effects suggest a mechanism by which the statistics of natural distractors 

can be quickly adapted away to permit robust, noise-invariant perception of behavioral salient stimuli. 

 

 
 

Figure 1.10: Statistically unique natural background noise differentially affects phoneme recognition. 

(a) Diagram of task structure whereby a listener must identify phonemes in differing natural background 

noise conditions. (b) Recognition performance is substantially increased following a period of adaptation 

(after adaptation, AA) relative to the period immediately following a background transition (during 

adaptation, DA). (c) Results from b broken down by individual background condition. Statistically distinct 

background noise conditions obscure phoneme recognition to different extents, revealing the role of unique 

natural sound statistics in auditory streaming. Reproduced from (Khalighinejad et al., 2019). 

 

 
The ethological relevance of utilizing stimuli like speech and environmental sound textures that carry 

intrinsic behavioral salience and daily relevance is clear and reveals a major benefit to using natural 

sounds when searching for a mechanistic explanation of a perceptual phenomenon. Moreover, the 

differential magnitudes of phoneme obscuration during the adaptation phase for different backgrounds 

highlights the importance of the unique spectro-temporal statistics inherent to each natural sound, which 

will be a major focus of the forthcoming results presented in Chapter 2 of this dissertation. 

 
Thinking about natural statistics raises a challenge though, as a limitless number of unique spectro-

temporal statistical patterns are present and constantly varying in natural sounds and therefore all 

configurations cannot be controlled or exhaustively be presented to an experimental subject. Here, we 

arrive at a limitation of using natural sounds to study auditory streaming; the need to generalize stimuli, 

the forte of synthetic stimuli. Though I have thus far presented synthetic or natural stimuli as though they 
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were a binary choice where generalizability comes at the expense of ethological relevance, efforts have 

been made to bridge this gap and allow the advantages of synthetic and natural stimuli to complement one 

another, maximizing the respective explanatory power of each. 

Synthetic and natural sound stimuli as complementary approaches 

A study demonstrates a holistic approach to stimuli selection of natural sounds, reducing their 

staggering complexity in a unique and clever way (Młynarski and McDermott, 2019). The study used 

convolutional sparse coding on a corpus of speech or solo musical instrument (the model relies upon a 

huge set of examples) cochleagrams to learn a set of features, or spectrotemporal motifs, that appear 

within natural sounds. Such features include simple and spectrotemporally local patterns—single 

frequencies, harmonic frequency sets, clicks, and noise bursts—that the early auditory system responds to 

(Figure 1.11A). The challenge in auditory streaming is grouping all these smaller features within a sound 

source to provide continuous perception. As such, the derived features each had their relative co-

occurrences calculated, quantifying how likely each feature appears in relation to others within a natural 

sound. The hypothesis was that more co-occurring features share properties that improve the likelihood of 

being perceived as originating from a single source due to listener internalized statistical relationships. 

 
To test the hypothesis that listeners have an internalized model of these co-occurrence statistics, 

sound features with high or low co-occurrence likelihoods were presented concurrently and listeners 

reported whether a trial contained a single or two sound sources. Features likely to co-occur were reliably 

identified by listeners as from a single sound source, while those less likely to co-occur were often 

perceived as two separate sounds (Figure 1.11B). Importantly, a control in which synthetic sound textures 

were used to generate the feature library led to near chance performance, indicating natural sounds are 

critical to the internalized statistical model used by listeners (Figure 1.11C). These data provide a case for 

a viable reductionist approach to natural sounds, while further emphasizing the importance of natural 

statistical relationships uniquely present in natural sounds. 

 

Further, grouping cues were derived from the co-occurrence statistics and reiterated several known 

grouping cues where features with similar spectral content or with common temporal onsets/offsets of F0 

are likely to co-occur. These can be seen in our discussion of the properties of ΔT and ΔF that lead to such 

percepts as the ABA– paradigm, temporally synchronous tones generating the octave illusion, or the 

inharmonic speech and tone complexes. Another derived grouping cue however, spectrotemporal 

modulation—features with difference spectral shapes (tones versus clicks) tend to not co-occur—had 

gone previously unreported in the auditory streaming literature likely due to its less intuitive nature. Still, 

this cue proved as perceptually salient a predictor of stream formation as derived cues that reiterate 

known cues, underscoring the importance of ethologically relevant sound selection when approaching an 
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understanding of an ethologically relevant sensory task such as streaming by highlighting the breadth of 

complex statistics within natural sounds as well as listeners’ internalized model of natural sounds, a theme 

that will recur throughout Chapters 2 and 3 of this dissertation. 

 

                
 

Figure 1.11: Naturally co-occurring spectrotemporal features are more likely to be perceptually 

grouped. A, Examples of model-learned spectrotemporal features. B, Results from a psychoacoustic 

experiment where spectrotemporal features were paired and listeners reported whether they heard a single 

or two separate sounds. ‘Most positive’ refers to spectrotemporal features with high co-occurrence 

statistics, while ‘most negative’ refers to features with low co-occurrence statistics. C, Results from a 

psychoacoustic experiment where co-occurring features learned from natural sounds or synthetic sounds 

were paired. Artificial features produced chance performance, spectrotemporal grouping judgements are 

specific to natural sounds. Reproduced from components of (Młynarski and McDermott, 2019). 

 

 

Despite this, a reductionist approach and synthetic stimuli are not without value. We have already 

looked at the details as well as an overview of mechanistic explanations that have been identified using 

simple, artificial stimuli. We’ve also discussed a limitation of natural sounds by which an endless library 

of spectrotemporal possibilities makes sampling that space an experimentally difficult task that, as we just 

saw above, requires reduction of its own to become broadly informative. Thus, it is important to 

understand that the information required for natural neural representation of acoustic signals is lost as the 

complex statistical relationships inherent to natural sounds are reduced. 

 
A demonstration of this principle takes place outside of the auditory streaming literature, comparing 

fMRI responses to natural sounds and to model-matched synthetic stimuli generated by conserving 

different statistics of the natural stimuli (Norman-Haignere and McDermott, 2018). Responses in primary 

regions of auditory cortex were comparable between the natural and synthetic versions fully model-

matched to natural spectrotemporal relationships. However, responses to these synthetics in non-primary 

regions diverged, suggesting an auditory hierarchy in which secondary regions respond to higher-order 

statistics not able to be captured by the model (Figure 1.12). To take this further, synthetics can also be 

selectively generated using either the filter that matches the spectral or temporal domains, or eliminating 
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both leaving a synthetic sound that only matches the cochlear activation pattern of the original sound. 

With this increasing randomization of natural statistics, responses of primary regions to the synthetics no 

longer match the original. This change demonstrates that even at the level of primary auditory cortex 

natural spectral and temporal correlations are key to driving natural responses, a point that will be 

reflected in a key analysis in Chapter 2. 

 

 
 

Figure 1.12: Natural stimuli with model-matched synthetic stimuli. An example natural sound 

cochleagram shown with various model-matched synthetic stimuli, moving from the most degraded to a 

full model preserving modulation statistics of the original. Reproduced from components of (Norman-

Haignere and McDermott, 2018). 

 

 

Takeaways 

Taking this together, it is crucial to tailor the sound stimuli being used to the scope of the question 

being asked. When asking questions about the perception of auditory stream formation, it is very 

reasonable to use psychoacoustic studies where stimuli can be manipulated. Similarly, when attempting to 

uncover the effect of complex sound relationships on stream formation, using natural sounds 

incrementally modified to alter perception makes sense. Still, the discussion so far has largely centered 

around psychoacoustic studies or population electrophysiology using non-invasive methodologies. For a 

sensory processing task like auditory streaming, this has allowed a huge range of information to be gained 

descriptively and mechanistically. At the same time, due to the relative inaccessibility of large-scale, 

invasive electrophysiology techniques in humans we can only uncover mechanisms up to a limited 

resolution, preventing studies of mechanisms of auditory streaming at the single-unit, representational 

level, a key question of this dissertation. Therefore, we will next explore what can be gained by trading 

away the behavioral output of perception permitted in human studies, transitioning to studies of auditory 

streaming in animal models. 
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1.2.4 The role of animal models in studies of auditory streaming 

We have now had a sampling of the auditory streaming literature in human subjects. While these 

studies gave anywhere from a descriptive overview of the formation of the phenomenon to a more 

nuanced view of brain activity as it perceptually occurs, access to information about streaming at the 

single-unit resolution has been notably absent. Details on how and if specific sound features comprising 

mixed sounds are represented in individual neurons could reveal further mechanisms by which noise-

invariant perception arises between the cochlea and perception. To answer these questions, animal models 

amenable to invasive electrophysiological recordings are necessary.  

 

Animal studies of auditory streaming will not be without their drawbacks; we of course cannot 

directly ask an animal if they hear one or two streams in response to our manipulations as we can a human 

subject. There is, however, sufficient evidence of streaming-like behaviors in a number of species 

established as animal models—fish (Fay, 1998), birds (Hulse et al., 1997; Narayan et al., 2007; Dent et 

al., 2016), rodents (Noda and Takahashi, 2019), primates (Fishman et al., 2001; Izumi, 2002; Christison-

Lagay and Cohen, 2014)—that would make these models a valuable tool to investigating auditory 

streaming at the level of single cell representation (Itatani and Klump, 2017). 

 

In another review-style section, we will first survey studies of auditory streaming in animal models 

with the goal of highlighting unique methodologies and, once again, the effect of synthetic background 

noise versus noise with natural statistics. We will assess the strengths and drawbacks of each with respect 

to our discussion of the human auditory streaming literature and, ultimately, use this discussion to guide 

the methods we chose our own studies. Following this more sweeping review of the literature, we will 

conclude with a brief background and specific rationale for the animal models I chose for the work 

presented in this dissertation. 

 

How has auditory streaming been studied in animal models using synthetic stimuli? 

We will open the discussion with two studies using ferrets which probe the robustness of neural 

responses to natural speech and ferret vocalizations when masked by synthetic background noise. 

Beginning with the perceptual experience of auditory streaming—that behaviorally relevant sounds can 

be identified in background noise—the first study aimed to identify where and how noise-invariant 

representation of relevant sounds arises in the auditory system (Rabinowitz et al., 2013). Citing evidence 

that background noise impacts behaviorally relevant sounds by altering their statistics, the authors put 

forth a hypothesis whereby noise-invariance could result from neurons along the auditory hierarchy 

(Figure 1.6) increasingly adapting to noisy sound statistics to progressively filter it out.  
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The study recorded neural responses in the inferior colliculus (IC) and AC of anesthetized ferrets 

while natural speech was played over stationary synthetic noise at varying relative sound levels. 

Statistically homogenous noise was chosen to make the distinction between background noise and the 

more behaviorally salient natural sound as unambiguous as possible. As expected, neural responses were 

progressively more invariant to noise level relative to the signal along the auditory pathway from IC to 

AC (Figure 1.13).  

 

Noise can affect neural responses to a signal by increasing the baseline intensity, obscuring the signal 

by lowering the contrast between useful spectrotemporal information and the elevated baseline. 

Adaptation to the statistics of noisy stimuli would arise from a renormalization of responses relative to the 

noisy baseline, with neurons in areas further along the auditory hierarchy displaying more robust 

adaptation to intensity and contrast. Indeed, the introduction of noise in this study progressively caused 

less change in the firing rate along the auditory hierarchy, indicating a growing adaptation to changes in 

increased baseline intensity and decreased contrast, consistent with normalization that preserves relative 

contrast. These results provide evidence for increasing noise invariance and implies the emergence of 

auditory stream formation across the auditory hierarchy at the single-unit level as noise is progressively 

filtered out, implicating a mechanism of increased adaptation to the stimulus statistics of synthetic noise.  

 

 

 

 
 

Figure 1.13: Single unit responses to clean and noisy speech in inferior colliculus and auditory cortex. 

Example single-unit responses in IC (center) and AC (right) to increasingly noisy speech signals (left). AC 

shows firing patterns more similar to the clean signal indicating a greater robustness to noise at this higher 

level of the AC. Modified from (Rabinowitz et al., 2013). 
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To further characterize neural mechanisms underlying noise-invariant signal representations in AC, 

another study recorded AC units from awake, passively listening ferrets during presentations of speech or 

ferret vocalizations with various synthetic background noises (Mesgarani et al., 2014). The study used 

synthetic maskers with uncomplex spectral profiles and stationary characteristics to simplify interactions 

with a diversity of speech foregrounds, these being white and pink noise. White noise contains an equal 

balance of power across all frequency channels like radio static. Pink noise similarly contains power 

across all frequency channels but the relative power decreases incrementally with higher frequency, 

resulting in a low rumbling like a waterfall. Reverberation, a temporal smearing of the original stimulus, 

was also included and has the same effect as noise of masking precise spectrotemporal characteristics. 

 

To directly examine what aspects of the noisy stimulus are preserved in noise and to further bolster 

the observation of noise-invariant AC responses, the study used population reconstruction techniques. 

These techniques use the responses of populations of neurons to reconstruct a stimulus spectrogram that 

can be directly compared with the original. Consistent with the theory noise-invariant representations of 

the natural foreground sound, reconstructed spectrograms reliably resembled the original clean 

spectrograms, even in the presence of assorted synthetic background noise (Figure 1.14). 

 

To explore neural mechanisms of this noise-robust representation in A1, receptive fields measured 

from the neural data were used to simulate neural responses. The receptive field serves as a filter that 

describes the transformation between stimulus and response. Additional transformations can be added to 

model additional dynamic biological processes. As such, a self-normalization mechanism modeled by 

combining feedforward synaptic depression (SD) and feedback gain normalization (GN) was able to 

accurately predict distortion effects of both the noisy and reverberant conditions. In contrast, a static 

model lacking these dynamic biological transformations, or either SD or GN alone, was insufficient to 

fully predict distortion effects, suggesting both are necessary for a mechanism of noise-robust signal 

representation. 
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Figure 1.14: Original and reconstructed spectrograms of clean and noisy speech. (Left) Spectrograms 

of the clean or noisy speech played to the ferrets. (Right) Spectrograms reconstructed from population 

responses in A1. In all cases, the reconstructed spectrogram more strongly resembles the original clean 

speech than the features of the noise. Reproduced from (Mesgarani et al., 2014). 

 

 

Taken together, these studies complement one another; both use similar methodologies of using a 

contrast between synthetic background noise and a natural foreground sound to study mechanisms by 

which noise-invariance arises in neural representations in the auditory pathway. The mechanisms 

proposed also both implicate self-normalizing adaptation processes that strip away the more regular 

statistics of competing noise. They also suggest the emergence of noise-invariance in single-unit 

representations whereby behaviorally relevant sounds are robustly and preferentially encoded in the 

presence of noise, the encoding of which typically fell by the wayside—just because a clean speech 

spectrogram can be recovered from population responses, does not necessarily mean information about 

the background was not also encoded. These studies also notably used synthetic background noise which, 

even when synthesized to be more naturalistic, result in dissimilar encoding (Norman-Haignere and 

McDermott, 2018). As a result, we will next look at a more limited body of single-unit studies of 

streaming that model streaming using natural foregrounds and backgrounds. 

 

How has auditory streaming been studied in animal models using natural stimuli? 

Using a natural foreground/background contrast, several studies have found results that challenge the 

dominance of noise-invariance at the single-unit level, suggesting that information about the noisy sounds 

is robustly encoded in the auditory system. A first study recorded single-unit activity in the zebra finch 

homolog of A1 during the presentation of a target birdsong with and without assorted background noise 

(Narayan et al., 2007).  
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Here, a conspecific birdsong was used as a target to be embedded in noise. Noise belonged to three 

categories: 1) broadband noise, a synthetic sound, 2) modulated noise, broadband noise modulated by the 

envelope of a natural background, and 3) a natural chorus of three other birdsongs. Within each noise 

category, the level of the foreground birdsong was modulated relative to the noise, giving a variety of 

target-to-masker ratios (TMRs). Unsurprisingly, across noise conditions response patterns became 

progressively dissimilar to the unmasked birdsong with decreasing TMR, indicative of the obfuscation of 

foreground features by increasing noise sound levels. More surprisingly, responses to the target were 

interfered with in two ways when masked: the addition of spikes in the gaps between foreground song 

syllables and the reduction of spikes during song syllables (Figure 1.15). The natural bird chorus 

background was found to reduce spiking during target syllables in all TMR conditions.  

 

 
 

Figure 1.15: Mean firing rate differences during and between target syllables. Differences in firing rate 

(masked – unmasked response) for the three noise conditions both during and in the gaps between the target 

song syllables. Negative values show the reduction of spikes while positive values show the addition of 

spikes (Narayan et al., 2007). 

 

 

Further, subjects were behaviorally tested on their ability to discriminate the target birdsong in the 

competing noise. Target identification accuracy degraded in parallel with decreasing TMR. Neural 

discrimination measured by fine timing was more consistent with behavioral performance compared to 

overall firing rate, suggesting that foreground discrimination fails when neurons are unable to precisely 

encode the timing of the target due to competing noise. Similarly, another study performs this general 

paradigm by recording responses from the primary auditory cortex of anesthetized cats during the 

presentation of bird chirps in either a clean condition or with their natural echoes or background noise 

from the recording. This study identified a population of neurons where responses to the 
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background/foreground together resembled the background more closely than the clean chirp (Bar-Yosef 

and Nelken, 2007).  

  

These results challenge notions of ubiquitous noise-invariance by providing evidence for the single-

unit representation of natural background noise even in the presence of a salient target. Still, the evidence 

remains unclear to what extent natural background noise is represented under fully natural and ethological 

conditions and remains to be fully explored. The work presented in this dissertation aims to more 

thoroughly address this gap with the goal of (1) better categorizing natural background/foreground 

response interactions at early stages of the auditory cortex, (2) determining the salient features of natural 

sounds that affect these interactions, and (3) how these responses are affected by training on a streaming 

task. 

 

Ferrets 

An animal model well-suited to addressing these goals is essential. Therefore, in most of the results 

described in this dissertation I used the ferret (Mustela putorius furo) as an animal model. Ferrets, though 

evolutionarily distant from humans, are an ideal model for studying higher-order auditory representations 

in part because they have a robust behavioral repertoire of auditory-dependent tasks such as tone 

detection (Fritz et al., 2003), sound discrimination (David et al., 2012; Heller et al., 2023), pattern 

recognition (Saderi et al., 2020), sound localization (Bajo et al., 2010), and auditory streaming (Ma et al., 

2010). These complex behaviors are thought to be facilitated by a well-defined auditory hierarchy within 

cortex (Bizley and Cohen, 2013). Ferrets, unlike more common rodent animal models, anatomically have 

a well-defined auditory hierarchy within cortex (Figure 1.16) (Bizley et al., 2005; Bandyopadhyay et al., 

2010; Hackett, 2011). Taken together and paired with the accessibility of in vivo recording methodologies, 

ferrets are well-suited to study higher-order auditory representations of natural sounds.  

 

Marmosets 

Given the surprising nature of some of our more foundational results, we hypothesized that 

discrepancies between our results in ferrets and established theories of auditory streaming in humans 

could be a result of the relatively extensive evolutionary distance between humans and ferrets. As such, 

we chose to replicate select results in the common marmoset (Callithrix Jacchus), a new world monkey 

with extensive vocal communication behaviors and an AC similar in structure to humans (Figures 1.16) 

(de la Mothe et al., 2006; Slee and David, 2015; Eliades and Tsunada, 2019). Evolutionarily more 

proximal to humans, marmosets have an auditory system with anatomical and functional similarities to 

humans and share a similar hearing range and auditory perceptual abilities, including the ability to process 
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the harmonic structure of natural sounds, a key grouping feature used by humans (Bendor and Wang, 

2005; Osmanski and Wang, 2011; Song et al., 2016; Feng and Wang, 2017). 

 

       
 

Figure 1.16: Anatomical diagrams of AC organization and tonotopy in ferrets and marmosets. Left, 

Diagram of ferret AC. Modified from (Bizley and King, 2009). Right, Diagram of marmoset AC. 

Reproduced from (Bendor and Wang, 2005).  

 

 

1.2.5 Single-unit representations and auditory coding 

In the previous sections reviewing the auditory streaming literature, I have made a point to emphasize 

the scale on which different methodologies allow us to view the problem of auditory streaming. For 

example, psychoacoustic studies allow us to choose and tailor sound stimuli to observe the perceptual 

effect these manipulations have on streaming, revealing functional details of the phenomenon. These 

studies can be complemented by population level electrophysiology recordings like EEG or fMRI which 

pull back the curtain on the brain to reveal, on a broad scale, computations performed during streaming. 

In animal models, we zoomed in further using invasive recording techniques which allow neural activity 

at the ensemble or individual level to be read out to determine more local computations. 

 

The work in this dissertation will look at what information about overlapping natural sound stimuli 

are represented in neurons at the single-unit level across AC. That is, when sounds fitting into our broad 

background/foreground binary are played at the same time, which features of each sound category are 

encoded in the responses of individual neurons. As such, an important final step before discussing those 

results is a more detailed discussion of auditory coding and how it is modeled in AC neurons.  
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Tuning properties 

In describing the anatomy of the auditory hierarchy in Section 1.2.1, we touched upon how neurons in 

different regions of auditory cortex possess unique tuning properties. More specifically, these areas have 

been well described in ferrets where the primary auditory cortex (A1) has sharper frequency tuning than 

secondary regions like the periectosylvian gyrus (PEG), which tend to have shorter response latencies 

(Bizley et al., 2005). Still, even within a region different neurons can be tuned to very different 

spectrotemporal features of sounds.  

 

This is because when we treat each neuron as an individual, we see these broad descriptions can be an 

oversimplification because each neuron actually responds to very precise spectral, temporal, and level 

characteristics. For example, two A1 neurons may be spectrally tuned so that they respond to a best 

frequency of 900 Hz, yet their temporal properties could vary in a way that one neuron fires throughout 

the duration of a 900 Hz tone while the other responds only to the onset and then is suppressed for the 

remainder. One of those same neurons may respond weakly to an 800 Hz tone not too far from its best 

frequency, yet the other may be completely suppressed by this spectral neighbor. How then can we most 

precisely and efficiently model these vast and complex tuning properties of auditory cortex neurons? 

 

The STRF 

The combination of spectral, temporal, and level properties that elicit spikes from a neuron define its 

receptive field, or the features to which a neuron is “tuned.” These unique sets of properties are 

summarized and modeled using the spectrotemporal receptive field (STRF, Fig. 1.17) (Aertsen and 

Johannesma, 1981). An STRF is a collection of weights estimated using a reverse correlation between 

neural responses and the spectrograms of the sounds that generate those responses. They describe neural 

tuning spectrally (what frequencies does the neuron respond to) and temporally (with what response 

latency must this spectral feature appear, considering the history of the sound) to predict whether a neuron 

will fire at any given moment when presented with a sound stimulus by weighing the presence of absence 

of the particular sound features. 
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Figure 1.17: Example spectrotemporal receptive field (STRF). At the top of the figure, an example 

STRF is shown for a single neuron. The spectral and temporal space is tiled by weights (represented by 

color) that describe whether a sound having power at that particular frequency and time lag will evoke a 

response by detecting the presence of tuned features. Weights closer to 1 are shown in red and indicate that 

a feature in that space will elicit a spike, while weights closer to -1 result in suppression by features in that 

space. The STRF shown, therefore, describes a neuron that is tuned to sounds around 800 Hz with a ~10 ms 

response latency. Below the spectrogram is the actual raster response of a neuron, where each row is a 

repetition of that sound, and ticks indicate neural spiking. The neuron fires the most spikes at the onset of 

each bout of sound from the spectrogram above. Averaging across repetitions leads to the peristimulus time 

histogram (PSTH) at the bottom in blue, summarizing the raster and actual firing of the neuron. The red 

PSTH is the response predicted by summing the weights of the STRF at each time point as it slid over the 

spectrogram. At certain times, it will encounter moments where the sound onsets with power at 800 Hz 

which will result in the higher weighted areas of the model detecting this feature and predicting a neural 

response. Modified from (Thorson et al., 2015). 

 

 

The STRF is a powerful model for describing more complex auditory tuning properties, but it is not 

without limitations. These arise from the linearity of the model—it describes a neuron as a static filter and 

feature detector. This assumption can be problematic for two reasons: (1) tuning properties of neurons 

become more complex and higher dimensional as we ascend the auditory hierarchy and (2) neural tuning 

is plastic and can be modified over long and short timescales. We will explore both and then relate them 

to how the STRF model may be applied to natural sounds and neural representations of sound mixtures 

during auditory streaming. 
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Increased abstractions along the auditory hierarchy 

Along the auditory hierarchy from midbrain to secondary AC, spectral and temporal properties of the 

features describing neural tuning evolve as higher-level representations of sound stimuli are formed. For 

example, before reaching A1 temporal dynamics of neurons in subcortical regions of the auditory 

hierarchy respond with very rapid latency, as fast as 10 ms, yet in A1 latencies can be greater than 100 ms 

and still longer in secondary AC (Escabí and Read, 2003). Meanwhile, spectral tuning up through A1 

shows similarly narrowband STRFs (Miller et al., 2002) in contrast to neurons in secondary AC which are 

more selective for broadband (Bizley et al., 2005) and complex spectral patterns (Rauschecker et al., 

1995; Kikuchi et al., 2014). The change in neural tuning from rapid narrowband tone detector to a more 

leisurely detector of higher-level spectral patterns requires a greater number of spectral and temporal 

filters to capture these complex responses, thus becoming more non-linear and challenging to model using 

a single STRF (Atencio et al., 2009). 

 

Tuning in the auditory cortex is dynamic 

An STRF is static, but our perception is anything but static. The car alarm blaring outside your 

window may reflexively draw your attention and rapidly induce anxiety as you move to the window to 

determine if your car is in peril. You relax when you learn it wasn’t your car and it gets disarmed. Shortly 

after the same car alarm goes off again, and although you may stir initially, the immediate urgency is 

gone. The third alarm within the hour, though the auditory stimulus is the same you may now react irked 

rather than concerned. In this case, over the course of less than an hour your perception and resulting 

reaction to a previously behaviorally salient sound has been modified by your updated experiential 

context. Similarly, at its core the Aesop’s Fable, The Boy Who Cried Wolf, could be thought of as an early 

tale documenting plasticity in the auditory cortexes of a cohort of villagers as the behavioral salience of 

the warning call of “Wolf!” was extinguished as a result of the repeated decoupling of the auditory 

stimulus from the emotionally salient response. 

 

This is to say that by existing in a dynamic world we constantly learn and relearn relationships 

between sounds and the potential for reward or punishment they bring. It has been well documented that 

learning the association between a pure tone target and a reward alters neural activity of AC with neurons 

both increasing their firing rate and reliability to tones around the target frequency (Diamond and 

Weinberger, 1986; Kisley and Gerstein, 2001; Hui et al., 2009). Similarly, neural tuning also reflects 

changes to reduce distractors (Schwartz and David, 2018).  

 

Plasticity has been explicitly demonstrated to affect STRFs on rapid timescales corresponding to 

behavioral state (Fritz et al., 2003). Here, head-fixed ferrets were trained to withhold licking during the 
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presentation of broadband reference stimuli until a pure tone target was presented, at which point licking 

would result in a reward. Single units in AC were recorded and target tone frequency was selected based 

on initial passive STRF tuning of the cell. The same neuron was recorded during the behavioral detection 

task and again passively with no reward. STRFs were measured across these three trial blocks (passive-

behaving-passive), revealing receptive field enhancement in auditory neurons at the target tone frequency 

during behavior and rapid reversion to the original tuning following behavior (Fig. 1.18). Neural encoding 

dynamically modified with the changing behavioral contexts and needs of the animal.  

 

These referenced studies provide evidence for plasticity of neural activity to adapt to and enhance 

behaviorally salient pure tone stimuli while reducing features of noisy distractors. It remains unknown 

though what these receptive field adaptations may look like in the presence of comparable streaming-like 

tasks that require the discrimination of complex natural sounds, which evoke more complex patterns of 

activity in the AC than pure tones. This will be the major focus of the work presented in Chapter 3. 

 

 
 

Figure 1.18: Rapid, state-dependent receptive field plasticity in auditory cortex. STRFs of a ferret 

auditory cortex neuron before, during, and after a pure tone detection task. Prior to behavior, the receptive 

neuron featured a large inhibitory region above 8 kHz and a small excitatory region around 7 kHz with a 

latency of 40 ms. With a target tone of 7 kHz (horizontal arrow) during behavior, the excitatory region at 

this frequency expands only to revert to approximately its original size in a subsequent passive recording 

taken after the behavioral task had ended. Reproduced from (Fritz et al., 2003). 

 

 

How do STRFs hold up in the presence of complex natural sounds or background noise? 

The STRF of a neuron is estimated as the reverse correlation of its activity and a snapshot of the 

stimulus spectrogram at that moment. To estimate an accurate STRF, neural responses from a large 

amount and diversity of stimuli probing different features is ideal. A classic method of estimating STRFs, 

therefore, is by using efficient synthetic sound stimuli like temporally orthogonal ripple combinations 

(TORCs) (Klein et al., 2000) which have complex and dynamically varying properties that densely 

sample a wide range of spectrotemporal relationships to determine tuning. 
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As mentioned throughout this introduction, the work presented in this dissertation will focus entirely 

on neural representations of natural sounds. Previously we discussed that throughout the primary and 

secondary regions of the AC the receptive fields of neurons become more complex and abstract, 

exemplified by the emergence of neurons tuned to specific categorizations of sounds like conspecific 

vocalizations (Montes-Lourido et al., 2021). At the same time, as these high-level auditory neurons 

become increasingly complex in their receptive fields, they no longer are activated by the relatively 

simple, synthetic stimuli traditionally used to estimate STRFs, including TORCs (Theunissen et al., 

2000). Fortunately, STRFs also can be estimated using natural sounds (Theunissen et al., 2001), but 

require extensive and diverse natural sound exemplars to effectively and reliably sample the necessary 

spectrotemporal space.  

 

In the discussion of the future directions of my work that will take place in Chapter 4, I will overview 

preliminary results weighing performance benefits of using a linear model like an STRF or deep learning 

approaches like convolutional neural networks (CNNs) to predict neural responses to natural sounds and 

combinations of natural sounds. For now, we must begin to ask how well an STRF can describe responses 

to not just natural sounds, but combinations of natural sounds. An STRF is a feature detector and a 

characteristic of auditory streaming-like overlapping sound configurations is the obfuscating and masking 

of prominent foreground features by noise (Fig. 1.5 and Section 1.2.4). Moreover, the masking of features 

by natural backgrounds can impose constantly changing statistical relationships, which can be a challenge 

from the perspective of a neuron whose receptive field is being described by a static filter. 

 

Recent work with CNNs seeks to adapt the descriptive power of an STRF to the rapid timescales over 

which sound features and therefore the neurons representing them can change. The nonlinear receptive 

field model is referred to as the dynamic STRF (DSTRF), or an STRF whose spectrotemporal tuning is a 

composite of linear STRF functions for and depending on each changing moment of a stimulus 

(Keshishian et al., 2020). Looking at how these DSTRFs change over time reveals variations and 

nonlinearities in gain, time, and shape. In the context of auditory streaming, we’ve already seen how 

population level representations of behaviorally relevant foreground noise fluctuate as natural background 

noise changes or remains constant (Fig. 1.10) (Khalighinejad et al., 2019), a result of adaptation to 

background statistics. In Chapter 4 I will explore the potential of DSTRFs to show how the receptive 

fields of neurons adapt over time to background noise in streaming-like configurations. 
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1.2.6 How does my work fit into this context? 

We’ve now spent a considerable amount of time steeping ourselves in the world of auditory streaming 

from its conceptual underpinnings to how research has already defined and tackled the problem. We 

started the journey by describing how the sounds that reach our ears arise and, when they do, how our 

body and brain are equipped to transform fluctuations in air pressure into meaning—music, language, 

danger. We ran into a problem though because our auditory systems are equally equipped to transform 

fluctuations in air pressure of unwanted noise into a competing signal. 

How these signals are parsed by the brain has been the subject of countless research endeavors, 

defining the perceptual principles that underlie our ability to stream through a more birds-eye 

phenomenological lens and more recently beginning to talk about more nuanced neuronal mechanisms of 

how this perception arises. The work presented in the subsequent chapters will aim to extend this 

extensive field of knowledge by discussing the specific, complex, and unexpected interactions that arise 

in single-unit representations of auditory cortex neurons in trained and untrained animals when they are 

presented with spectrotemporally complex mixtures of natural background and foreground sounds. 

In chapter 2 I will discuss the basics of these interactions, defining them and then exhaustively 

exploring an unexpected result that foreground responses preferentially reduced when paired with natural 

background textures. This preferential reduction is robust to numerous manipulations and in a manner 

dependent on the natural statistics of both foreground and background. This data will deviate from 

established results and principles in higher-order human AC (some of which were reviewed above) that 

describe widespread noise-invariance as the genesis of noise-robust perception. I will instead suggest that 

background representation at earlier stages of auditory processing may serve as a reference by which 

network-wide activity can subtract the noisy response to enhance foregrounds at later stages. In this way, 

while these results maintain a level of unexpectedness, they also can fit nicely within the larger, existing 

narrative of progressive invariance to noise ascending the auditory hierarchy. 

Next, in Chapter 3, I will extend these results by contextualizing the same paradigm from Chapter 2 

within a behavioral task that explicitly controls the behavioral salience of certain sounds. Our review of 

studies of humans underscored the importance of attention and behavioral salience for modifying larger-

scale representations of noise mixtures. As a result, specifically imposing behavioral salience allows me 

to directly test the effect on single-unit representations of target and distractor in early AC within the 

framework of a natural foreground/background sound contrast. The results here will extend those from 

Chapter 2 and show that changes in auditory tuning may also occur because of behavioral experience 

even in natural sounds. 
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Finally, Chapter 4 will round out this discussion in a more speculative manner, using the details and 

results of both studies to discuss where this work fits into the literature on auditory streaming as well as 

laying the next steps that follow from my research. 
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2. Single-unit representations of natural 

background/foreground contrasts in passively listening 

ferrets 
 

In discussing the background of the auditory streaming of natural sounds, I posed several questions 

and emphasized gaps within the existing literature: How are dynamic, more behaviorally relevant natural 

sounds represented at the single-unit level of the auditory cortex during natural background noise? Are 

single-unit representations of these natural background/foreground mixtures comparable to past evidence 

of noise invariance in higher auditory areas in human auditory cortex? What distinguishes natural 

backgrounds/foregrounds to the auditory cortex and how do these features define their interactions? In the 

forthcoming results presented in this chapter, we seek to directly address these questions by recording 

single-unit responses to natural background/foreground sound pairings in primary and secondary auditory 

cortex of passively listening ferrets, assessing the interactions and their mechanisms.  

The forthcoming manuscript is in press at Journal of Neuroscience and appears in full below. 
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Abstract 

In everyday hearing, listeners face the challenge of understanding behaviorally relevant foreground 

stimuli (speech, vocalizations) in complex backgrounds (environmental, mechanical noise). Prior studies 

have shown that high-order areas of human auditory cortex (AC) pre-attentively form an enhanced 

representation of foreground stimuli in the presence of background noise. This enhancement requires 

identifying and grouping the features that comprise the background so they can be removed from the 

foreground representation. To study the cortical computations supporting this process, we recorded single 

unit responses in AC of male and female ferrets during the presentation of concurrent natural sounds from 

these two categories. In contrast to expectations based on studies in high-order AC, single-unit responses 

to foreground sounds were strongly reduced relative to the paired background in primary and secondary 

AC. The degree of reduction could not be explained by a neuron’s preference for the foreground or 

background stimulus in isolation but could be partially explained by spectro-temporal statistics that 

distinguish foreground and background categories. Responses to synthesized sounds with statistics either 

matched or randomized relative to natural sounds showed progressively decreased reduction of 

foreground responses as natural sound statistics were removed. These results challenge the expectation 

that cortical foreground representations emerge directly from a mixed representation in the auditory 

periphery. Instead, they suggest the early AC maintains a robust representation of background noise. 

Strong background representations may produce a distributed code, facilitating selection of foreground 

signals from a relatively small subpopulation of AC neurons at later processing stages. 
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Significance statement 

Perception of important sounds in a world cluttered with competing background noise requires the 

ability to segregate relevant and irrelevant sound sources. Most prior work investigating neural 

mechanisms of this background/foreground contrast has supported the theory that auditory cortex activity 

is largely invariant to background noise, consistent with evidence from behavioral studies. However, it 

remains unclear what information about background noise is represented at the single-unit level. Here, 

contrary to prevailing theories, we show a relative dominance of single-unit responses to natural 

background noise over responses to natural foreground sounds in ferret auditory cortex. A robust 

representation of background noise in early stages of auditory cortex may be necessary for grouping 

features into perceptual objects and selecting information from foreground signals for preferential 

representation in downstream brain areas. 
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Introduction  

When interacting with the world, listeners encounter auditory scenes containing dynamic, spectrally 

overlapping sounds. Accurate perception requires streaming, the grouping of sound features into 

representations of their distinct sources (Bregman, 1990; Griffiths and Warren, 2004). Because natural 

sounds are spectrally and temporally dynamic, they cannot be differentiated based on tonotopic channels 

inherited from the cochlea alone. Instead, signal grouping processes that support streaming must 

distinguish stimuli according to statistical regularities in the time and frequency domains (Bregman, 

1990; Darwin, 1997; Nelken et al., 1999; Carlyon, 2004; McDermott, 2009; Winkler et al., 2009). 

Streaming is engaged by active, top-down processes, such as during selective attention to the voice of a 

single speaker (O’Sullivan et al., 2015), and pre-attentively, as during perception of behaviorally relevant 

stimuli in noise (Sussman et al., 2007; Mesgarani et al., 2014; Kell and McDermott, 2019). In both cases, 

the representation of one stimulus is enhanced relative to others. The computational processes by which 

neural responses to competing stimuli are identified and suppressed remain poorly understood. 

Psychoacoustic experiments often use synthetic stimuli with parametric properties to precisely 

manipulate and probe boundaries of streaming (Bregman et al., 2000; Bizley and Cohen, 2013). These 

studies highlight the importance of spectral (Cusack and Roberts, 2000; Akeroyd et al., 2005; Popham et 

al., 2018; McPherson et al., 2022), temporal (Micheyl et al., 2010; Andreou et al., 2011; Shamma et al., 

2011; Sollini et al., 2022), and spatial (Akeroyd et al., 2005; Middlebrooks and Onsan, 2012; Bizley and 

Cohen, 2013) sound statistics to successful streaming. Natural stimuli are more complex and dynamic, but 

similar principles can be applied to model their streaming (Mesgarani et al., 2014; Theunissen and Elie, 

2014; Młynarski and McDermott, 2019). 

One framework to study natural sound streaming is a background/foreground contrast. Behaviorally 

relevant foregrounds (e.g., speech and other vocalizations) are perceived preferentially over noisy 

backgrounds (wind, water, machinery, etc.) (Bregman, 1990). Consistent with subjective percepts, most 

sounds can be classified as foreground or background based on spectro-temporal properties (Singh and 

Theunissen, 2003; Kell and McDermott, 2019; Attias and Schreiner, 1997). Local field potential (LFP) 

and functional imaging (fMRI) data from human superior temporal gyrus (STG) show that activity 

evoked by foreground sounds is largely invariant to background noise, suggesting that higher order 

auditory cortex automatically streams foregrounds over backgrounds (Kell and McDermott, 2019; 

Khalighinejad et al., 2019). Less is known about representation of these competing stimuli by single units 

or at early stages of processing, such as primary auditory cortex (A1). 

Studies using decoding analysis of single-unit neural data have also argued for noise-robust 

representations in A1 (Mesgarani et al., 2014; Moore et al., 2013; Rabinowitz et al., 2013). Foreground 
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stimuli can be reconstructed accurately from single-unit AC activity, even in the presence of static, 

synthetic noise. However, this approach does not exclude the possibility that neural responses also 

preserve information about backgrounds (Christison-Lagay and Cohen, 2014; Malone et al., 2017; Ni et 

al., 2017). Some studies have indicated that information about both backgrounds and foregrounds is 

represented at this earlier stage (Bar-Yosef and Nelken, 2007; Narayan et al., 2007; Kell and McDermott, 

2017). Thus, it remains uncertain if foreground representations in A1 are enhanced similarly to human 

STG or if they remain mixed with representations of the background.  

To measure background/foreground contrasts in early stages of AC, we recorded single-unit activity 

in A1 and secondary auditory cortex of awake, passively listening ferrets. Natural background and 

foreground sounds, with categorically distinct spectro-temporal statistics, were presented in isolation and 

concurrently. In contrast to results in STG, we report an unexpectedly strong reduction of A1 responses to 

the foreground relative to concurrent backgrounds. This reduction may result from a combination of 

subcortical feed-forward processing and central gain control mechanisms. These findings differ from the 

previous reports of ubiquitous noise-invariant representation of foreground stimuli across AC. Instead, 

additional processing of evoked activity in A1 is required for noise-robust representations in downstream 

areas. 

 

 

Material and Methods 

Surgical Procedures 

All procedures were approved by and performed in accordance with the Oregon Health & Science 

University Institutional Animal Care and Use Committee (IACUC) and conform to the standards of the 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and the United 

States Department of Agriculture (USDA). Seven young adult ferrets (six neutered, descented male, one 

spayed female) were obtained from a supplier (Marshall Farms). In each animal, sterile head-post 

implantation surgeries were performed under anesthesia to expose the skull over the auditory cortex (AC) 

and permit head-fixation during neurophysiology recordings. Surgeries were performed as previously 

described (Slee and David, 2015; Saderi et al., 2020; Heller et al., 2023). In brief, two stainless steel head 

posts were anchored along the midline using light-cured bone cement (Charisma, Kulzer). To improve 

implant stability, 8-10 stainless self-tapping set screws were mounted in the skull. Layers of bone cement 

were used to build the implant to a final shape amenable to neurophysiology and wound margin care, 

which included frequent cleaning and sterile bandaging. Following a two-week recovery period, animals 

were habituated to head-fixation and auditory stimulation. 
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Additional data was collected from AC of two spayed and neutered adult marmosets (one female, one 

male) obtained from the University of Utah. Surgical and experimental procedures performed on 

marmosets were the same as for ferrets. 

 

Acoustic Stimuli 

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown), and 

delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head, 0 ̊ elevation, and 

30 ̊ contralateral to the recording hemisphere. Stimulation was controlled using custom MATLAB 

software (https://bitbucket.org/lbhb/baphy) and all experiments took place inside a custom double-walled 

sound-isolating chamber (Professional Model, Gretch-Ken). 

Auditory stimuli consisted of a pool of 70 natural sound excerpts, each 1 s in length, curated and 

segmented to contain power immediately after onset. Sounds were divided into two ethological 

categories, backgrounds (BGs) and foregrounds (FGs), based on simple statistics that, respectively, 

produce the percept of a sound texture or dynamic transient (Lesica and Grothe, 2008; Kell and 

McDermott, 2019). Sounds were root mean square (RMS) normalized to impose a 0 dB signal-to-noise 

ratio (SNR) between BG and FG categories for most experiments. Sound level was calibrated so that 

individual sounds were presented at 65 dB SPL. For the five animals analyzed throughout the study, all 1 

s natural sound excerpts were presented in isolation to each recording site, and the 3-5 sounds from each 

category that evoked the largest average multi-unit response across the recording site were selected for 

experiments. In two additional animals, considered separately from our main analyses, a fixed set of 4 

BGs and 4 FGs were presented across recording sites. Selected sounds were combinatorially paired across 

categories to create 9-25 unique BG/FG combinations. The full set of isolated and concurrent sounds was 

presented in random order 10-20 times per recording.  

We tested several variations of BG/FG combinations: 

Dynamic sound onsets. To study dynamics of adaptation to concurrent stimulation (Fig. 4), we presented 

natural pairs in which either BG or FG was truncated to its 0.5-1s half while the paired sound was played 

in full (BG+hFG or hBG+FG, Fig. 4A, 4E). FG sounds used in dynamic conditions were selected so that 

they contained energy both at 0 and 0.5 s onsets. 

Binaural stimulation. In our default experimental configuration, all sounds were presented from a single 

speaker 30° contralateral to the recorded brain hemisphere (contraBG/contraFG). For binaural 

stimulation, we added a second speaker 30° ipsilateral to the recording hemisphere. In these recordings, 

https://bitbucket.org/lbhb/baphy
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BG and FG positions were varied, defining three additional spatial configurations: ipsiBG/contraFG, 

contraBG/ipsiFG, and ipsiBG/ipsiFG. 

Variable SNR. In a subset of experiments, we varied FG RMS power relative to BG by 5 dB and 10 dB to 

produce instances where FG was relatively louder (i.e., greater SNR) than BG. 

 

Neurophysiology 

To prepare for neurophysiological recordings, a small craniotomy (0.5-1mm) was opened over AC. 

Recording sites were targeted based on tonotopic maps and superficial skull landmarks (Bizley et al., 

2005; Atiani et al., 2014) identified during implantation surgery. Initially, tungsten microelectrodes (FHC, 

1-5MΩ) were inserted into the craniotomy to characterize tuning and response latency. Short latency 

responses and tonotopically organized frequency selectivity across multiple penetrations defined the 

location of primary auditory cortex (A1) (Bizley et al., 2005), whereas secondary auditory cortex 

(posterior ectosylvian gyrus, PEG) was identified as the field ventrolateral to A1. The border between A1 

and PEG was identified from the low-frequency reversal of the tonotopic gradient. 

Once a cortical map was established, subsequent recordings were performed using two different 

electrode configurations. Experiments in animals 1-3 used 64-channel silicon electrode arrays, which 

spanned 1.05mm of cortical depth (Du et al., 2011). Experiments in animals 4-7 recorded from 960-

channel Neuropixels probes (Jun et al., 2017). Typically, about 150 of the 384 active channels spanned the 

depth of AC, as determined by current source density analysis (see below). Data were amplified (RHD 

128-channel headstage, Intan Technologies; Neuropixels headstage, IMEC), digitized at 30 KHz (Open 

Ephys) (Siegle et al., 2017), and saved to disk for further analysis. Spikes were sorted offline using 

Kilosort2 (https://github.com/MouseLand/Kilosort2) (Pachitariu et al., 2016), with spike sorting results 

manually curated in phy (https://github.com/cortex-lab/phy). A contamination percentage was computed 

by measuring the cluster isolation for each sorted and curated spike cluster, which was classified as a 

single unit if contamination percentage was less than or equal to 5%. Clusters above 5% were classified as 

multi-unit and excluded from analysis.  

Neurophysiology recordings were performed in animals in a passive state while head fixed and 

unanesthetized, with sessions typically lasting 4-6 h. During recording sessions, a video camera and LFP 

were used to monitor the animal’s state. If an animal fell asleep or displayed signs of stress, the recording 

was paused to awaken the animal or provide resolution. 

 

Inclusion Criteria 

https://github.com/MouseLand/Kilosort2
https://github.com/cortex-lab/phy
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Evoked activity was measured using the peri-stimulus time histogram (PSTH) response, averaged 

across 10-20 sound repetitions and sampled at 100 Hz. While 100 Hz sampling captures most sound 

evoked activity, we repeated the core weight gain analyses on the data sampled at 50 and 10 Hz. Results 

were indistinguishable from those measured with a sampling rate of 100 Hz, and thus we used this rate for 

all subsequent analyses. 

To ensure only sound-responsive units were included in analyses, we calculated a signal-to-noise ratio 

for each stimulus/neuron pair based on the ratio of the PSTH response to the standard deviation of the 

response across repetitions (Fritz et al., 2003). Stimulus-neuron pairs with SNR ≥ 0.12 were considered 

sound-responsive and included for analysis (Fig. 3A). Neuron/stimulus pairs where responses to both BG 

and FG in isolation exceeded SNR threshold were categorized as responsive to both sounds (BG+/FG+- 

A1: 9,157/28,728, 31.9%, PEG: 3,926/14,770, 26.6%) and comprise the dataset used in most analyses. 

Other stimulus/neuron pairs were categorized as responsive to only one sound (BG0/FG+ - A1: 

3,421/28,728, 11.9%, PEG: 1,608/14,770, 10.9%; BG+/FG0 - A1: 2,189/28,728, 7.6%, PEG: 1,077/14,770, 

7.3%) or unresponsive (BG0/FG0 - A1: 13,961/28,728, 48.6%, PEG: 8,159/14,770, 55.2%). Unresponsive 

neuron/sound pairs were excluded from all analyses.  

Within responsive neuron/sound pairs, outlier instances for which BG or FG weights were less than -

0.5 and greater than 2 were also excluded (A1: 8/9,157, PEG: 5/3,926). Further, only instances where the 

linear model fit well (r ≥ 0.4, A1: 7,144/9,149, 78.1%, PEG: 2,656/3,921, 67.7%) were included. Among 

the neuron/sound pairs excluded based on model fit accuracy, response weights trended with the r ≥ 0.4 

data.  

 

Stimulus Statistics 

To calculate sound statistics, waveforms were loaded from .wav files and normalized to have a 

variance of 1. Spectrograms were generated using gammatone filters with 10 ms time bins and 48 

frequency channels, log-spaced 0.1-24 kHz (Katsiamis et al., 2007). 

Bandwidth quantified the range of frequencies that contained the majority of power in the 

spectrogram. A power spectrum was calculated by averaging each spectrogram over time and computing 

the cumulative sum across frequency. Bandwidth was determined by identifying the frequency range, in 

octaves, between 15% and 85% of the total.  

Spectral correlation described how closely power across spectral bands co-varies. The correlation 

coefficient (Pearson’s R) was computed over time between each pair of frequencies in the calculated 

bandwidth range and averaged across frequency pairs.  
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Temporal variance was quantified by calculating variance over time in each spectral channel in the 

calculated bandwidth range and averaging across frequencies. This statistic is also referred to as 

“temporal non-stationariness" (Khalighinejad et al., 2019). Greater deviations indicate higher temporal 

variance, or a more dynamic and transient sound. 

Spectral overlap was the fraction of a sound's bandwidth that overlapped the bandwidth of a 

concurrently presented sound. Note that because individual sounds varied in bandwidth, this metric is not 

commutative, as the overlap of A with B is not the same as the overlap of B with A. 

 

Synthetic Sounds 

We generated model-matched, synthetic BG and FG sounds using a published MATLAB toolbox 

(Norman-Haignere and McDermott, 2018). Four synthetic conditions were synthesized so that their 

spectral/temporal modulation statistics were matched to the original sound or random: 1. Preserved 

spectral and temporal statistics, 2. Matched spectral and random temporal statistics, 3. Matched temporal 

and random spectral statistics, and 4. Random spectral and temporal statistics. Synthetic BGs and FGs 

were paired within each synthetic category, and presentations were interleaved with natural BG/FG pairs. 

 

Neural Tuning Analysis 

In a subset of experiments, we also recorded neural activity during the presentation of a large, diverse 

set of natural sounds, as previously described (593 unique, 1 s samples) (Pennington and David, 2023). 

We used this data to measure each neuron’s spectrotemporal receptive field (STRF) (Thorson et al., 2015) 

and then fit a two-dimensional Gabor function to the STRF (Qiu et al., 2003). The center of the Gabor fit 

on the spectral axis defined the neuron’s best frequency (BF). We used BF to select the corresponding 

channel from the spectrogram of the BG and FG stimuli presented to that neuron (spectrogram generated 

using gammatone filters with 10 ms time bins and 32 log-spaced frequency channels, spanning 0.2-20 

kHz) (Katsiamis et al., 2007). The spectral SNR (in dB) for a BG/FG sound mixture at each neuron’s BF 

was calculated as the log-ratio of power in the BF frequency channel of the FG relative to that of the BG: 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑆𝑁𝑅 = 20 ∗  log10 (
∑ 𝐵𝐹 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐹𝐺

∑ 𝐵𝐹 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝐵𝐺
) 

 

Laminar Depth Analysis 

We used current source density analysis to classify units by cortical layer (1/3, supragranular; 4, 

granular; 5/6 infragranular). The local field potential (LFP) signal was generated by lowpass filtering 

either the raw signal from the 64-channel silicon probe or the LFP signal from the Neuropixel probe 
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below 250Hz using a zero-phase shift (filter-filter method) 4th order Butterworth filter, followed by down-

sampling to 500Hz. A custom graphical interface was used to mark boundaries between layers based on 

features of average sound-evoked LFP traces sorted by electrode depth 

(https://github.com/LBHB/laminar_tools). Layer-specific features included the pattern of current source 

density (CSD) sinks and sources evoked by best frequency-centered broadband noise bursts. Patterns 

were selected to match auditory evoked CSD patterns seen in AC of multiple species (Maier et al., 2010; 

Schaefer et al., 2015; Davis et al., 2023; Mendoza-Halliday et al., 2023). Each unit was assigned a layer 

based on the boundaries above and below the channel where its spike had the largest amplitude. 

 

Spike Width Classification 

We classified neurons as narrow- and broad-spiking based on the average width of the waveform. 

Width was calculated as the time between the depolarization trough and the hyperpolarization peak 

(Trainito et al., 2019). The distribution of spike width across neurons was bimodal, and the categorization 

threshold was defined as the minimum between the bimodal peaks. Filtering properties differed between 

64-channel probes and Neuropixels, thus the categorization threshold was defined as 0.35 ms and 0.375 

ms, respectively. 

 

Statistical analysis 

For all pairwise statistical tests (Figs. 2, 3, and 5-8), we performed a Wilcoxon signed-rank test. 

Significance was determined at the alpha = 0.05 level. The number of neuron/sound pair combinations 

and animals for each comparison are listed in the main text or figure legends, as are exact p-values. For 

statistical tests for unpaired or across-area comparisons (Figs. 3, 5, and 8), we used a Mann-Whitney U 

rank test. Significance was determined at the alpha = 0.05 level. The number of neuron/sound pair 

combinations in each compared group were indicated in the main text or figure legends, along with exact 

p-values. Error bars for population average data were computed by jackknifing (Efron and Tibshirani, 

1986). In Figs. 2 and 8, one-sample T-tests were performed to assess relative gain deviations from 0. 

Significance was determined at the alpha = 0.05 level. 

To evaluate the relationship between PSTHs/sound statistics and our weighted metric of response 

reduction (Figs. 3 and 6), we performed a linear regression. Correlation coefficients and p-values are 

reported in the main text or figure legends. 
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Results 
Relative reduction of cortical responses to natural foreground sounds in the presence of concurrent 

backgrounds 

To investigate how neurons in auditory cortex (AC) integrate information about concurrent natural 

sounds, we recorded single-unit activity from passively listening, head-fixed ferrets (Fig. 2.1A). Natural 

sound stimuli were drawn from two broad, ethologically relevant categories: background textures (BGs) 

and foreground transients (FGs). We used this BG/FG contrast based on previous work showing that this 

stimulus configuration produces streaming, with enhanced perception and cortical representation of the 

FGs over noisy BGs (Moore et al., 2013; Rabinowitz et al., 2013; Mesgarani et al., 2014; Kell and 

McDermott, 2019; Khalighinejad et al., 2019).   

At the beginning of each experiment, a set of 29 BGs and 41 FGs (1 s duration) was presented in 

isolation, and the 3-5 sounds from each category that evoked the largest average multi-unit response were 

used in the subsequent recordings. Pairs of the selected BG and FG sounds were presented both 

individually and simultaneously (BG+FG, Fig. 2.1B). We recorded 1,191 auditory-responsive units in A1 

(2,698 units total) and 601 auditory-responsive units in periectosylvian gyrus (PEG), a secondary field of 

auditory cortex (1,591 units total). Multiple BG/FG pairs were presented during each experiment. Data 

was selected based on whether a neuron responded to at least one BG or FG sound in the pair, leading to a 

total of 14,767/28,728 (51.4%) responsive neuron/sound pairs in A1 and 6,611/14,770 (44.8%) responsive 

pairs in PEG (see Methods). Peristimulus time histogram (PSTH) responses to each stimulus were 

computed by averaging across 10-20 repetitions to provide a measure of time-varying spike rate (Fig. 

2.1C, D). 

To gain a basic understanding of how AC neurons respond to concurrent natural stimulus pairs, we 

first evaluated response linearity. We compared the evoked PSTH response to each concurrent BG+FG 

stimulus to the sum of responses to the BG and FG stimuli in isolation. In both A1 and PEG, evoked 

responses to BG+FG combinations were consistently lower than the sum of the responses to same sounds 

in isolation. This global reduction of BG+FG responses was observed across most recorded units, 

consistent with previous studies of paired stimulus presentation (Kline et al., 2023).  
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Figure 2.1. Characterization of neural responses to concurrent natural background (BG) and foreground 

(FG) sounds in ferret auditory cortex (AC). A, Head-fixed ferrets were presented natural sound stimuli from 

a free-field speaker 30° contralateral to the recording hemisphere. Multi-channel microelectrode arrays 

recorded single-unit activity from primary (A1) or secondary (PEG) fields of AC. B, During recording, 1 s 

natural sound excerpts from two distinct, ethological categories—backgrounds (BGs) and foregrounds 

(FGs)—were presented in isolation (blue and green spectrograms, respectively) and concurrently (black 

spectrogram). C, Example PSTH responses to the same BG/FG sound pairing from units in A1 (upper) and 

PEG (lower). BG and FG responses are shown in blue and green, respectively, and the actual BG+FG 

response is shown in black. D, Example PSTH responses to the same BG/FG sound pairing from different 

units from the same recording site in A1. Color scheme as in C. 

 

Given the observation of overall nonlinear response reduction, our next question was how the 

component BG and FG stimuli contribute to the concurrent BG+FG response. Patterns of reduction were 

heterogeneous but tended to follow two broad patterns: invariance to one of the stimuli (Fig. 2.1C, D, 

upper) or a combination of responses to the individual BG and FG stimuli (Fig. 2.1C, D, lower). To 

quantify how each component contributed to the BG+FG response, we fit a model for the concurrent 

response as a linear weighted sum of the constituent responses:  

𝑅BG+FG(𝑡) = 𝑤BG𝑅BG(𝑡) + 𝑤FG𝑅FG(𝑡) 

Weights were fit for each neuron and stimulus pair, minimizing the mean-squared error prediction of 

the actual BG+FG response (Fig. 2.2A). The gain model measures changes in response variance such that 

weights <1 indicate reduction relative to the component response. We compared weights between BG and 
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FG categories for each neuron and stimulus pair tested. For A1 neuron/stimulus pairs with reliable 

responses to both individual BG and FG sounds (BG+/FG+, n = 9,157/28,728, Fig. 2.3A, see Methods), 

weights were categorically divergent and dominated by the BG. On average, wFG (median = 0.256 ± 

0.003) was significantly lower than wBG (median = 0.571 ± 0.004, Wilcoxon signed rank test, p < 10-9), 

indicating a strong preferential reduction of FG responses (Fig. 2.2B, C). Only neuron/stimulus pairs with 

a good model fit (r ≥ 0.4, 78.1%) were considered in analyses, but the same trend was observed for units 

with worse model performance. In PEG, neuron/stimulus pairs in the BG+/FG+ group (n = 3,926/14,770) 

with r ≥ 0.4 (67.7%) showed a similarly strong preferential reduction of FG responses (wFG: median = 

0.285 ± 0.004, wBG: median = 0.530 ± 0.006, Wilcoxon signed rank test, p < 10-9, Fig. 2.2D). Reduction of 

FG responses in A1 and PEG was seen across animals (n = 5), and a pattern showing a relatively larger 

reduction of FG responses in A1 was observed in 4/5 animals included in our main analyses.  

To verify that the weighted model recapitulated the nonlinear reduction in overall response reported 

above, we calculated the average weight, (wFG + wBG) / 2, for each neuron/sound pair. The distribution of 

average weights significantly correlated with level of reduction observed in the PSTH response to the 

concurrent sounds, RBG+FG / (RBG + RFG) (A1: r = 0.44, p < 10-9, Fig. 3B; PEG: r = 0.42, p < 10-9). Thus, 

model weights provided a reasonable quantification of the overall and stimulus-specific responses.  

Because stimuli were chosen to evoke activity at the current recording site, we considered the 

possibility that these effects may be specific only to sites tuned to the particular BG/FG set. In a separate 

cohort of animals (n = 2), we paired a fixed set of BGs and FGs across all recording sites. In A1, 

neuron/stimulus pairs in the criterion BG+/FG+ group (27.6%) with r ≥ 0.4 (73.8%) showed comparable 

weights (wFG: median = 0.187 ± 0.008, wBG: median = 0.591 ± 0.006, n = 1,564) from those using sounds 

selected by evoked activity in our main analysis (wFG: median = 0.198 ± 0.013, Mann-Whitney U rank 

test, p = 0.033, wBG: median = 0.601 ± 0.013, Mann-Whitney U rank test, p = 0.092, n = 637). Recordings 

from PEG showed fewer responsive neuron/stimulus pairs (11.2%), comparable fits where r ≥ 0.4 

(67.0%), and a slightly reduced difference between FG and BG weights (wFG: median = 0.261 ± 0.010, 

wBG: median = 0.576 ± 0.005, n = 210) relative to the main stimulus set (wFG: median = 0.175 ± 0.008, 

Mann-Whitney U rank test, p = 0.005, wBG: median = 0.628 ± 0.017, Mann-Whitney U rank test, p = 

1.55e-6, n = 441). These results confirm that the acoustic properties of the sound stimuli, independent of a 

recording site’s tuning to the stimuli, determine the degree to which FG responses will be reduced. 

Given that sounds from both categories were reduced relative to presentation in isolation (weight < 

1), we combined the weights into a single metric, FG relative gain (RGFG), to describe the relative 

contribution of FG versus BG to the BG+FG response: 
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𝑅𝐺FG =
𝑤FG − 𝑤BG

|𝑤FG| + |𝑤BG|
 

Values of RGFG < 0 indicate a greater reduction of FG responses relative to BG, which we refer to as 

FG-specific response reduction. RGFG values in A1 comprise a distribution centered significantly below 

zero (p < 10-9, Fig. 2.2C, right). This systematic reduction of FG responses was not expected, given prior 

work indicating enhancement of responses to FG sounds in AC (Moore et al., 2013; Rabinowitz et al., 

2013; Mesgarani et al., 2014; Kell and McDermott, 2019; Khalighinejad et al., 2019). Below, we describe 

several additional analyses to validate this result. 

 

 

Figure 2.2. FG responses are preferentially reduced relative to BG responses. A, Diagram of the linear 

weighted model used to quantify the contribution of component BG and FG responses to concurrent 

BG+FG sound presentations. The PSTH response to each BG and FG sound in isolation was weighted and 

summed to minimize the mean-squared error prediction of the actual BG+FG response. B, Histograms 

show distribution of BG (blue) and FG (green) weights for all neuron/sound pair combinations in A1. C, 

Bars at left compare median weights (± jackknifed S.E. across neuron/sound pairs, n = 7,144, Wilcoxon 

signed-rank test, ****p < 10-9). Histogram of FG relative gain (RGFG) for all A1 combinations. Negative 

RGFG values (red) indicate neuron/sound pairs that show FG-specific response reduction (RGFG < 0 for 

78%). D, (left) Median BG and FG weights in PEG (n = 2,656, ****p < 10-9) and (right) histogram of RG 

in PEG (RGFG < 0 for 75%), plotted as in C. 
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Degree of FG response reduction does not depend on selectivity for component stimuli 

One possible explanation for the reduction of FG responses and the dominance of BG responses could 

be that the balance of BG and FG weights is determined by the component sounds’ alignment with the 

receptive field of a neuron. If this the case, the BG or FG sound evoking a stronger response in isolation 

would be expected to dominate the BG+FG mixture response, resulting in that sound being weighted 

more highly. To determine whether the relative reduction of FG responses could be predicted by the 

component sound responses, we calculated a z-scored response to each isolated sound by dividing the 

standard deviation of the PSTH during the sound-evoked window by the standard deviation computed 

across all stimuli. We compared the isolated BG or FG response to the corresponding weight (Fig. 2.3B) 

to determine if there was a relationship. Neurons in A1 showed a weak negative correlation between BG 

responsiveness and wBG, opposite what would be expected if neural SNR predicted response weight (n = 

7,144, linear regression, r = -0.11, p < 10-9, Fig. 2.3B, left). There was no relationship between FG 

responsiveness and wFG (linear regression, r = 0.01, p = 0.57, Fig. 2.3B, right). Similarly, PEG showed a 

small negative correlation between BG responsiveness and wBG (n = 2,656, linear regression, r = -0.06, p 

= 1.21e-3). It also showed a small positive correlation between FG responsiveness and wFG (linear 

regression, r = 0.08, p = 4.28e-5). Together, these results indicate that a neuron’s tuning to a particular 

stimulus had a relatively small influence on its weighting in the response to stimulus mixtures. The 

relative influence of this factor is considered in the regression analysis, below.  

To consider a more extreme case where stimulus selectivity might impact relative weight, we 

analyzed the subset of stimulus pairs where only one sound, BG or FG, evoked a response in isolation. 

We defined the BG0/FG+ and BG+/FG0 groups as neuron/stimulus pairs that responded only to the FG or 

BG stimulus, respectively (n = 3,421/28,728, 11.9%, n = 2,189/28,728, 7.6%, Fig. 2.3A, see Methods). 

Comparison of wFG from the BG0/FG+ subset (median = 0.343 ± 0.008) and wBG from the BG+/FG0 subset 

(median = 0.565 ± 0.006) showed similar, significant (p < 10-9) FG response reduction in both A1 and 

PEG (wFG: median = 0.331 ± 0.015, wBG: median = 0.541 ± 0.008, p < 10-9, Fig. 2.3C). The reduction of 

FG responses even in the absence of any BG-evoked response suggests that the reduction can be driven 

by subthreshold activity and thus does not simply reflect preferential responses for BG stimuli.  

 One other factor that might explain the unexpected reduction of FG responses was the relatively 

static nature of BGs compared to dynamic FGs. Though total stimulus power was matched between the 

paired BG and FG, moment to moment fluctuations in FG amplitude will change the instantaneous SNR 

of the FG relative to BG. To determine if the reduction of FG responses was driven simply by periods of 

low FG power, we incrementally omitted time bins of low FG power from the weight analysis (Fig. 

2.3D). To select bins for omission, we calculated the FG sound envelope by averaging the spectrogram 
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across frequency channels. We then established thresholds whereby the envelope must exceed 30, 50, and 

70% of maximum for a time bin to be included in the weight analysis. As the envelope threshold 

increases, the FG SNR increases such that the amount of FG-specific response reduction should become 

less extreme if instantaneous SNR contributed to the effect. However, across all thresholds, wBG was 

significantly greater than wFG (p < 10-9, Fig. 2.3E), consistent with the condition in which no threshold 

was applied.  

The lack of strong relationship between relative weight and a neuron’s single-stimulus response (Fig. 

2.3B) or instantaneous FG SNR (Fig. 2.3E) indicates that the selective reduction of FG responses is 

categorical and dependent on activity in the wider AC network. This observation prompted further 

investigation into features of the BG versus FG stimuli that can explain this unexpected result. 

 

 

Figure 2.3. Minimal dependence of FG response reduction on neural tuning or instantaneous FG signal-to-

noise ratio (SNR). A, Scatter plot compares reliability (signal power/noise power) of responses to BG and 

FG stimuli for each neuron/sound pair combination in A1. The threshold for sound responsiveness was set 

at 0.12 (dotted lines), labeling 32% as responsive to both BG and FG. B, Scatter plots compare the 

relationship between z-scored response to each stimulus in isolation and its weight in the combined 

response for each sound category (BG: linear regression, r = -0.11, p < 10-9, FG: linear regression, r = 0.01, 

p = 0.57). C, Median BG and FG weights for A1 neuron/sound pairs where the neuron is only responsive to 

BG or FG (median ± jackknifed S.E. across neuron/sound pairs, Mann-Whitney U rank test, ****p < 10-9). 

Weights are shown for the BG or FG stimulus that evoked a significant response when presented 

concurrently with a stimulus that did not produce a response, i.e., with zero weight. D, Example of FG 
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sound envelope threshold analysis. Blue and green lines show sound envelope (spectrogram averaged 

across the spectral axis) of BG and FG sounds, respectively. Dotted horizontal lines at 30, 50, and 70% of 

maximum FG indicate envelope thresholds used. Only time bins where the FG envelope exceeded 

threshold were included in the respective fit. E, Median BG and FG weights for neuron/sound pairs across 

differing sound envelope thresholds (± jackknifed S.E. across neuron/sound pairs, Mann-Whitney U rank 

test, ****p < 10-9).  

 

Neural responses adapt rapidly to concurrent stimulus presentations 

Theories of sound streaming suggest that the brain computes statistical regularities over time in the 

neural population response to group sound features into perceptual objects (Elhilali et al., 2009; 

McDermott and Simoncelli, 2011). To investigate the dynamics of BG+FG interactions, we measured the 

temporal window over which neural responses to a single sound adapt to the onset of a second sound. For 

a subset of recordings, we included stimulus instances where a BG played the entire 1 s stimulus duration 

and the paired FG began 0.5 s after BG onset (full BG + half FG; BG+hFG, Fig. 2.4A) or vice versa (late 

BG onset, hBG+FG, Fig. 2.4E). The late-onset stimuli were generated using the latter half of the full 

stimulus to allow direct comparison of responses to the second half of the standard BG+FG condition. 

To measure dynamics of response to the onset of an interrupting FG, we compared the half-FG 

(BG+hFG) response to the full concurrent (BG+FG) response and to the BG alone response. Similarity of 

the BG+hFG response to the other conditions was computed as the difference in PSTH response, with the 

difference normalized by the standard deviation of the neurons’ PSTH response across all stimuli. The 

first 0.5 s of the BG+hFG and BG alone conditions are identical; thus, their difference should be minimal 

and provide a baseline error, computed as the squared difference between PSTH responses. (Although 

stimuli during the 0-0.5 s window were identical for the BG+hFG and BG alone conditions, neural 

responses were variable trial-to-trial, resulting in a small, non-zero squared difference in the baseline. 

Similarly, response onsets tend to have higher spike rates. Combined with Poisson statistics of spiking, 

this onset produced a slight increase in baseline near time 0.) After the half-FG onset at 0.5 s, we expect 

the difference between the BG+hFG and BG+FG responses to decrease and converge to the baseline 

error. Example responses (Fig. 2.4B) demonstrate the timing of this transition in PSTH responses, which 

indicates how long the response takes to adapt to the appearance of the FG sound. The converse analysis 

was performed by comparing the response to an interrupting BG (hBG+FG) to both the BG+FG and FG 

alone responses (Fig. 2.4F). 

Averaging the differential responses across all units and sound pairs for each condition allowed us to 

compute the average adaptation time following the onset of a second, concurrent stimulus. Because 

overall spike rate varied substantially between neurons, normalization prior to averaging provides a more 

accurate measure of change across the entire neural population rather than being dominated by high-firing 
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rate neurons. We defined the average adaptation time as the last time bin in which the response difference 

was significantly greater than the baseline error for three consecutive time bins (p < 0.05, jackknifed t-

test). In the BG+hFG condition, adaptation in A1 took place more slowly (160 ms, n = 2,255) than in PEG 

(100 ms, n = 908, Fig. 2.4C). Meanwhile, in the hBG+FG condition, which introduced the BG at 0.5 s, 

adaptation times were overall longer, but the same trend was observed between A1 (370 ms, n = 2,351) 

and PEG (240 ms, n = 942, Fig. 2.4G). Thus, adaptation was slower following the introduction of BG 

sounds, but, as in the case of the introduction of FG sounds, it was faster in PEG than in A1.  

Fitting the weight model to the 0.5-1 s window of the BG+hFG or hBG+FG conditions revealed 

adaptation to the initial, isolated stimulus influenced weights when the second stimulus appeared. In the 

BG+hFG condition, robust reduction of FG responses remained in A1 (n = 643, p < 10-9), whereas PEG 

no longer showed a statistically significant difference between wBG and wFG (n = 125, p = 0.374, Fig. 

2.4D). Similarly, weights for the hBG+FG condition showed decreased FG response reduction in A1 and 

PEG, though both remained statistically distinct (A1: n = 922, p < 10-9, PEG: n = 189, p = 6.83e-4, Fig. 

2.4H). 

 

 

Figure 2.4. Response dynamics following concurrent sound onset differ between A1 and PEG. A, 

Schematic of BG+hFG condition, in which a truncated 0.5 s FG begins 0.5 s after BG onset. B, (upper) 

PSTH response of a single A1 neuron to BG+hFG, BG+FG, and BG alone stimuli. (lower) Difference in 

PSTH response between the BG+hFG condition and the BG+FG (black) and BG alone (blue). Values near 

zero indicate similar responses at the corresponding time point. C, Normalized response difference between 

BG+hFG and the two reference conditions, averaged across all neuron/sound pair combinations in A1 

(upper) and PEG (lower). Filled triangles indicate the latest time point at which the response following 

introduction of FG at 0.5 s differs from the ongoing BG+FG response (A1: 160 ms, PEG: 100 ms). 
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Significant differences were measured relative to a noise floor, computed by averaging BG+hFG and BG 

alone responses over 0.5 s. D, Median BG and FG weights in the 0.5-1 s time window for BG+hFG stimuli 

(median ± jackknifed S.E. across neuron/sound pairs, A1: n = 643, Wilcoxon signed-rank test, ****p < 10-

9, PEG: n = 125, Wilcoxon signed-rank test, p = 0.374). E, Schematic of hBG+FG condition, where the BG 

sound is introduced 0.5 s following FG onset. F, Example responses hBG+FG, BG+FG, and FG alone 

stimuli, plotted as in B. G, Average normalized response difference for hBG+FG stimuli, plotted as in C 

(A1: 370 ms, PEG: 240 ms). H, Median BG and FG weights in the 0.5-1 s time window for hBG+FG 

stimuli plotted as in D (median ± jackknifed S.E. across neuron/sound pairs, A1: n = 922, Wilcoxon signed-

rank test, ****p < 10-9, PEG: n = 189, Wilcoxon signed-rank test, ***p = 6.83e-4). 

 

Degree of foreground-specific response reduction decreases over time 

Example neurons suggest FG responses in A1 are reduced throughout the duration of the BG+FG 

stimulus (Fig. 2.1C, upper) while in PEG the size of this effect can decrease over the course of the 1 s 

stimulus (Fig. 2.1C, lower). Based on our analysis of response dynamics (Fig. 2.4), we determined that 

BG+FG responses reach a steady state by 0.5 s. To compare relative FG response reduction before and 

after reaching steady state, we repeated the relative weight analysis (Fig. 2.2A) separately for the first and 

second 0.5 s halves of the BG+FG response. 

A1 and PEG both showed significantly less reduction of FG responses in the second half of the 

stimulus (A1: Wilcoxon signed rank test, p = 7.36e-3; PEG: p = 4.47e-7, Fig. 2.5). RGFG was not 

significantly different between A1 and PEG in the 0-0.5 s fit period (p = 0.096). However, consistent with 

results showing more rapid adaptation dynamics in PEG (Fig. 2.4C, G), relative reduction of FG 

responses in PEG during the 0.5-1 s fit period was significantly less than in A1 (p = 9.91e-5). Thus, both 

areas show selective reduction of FG responses following sound onset. After a period of adaptation, the 

amount of FG response reduction in PEG, which lies later in the auditory processing hierarchy, is smaller 

than in A1. 
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Figure 2.5. FG response reduction decreases after adaptation to a steady state. A, Histograms compare 

distributions of BG and FG weights in A1, fit using responses either during 0-0.5 s (left) or 0.5-1 s after 

onset (right). B, Distributions of BG and FG weights in PEG over the same time windows. C, Average FG 

relative gain (RGFG) between BG and FG weights, computed for each time window and cortical field. Data 

for the entire dataset is in black (mean ± S.E.M. across area, Mann-Whitney U rank test, **p < 0.01, ns: not 

significant; across time windows, Wilcoxon signed-rank test, ***p < 0.001). Data from individual animals 

shown in gray (n = 5). 

 

Distinct spectral and temporal sound statistics account for reduction of FG responses 

Having established a categorical difference in response weights, we next sought to identify 

distinguishing statistical features of BG and FG stimuli that give rise to FG-specific response reduction. 

While the distinction between BGs and FGs can be intuitive—BG sounds typically contain less 

behaviorally relevant information (Rabinowitz et al., 2013)—they can also be distinguished by their 

statistical properties (Attias and Schreiner, 1996; Nelken et al., 1999; Singh and Theunissen, 2003; Lesica 

and Grothe, 2008; McDermott and Simoncelli, 2011). We evaluated the extent to which these 

distinguishing features can explain FG response reduction. 

For each sound, we measured three spectro-temporal properties previously reported to distinguish 

BGs and FGs (detailed in Methods). Spectral correlation describes how closely power in different spectral 

bands co-varies (McPherson et al., 2022; Theunissen et al., 2000; Overath et al., 2008). Noisier sounds 

are typically less correlated due to the random nature of noise. As such, FG stimuli had greater spectral 

correlation than BG stimuli (BG: 0.177 ± 0.004, FG: 0.488 ± 0.014, p = 1.65e-4, Fig. 2.6A). Temporal 

variance describes how transient or dynamic a sound is by computing variance in power across each 

frequency band over time and averaging across frequency (Khalighinejad et al., 2019). FG sounds tend to 

contain more transients (Lesica and Grothe, 2008) and thus have greater temporal variance than BGs (BG: 

0.073 ± 0.004, FG: 0.159 ± 0.003, p = 2.40e-7, Fig. 2.6C). Finally, bandwidth describes the frequency 
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range over which most of a sound’s power resides. FG sounds tend to have narrower bandwidth than BG 

sounds (BG: 3.32 ± 0.18, FG: 2.27 ± 0.36, p = 3.82e-3, Fig. 2.6E). 

While these statistical properties differ between BGs and FGs on average, their values can vary 

widely across individual sounds within each category. We next compared how the magnitude of each 

property affects relative response gain during concurrent sound presentation. In the analysis above, we 

used FG relative gain (RGFG) to describe the relative contribution of FG versus BG to the BG+FG 

response. We define a complementary statistic, BG relative gain (RGBG), to describe the relative 

contribution of BG to the BG+FG response:  

𝑅𝐺BG =
𝑤BG − 𝑤FG

|𝑤FG| + |𝑤BG|
 

We can now describe the relative gain of any sound, BG or FG, using a single relative gain (RG) 

metric. As such, RG > 0 indicates that the referenced BG or FG sound’s response is relatively enhanced 

by a paired sound, and RG < 0 indicates that the referenced sound’s response is relatively reduced by a 

paired sound. We measured the relationship between each sound statistic and RG, averaging across 

neurons and paired stimuli. In A1, spectral correlation was negatively correlated with RG (r = -0.46, p < 

10-9, Fig. 2.6B), temporal variance was negatively correlated with RG (r = -0.53, p < 10-9, Fig. 2.6D), and 

bandwidth was positively correlated with RG (r = 0.27, p < 10-9, Fig. 2.6F). Thus, differences in RG can 

be attributed to quantitative sound properties rather than the broad BG versus FG categorization. Similar 

relationships were observed in PEG (Spectral correlation: r = -0.36, p < 10-9; Temporal variance: r = -

0.52, p < 10-9; Bandwidth: 0.33, p < 10-9). 

The properties described above characterize each sound in isolation. We also considered the 

possibility that the degree of overlap between sounds could explain their interaction. Spectral overlap, or 

the extent to which the spectral bandwidths of two sounds are matched, has been shown to affect the 

perception and encoding of concurrent sound sources (McDermott and Oxenham, 2008; Best et al., 2013). 

To calculate spectral overlap, we identified the range of frequencies used to measure bandwidth for each 

sound. Overlap of sound A with sound B is then defined as the percent of sound A’s bandwidth that 

overlapped with sound B’s bandwidth (note that this value is not commutative). In both A1 and PEG, 

there was a small negative correlation of spectral overlap with RG (A1: r = -0.19, p < 10-9, Fig. 2.6G; 

PEG: r = -0.20, p < 10-9). 

In addition to differences in spectro-temporal properties distinct between BG and FG sounds, we 

hypothesized that FG sub-categories contain inherent ethological salience to ferrets and thus may be 

represented differently. We divided FGs into three categories that might have different significance: 1. 
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ferret vocalizations, 2. vocalizations by other species, and 3. non-vocalizations (Fig. 2.6A, green bars). 

While all three of these categories were significantly reduced (p < 10-9), ferret vocalizations were the least 

reduced both in A1 (p < 10-9, Fig. 2.6H) and PEG (p < 10-9), possibly reflecting their inherent behavioral 

relevance. 

These observations together suggest that multiple sound statistics can explain the relative reduction of 

FG responses. At the same time, these properties can be correlated, as is the case of spectral bandwidth 

and spectral overlap, making it difficult to determine which ones actually account for the reduced 

response. To isolate their unique contributions, we performed a multivariate regression to predict RG 

based on a combination of sound statistics—spectral correlation, temporal variance, bandwidth, spectral 

overlap—and baseline individual response amplitude. Regression coefficients largely reflected analyses 

of individual statistics described above (Fig. 2.6I). Responses to sounds with either high temporal 

variance or high spectral correlation tended to be reduced. Spectral overlap and bandwidth had a 

significant yet relatively small effects. The relatively small effect of bandwidth was surprising, given prior 

results demonstrating that broadband, spectro-temporally dense sounds reduce AC neuron responses 

(Blake and Merzenich, 2002) and mediated by broadly-tuned lateral inhibition (Kato et al., 2017). Instead, 

the magnitude of response reduction appears to depend on tuning of network-level activity to higher-order 

stimulus features than bandwidth. Consistent with results showing weak or no relationship between 

single-stimulus response and weight (Fig. 2.3B, C), the regression indicates a weak effect of response 

strength in A1 and none in PEG. The broad effect of sound statistics on RG prompted further, direct 

investigation into the effect on RG of manipulating these natural sound statistics. 

 



59 
 

 

Figure 2.6. Distinct spectral and temporal sound statistics account for FG-specific response reduction. A, 

Spectral correlation measured for each BG (blue) and FG (green) sound. Horizontal dashed lines indicate 

mean across BGs and subsets of FGs. B, Scatter plot compares spectral correlation and relative gain for 

each natural sound in A1 (mean ± S.E.M. per sound; linear regression, r = -0.46, p < 10-9). Symbols 

indicate FG sub-category. C, Temporal variance of each BG and FG sound, plotted as in A. D, Scatter plot 

compares temporal variance versus relative gain (r = -0.53, p < 10-9), plotted as in B. E, Bandwidth of each 

BG and FG sound, plotted as in A. F, Scatter plot of bandwidth versus relative gain (r = 0.27, p < 10-9), 

plotted as in B. G, Scatter plot compares spectral overlap and relative gain for each BG/FG pairing (linear 

regression, r = -0.19, p < 10-9). H, BG and FG weights, after FGs are grouped into vocalization sub-

categories (median ± jackknifed S.E. across neuron/sound pairs, Wilcoxon signed-rank test, ****p < 10-9). 

I, Relative weight of each sound statistic’s contribution to FG response reduction, measured by multivariate 



60 
 

linear regression. All variables were continuous. Responsiveness for individual BG or FG sounds were 

included as an input to control the influence of selectivity for the component sounds. Each input was 

normalized to have a variance of 1, permitting direct comparison of weights. Regression was performed 

independently for A1 and PEG. 

 

Synthetic stimuli confirm the role of natural spectro-temporal properties in preferential reduction 

of FG responses 

To directly test the role of spectro-temporal sound statistics on relative reduction of FG responses, we 

generated synthetic BG and FG sounds in which different combinations of temporal and/or spectral 

modulation features were selectively preserved (Norman-Haignere and McDermott, 2018). For a subset of 

recordings, synthetic stimuli were generated to match each natural BG/FG pair and presented on 

randomly interleaved trials. All stimuli were matched in their power spectrum (i.e., “cochlear”-level 

statistics). Four synthetic conditions were tested: 1. Preserved spectral and temporal statistics (spectro-

temporal: ST), 2. Preserved spectral and random temporal statistics (spectral: S), 3. Preserved temporal 

and random spectral statistics (temporal: T), and 4. Random spectral and temporal statistics (cochlear: C, 

Fig. 2.7A). Pairs were always presented from the same natural/synthetic category. 

We measured spectral correlation, temporal variance, and bandwidth across the different synthetic 

conditions (Fig. 2.7B). As expected, based on our analyses of the natural sounds (Fig. 2.6), spectral 

correlation between BGs and FGs were distinct in sounds generated with matched spectral statistics (ST, 

S). Meanwhile, FG stimuli with randomized spectral statistics (T, C) showed substantially decreased 

spectral correlation, showing a convergence toward BGs. Measurements of temporal variance followed a 

similar pattern, whereby FG and BG stimuli with natural temporal statistics (ST, T) were more distinct 

than those with randomized temporal statistics (S, C). Randomizing temporal statistics in FGs resulted in 

a much smaller decrease of temporal variance than the corresponding spectral statistics, likely a result of 

randomization disrupting but not completely abolishing transient temporal structures. Measurements of 

bandwidth remained unchanged across synthetic conditions, demonstrating that cochlear statistics were 

indeed conserved even when spectral and temporal statistics were randomized. 

We next measured how synthetic sound pairs with randomized spectral and/or temporal statistics 

affected FG versus BG response weighting (Fig. 2.7C). There was a significant increase in FG relative 

gain between the original natural sounds and the spectro-temporal synthetic sounds, indicating that higher 

order statistics and relationships present in natural sounds contribute to the relative gain effect. The 

reduction in FG relative response became even smaller with the randomization of either natural spectral 

or temporal modulations. In the cochlear synthetic condition, where both spectral and temporal statistics 

were randomized, the difference in weighting was further reduced, although not eliminated. These 

persistent differences could result from residual temporal variance following temporal randomization or 
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from the presences of bandwidth differences that were conserved in the “cochlear”-level statistics (Fig 

7B). The relatively strong effect of temporal variance in the regression analysis (Fig. 2.6I) suggests that 

the former may have the greater effect in this condition. Overall, both A1 and PEG showed similar 

successive decreases in FG response reduction, but with overall less reduction in PEG for each condition, 

consistent with comparisons between areas above (Fig. 2.2, 2.4, 2.5). 

 

 

Figure 2.7. Sounds synthesized with randomized natural spectral and/or temporal properties successively 

decrease FG-specific response reduction in A1. A, Spectrograms of BG and FG natural sounds and four 

synthetic conditions, colored by category. Labels at left indicate the statistical properties (spectral, temporal 

modulations) preserved in each example. The cochlear condition lacks natural spectral and temporal 

modulation statistics. B, Whisker plots show distribution of BG and FG sound statistics—spectral 

correlation (upper), temporal variance (middle), and bandwidth (lower)—in synthetic conditions matching 

different spectral and/or temporal properties of the original natural sound. C, Average RGFG for each 

synthetic condition in A1 and PEG (mean ± S.E.M. across synthetic conditions, Wilcoxon signed-rank test, 

**p < 0.01, ***p < 0.001, ****p < 10-9). 

 

Spatial and signal-to-noise relationships between sounds influence FG-specific response reduction 

Spatial location has been implicated as playing an ancillary role in streaming, operating largely to 

supplement monaural streaming cues like harmonicity and temporal onset (Shinn-Cunningham, 2005). 

Changing the spatial position of a sound source produces level differences at a single ear, which may also 

affect representation of sounds in mixtures. In the results described above, stimuli were all presented from 

a single location 30° contralateral to the recorded brain hemisphere (contraBG/contraFG). To explore the 
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effect of relative spatial location on FG responses to sound mixtures, we varied the location of each 

stimulus between the contralateral position and a second location 30° ipsilateral to the recorded brain 

hemisphere. This defined three additional spatial configurations: ipsiBG/contraFG, contraBG/ipsiFG, and 

ipsiBG/ipsiFG. Given the tendency of AC to preferentially encode contralateral stimuli (Middlebrooks 

and Pettigrew, 1981; King and Middlebrooks, 2010), we expected less reduction in FG response (i.e., less 

BG dominance) when the BG was presented ipsilaterally. Conversely, we expected greater reduction in 

FG response when the FG was presented ipsilaterally. Indeed, A1 and PEG both showed significant 

decrease in BG dominance (measured by RGFG) in the ipsiBG/contraFG condition (A1: p < 10-9, PEG: p 

< 10-9) and significant increases in BG dominance in the contraBG/ipsiFG condition (A1: p <10-9, PEG: p 

<10-9, Fig. 2.8A). The ipsiBG/ipsiFG condition showed a modest decrease in BG dominance in A1 (p = 

0.019) and no significant difference in PEG (p = 0.655). 

Varying sound location affected the relative loudness of sounds reaching each ear but also engaged 

differential circuits for spatial coding. To selectively test the effect of relative sound level on responses to 

the concurrent stimuli, we returned to the contraBG/contraFG configuration and instead varied the level 

of FG relative to BG successively from the original 0 dB SNR to 5 dB and 10 dB. Increasing SNR 

significantly and incrementally decreased FG-specific response reduction in A1 and PEG (Fig. 2.8B). 

Thus, while this preferential reduction only weakly depends on a neuron’s responsiveness to individual 

BG and FG sounds (Fig. 2.6I), the degree does depend on overall input strength of each stimulus into the 

recorded brain area. 

Effects of increasing FG SNR recapitulate the pattern of decreased FG response reduction when 

sound power envelope thresholds were imposed (Fig 3D). By fitting only to epochs above 30, 50, or 70% 

of the maximum FG strength, SNR was effectively higher, which resulted in incrementally smaller FG-

specific reduction (Fig. 2.3E). These effects are also consistent with the ipsiBG/contraFG spatial 

condition, where the FG sound has higher effective SNR in the contralateral ear, which is preferentially 

represented in A1 (Stecker and Middlebrooks, 2003). The increased dominance of the BG in the 

contraBG/ipsiFG suggests that this trend would increase further for negative FG SNRs.  

An important consideration in our experiments exploring relative sound level is that we always kept 

one stimulus at least at a level of 65 dB SPL, approximately 30 dB above ferret response threshold 

(Bizley et al., 2005). This sound level is advantageous as it evokes activity from a high proportion of 

neurons, but it remains possible that FG-specific response changes could differ at lower sound levels due 

to the non-monotonicity of some auditory cortical neurons. In non-monotonic neurons, it is possible that 

rather than having muted responses at lower sound levels, unique and novel interactions may arise. Non-

monotonicity has been described as sparsely present in both primary and secondary areas of ferret 
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auditory cortex, with neurons in PEG tending towards non-monotonicity in greater abundance than A1 

(Bizley et al., 2005). Thus, some of the effects reported here could differ if tested at lower sound levels.  

 

Spectrotemporal interaction of natural sounds influence FG-specific response reduction 

While the average sound pressure level of the BG and FG sound waveforms was matched to have 0 

dB SNR, mechanisms in the peripheral auditory system could influence the effective SNR of the 

combined spectrotemporal pattern driving the neural response. To consider this possibility, we measured 

relative energy of the two stimuli in the spectral band driving the neural response. For a subset of 

recordings, we collected a separate natural sound dataset that permitted estimation of a neuron’s 

spectrotemporal receptive field and, from that, its best frequency (BF). We then computed a “spectral 

SNR” from the relative amplitude of FG and BG spectrograms in the BF channel (see Methods). Across 

this dataset, 61.0% of BG/FG mixtures had a negative spectral SNR (mean A1: -4.08 ± 0.29 dB, n = 

2,835, PEG: -5.14 ± 0.60 dB, n = 664). Thus, the BG often had greater relative power in the BG/FG 

spectrogram. In A1, spectral SNR was positively correlated with a FGRG value, i.e., less FG response 

reduction (linear regression, r = 0.29, p < 10-9, Fig. 2.8C). Applying the same analysis to data from PEG 

showed no relationship between spectral SNR and FGRG (linear regression, r = 0.05, p = 0.214). 

These results indicate that spectrotemporal interactions between BG and FG stimuli in the auditory 

periphery tend to produce an overall increase in BG spectral energy. The spectral SNR accounts for some 

of the FG response reduction in A1 but not PEG. However, even when spectral SNR is 0 in A1, we 

continue to observe negative RGs (y-intercept, A1: -0.27, Fig. 2.8C, left), indicating that not all the 

observed effect can be attributed to spectral SNR. 

 

Limited influence of cortical depth and cell type on FG-specific response reduction 

Our linear electrode arrays permitted sampling of units across multiple cortical depths. We used 

current source density analysis (see Methods) to classify units according to their approximate cortical 

layer (layer 1/3, supragranular; layer 4, granular; layer 5/6 infragranular). In general, differences across 

layers were small. In A1, there were no significant differences between layers. In PEG, FG-specific 

response reduction in layer 5/6 was modestly decreased relative to layer 1/3 (p = 3.46e-3, Fig. 2.8D). 

In addition, we classified units as broad- or narrow-spiking based on the width of the spike waveform 

(see Methods) (López Espejo and David, 2024). We found a characteristically bimodal distribution of 

spike widths (Fig. 2.8E, upper), with most units in the broad-spiking category (A1: 4,331/6,964, 62.2%, 

PEG: 1,689/2,563, 65.9%). In A1, but not PEG, FG-specific response reduction was reduced slightly in 

narrow spiking compared to broad-spiking units (A1: p = 9.64e-3, PEG: p = 0.075, Fig. 2.8E, lower). 
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FG-specific response reduction also occurs in primate AC 

Ferrets are evolutionarily distant from humans, and species differences could explain why FG specific 

reduction has not been previously reported in humans. To determine if the unexpected dominance of BGs 

in sound mixtures was observed in a more closely related species, we measured the basic BG/FG contrast 

for single unit activity recorded from AC of the common marmoset (Callithrix jacchus). Marmosets are a 

new world monkey with extensive vocal communication behaviors and AC similar in structure to humans 

(Bendor and Wang, 2005; de la Mothe et al., 2006; Osmanski et al., 2013; Song et al., 2016; Feng and 

Wang, 2017). Data from two marmosets recapitulated our observation of strong FG-specific response 

reduction in AC (wBG: median = 0.632 ± 0.010, wFG: median = 0.203 ± 0.008, p < 10-9, n = 906, Fig. 

2.8F). 

 

 

Figure 2.8. FG-specific response reduction across multiple experimental conditions. A, Average FG 

relative gain (RGFG) for combinations of contralateral (contra) and ipsilateral (ipsi) BG and FG sounds, 

grouped by cortical field. (A1: n = 1,017, PEG: n = 721, mean ± S.E.M, Wilcoxon signed-rank test, *p < 

0.05, ****p < 10-9). B, Average RGFG for variable FG sound level (dB), relative to BG, plotted as in A 

(***p < 0.001). N for each group indicated in the figure. C, Scatter plots compare the relationship between 

spectral signal-to-noise ratio (SNR) at each neuron’s best frequency for FG/BG combinations and FG 

relative gain (A1: linear regression, r = 0.29, p < 10-9, PEG: r = 0.05, p = 0.214). Dashed lines indicate y-

intercept at 0 dB SNR. D, Average RGFG grouped by cortical layer, plotted as in A (Mann-Whitney U rank 

test, *p < 0.05). E, (upper) Histogram of spike width in A1 shows bimodal peaks corresponding to putative 

inhibitory (narrow width) and excitatory (broad width) neurons. (lower) Average RG in for neurons 

grouped by spike width (Mann-Whitney U rank test, **p < 0.01). F, (left) Histogram of BG and FG 

weights for all neuron/sound pair combinations recorded in marmoset AC. (right) Average FG and BG 
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weights (median ± jackknifed S.E. across neuron/sound pairs, n=906, Wilcoxon signed-rank test, ****p < 

10-9). 

 

Discussion 

We examined single-unit representations of concurrent natural background (BG) and foreground (FG) 

sounds in ferret auditory cortex (AC). Presenting BG textures concurrently with dynamic FG stimuli 

resulted in unexpected, selective reduction of FG responses in primary (A1) and secondary AC (PEG). 

This reduction was dependent on statistical features unique to natural FG sounds. The magnitude of FG 

reduction was also smaller following prolonged stimulation, consistent with adaptation to an ongoing BG. 

Similar reduction was observed in marmoset AC, indicating that the phenomenon occurs widely across 

species. An enhanced, distributed representation of BG stimuli at early stages of auditory processing may 

be necessary for grouping sound features into perceptual objects (McDermott and Simoncelli, 2011; 

Shamma et al., 2011; Tye et al., 2024). Once BG features are grouped, they can be subtracted from 

population-wide activity, producing enhanced representation of behaviorally relevant FG sounds at later 

processing stages (Mesgarani and Chang, 2012; Kell and McDermott, 2019; Khalighinejad et al., 2019). 

 

Representation of natural foreground and background stimuli in auditory cortex 

Studies measuring local field potential and BOLD (fMRI) in human superior temporal gyrus (STG) 

have reported invariant representations of behaviorally relevant foreground sounds in the presence of 

natural background noise (Kell and McDermott, 2019; Khalighinejad et al., 2019). Data from A1 has been 

more limited. One fMRI study found that noise-invariance may not be present at this earlier processing 

stage (Kell and McDermott, 2017). Studies using stimulus reconstruction methods with single-unit data 

have argued for enhanced FG representations in A1 (Moore et al., 2013; Rabinowitz et al., 2013; 

Mesgarani et al., 2014). This work has focused on static, synthetic backgrounds, which may explain 

discrepancies with the current study. As we find, there is less reduction of foreground responses for 

stimuli lacking natural spectral and temporal statistics (Fig. 2.7C). It is also important to note that 

reconstruction of the foreground does not imply that information about background noise is not present in 

the population response (Christison-Lagay and Cohen, 2014; Malone et al., 2017; Ni et al., 2017). One 

study of natural background/foreground contrast did report that background stimuli are represented in A1 

(Bar-Yosef and Nelken, 2007). Our results show not only that backgrounds are represented, but that they 

are represented more strongly than concurrent foregrounds in A1 and PEG. 

 Prior studies using static background noise suggest that foreground invariance emerges by sculpting 

away inputs in spectro-temporal channels that fall out of band from the foreground signal (Mesgarani et 

al., 2014; Rabinowitz et al., 2013). However, the spectro-temporal features of natural background sounds 
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can overlap with those of the foreground. Theories of grouping complex sound features suggest that 

components of a single source must be identified based on coherent activity across subpopulations of 

neurons tuned to different features (McDermott and Simoncelli, 2011; Shamma et al., 2011). An 

overrepresentation of the background may reflect a mixed, distributed code for sound stimuli (Tye et al., 

2024). This high-dimensional, overcomplete representation may unmask temporally coherent features 

(Shamma et al., 2011), allowing for subsequent selection of the foreground object for representation in 

downstream areas. 

 

Natural sound statistics impact background/foreground contrasts 

Our study examined statistical features of natural background and foreground sounds that give 

rise to differential responses. Sound category was readily distinguished by multiple spectral and temporal 

properties, and the magnitude of these statistics predicted the degree of background dominance for 

individual background/foreground pairs (Fig. 2.6). Some effects were consistent with prior work. For 

example, background sounds tend to have broader bandwidth, which can provide energetic masking of the 

narrowband foregrounds (McDermott and Oxenham, 2008). Consistent with this idea, our results showed 

background sounds with broader bandwidth and greater spectral overlap produced larger foreground 

response reduction, though with a relatively small effect size (Fig. 2.6I). More strikingly, responses to 

foregrounds with greater temporal variance were unexpectedly and consistently more reduced (Fig. 2.6D). 

While high temporal variance of foreground stimuli has been reported, their transient (high variance) 

features are typically expected to pop out perceptually from continuous noise (Moore et al., 2013; 

Mesgarani et al., 2014; Kell and McDermott, 2019; Khalighinejad et al., 2019).  

Confirming the influence of natural sound statistics on foreground responses, sounds synthesized 

with increasingly randomized statistics produce successively less of a relative decrease (Fig. 2.7C). 

Notably, foreground responses were less reduced even between fully natural sounds and synthetic sounds 

that preserved all the measured spectral and temporal properties. This observation indicates that natural 

sounds contain higher-order properties that further account for background dominated responses. 

The statistics investigated here were chosen to capture qualities that categorically distinguished 

backgrounds and foregrounds (Fig. 2.6A-F) and to align with manipulations imposed on synthetic sounds 

(Fig. 2.7B). Other statistics have been proposed for classifying natural stimuli, and they may capture 

additional differences between background and foreground categories. Measurements of density, 

sparseness, and burstiness have been used to distinguish sound textures, but remain unexplored when 

differentiating sound textures from qualitatively distinct foreground-like transients (Zhai et al., 2020; 
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Mishra et al., 2021). Thus, expanded analysis of sound statistics may provide additional insight into the 

mechanisms driving the preferential reduction of foreground responses by backgrounds.  

Processes shaping the relative response to foreground versus background are likely to also depend 

on experience and behavior. For the subset of ferret vocalizations, we observed less response reduction 

than for other foregrounds (Fig. 2.6H), a difference that could not be explained by any of the measured 

sound statistics. Conspecific vocalizations are likely to have stronger behavioral salience, and prior 

studies of streaming have described top-down enhancement of behaviorally relevant stimuli (Ding and 

Simon, 2012; Mesgarani and Chang, 2012; O’Sullivan et al., 2013, 2015; Mesgarani et al., 2014). 

Alternatively, there may be additional, unmodeled statistical properties of vocalizations that selectively 

support their relative enhancement in A1. Experiments in trained and behaving animals can determine if 

behavioral relevance impacts the dominance of background sound responses.  

 

Mechanisms shaping the neural representation of concurrent sounds 

Our analysis of the interaction between stimulus statistics and relative gain provides insight into 

possible mechanisms that shape responses to concurrent sounds. Even the most unstructured synthetic 

stimuli, lacking natural spectral and temporal modulation, still evoked relatively reduced foreground 

responses (Fig. 2.7C). These synthetic background sounds maintained a broader power spectrum than 

foregrounds, which likely activates a wider range of tonotopic channels. Lateral inhibition is a widespread 

property of cortex (Suga, 1995; Biebel and Langner, 2002; Goense and Feng, 2012; Warren et al., 2013), 

and broadband stimuli are likely to engage this inhibition to suppress the narrowband foreground 

response. This hypothesis is bolstered by our results showing reduced foreground responses even when 

the background did not elicit a significant response on its own (Fig. 2.3C), suggesting that backgrounds 

evoke subthreshold inhibition that suppresses responses to the concurrent foreground. 

A contributing factor to the dominance of the background response could be bottom-up processes in 

the peripheral auditory system that emphasize spectrotemporal energy of the background relative to 

foreground. While there was no relationship between responsiveness and metrics of FG reduction (Fig. 

2.3B), there was a relationship between spectral signal-to-noise ratio (SNR), which reflects coding in the 

auditory nerve, and the relative gain of the foreground response in A1 (Fig. 2.8C). However, relative gain 

remained negative at 0 dB spectral SNR, indicating that the reduced response is not entirely inherited 

from the periphery. Regardless of its source, the reduced foreground response in A1 and PEG contrasts 

strongly with the relative enhancement reported in human STG.  

Our experiments investigating the dynamics of adaptation to concurrent sounds provide further 

evidence for the importance of network activity in shaping responses. Studies of speech coding in noise in 
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human AC have shown that responses adapt to a noisy background over a few hundred milliseconds 

(Khalighinejad et al., 2019; Mischler et al., 2023), consistent with the single-unit data reported here. 

Adaptation time following the onset of a background substantially exceeded that of a foreground (Fig. 

2.4C, G). Slower adaptation to background sounds is likely a consequence of the background activating a 

larger portion of the network and therefore requiring longer to reach a steady state than a narrowband 

foreground.  

Dynamics of preferential foreground reduction also differed across the processing hierarchy. Both A1 

and PEG showed similar reduction in foreground responses immediately after sound onset, but PEG 

showed less reduction in the latter half of the stimulus (Fig. 2.5). This relative change may reflect a step 

toward enhanced foreground representation in downstream areas. Foreground responses in A1 versus 

PEG also differed in their dependence on sound statistics. Responses to sounds with large spectral 

correlation were strongly reduced in A1 but less so in PEG (Fig. 2.6I). Neurons in secondary AC are more 

selective for complex spectral patterns than A1 (Rauschecker et al., 1995; Atiani et al., 2014; Kikuchi et 

al., 2014; Kline et al., 2021). A neuron tuned to a precise foreground pattern may be less susceptible to 

interference from a background than an A1 neuron tuned to fewer or less complex features. 
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3. Single-unit representations of background/foreground 

contrasts in trained, behaving ferrets 
 

In Chapter 2, we answered fundamental questions regarding the auditory streaming of natural sounds 

at the single-unit level: Responses to natural foreground sounds are unexpectedly and preferentially 

reduced when presented in a mixture with natural noise. The degree of the this preferential reduction of 

foreground responses by competing background noise could be explained by natural spectral and 

temporal statistics distinguishing background and foreground categories. Mechanisms producing this 

response reduction of foreground sounds are complex and cannot be easily explained by the tuning 

properties of an individual neuron, implicating selectivity at the level of the local network. 

In the discussion of these results however, a possible limitation arose in the passive nature of stimulus 

presentations. Although the stimulus configuration of a background/foreground contrast was specifically 

selected because of evidence indicating that this contrast induces auditory streaming, ferrets in this study 

were untrained such that no sounds had any explicit behavioral salience. Thus, there was no precise way 

to be sure that dynamic foregrounds actually had increased salience to the untrained subject. In the subset 

of foregrounds containing ferret vocalizations in Chapter 2, the preferential reduction of foreground was 

still the dominant pattern but to a lesser extent than foreground subsets containing other animal 

vocalizations or non-vocalizations (Figure 2.6H). These results indicate that the relative reduction of 

foreground responses by background sounds may indeed depend on experience and behavior, as 

conspecific vocalizations are likely to hold inherent salience to even untrained animals. Thus, our results 

were unable to conclude the impact of behavioral salience on relative foreground response reduction.  

As a result, Chapter 3 aims to specifically address this gap by adapting the previously presented 

general stimulus paradigm to a behavioral task to be performed by ferrets which would require successful 

streaming of natural foregrounds over backgrounds. By recording neural activity in trained ferrets as they 

perform a spatial streaming task, the impact of experience and behavior on single-unit representations of 

natural background/foreground mixtures can be examined more closely. 
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Abstract 
A key challenge of successfully navigating an acoustic world is the ability to understand and attend to 

behaviorally salient foreground sounds (speech, vocalizations) amidst background noise (environmental 

noise, mechanical noise). While behavioral salience can be inherent—as in recognizing conspecific 

communication sounds—it can also be continuously learned and unlearned. Previous studies have shown 

that high-order areas of human auditory cortex (AC) form enhanced representations of behaviorally 

relevant foregrounds compared to unimportant noise both pre-attentively as well as via active, top-down 

processes. Still, evidence has also shown highly encoded background representations in single units. 

These results, however, have largely relied on statistical categorical distinctions rather than explicit 

behaviorally motivated relevance. To study the representations of this foreground/background contrast as 

an active process within a behavioral state, here we recorded single-unit responses in AC of free-moving 

ferrets during a target-in-noise discrimination task. We trained ferrets to associate and select certain 

exemplars of a the statistically distinct foreground category as a rewarded target sound over noisy 

background distractors to determine how training shapes neural responses at early processing stages. 

Ferrets reliably performed this streaming task under a variety of spatial and difficulty conditions. Neural 

data from trained ferrets presented with non-task stimuli revealed preferential reduction of foreground 

responses that was consistent with untrained animals on matched stimuli. We then recorded from a 

trained, behaving animal and found a relative decrease in the magnitude of preferential foreground 

response reduction to trained task stimuli, potentially revealing adaption of AC responses to enhance the 

behaviorally relevant target stimuli. Overall, there were a greater number of noise-invariant responses in 

trained animals. We hypothesize explanations for this change, but the work presented here is currently 

limited to a case study due to limited neural data gathered in a second behaving animal. Thus, conclusions 

with greater statistical power about the extent to which training impacts neural representations of natural 

targets and distractors will require recordings from additional trained subjects. 
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Introduction 

As listeners experience the world, they are routinely faced with complex auditory scenes containing 

temporally and spectrally overlapping sounds. To make sense of this aural hodgepodge, listeners must be 

able to group cohesive sound features in the time and frequency domains amongst distinct sources, an 

ability called auditory streaming (Bregman, 1990; Nelken et al., 1999; Carlyon, 2004; Griffiths and 

Warren, 2004). While these grouping cues have been traditionally identified through psychoacoustic 

studies probing the boundaries of the statistical relationships that give rise to streaming often using 

artificial stimuli (Bregman et al., 2000; Bizley and Cohen, 2013), the processes guiding these perceptual 

groupings are thought to reflect internalized regularities of the natural environment (Młynarski and 

McDermott, 2019). Thus, auditory systems may be best adapted to accurate streaming through a lifetime 

of learning those features usually co-occurring within a sound in addition to which sound sources are 

behaviorally the most relevant. 

The importance of behavioral salience in streaming has been shown to be engaged pre-attentively 

during the perception of salient stimuli in noise (Sussman et al., 2007; Mesgarani et al., 2014; Kell and 

McDermott, 2019) as well as through active, top-down processes like the selective attention to the voice 

of a single speaker (O’Sullivan et al., 2015). A useful framework to study natural sound streaming is the 

background/foreground contrast, as behaviorally relevant foregrounds (e.g., speech, vocalizations) are 

preferentially perceived over noise-like backgrounds (e.g., waterfalls, fire, machinery) (Bregman, 1990). 

Indeed, local field potential (LFP) and functional imaging (fMRI) data from human superior temporal 

gyrus (STG) show that evoked activity in this high-order area of AC preferentially streams foregrounds 

over backgrounds (Kell and McDermott, 2019; Khalighinejad et al., 2019). In the primary auditory cortex 

(A1), evidence is mounting that backgrounds are also robustly encoded in single-unit representations, 

whereby a complete representation of noise may be subtracted from population-wide activity to allow for 

enhanced representation of foregrounds at later processing stages (Bar-Yosef and Nelken, 2007; 

Hamersky et al., 2023). The effect of task-specific attention on these single-unit representations of natural 

background/foreground contrasts in A1 is less known. 

Changes in the neural activity of AC have been widely reported after learning an auditory task with 

pure-tone targets, with neurons showing increased firing rate and reliability in response to tones near the 

target frequency while suppressing spectrally nearby distractors (Diamond and Weinberger, 1986; Kisley 

and Gerstein, 2001; Hui et al., 2009; David et al., 2012; Schwartz and David, 2018). It remains unknown 

whether natural sounds, which produce more distributed activation patterns in AC (Maor et al., 2019), 

induce similar tuning changes in the AC during learning. Tasks that require the streaming of foregrounds 

in the presence of natural background noise would be required in animal models amenable to invasive 
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neurophysiological recordings. Fortunately, streaming-like behaviors have been widely demonstrated in a 

range of animal models (Itatani and Klump, 2017), including ferrets (Ma et al., 2010). 

To measure the effect of behavior and experience on representations of natural 

background/foreground contrasts, we recorded single-unit activity in primary AC of freely moving ferrets 

as they performed a two-alternative forced choice task discriminating and locating foreground 

vocalization targets during concurrent natural background noise. We find reliably strong performance in 

this task which predictably decreases with increases in difficulty imposed through a variety of spatial 

configurations and decreased signal-to-noise ratios. We show that while our trained animals have 

fundamentally similar neural representations where responses to non-task foreground sounds are 

relatively reduced by natural background noise, trained animals show a higher prominence of noise-

invariant neurons to task stimuli. In trained animals, the extent of this increase may depend on task 

performance, potentially revealing task-related adaptation in the AC to natural sounds.  

 

Methods 

Surgical Procedures 

All surgical procedures and animal care were performed according to the same protocols, 

methodologies, and with the same oversight from regulatory bodies as described in Chapter 2.  

 

Acoustic Stimuli 

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown), and 

delivered through free-field speaker (Manger) placed centrally 80 cm from the front of the arena at 0 

elevation and at a 30 azimuth. Stimulation was controlled using custom MATLAB 

(https://bitbucket.org/lbhb/baphy) or Python software (https://github.com/LBHB/psilbhb) and all 

experiments took place inside a custom double-walled sound-isolating chamber (Professional Model, 

Gresch-Ken). 

Auditory stimuli were chosen from a pool of 40 natural sound excerpts, each 2-3 s in length and 

curated to contain power immediately at onset. Sound excerpts were categorized as two categories, 

backgrounds (BGs, 20 excerpts) and foregrounds (FGs, 20 excerpts), based on ethological relevance. FGs 

consisted of dynamic ferret vocalizations (dooks, kit squeaks, fighting) while BGs were natural noise 

textures (running water, machinery, etc.). Categories could also be distinguished based on simple spectro-

temporal statistics described previously (Chapter 2). All sounds were root mean square (RMS) normalized 

to impose a baseline 0 dB signal-to-noise ratio (SNR) between BG and FG categories, and sound level 

was calibrated so sounds were presented at a baseline of 55 dB SPL. D 
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Two Alternative Forced-Choice Task 

Ferrets were trained to perform a spatial two alternative forced-choice task, a target-in-noise detection 

task requiring locating a target FG sound amidst a noise-like BG. While free-moving, subjects initiate a 

trial by poking their nose into a port centered between two speakers angled 30 to the left and right in the 

azimuth, at 0 elevation, and 80 cm from the front of the arena. Two lick spouts were positioned in front 

of each speaker to either side of the nose poke port. IR detection beams in the nose poke port and each 

lick spout detect animal responses.  

To successfully initiate a trial, an animal must remain in the nose poke port for 0.4 s, at which point a 

BG sound will begin playing from either or both speakers concurrently to a unilateral presented FG target. 

Training stimuli were chosen from the same set of 20 BGs and 20 FGs above. An early withdrawal from 

the port during trial initiation results in an early trial and a brief timeout. A correct response occurs when 

the animal moves to and nose pokes into the lick spout corresponding with the location of the speaker 

playing the target FG within 4 s of trial onset, resulting in the delivery of a 0.05 mL 3% sucrose reward. 

Incorrect trials or trials with no response resulted in a brief timeout where trials could not be reinitiated. 

Behavioral experiments were performed using customized Python software, psiexperiment 

(https://github.com/LBHB/psilbhb).  

We tested several variations of target/noise spatial configurations (schematized in Figure 3.1D, in all 

trials with a presented target a correct trial is defined as a nose poke in the lick spout corresponding with 

the speaker playing the target FG): (1) Diotic: BG was presented from both speakers while a FG was 

presented from only a single speaker, (2) Ipsilateral: BG and FG were both presented from the same 

speaker, (3) Contralateral: BG and FG were presented from opposite speakers. As controls, FG alone 

trials were presented with the FG in isolation from a single speaker and BG alone trials where the BG 

plays from a single or from both speakers in the absence of a FG. In BG alone trials, a random lick spout 

is rewarded with 50% probability. In any of these conditions, the signal-to-noise ratio could be varied 

such that FG level is attenuated 5, 10, 15, or 20 dB relative to the BG to increase difficulty. 

During training, 2-3 sounds per category were selected on a rotating basis from a pool of 20 BGs and 

20 FGs. In experiments, all 40 sounds were presented in isolation at each recording site and the 2-3 

sounds from each category that evoked the largest average multi-unit response across the site were 

selected to be used in experiments. Chosen sounds were combinatorically paired to produce unique 

BG/FG combinations which were presented interleaved amongst the configurations detailed above.  
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Neurophysiology 

Neurophysiology was performed consistent with practices for preparation of craniotomies and AC 

mapping using anatomical and tuning properties. In these experiments, recordings were performed by 

semi-chronically implanting a 960-channel Neuropixel probes (Jun et al., 2017) to permit recordings 

during free moving behavior and recordings at the same site over multiple recording sessions. Typically, 

about 150 of the 384 active probe channels spanned AC depth, as determined by current source density 

analysis (Hamersky et al., 2023). Once inserted, the microdrive was glued down (Flow-It ALC, Pentron) 

and the craniotomy sealed with a silicon polymer (Kwik-Cast, World Precision Instruments). A custom 

3D printed enclosure was installed around the microdrive to protect the implant. Data were amplified, 

digitized, sorted, and manually curated to analyze only single units as in Chapter 2. 

Neurophysiology recordings were performed in a freely moving, behaving state. As a comparison, 

task stimuli were presented to passive, head-fixed ferrets during the same recording session. Sessions 

typically lasted 4-6 h. In each recording session, video and LFP monitored the animal’s state to monitor 

the animal’s state. After 2-3 days of recording, the probe was explanted.  

 

Inclusion Criteria 

We measured evoked activity with the peri-stimulus time histogram (PSTH) response averaged across 

sound repetitions at 100 Hz sampling. All passive recordings had 10 sound repetitions and when 

analyzing behavior trials needed at least 5 completed repetitions per sound to be included in analysis. As 

in Chapter 2, we placed numerous restrictions on stimulus/neuron pairs to ensure that we only include 

sound-responsive units in analysis.  

We calculated a signal-to-noise ratio for each stimulus/neuron pair using the ratio of the PSTH 

response to the standard deviation of the response across repetitions (Fritz et al., 2003). For experiments 

shown in Figure 3.2A, our inclusion criteria matched those of Chapter 2, requiring an SNR ≥ 0.12 to be 

considered sound responsive. In behavioral analysis (Fig. 3.2D), we found overall lower SNR amongst 

units, likely because of fewer sound repetitions, so we expanded our cutoff for sound responsiveness to 

SNR ≥ 0.08. We considered a neuron/stimulus pair to be responsive when responses to both BG and FG 

in isolation exceeded threshold (628/2,618, 24%). We similarly only included responsive units where the 

linear model fit well (r ≥ 0.4, 99/628, 16%). In most behavioral analyses (such as Fig. 3.2D, right) we 

required all SNR and fit conditions to be met in both the behaving and passive conditions. These strict 

criteria severely limited our included neuron/stimulus pairs. 
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We discuss the presence of motor neurons in our recordings (Fig. 3.3), which showed robust 

responses particularly in the FG and BG+FG behavior conditions but little to no response during the 

passive, head-fixed recording of the same sounds. To best isolate motor neurons and remove them from 

our weight analysis, we computed a normalized difference between responsiveness of the behaving and 

passive PSTHs during the 1 s fit window: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝜇𝑏𝑒ℎ𝑎𝑣𝑖𝑛𝑔 − 𝜇𝑝𝑎𝑠𝑠𝑖𝑣𝑒

√𝜎𝑏𝑒ℎ𝑎𝑣𝑖𝑛𝑔 +  𝜎𝑝𝑎𝑠𝑠𝑖𝑣𝑒

 

This metric quantified how much greater the response in the behavior condition was relative to the 

passive. As a result, we could ascribe a cutoff of 1.1 at which we considered units that dissimilar between 

conditions to be motor neurons (13/99, 13%). 

 

Statistical Analysis 

In pairwise statistical tests (Figs. 3.2A, 3.2D) we performed a Wilcoxon signed-rank test with 

significance determined at the alpha = 0.05 level. We note the number of neuron/sound pairs in figures 

and figure legends along with exact p-values. In unpaired comparisons (Fig. 3.2D) we used a Mann-

Whitney U rank test with significance at the alpha = 0.05 level.  

 

 

Results 

Ferrets can learn a streaming behavioral task with natural sounds 

To explore how neurons in the auditory cortex (AC) integrate information about behaviorally relevant 

sounds in the presence of noise during behavior, we trained ferrets to perform a two-alternative forced 

choice (2AFC) task where a target sound must be spatially located in the presence of background noise. 

We would compare responses to targets paired with distractors in back-to-back stimulus-matched passive 

(Fig. 3.1A) and behaving (Fig. 3.1C) trial blocks to directly determine the effect of task engagement on 

target representations.  

 Target and noise stimuli were drawn from natural sounds comprising two ethological categories: 

background textures (BGs) and ferret vocalizations (FGs). A BG/FG contrast stimulus configuration was 

chosen because it has been well established as producing streaming (Rabinowitz et al., 2013; Mesgarani 

et al., 2014; Kell and McDermott, 2019; Khalighinejad et al., 2019). Ferret vocalizations were chosen as 

their own target category due to the inherent behavioral salience of conspecific calls, with diverse 

exemplars from a range of behaviors comprising this category.  
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During training on a two-alternative forced choice (2AFC) task, 2-3 BG and FG exemplars (2-3 s 

duration) each were chosen on a rotating basis to be presented in isolation or simultaneously (Fig. 3.1B). 

Trials are initiated when a ferret inserts their nose into a port located centrally between two speakers to 

break an IR beam (Fig. 3.1C, for complete details, see Methods). In general, a test trial consists of a target 

(FG) played from a single speaker and a distractor (BG) played from one or both speakers. A correct trial 

entails the subject moving to and nose-poking into the lick spout that corresponds to the speaker playing 

the target FG, at which point a sucrose reward is delivered. To modify difficulty, BGs could be oriented in 

one of three configurations: (1) diotic – BG played from both speakers while FG plays from one, (2) 

ipsilateral – BG played from the same speaker as the FG, and (3) contralateral – BG played from the 

opposite speaker as the FG (Fig. 3.1D). We pool and collectively refer to ipsilateral and contralateral trials 

as non-diotic. Sound mixtures were presented with the FG attenuated at various levels relative to the BG 

to increase difficulty as SNR decreases. Some trials also consisted of control trials where the FG played in 

the absence of a BG or where the BG played in the absence of a FG. In the latter case, either lick spout 

was rewarded with a 50% probability. 

Animals (n=3) were able to perform the task well above chance level in both diotic (0 dB, REI: 95.0 ± 

1.0%, LMD: 94.3 ± 2.3%, SLJ: 73.3 ± 2.0%) and non-diotic (0 dB, REI: 96.0 ± 0.6%, LMD: 84.7 ± 1.3%, 

SLJ: 75.7 ± 1.6%) conditions, where we observed performance decrease steadily with increasing SNR 

difficulty (Fig. 3.1E). As expected, performance on FG alone trials was near perfect performance in both 

animals tried in this condition (REI: 97.2 ± 0.8%, LMD: 93.2 ± 1.0%) while BG alone trials without a 

target were at near chance performance (REI: 47.8 ± 2.2%, LMD: 54.1 ± 1.7%). Having attained reliable 

behavioral performance on 2/3 animals (REI and LMD) on this streaming task, we next recorded from AC 

of animals during task performance to determine how task engagement may affect representations of the 

BG/FG contrast. 
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Figure 3.1. Behavioral task experimental setup and performance results. A, In the passive complement to 

behavioral recordings, head-fixed ferrets were presented natural sound stimuli from a free-field speaker 30° 

contralateral to the recording hemisphere. Neuropixel arrays recorded single-unit activity from the primary 

(A1) field of AC. B, During recording, natural sound excerpts from two distinct, ethological categories—

backgrounds (BGs) and foregrounds (FGs)—were presented in isolation (blue and green spectrograms, 

respectively) and concurrently (black spectrogram). C, Schematic of two-alterative forced choice task 

(2AFC). In all variations, subjects initiated a trial with an extended nose poke to the center port. A trial 

consists of a presentation of a target (FG) and distractor (BG), and a correct trial is when the subject moves 

to the lickspout corresponding with the speaker playing the FG (shown as the dotted arrow). D, Different 

spatial variants of the 2AFC, where BG is presented in different spatial orientations relative to the FG. E, 

Results from behavioral training of animals (n=3) on the 2AFC task in the spatial configurations outlined in 

D (reported as percent correct ± SEM). *Panels C, D modified with permission from JCW. 
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Responses of trained animals to non-task natural foreground/background pairs are similar to 

untrained animals 

We next recorded single-unit activity in 2/3 trained ferrets (LMD and REI). We first compared 

interactions in behaviorally trained ferrets to our untrained ferrets using a similar stimulus configuration 

that showed unexpectedly dominant relatively reduction of natural FG sounds reported in Chapter 2. 

Here, we played a standardized set of the same 4 BGs and 4 FGs (paired combinatorically) at each 

recording site. We used the same inclusion criteria described in Chapter 2 and fit the same linear model to 

describe the combined BG+FG response as a linear weighted sum of the constituent BG and FG 

responses in isolation (diagrammed in Fig. 2.2A): 

𝑅BG+FG(𝑡) = 𝑤BG𝑅BG(𝑡) + 𝑤FG𝑅FG(𝑡) 

In brief, individual BG or FG weights < 1 indicated a relative reduction of the individual response in the 

BG+FG response. We then compared wBG and wFG for each neuron and stimulus pair, or instance, tested. 

Results in our two new subjects were indistinguishable from previous animals (n=5), showing 

significantly higher BG weights compared to FG weights (p < 10-9, Fig. 3.2A). Recordings in this stimulus 

configuration served as a control that our trained animals recapitulated the unexpected result of 

preferentially reduced FG responses previously observed on stimuli not explicitly trained in the task. 

Next, we recorded single-unit activity during the 2AFC task and during passive listening to task 

stimuli so we could compare the effect of attention on response interactions. At each recording site, we 

selected 2-3 BG and FG exemplars each from a larger set of 20 BGs and 20 FGs (2-3 s duration). Each 

individual exemplar was first presented in isolation to determine site responsivity to each sound, and we 

chose the sounds that evoked the largest average multi-unit response to be presented simultaneously 

(BG+FG) and in isolation (BG, FG) during experiments. Behavioral performance during recordings was 

overall consistent with training performance at 0 dB (REI: 95.7 ± 1.0%, LMD: 77.8 ± 2.3%), FG alone 

(REI: 99.5 ± 0.5%, LMD: 91.2 ± 1.9%), and BG alone (REI: 50.7 ± 2.6%, LMD: 52.7 ± 2.9%) trials (Fig. 

3.2B). Of note, because of experimental limitations, the 2AFC task during recording was largely limited 

to the 0dB, non-diotic condition, which will be the subset of conditions from which the data for the 

forthcoming analyses were drawn. 

 

Behavioral performance may directly affect extent of FG response reduction 

Response interactions of target FGs and BG distractors were diverse. In many neurons, we observed 

the profound reduction (Fig 3.3C, left) of FG responses reported previously (Fig 2.2) even in the absence 

of a robust BG response (Fig. 2.3), indicative of network level inhibition by BGs. Other responses were 

less typical in the context of our previous work. For example, whereas a negligible number of neurons 
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showing BG-invariance were previously observed, here we note many instances of neurons where 

responses to the FG and BG+FG were near identical, a wFG of ~1 (Fig. 3.3C, right). This could reflect 

adaptation in the AC to enhance representations of task stimuli (Diamond and Weinberger, 1986; Hui et 

al., 2009; David et al., 2012). 

 Group data of fit weights was consistent with this qualitative observation of a relatively increased 

number of recorded noise-invariant neurons robustly responsive to task foregrounds in trained animals. 

We compared only weights from instances where reliable responses were evoked to both individual BG 

and FG sounds in during both active and passive recording blocks (LMD: n=341/1,502, 23%, REI: 

n=287/1,116, 26%, see Methods) as well as instances with a good model fit (r ≥ 0.4, LMD: 23%, REI: 

7%). To describe the relative contribution of FG versus BG to the BG+FG response, we combine wBG and 

wFG into a single metric, FG relative gain (RGFG): 

𝑅𝐺FG =
𝑤FG − 𝑤BG

|𝑤FG| + |𝑤BG|
 

With this metric, RGFG values < 0 indicate FG-specific response reduction, where the FG is relatively 

more reduced than the BG. RGFG values > 0 indicate enhanced FG responses. We report uniform 

reduction of FG responses between active and passive recordings in both animals (LMD: n = 65, mean 

active: -0.12 ± 0.07, passive: -0.13 ± 0.06, p = 0.82, Wilcoxon signed-rank test; REI: n = 21, mean active: 

0.25 ± 0.14, passive: 0.27 ± 0.13, p = 0.96, Fig. 3.2D, right). In comparison to previous results, mean 

RGFG is higher in both animals under similar SNR conditions (Fig. 2.2), indicative of less FG-specific 

response reduction, possibly reflecting an effect of behavioral training.  

We report unpaired comparisons between the untrained, naïve condition (Fig. 3.2A), with passive and 

behaving results (Fig. 3.2D, left). Neurons in this comparison did not have to meet our inclusions criteria 

across conditions. We observed several trends in the results consistent between animals. Notably, while 

neither subject shows a difference between passive and behaving, both do show a substantial relative 

increase in RGFG between conditions with task stimuli and the untrained condition with non-task FGs. As 

a result, both subjects may be showing a similar, task-dependent relative increase in RGFG between non-

task and task stimuli, despite having different non-task baselines.  

While this difference in baseline could be attributable to different effects of behavioral training or 

more broad generalization of task and non-task vocalizations in one animal, it is also possible that this 

divergence between LMD and REI is simply noise because of a very low sample size in REI 

(neurons/sound pairs n = 21, recording sites n = 2). This restricts our ability to draw additional 

conclusions comparing the animals currently. 
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To explore this change in baseline further, we revisited our previous analysis in untrained animals 

from Chapter 2 that showed the vocalization sub-category of FG sounds with a smaller degree of FG-

specific response reduction compared to the non-vocalization FG sub-category (Fig 2.6H), which we 

hypothesized to be a result of inherent behavioral relevance of conspecific vocalizations. To investigate if 

this trend was consistent in trained animals, we similarly sub-classified FGs from the standardized set of 

non-task stimuli to determine if LMD and REI differed in their representations of these sub-categories in 

this stimulus configuration. Indeed, mean RGFG of both the non-vocalization and vocalization sub-

categories in LMD was nearly identical to that of the untrained animals (LMD: non-voc. -0.52 ± 0.02, 

voc. -0.41 ± 0.02, Untrained A: non-voc. -0.56 ± 0.03, voc. -0.44 ± 0.05, Untrained B: non-voc. -0.51 ± 

0.04, voc. -0.42 ± 0.03, Fig. 3.2E, left). Only 2/5 untrained animals contained a large enough sample (n ≥ 

90) of the sounds from the standardized set played to LMD and REI for meaningful comparison. 

Meanwhile, while the non-vocalization sub-category in REI showed a similar RGFG (-0.62 ± 0.03), FG-

specific response reduction of the vocalization sub-category was much less (-0.15 ± 0.04). The relative 

RGFG change between sub-categories was normalized to account for variations in magnitude of FG 

response reduction amongst different subjects: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝜇𝑛𝑜𝑛−𝑣𝑜𝑐. − 𝜇𝑣𝑜𝑐.

√𝜎𝑛𝑜𝑛−𝑣𝑜𝑐. +  𝜎𝑣𝑜𝑐.

 

This normalized difference can be seen as moderate and equivalent between LMD and naïve animals 

(LMD: 0.28, Untrained: 0.28 and 0.22) while REI showed a drastic change in FG response reduction 

between sub-categories (REI: 0.98, Fig. 3.2E, right).  

Together, despite lacking statistical strength in one animal, we observe similar trends of relative FG 

enhancement between non-task and task stimuli in both animals (Fig. 3.2D, left). Additionally, both 

animals show no difference between passive and behaving trial blocks, suggesting that adaptation to FG 

targets may not be a rapidly reversible change. These results suggest that natural sounds induce changes 

in the tuning properties of AC neurons much like how has been demonstrated to pure tone stimuli. 
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Figure 3.2. Response interactions during recording from trained animals. A, Comparison of wBG and wFG 

during presentation of non-task BG and FG stimuli in a configuration consistent with previous, untrained 

subjects. In trained ferrets LMD and REI, median wFG was significantly lower than wBG with magnitudes 

consistent with that of untrained animals Bars at left compare median weights (± jackknifed S.E. across 

neuron/sound pairs, Wilcoxon signed-rank test, p < 10-9). B, Behavioral performance from recording days 

in the non-diotic spatial configuration. Performance at the 0 dB test condition in both subjects falls in 

between chance performance at BG alone trials and near perfect performance in FG alone trials.  C, 

Example PSTH responses in the behaving and passive complement from two units. BG and FG responses 

are shown in blue and green, respectively, and the actual BG+FG response is shown in black. One example 

(left) shows FG response reduction while the other (right) shows noise-invariance. D, Summary of weight 

analysis in trained animals, expressed in mean RGFG. On the left, mean RGFG is shown for each subject 

from the (1) stimulus naïve, untrained configuration shown in A, (2) passive recording blocks and their (3) 

behavioral complement. Here, each condition must independently meet neuron/stimulus pair inclusion 
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criteria to maximize sample size. Meanwhile, at right, mean RGFG is shown only in neuron/stimulus pairs 

where both the behaving and passive condition met criteria, allowing for paired comparison, which showed 

no significant differences (Wilcoxon signed-rank test). E, (left) Mean RGFG when the results shown in A are 

split according to FG sub-category: non-vocalization or vocalization. Untrained animals are shown in blue 

while trained animals LMD and REI are shown in grey and black, respectively. (right) Relative difference 

between RGFG for the two vocalization sub-categories. Colors as in left. 

 

Motor neurons in free-moving recordings 

There is growing evidence supporting the presence of neurons encoding motor features like 

movement and place in the sensory cortices (Holey and Schneider, 2023; Mertens et al., 2023; Mimica et 

al., 2023). In our analyses comparing responses between behavior and passive listening, we noticed 

numerous neurons who lacked activity in the passive condition but had robust firing during behavior that 

were fairly uniform regardless of sound stimuli—likely motor neurons (Fig. 3.3). We used this general 

distinction between passive PSTH and behaving PSTH to roughly categorize motor neurons in our 

recordings (see Methods), finding a that 7.5% (156/2,076) of recordings single-units met our criteria. The 

implications of their presence is beyond the scope of this chapter but will be discussed in Chatper 4. 

 

 
Figure 3.3. Example PSTH of a neuron that responds to animal movement in the active condition but 

shows no response during passive, head-fixed listening. BG and FG responses are shown in blue and green, 

respectively, and the actual BG+FG response is shown in black.  

 

 

Discussion 

We explored the effects of behavioral training and experience on single-unit representations of 

concurrent natural foreground (FG) targets paired with natural background (BG) distractors in ferret 

auditory cortex (AC). Ferrets learned a novel two alternative forced-choice (2AFC) task that required 

streaming to successfully identify the target sound amidst a noisy distractor. Trained animals showed 

comparable preferential reduction of non-task FG responses in a BG+FG mixture during passive 

listening. Both also showed a relatively degree of FG response reduction to task stimuli compared to their 



83 
 

non-task baseline. Adaptation that enhances neural tuning to task stimuli has been widely reported for 

pure tones to enhance behavioral performance (Diamond and Weinberger, 1986; Kisley and Gerstein, 

2001; Hui et al., 2009) and increase neural discriminability (Heller et al., 2023). Though this adaptation 

has been shown to be rapid and reversible in a state-dependent manner to pure tone targets (Fritz et al., 

2003), here we report the relatively enhanced representation of natural FG target sounds to be uniform 

between behavior and passive states. This result suggests a difference in the patterns and mechanisms of 

plasticity in AC neurons to more complex natural sounds. 

 

An animal model of an auditory streaming task with natural target and distractor sounds 

Although many studies have demonstrated the ability of animals to perform tasks that require 

auditory streaming (Itatani and Klump, 2017), few or no paradigms for streaming have been established 

using natural targets and distractors to create a more ethologically relevant behavior. Our 2AFC task is 

also unique because rather than training on a single exemplar of a foreground to be used as a target, we 

require animals to generalize exemplars across a target category, ferret vocalizations. This category is 

comprised of sounds from across the ferret’s repertoire of vocalizations—playful dooks, kits whining, 

fighting. As a result, unlike past streaming tasks where a pure tone of differing frequencies must be 

detected, no single spectrotemporal property binds the category of ferret vocalization (Fig. 2.6A, C, E), 

necessitating more abstract grouping.  

Attributing the ability of ferrets to generalize an abstract category like ferret vocalizations must be 

done with caution, however. Because we are using a BG/FG distinction which we have demonstrated to 

be categorically distinct in spectral, temporal, and cochlear activation patterns (spectral correlation, 

temporal variance, bandwidth, Fig. 2.6), it is possible ferrets are relying on the increased temporal 

variance of foregrounds in general, for example, compared to backgrounds rather than the ethologically 

defined category. To test the strategies employed by animals when distinguishing between target and 

distractor, further studies might include catch trials where a ferret vocalization target is paired with a non-

vocalization foreground as a distractor with similar spectrotemporal statistics. Alternatively, trials 

containing a background distractor and non-vocalization catch that is statistically like a target foreground 

could inform us whether there is a bias towards statistically foreground-like sounds. These experiments 

could help us ask more specific questions about natural sound grouping in ferrets that are beyond our 

present scope. 

Regardless, we show that across a range of spatial configurations and challenging SNRs, behavior in 

trained ferrets indicates a robust ability to stream natural foreground targets in the presence backgrounds 

distractors with similarly natural statistics (Fig. 3.1E). With this level of task performance, we can 
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confirm that animals are perceptually streaming FGs during recordings with a certainty we could not 

during recordings in Chapter 2. 

 

Effects of training on the single-unit representations of concurrent backgrounds and foregrounds 

Our study sought to identify how neural representations of FGs are affected by attention in streaming. 

Receptive fields of neurons in primary AC (A1) readily adapt to enhance tuning around the frequency of 

pure tones with a conditioned reward (Hui et al., 2009). We report relatively enhanced (increased FGRG) 

responses to task FGs versus non-task FGs (Fig. 3.2D, left), confirming that A1 neurons also enhance 

tuning to natural sounds because of training, a result possibly reflected in the appearance of completely 

noise-invariant PSTHs (Fig. 3.2C, right).  

The mechanisms surrounding this enhancement in natural sounds remain less clear. Pure tones have 

very focal activation patterns, causing similar focal enhancements in neural tuning reflected in STRFs. 

Natural sounds contain complex spectral content to produce distributed activation patterns in AC (Maor et 

al., 2019) which may require higher dimensional representations than a linear model can represent. 

Neurons in AC produce higher-dimensional representations of complex sounds to encode their 

increasingly complex spectrotemporal patterns (Rauschecker et al., 1995; Kikuchi et al., 2014), including 

neurons tuned so specially they respond only to categories of sounds like conspecific vocalizations 

(Montes-Lourido et al., 2021). As a result, it is likely that enhanced tuning to natural FG targets may not 

be as simple as that of pure tones. As mentioned above, although FG exemplars used as targets come from 

the same vocalization category, they can be selected from several distinct vocalizations and therefore have 

no simple, single-dimensional spectrotemporal feature that may be enhanced to improve performance. As 

a result, the adaptations necessary to enhance representations of the diversity of spectrotemporal 

characteristics across the vocalization category are likely complex. Determining the exact training-

induced changes in AC neurons may require more complex, non-linear models to describe the 

computations of higher-order neurons (Keshishian et al., 2020).  

Relatively complex tuning changes may be why we see no evidence that enhancements in FG 

representation are limited to the behaving state and are not readily reversible. The STRF changes 

observed in trained pure tones are limited to the behavioral state and quickly revert to their original state 

following behavior (Fritz et al., 2003). From this, we would expect that mean RGFG would be higher 

during behavior compared to the passive complement, but both animals are indistinguishable between 

conditions (Fig. 3.2D, right). In Chapter 2 we proposed that the preferential reduction of foreground 

responses by backgrounds in untrained animals may be driven by network activity shaping responses, 

such as lateral inhibition (Suga, 1995; Goense and Feng, 2012; Warren et al., 2013). Backgrounds have an 
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overall broader and more uniform power spectrum than foregrounds which is likely to engage more of the 

network to possibly suppress the responses of comparably narrowband foregrounds. To enhance responses 

of natural foreground targets then, it is possible that the changes are not only more complex but might 

also affect the wider network, which could be changes less rapidly reversed compared to the focal, state-

dependent STRF changes induced by pure tone training. 

 

Evidence of behavioral category generalization 

Our analysis and comparison of background and foreground weights to non-task stimuli in our trained 

animals and untrained animals showed fundamentally no difference in amounts of foreground response 

reduction (Fig. 3.2A). This was reassuring, validating our results from Chapter 2 and confirming that 

changes we observe in task stimuli may be associated with training. Although we saw relatively increased 

weighting of foreground responses between non-task stimuli and task stimuli in both animals (Fig. 3.2D, 

left), a particularly striking result was the drastic difference in baseline foreground response reduction of 

non-task sounds between REI and other animals. In the non-vocalization sub-category, REI showed 

equivalent reduction to LMD and untrained ferrets. However, the vocalization sub-category showed 

substantially less foreground response reduction than any other animal (Fig. 3.2E), even though these 

vocalizations were not trained. A change in the representation of untrained exemplars of the target 

category may reflect broad categorical generalization by this animal. 
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4. Conclusions and future directions 

Studies of auditory streaming have indicated that noise-robust perception may arise in auditory cortex 

(AC) by preferentially emphasizing and constructing invariant representations of behaviorally salient 

sound features (Rabinowitz et al., 2013; Mesgarani et al., 2014; Khalighinejad et al., 2019). While these 

studies have focused on what information about relevant sounds can be extracted from sound mixtures, it 

remains unexplored how these sounds and what information, if any, of the background noise may be 

represented at the single-unit level in primary AC (A1). 

The work presented in this dissertation builds on these studies by directly asking this question to 

investigate how representations of two statistically and ethologically distinct natural sound categories 

differ when presented concurrently. In Chapter 2, I showed static background textures in primary and 

secondary AC dominate responses to dynamic, transient foregrounds sounds. This result was unexpected 

given the literature suggesting ubiquitous noise-invariant representations but suggests that it may be 

necessary to thoroughly encode the noise so it can be subtracted at later processing stages. These results 

are particularly compelling because the relative reduction of foreground responses was not entirely 

dependent on neural tuning but was shown to be highly dependent on the natural statistics unique to 

foreground and background categories.  

Then, in Chapter 3 I applied this analysis to an auditory streaming task to determine the effect of 

behavior and experience on single-unit representations of this background/foreground natural sound 

contrast when foregrounds were given explicit behavioral salience. I present results showing ferrets can 

perform a task that requires auditory streaming uniquely using both natural targets and distractors. 

Further, trained subjects showed a smaller extent of response reduction for natural foreground targets by 

distractors when compared to non-task foregrounds or untrained animals. This result suggested that tuning 

in the AC can also adapt to enhance representations of trained stimuli with natural, complex 

spectrotemporal statistics. The interpretation of this data is currently limited, however, due to low 

statistical power from a second animal and must be treated as a preliminary case study.  

Overall, the work presented uniquely studies single-unit representations of overlapping natural sounds 

to reveal new insights about how well-studied properties of the AC in streaming may be applied to sounds 

with natural spectrotemproal statistics. Throughout this dissertation, I’ve emphasized the surprising nature 

of our main result that the responses to natural foreground sounds are relatively and preferentially reduced 

when presented concurrently to natural background noise. At the heart of this surprise was perceptual 

evidence that would suggest—because auditory streaming allows the perception of salient sounds in a 

chorus of noise—that foreground sounds also have enhanced neural representations through auditory 
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cortex to lead to this noise-robust perception. What implications, then, does the result of foreground-

specific response reduction have and how might an overrepresentation of background noise at earlier 

stages of the auditory hierarchy ultimately facilitate noise-invariant perception? 

 

4.1 Natural spectrotemporal statistics play a crucial role in the interactions 

of foreground and background sounds 

In my Introduction, I gave a tongue-in-cheek conclusion to the section overviewing the broad 

differences between synthetic and natural sound stimuli (1.2.2), imbuing the latter with a je ne sais quoi 

that the former could never attain. Indeed, the literature has supported this notion not just through broad 

differences comparing simple, synthetic sounds with complex, natural sounds, but also by directly 

showing that even synthetic sounds extensively curated to model natural spectrotemporal relationships do 

not match their natural counterparts perceptually (Młynarski and McDermott, 2019) or through elicited 

neural response (Norman-Haignere and McDermott, 2018). Taken with the results I have presented, what 

seemed like a flourish of writing has become a crucial part of the work in this dissertation as it relates to 

understanding how the AC represents mixtures of overlapping natural sounds. 

In Chapter 2, we calculated statistics of natural sounds that describe their cochlear activation patterns 

and their spectral and temporal relationships. We found ethologically distinct foreground and background 

categories to differ by these statistical metrics—foregrounds activated more narrow regions of the 

cochlea, were more transient in time, and contained greater correlations between frequencies than 

backgrounds. These statistical differences, independent of neural tuning, predicted the reduction of 

responses to the statistically more foreground-like sounds by statistically more background-like sounds 

(Fig. 2.6B, D, F). More directly, when we synthesized sounds to match different combinations of these 

three natural statistics, we found that even the most “natural” synthetic sound showed different 

background/foreground interactions and matching progressively fewer statistics largely erased the 

categorical distinction between foregrounds and backgrounds (Fig. 2.7B) and dramatically reduced 

foreground-specific response reduction (Fig. 2.7C).  

Generally, these results validate our unique paradigm studying auditory streaming using natural 

foregrounds and natural background noise. Previous studies frequently use natural foregrounds because 

perceptually those are the important ones, but they often also use synthetic noise to simplify the 

categorical contrast (Mesgarani et al., 2014). This stimulus selection frames the background/foreground 

contrast with the implicit bias of our perceptions that foregrounds are the important ones and, lo and 
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behold, the story becomes a reflection of that with evidence showing the foreground can be decoded from 

the mixtures thus precluding us from caring about what happened to the background. 

I argue here that while simplifying noise is convenient, it may not answer the question I am after. A 

lifetime of experience shapes our acquisition of natural sound statistics and their relationships which in 

turn affects our internalized template of our natural environment (Młynarski and McDermott, 2019). 

Therefore, to study how an ethological acoustic scene is represented, it is important to use a naturalistic 

scene. By doing so, we can allow the brain to dictate which aspects of sounds are most important for 

normal perception, an especially important point when considering a task like streaming that constantly 

requires the parsing of interactions of natural sounds. Here, by presenting the brain with equally 

naturalistic backgrounds and foregrounds, we found an unexpected result showing that neurons do in fact 

robustly represent noise (Chapter 2) in a way that may be changed based on experience (Chapter 3). 

In the same way simplifying natural sounds to synthetic sounds is convenient, I too am guilty of 

employing a simplification: the background/foreground contrast. Though well established to produce 

streaming (Rabinowitz et al., 2013; Mesgarani et al., 2014; Kell and McDermott, 2019; Khalighinejad et 

al., 2019) and quantitatively distinct through several statistical metrics (Singh and Theunissen, 2003; Kell 

and McDermott, 2019; Attias and Schreiner, 1997), in a more natural context the distinction between 

background and foreground is more arbitrary—maybe you do actually want to listen to the serene yet 

statistically static sounds of a flowing waterfall while ignoring the dynamic, transient voices of the 

tourists crowding Multnomah Falls. Having demonstrated sound statistics to be a large contributing factor 

of the interactions between our natural backgrounds and foregrounds, an extension of this work explores 

these statistics on a continuum, unconstrained by category. 

To this end, I have laid the groundwork for an experiment that addresses this question directly, 

focusing on the three statistics described in Chapter 2: bandwidth, temporal stationarity, and spectral 

correlation. I compiled a collection of ~600 natural sound excerpts comprised of sounds that would neatly 

fit into background/foreground as well as more categorically ambiguous cases such as coins rattling or 

ensemble music. I calculated the three metrics for each sound, tiling the 3d space defined by these 

statistics. In a passive-listening experiment, I can now identify a singular axis through this space and pair 

sounds along this axis in our most basic concurrent stimulus configuration. For example, if we select a 

Sound A that is more narrowband, more spectrally coherent, and temporally transient (hallmark traits of a 

foreground) and pair it with Sound B that is broadband, less spectrally coherent, and temporally stationary 

(hallmark traits of a background) we can expect based on our previous results to see a preferential 

reduction of Sound A. But, free of categorical limitations, we can now replace Sound B with Sound C that 

falls as a direct statistical intermediate between A and B and ask what the interaction between A and C 



89 
 

will now be? Will responses to Sound A remain reduced albeit to a much smaller extent because of the 

more moderate statistics of Sound C? Anecdotal evidence from experiments in Chapter 2 where a 

relatively narrowband and temporally transient background, rocks tumbling down a hill, showed some of 

the smallest relative gain values suggests this would be the case. Further, what happens if we pair two 

sounds that are statistically equivalent in bandwidth and spectral correlation but differ in temporal 

properties? In this configuration our exploration of how spectrotemporal properties of natural sounds 

affect their interactions can be more granular and the relationships more controlled, allowing us to delve 

into even more naturalistic scenarios and more interesting, dynamic interactions. 

 

4.2 The role of binaural cues in natural sound representations 

Our analyses in Chapter 2 focused almost entirely on natural background/foreground stimuli 

presented from the same speaker positioned contralateral relative to the recording hemisphere of the head-

fixed ferret. Experimentally, this was important to control the relative intensity of background and 

foreground sounds as we studied their interactions. We did, however, include the modification where 

backgrounds and foregrounds were presented in different spatial combinations from the contralateral 

speaker as well as another opposite speaker ipsilateral to the recording hemisphere. 

Although spatial location plays a smaller role in streaming to supplement other monoaural streaming 

cues (Shinn-Cunningham, 2005), we included this modification to explore if spatial location would affect 

the preferential response reduction of foreground sounds. Our results were consistent with this as well as 

with prior results indicating preferential encoding of contralateral stimuli by AC (King and Middlebrooks, 

2010)—the degree of foreground response reduction was smaller when the foreground was contralateral 

and relatively louder than an ipsilateral background and increased in the opposite spatial configuration 

(Fig. 2.8A). 

The role of binaural cues in streaming had a much more prominent role in Chapter 3 because the two-

alternative forced-choice task ferrets were trained on required them to locate a foreground target amidst 

different spatial configurations of background noise (Fig. 3.1D). Spatial release from masking (SRM) 

refers to the improved intelligibility of a sound in noise when spatially separated (Stillman and Irwin, 

1990; Peng et al., 2021). Though our results are incomplete and require further testing, by training the 

task with interleaved trials where the background masker was spatially paired or opposite of the target, we 

expected to see behavioral performance that suffered much more at more difficult SNRs in the monoaural 

condition. Conversely, we expected in the binaural condition where target and distractor are spatially 

separate that SRM would improve target discriminability even at lower SNRs. Gathering a robust dataset 
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while recording from animals during these different spatial configurations and at more challenging SNRs 

would allow us to determine if spatial release from masking can be observed at the single-unit level. 

 

4.3 Contributions to foreground response reduction outside of AC? 

My data and experiments focused almost entirely on the primary AC, briefly extending into secondary 

auditory cortex in Chapter 2, but how might the auditory system before it’s stop in cortex affect my 

finding of foreground response reduction?  

In Chapter 2, we considered the possibility of bottom-up processes from the peripheral auditory 

system may emphasize the spectrotemporal energy of backgrounds. To test this, we calculated spectral 

SNR to determine, within a neuron’s receptive field, whether background or foreground had more energy. 

Although we did find a relationship between our relative gain metric of foreground response reduction 

and spectral SNR, the effect was not large enough to fully explain our result such that even when spectral 

SNR was 0 dB we still saw foreground response reduction (Fig. 2.8C). This led me to consider other 

response properties in lower-level areas that may contribute to the response interactions observed in A1.  

For instance, the auditory periphery and midbrain contain numerous nonlinear response properties—

saturation, phase locking, sensitivity to amplitude modulation—that can modify the signal reaching AC. 

Background noise poses a challenge because noise can cause saturation of firing or obscure phase 

locking. Auditory nerve fibers tuned to frequencies near peaks of the sound will produce a saturated 

response or one that phase locks to a single feature, producing weak fluctuations at the sound’s 

fundamental. Meanwhile, fibers tuned away from the frequency action can be dominated by multiple 

harmonics to create slow fluctuations at the fundamental that get enhanced by inferior colliculus neurons 

tuned to amplitude modulation as bandpass, band-reject, low-pass, or high-pass (Carney et al., 2015; Kim 

et al., 2020). Some of these tunings are characterized by excitation, inhibition, or a mix to create a neural 

code in the midbrain that consequently improves the perception of more harmonic sounds like speech, or 

in our case, foregrounds (Fig. 2.6A). It is possible then that somewhere in this code lies a contributing 

factor to the relative reduction of foreground responses in A1 when paired with background noise. With a 

midbrain code sensitive to neural fluctuations resulting from sounds with harmonic structure, contrasts 

between these sounds and more “noisy” sounds can be enhanced, serving as an “edge-detector” (Carney 

et al., 2015) which could be useful in parsing the boundary between foreground and background. 

Though this notion may seem like it hints at the beginning of foreground selectivity in sub-cortical 

areas which would be inconsistent with our findings of reduced foreground responses in A1, I instead 

argue it could fit with our hypothesis of noise invariance arising through the subtraction of population-
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wide representations of noise. Having a code that can parse features of sound mixtures could allow for the 

enhanced representation of noise in the early AC that is necessary for its subtraction as the foreground 

representation emerges through secondary and tertiary AC. 

Another property of lower-level like areas discussed in the Introduction (Section 1.2.1) was the spike 

timing codes brought about by the precise, low-latency firing of neurons in the inferior colliculus and, to a 

lesser extent, AC which encode information through precise timings of responses to sound features like 

onsets (Trussell, 1999). Also discussed was the relative predominance of rate codes in AC that represent 

information following amplitude modulations (Lu et al., 2001). In our study we chose to focus on rate 

codes—asking to what extent firing in response to a foreground is reduced when in the presence of a 

background. We chose to do so because rate codes have established to be relatively dominant in AC 

(Niwa et al., 2012; Bagur et al., 2025). Still, this does not necessarily preclude the possibly of spike 

timing codes playing a role in the AC representation of foregrounds in the presence of backgrounds. For 

instance, although we observed a dominance of firing relating to background sounds, information about 

the foreground could remain contained in a temporal code such that key onsets or features of the 

foreground remain encoded, albeit to a smaller magnitude of response. In this way, while our results show 

that responses to overlapping background and foreground sounds are dominated by a response to the 

background, if onset responses to temporally transient foreground sounds remain precise, this may be 

sufficient information about the foreground in a timing code. A future direction of the data presented in 

this dissertation could explore this possibility by analyzing responses to compare how and to what extent 

the timing of firing to foregrounds is changed in the presence of a background, potentially revealing a 

complementary role of spike timing code in the encoding of natural background/foreground contrasts. 

 

4.4 Behavioral consequences of foreground response reduction  

My results in our trained and behaving animals (Chapter 3) show the persistence of the foreground-

specific response reduction observed in untrained, passively listening animals (Chapter 2), a significant 

control. Inherent to the stimulus paradigm of the passive experiments in Chapter 2 was an assumption that 

a background/foreground contrast produces streaming (Moore et al., 2013; Rabinowitz et al., 2013; 

Mesgarani et al., 2014) with an automatic perceptual preference towards narrowband, temporally dynamic 

foreground sounds even in untrained ferrets. It is also well described that top-down processing can 

enhance behaviorally relevant stimuli in humans (Ding and Simon, 2012; Mesgarani and Chang, 2012; 

O’Sullivan et al., 2013, 2015; Mesgarani et al., 2014). Taken together, a stronger representation of 

foreground responses in trained animals attending to foregrounds during a complex two-alternative 
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forced-choice task would make sense given top-down enhancement. It would also indicate a flaw in our 

assumptions about the salience of a foreground in the passive paradigm. However, we found comparable 

results between our passive and behaving recordings, allowing me to speculate more confidently as to the 

role of foreground response reduction in behavioral performance and auditory streaming perception. 

 

Mechanisms shaping the neural representation of concurrent sounds 

Though our animals have achieved proficiency on an auditory streaming task (Fig. 3.1E), we have 

trials—especially at the more difficult SNRs—where the animal erred, either selecting the incorrect 

lickspout or providing no response at all. With a more robust dataset with a larger number of incorrect or 

null trials we could repeat our weighted gain analysis on these trials with behavioral performance as a 

readout of unsuccessful or incorrect streaming. In Chapter 2, I hypothesized that foreground response 

reduction in early stages of auditory processing may reflect a need to construct a distributed 

representation of distracting background stimuli to subtract this information from population-wide 

activity (McDermott and Simoncelli, 2011; Shamma et al., 2011; Tye et al., 2024). If this were true, the 

enhanced encoding of distracting stimuli in the early stages of auditory processing would be helpful for 

downstream responses in the behavioral output. As a result, unsuccessful streaming might then arise from 

an incomplete representation of distractors that would prevent the requisite downstream foreground 

acuity. In incorrect behavioral trials we may then expect to see less robust foreground response reduction, 

or less background dominance in the population, to reveal a functional role of reduced foreground 

responses. Where, then, would a foreground signal with noise representations subtracted become useful? 

 

The emergence of foreground specificity 

A hypothesis where a noise robust signal emerges through the auditory hierarchy by subtracting 

population-wide representations of noise would require some level of modification through processing 

stages in AC. In my results showing foreground response reduction in secondary AC (Fig. 2.2C), 

foreground specificity clearly doesn’t arise at this level. However, given the smaller magnitude of 

foreground reduction driven by a more rapid adaptation to background sounds in PEG (Fig. 2.4, 2.5C), 

the gradual emergence of foreground specificity seems tenable. Similarly, an fMRI study in humans found 

evidence that noise-invariance may not yet emerge at the level of A1 (Kell and McDermott, 2017), while 

at higher levels in the auditory hierarchy such as the superior temporal gyrus (STG), local field potential 

and fMRI have reported the kind of foreground specificity consistent with noise-robust perception (Kell 



93 
 

and McDermott, 2019; Khalighinejad et al., 2019). We now need to look forward in the ferret AC to 

hypothesize where invariance emerges as it does in human STG, a more high-level auditory field. 

A study in the ferret Ventral Posterior field (VPr) gives insight into this tertiary area that is notably 

understudied due to its extremely lateral location (Elgueda et al., 2019). VPr was found to show selective 

enhancement of extracellular responses to behaviorally relevant target stimuli, an enhancement that is 

amplified during active performance of an auditory discrimination task. Importantly, this contrast between 

enhancement during active performance and passive listening gradually increased from recordings in A1 

to PEG to VPr, finding enhancement to be weakly represented in secondary areas and even less so in A1. 

This result is reminiscent of results from Chapter 3 in A1 showing a minimal effect between foreground 

relative gain between active and passive trial blocks in our two-alternative forced-choice task (Fig. 3.2D). 

Were the emergence of target enhancement from A1 to VPr to have parallels to representations of our 

natural background/foreground sound contrasts, we might expect to see incrementally less response 

reduction of our target foregrounds in PEG and VPr, with increasing contrast between our behaving and 

passive recordings. Probing whether these predicted differences and our previously observed differences 

between A1 and PEG remain is a very accessible extension of our behavioral data given our current 

recording setup. Should we see these changes in PEG, it would certainly be worth attempting to extend 

our recording capability to higher auditory areas. 

 

Decoding behavioral performance from neural responses 

Having a robust number of correct, incorrect, and null trials could also allow for decoding analyses to 

explore whether neural responses can predict performance. In the Introduction, I discussed encoding 

models that can predict neural responses based on the stimulus input after extensive learning of how that 

neuron responds to a large sampling of stimuli. Decoding models, on the other hand, allow us to look at 

neural responses and see what information is encoded in the response. Can we make a model, then, with 

an extensive neural dataset during correct and incorrect behavior that can predict behavioral performance 

based on neural response? More specifically, if we provide this model with information about the spatial 

orientation and SNR of the target and distractor and the accompanying neural responses on a particular 

trial, can it predict whether the animal chose correctly based on neural response? If so, this would indicate 

a neural signature of correct streaming or that unsuccessful streaming took place—the target was too quiet 

and thus no or uninformative information was encoded about it, the animal wasn’t paying attention when 

a more challenging monaural task occurred and they didn’t spatially resolve the location of the target 

having only one source, etc. Or, as discussed above, perhaps incorrect trials more frequently feature a 

smaller amount of foreground response reduction. 
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Indeed, neural decoding is a useful tool to understand the relationship between behavioral and neural 

data (Paninski et al., 2007; Glaser et al., 2020; Zhang et al., 2024), and data out of the lab gives us 

precedent for this kind of inference of perception using neural responses. Individuals with normal hearing 

tend to fuse binaural sounds when there is a relatively small (0.1-0.2 octave) pitch difference between the 

ears, while more disparately pitched sounds are perceived as two separate sounds. Perceptual evidence in 

humans show that when two synthetic vowel sounds are presented dichotically and separated by little to 

no frequency difference spectral averaging is likely to occur resulting in the percept of a distinct, 

intermediate vowel sound (Reiss and Molis, 2021). In our lab, a project seeks to determine the neural 

basis for this fusion by recording neurons of ferret AC as they passively listen to vowel presentations. 

Preliminary neural data shows that when two vowels are presented dichotically and with no frequency 

separation, neural responses tend to resemble responses to neither vowel alone, but rather the response 

resembles that of a third vowel sound that in the human study was indicative of binaural fusion. This 

suggests an averaging of neural responses and potentially the perception of this fused sound. It also means 

that in our streaming task we may be able to use neural responses and behavioral performance to infer 

whether streaming took place or not. 

 

Non-auditory components of the auditory response 

We can also use our behavioral results to explore the presence of neurons in A1 that do not explicitly 

care about auditory information but seem to have a motor component to them (Fig. 3.3). On first thought, 

it seems unintuitive: neurons in the auditory system that don’t care about auditory information—what are 

neurons that don’t care about sounds doing in the sound area of the brain? On the contrary, hearing 

doesn’t exist on its own in our experience of the world and ought to be informed by contexts that may 

reflect behavioral state or other sensory modalities. As such, recent studies have shown that neurons in 

sensory cortices indeed do encode information about place, body orientation, movement, etc. (Mertens et 

al., 2023; Mimica et al., 2023) which can serve as a multimodal reference or even to reflect expectation as 

in the suppression of self-generated noises (Holey and Schneider, 2023). These variables, namely position 

relative to sound source and movement can be accounted for to increase accuracy in encoding models. 

During free-moving behavior, we record animals with an overhead camera to track their location. As 

a result, we have data on the position of the animal during any given part of a stimulus presentation or 

behavioral outcome. We could, for instance, then plot the animal’s two-dimensional position relative to 

the center lick port versus the PSTH of a neuron to see how fluctuations in head position relative to the 

speakers affect encoding of the sound stimuli. Or, maybe once the animal starts moving its mind is made 

up and it stops listening in favor of collecting the expected reward. As it relates to our non-auditory AC 



95 
 

neurons, knowing the movement of the animal at any given time can inform us what these neurons in the 

AC are actually encoding and allow us to speculate how that may be useful in the streaming task. 

 

4.5 Modeling complex representations of natural sounds with deep learning 

We have discussed (Section 1.2.5) the spectrotemporal receptive field (STRF) as a linear model that 

summarizes the unique combination of spectral, temporal, and level properties to which a given neuron is 

tuned (Aertsen and Johannesma, 1981). Once fit using a large number of responses from that neuron 

across a large sampling of statistically diverse stimuli, an STRF can do a remarkable job at predicting 

neural responses to sound stimuli as a linear feature detector (Thorson et al., 2015). A limitation of this 

model, though, is that progressively higher areas of AC are tuned to increasing complexity that may be 

hard to capture with this static model (Atencio et al., 2009). Particularly given the importance of context 

and changing spectrotemporal relationships within our paradigm of overlapping natural backgrounds and 

foregrounds, we also discussed the dynamic STRF (DSTRF). The DSTRF uses deep learning to generate 

an STRF that changes over time as the sound progresses (Keshishian et al., 2020), which could inform 

how evolving contexts affect a neuron’s tuning. Taking a step back, can we create a model capable of 

predicting the response interactions in complex natural sound mixtures? It seems like we can.  

Convolutional neural networks (CNNs) are a deep learning architecture that can be used to model 

sensory processing using neurophysiology data (Butts, 2019; Richards et al., 2019). Though already well 

established in the world of the visual system to model natural image representation (McIntosh et al., 2017; 

Cadena et al., 2019), until recently it was not clear that CNNs could be used to characterize single-unit 

activity in AC due to these neurons having complex tuning that requires very large datasets. A recent 

study (Pennington and David, 2023) trained both an STRF-like linear model and a CNN population 

encoding model to predict the activity of large numbers of neurons during natural sound presentations that 

was generalizable to untrained units and never-before-seen sounds (Fig. 4.1A). The CNN model 

outperformed more traditional linear models (Fig. 4.1B). 
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Figure 4.1. Introduction to deep learning architectures as models of auditory encoding of natural sounds A, 

Schematics of model architectures showing a relatively less complex linear-nonlinear model (like the 

STRFs discussed in Fig. 1.17) and the more complex convolutional neural network. B, Example PSTH 

responses of a neuron in response to the above natural sounds as well as PSTHs predicted by the LN and 

CNN. C, Across most recordings, the CNN does a better job of predicting neural responses to complex 

natural sounds compared to the LN. Figures reproduced or adapted from Pennington & David, 2023. 

 

Though in preliminary stages, an extension of the work presented in this dissertation aims to model 

and predict the complex interactions we have observed and discussed that lead to the relative reduction of 

foreground responses detailed in Chapters 2 and 3. During several days of recordings in naïve, untrained 

animals that led to the data presented in Chapter 2, we also included trial blocks which presented 

thousands of 0.125-0.8 s natural sound excerpts (Fig. 4.2). Here the sound category (background or 

foreground) was not relevant and therefore not curated, though the set of sounds did include exemplars 

belonging to both categories. These large sets of natural sounds provided a huge and rapidly presented 

natural sound dataset on which we could train the CNN to predict responses to novel natural sounds as 

previously shown (Pennington and David, 2023). Consistent with this previous work, we found the CNN 

trained on these diverse natural sound sets able to accurately predict responses to novel, isolated 1 s 

backgrounds and foregrounds exemplars used throughout Chapters 2 and 3 (Fig. 4.3A, left, middle).  
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Figure 4.2. Example stimulus spectrogram of large, diverse natural sound set whose responses were used to 

train our models. Each natural sound excerpt, independent of background/foreground categorization were 

presented at short (0.125-0.8 s) durations.  

 

We next sought to apply these models to our natural background/foreground stimuli contrasts to 

determine the extent to which they can accurately predict responses to concurrent presentations of natural 

sounds despite having never been trained on overlapping sounds with masked spectrotemporal properties. 

Indeed, both the LN and CNN were able to predict responses to BG+FG sound combinations (Fig. 4.3A, 

right, black). Further, fitting our weighted linear model (Chapter 2) to the LN and CNN-predicted 

individual BG and FG responses yielded similar weights and response to the BG+FG response (orange). 

The linear sum (dashed line) is also shown to describe how the CNN more accurately depicts the FG-

specific response reduction observed in the neural response. Overall, the CNN outperformed the LN 

model in predicting BG and FG weights across most recording sites (Fig. 4.3B). The improved prediction 

accuracy of the CNN was shown to be from more accurately predicting lower FG weights leading to a 

more accurate RG than the LN, despite both being equally accurate with BG weights (Fig. 4.3C).  

Together, these results reveal the versatility of deep learning as applied to the auditory system and, 

novelly, its ability to be applied to complex sound mixtures. Though this extension of my primary 

dissertation work is in its early stages, it is exciting to see my result of foreground response reduction that 

we—for years—have considered to be unexpected able to be recapitulated and captured by modelling. 

Extending tools such as the DSTRF (Keshishian et al., 2020) to increase the interpretability of CNNs by 

visualizing the activation patterns that drive the network output could allow us better understand how our 

model is arriving at this result of foreground response reduction. The linear function equivalent to the one 

the network applies to each repetition of a stimulus is called the locally linear receptive field and can be 

found at any moment in time and allow us to visualize how different sound contexts affect a neuron’s 

response and tuning. This visualization could give insight into the model-predicted foreground response 

reduction, representing an exciting next step in my dissertation research. 
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Figure 4.3. Models trained on individual natural sounds were able to predict neural responses to BG+FG 

sound combinations A, Example PSTHs comparing (rows) actual neural responses, LN prediction, and 

CNN prediction for BG, FG, and BG+FG natural sounds (columns). In the rightmost column, the BG+FG 

response (black), weighted prediction of the individual BG and FG responses (orange), and the linear sum 

(dashed) of the BG (blue) and FG (green) response are compared. The respective BG and FG weights for 

each row are shown at right. B, Comparison of LN and CNN performance predicting BG and FG weights at 

each recording site (n=42). C, Summary of model performance for all unit and sound pair instances. The 

models predict comparable BG weights, but the CNN more correctly predicts lower FG weights, thus the 

CNN predicts the relative reduction of FG responses more accurately. 
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